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Résumé. — Nous étudions le diagramme de phase d’un systéme dense de particules allongées avec une interaction
Coulombienne, et montrons l'existence d’une transition isotrope-nématique du premier ordre.

Abstract. — We discuss the phase diagram of a concentrated system of rods interacting via a Coulomb potential,
and demonstrate the existence of a first-order isotropic-nematic transition.

1. Introduction. — There are several approaches
to the statistical mechanics of liquid crystal sys-
tems [1]. For rods interacting via short range forces
at low density, the virial expansion can be employed [2].
At high density, however, no such rigorous expansion
has yet been devised for interactions which are
strongly singular at the origin, such as hard-core or
Lennard-Jones interactions.

In this paper, we show that for potentials less
singular than r ~3, a high density expansion resembling
the Debye-Hiickel theory of electrolytes [3] may be
performed, and that the results yield a first-order
phase transition between an isotropic and a nematic
phase. This class of potentials includes the Coulomb
potential, which is of particular interest in the light
of a recent experiment on DNA molecules [4].

2. Theory. — We consider a system with volume V,
of N rods, of length ! and charge per unit length ¢
suspended in a fluid of counterions, such that the
system is electrically neutral. Points on the ith rod
are described by three parameters : r;, the centre of
mass of the rod; A, a unit vector in the direction of
the rod, and s;, the distance of the point from the
centre of mass. The position of a point on the ith rod
is thus
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It should be made clear that the rods have no thick-
ness, and interact solely via a pair potential between
noints on the rods, U(| R,(@;, s;) — R;(d;, s) ). We
ssume that the rods are highly overlapping, so that,
if p = N/V is the density, then

pl*> 1. (2)

The partition function satisfies
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where ky T has its usual meaning, and we have inte-
grated over the kinetic degrees of freedom. To pro-
ceed, we introduce the collective coordinate trans-
formation
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i= 4

which is the Fourier transform of the microscopic
density, and replace the integration over the centre
of mass coordinates by an integration over the col-
lective coordinates.

This makes the integrand of (3) particularly simple
so that

1 *
X exp<_ 2 VkB T gpk Px Uk> (5)

where

U, = J d>R e*RU(R) . (6)
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The Jacobian &({ r; })/({ px }) cannot be calculated
exactly, but becomes a Gaussian in the high density
limit
1
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To see this, we consider the quantities < py Py ),
{ pr Py P > €tc. where (- means
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The average over an even number of p,’s is dominated
by the terms obtained from the distribution (7),
namely products of terms like < p,, pi, »» and in the
high density limit the remaining terms are negligible.
This result also holds in the Debye-Hiickel theory of
electrolytes [3]. and in polymer solution theory [5].
From the definition of p,, we find that

AK) = Cppt> =4 )

so that (5) becomes
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At this point, we introduce the orientational distribution function f(i) 62A which is the fraction of rods pointing
within a small solid angle 52 about the unit vector #, for a given set of r,. The change of variables

H d*i; - [[ df(n) = Df

in (9) then leads to
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We make the saddle-point approximation to obtain
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where

oF .-
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We note that as in Onsager’s theory, the isotropic
phase always satisfies (12). In practice, it is best to
choose a suitable trial distribution function, and
then minimize (11) numerically. Such a function is

o ealcosﬁl

4 — 1) (13)
which only depends on the angle, 0, between the axis
of alignment and the director f, and is peaked around
f = 0 and 0 = n. The axial symmetry of f(i) allows
one of the k integrals to be performed trivially, leaving
four nested integrations. Unfortunately, the integral
inside the logarithm in (11) is badly behaved for
large values of | k|, and we were unable to obtain
satisfactory convergence, even using a Gaussian
quadrature method with 22° integration points. This

oscillatory behaviour arises from the sharp cut-off in
the charge density distribution along each rod. We
replace the charge distribution

Q(s) = { (14)
0 otherwise
by
g.2 e*2s2/l2 (15)

Q(s) = —\/2;-%

and in fact the results obtained from both distribu-
tions do not differ qualitatively, although the conver-
gence using (14) is inferior to that of (15).

We are mainly interested in the cases of a Coulomb
or a screened-Coulomb potential and the corres
ponding phase diagrams are reproduced in figure 1
We find a strong first-order transition between the
isotropic and the nematic phases, with the parameter
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Fig. 1. — Phase diagram for charged rods with an interac-
tion Uk) = a%/eeq(k? + £72).

o jumping from 0 to about 60 in the case of a bare
Coulomb potential, and to a higher value when there
is screening.

3. Discussion. — We have seen in the preceding
section that for a certain class of potentials it is
possible to construct a theory valid for high densities,
and it would be interesting to extend this to the case
of hard-core interactions. The theory however, requires
that the Fourier transform of the potential U(r)
exists. This requirement arises from the fact that we
have replaced an integration over all possible posi-
tions of N rods (3) by an integration over all possible
functions (9). This is because the Jacobian in (5) is
discontinuous and we have approximated it by a
continuous distribution (7). Hence, we have replaced
an integral over a set of discrete lines of charge by a
continuous charge distribution p(r). The energy of a
particular configuration in this case is

J pl6) p(F) UlE — ¥) d*r &' = ka ot Uy &

which only exists if U(r) is less singular than r~3. On
the other hand, the correct energy of a configuration
of line charges is well defined, as long as none of the
lines intersect one another.

One might think that a way of extending this
method to deal with more singular potentials would
be to include higher powers of p, in (7), for example

exp(— : Y pu p2/A00) +
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However, by the argument of the preceding paragraph,
such attempts must fail.
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Another approach might be to replace U(r) by a
delta function pseudo-potential

U(R) —» DéR) (17)
with D being the hard-core diameter. This yields a
first-order transition as well, but the method can be
criticized on the following grounds. Since the delta
function does not exclude a non-zero volume of
phase space, the use of the exact Jacobian in the
partition function cannot lead to any deviations from
the ideal gas terms in the free energy. The fortuitous
result is merely an artifact of the approximation (7).

The above objections do not apply to the Coulomb
potential since the predominant contributions to the
energy

ka pt 3 K (18)
are from long-wavelength modes which are unaffected
by the approximation (7). Note that as the singularity
of the potential approaches r 3, the short-wavelength
modes become more important, leading to the
divergence discussed above.

It is of interest to discuss qualitatively the effect of
these short-wavelength modes, and here we offer
some speculations on the behaviour of the system.
The most ordered phase we envisage is the Smectic B
phase, that is ordered positionally inside each layer.
As the temperature is raised, we expect a transition
to the Smectic A phase at a temperature

T ~ a2 lfk, e,

which is roughly the melting temperature of a two
dimensional gas interacting via a logarithmic poten-
tial. The stability of the Smectic layer can be estimated
by considering small displacements, x;, of the centre
of mass of the ith rod from its mean position. The
decrease in energy due to distant rods is

zi_l Z (xi - xj)z
2 g Ri:}

where R;; is the distance between the ith and the jth
rod. But the increase in energy due to overlap between
layers is proportional to the overlap, so the maximum
contribution to the energy must come from neighbour-
ing rods. In order to estimate the energy needed to
disassociate a Smectic layer, we calculate the energy
needed to transfer a rod from one layer to the next.
This energy is of the order

o2l <l>
—In{-
€& a

where a is the average separation of the rods inside
each layer. Thus we expect a transition to a different
phase at a temperature given by

ot

T~ £€g ky

- In(pl?).
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Whether this phase is isotropic or nematic depends
on the strength of the coupling between the orienta-
tional and positional ordering, which can only be
ascertained by a detailed theory.

An experimental realization of the system we have
discussed has been recently reported [4]. It consists
of DNA persistence length fragments at high concen-
tration in an ultracentrifuge. The authors find that
the interactions are purely repulsive and observe an
isotropic-nematic phase transition. They interpret
their results in terms of an effective hard core radius,
which is about 100 A in the case of the lowest salt
concentration used. The consequent reduction in the
effective length to width ratio by a factor of 10, stron-
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gly suggests that the interaction s dominated by a
screened Coulomb potential rather than by steric
effects. A detailed comparison with experiment will
be published elsewhere.
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