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We present a model of the rod-to-coil transformation in a single-stranded polymer which includes
the effects of long-wavelength degrees of freedom in the straight parts of the chain. The model ex-
hibits a true first-order phase transition in qualitative agreement with the results of an experiment.
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Recently there has been renewed interest in the con-
formations of polymers in dilute solution. The
discovery during the 1960’s that some polymers exhi-
bit a sharp conformational transformation from a
straight, rodlike configuration to a random coil when
the temperature or pH of the solvent is varied prompt-
ed a variety of attempts to find a description in terms
of one-dimensional statistical mechanical models.!:?
Whereas these theories predict a true phase transition
only for double-stranded polymers, a recent Letter? re-
ports the observation of a sharp rod-to-coil transfor-
mation in a single-stranded polymer.

The purpose of this Letter is to suggest that rod-to-
coil transformations in single-stranded polymers can
actually be very close to being true phase transitions.
We show that long-wavelength degrees of freedom in
the polymer effectively induce long-range interactions
in the molecule, leading to a first-order phase transi-
tion. Previous theoretical treatments of the transfor-
mation have neglected these degrees of freedom, but
they have recently attracted experimental attention.*3
Our mechanism for the single-stranded polymer leads
to a phenomenology for the single chain which is simi-
lar to that of Poland and Scheraga! for the double-
stranded polymer.

The basic assumption of our calculation and earlier
work is that the partition function for a single polymer
takes the form
S

q=1ligj,

q
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where the chain is described by rod sections (actually
extended helices in polyamino acids and nucleic acids)
of integer lengths iy,i,,i3, . . ., separated by coiled sec-
tions of lengths ji,j2.j3, . ... In (1), the sum
respects the constraint that the total number N of re-
peat units in the chain is

q
N=3 (ig+jo).
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The free energies of a rod section of length i, and a
coil section of length j, are respectively — kBTlnuiv

and — kg7 Inv s We picture the coiled state as consist-

ing of a condensation of j, consecutive monomers in a
“kinked” (gauche or cis) conformation and the rod
state as i, monomers in the straight (#rans) conforma-
tion. In this well-known model there is no energetic
interaction between the straight and disordered parts
of the chain. In the model for the phonon degrees of
freedom of the chain introduced below within the
framework of Eq. (1), this means that there is no
transmission of phonons from the ordered to the
disordered parts of a chain. There is some numerical
evidence that, at least for some detailed harmonic
models, this is quite a good approximation.® It is very
likely that this feature of the model is essential for the
existence of the sharp phase transition which we find.
In the first part of this Letter we present a plausibility
agrument of the Landau’ type which suggests that a
long-range ordered state is possible at low tempera-
tures if #;_and v;_are of the form

(2a)
(2b)

where a, b, and ¢, and o are real functions of the tem-
perature, independent of i, and j,. The Landau argu-
ment suggests that a phase transition will occur if
¢ > 1. In the second part of this Letter we sketch a
derivation of (2) from a microscopic model of the pho-
non degrees of freedom of the polymer, and prove
rigorously that the model exhibits a phase transition at
a nonzero temperature, whenever cis larger than 1. In
particular, our model gives ¢ =3 and predicts a first-
order phase transition. If we were to interpret — lnuic

as the free energy of coiled sections (rather than of
straight sections as we do here) and — Inv j, 35 the free

energy of straight sections, then the same form (2)
would arise in the model of Poland and Scheraga
which takes account of the entropy of loops in
double-stranded polymers but not of phonon degrees

—Iny; = —ai;+b+clni,,

— lnvju= — Jjo Inw,
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of freedom.

Landau argument.—Consider the free energy of a
of length N, broken by a single ‘‘kink” at any point
between the e Nth and the (1 — €) Nth monomer. € is a
small arbitrary cutoff, independent of N. If the chemi-
cal potential of a kink is A then the free energy Fy of
all such configurations is given by

o PN gmaaf “Uds expl-B(Fs+ Fy_g)l, (3)

where Fg is the free energy of a straight chain of
length S. Evaluating the integral we find

Fiy=A+kgTQ(c)+kgT(—aN+2b+2cInN),

4)
where
(1—¢)
o= [ Tax/lx(1-01e
Thus
F,(,—FNN—’ (¢c—=1)kgTInN, ©))

demonstrating that for ¢ > 1 an ordered rod phase
with no kinks at all is thermodynamically stable at low

temperatures. |

a=3(kyT/hB,) "™ Q2ad/m) [ [x"™/(e¥=D]dx,

b=3({—mI1+1/2In(w/2d)]1— 5In(hB,/ ks T)},

In obtaining these expressions we have assumed that
kgT << hwjy, where wq is the largest frequency for
which D(w)=3,6(w—w,), and we have used the
lowest order Euler-Maclaurin expansion® as well as an
integration by parts to isolate the infrared singularity
which gives rise to the expression for cin (7). dis the
distance between monomers along the chain. We will
also need the following expressions for @ and b in the
opposite limit that kg T >> hwmax, Where omayx ( > wp)
is the largest frequency for which D (w) is nonzero:

— 3pl T),
ahwmax << kyT D n( hwmax/ kg ) ©
8
— —_ 3
b"wmax kT pIn(hwna/kgT),

in which 3p is the total number of degrees of freedom
per monomer. c in this limit retains the value given in
™.

Coil free energy.—The free energy — kgT Inv j, of a

coil section of length j, in our model has three parts:
The first is the energy A required to form each of the
Jo kinks. The second part arises from the entropy of a
random walk of j, steps. We will ignore self-avoiding
effects for simplicity of presentation only and estimate
the random-walk free energy by restricting the walk to
a lattice with coordination number z Finally, in the
high-temperature limit, it is necessary to take account

c

Rod free energy.—We now proceed to discuss the de-
details of the physics which give rise to (2) in our
model. The long-wavelength vibrational modes of a
rigid straight rod are well known® to be a longitudinal
mode and a torsional mode, each with frequencies pro-
portional to the wave vector k, and two transverse or
bending modes, each with frequencies proportional to
the square of the wave vector. Thus we can write the
density D(w) of vibrational states of the rod at low
frequencies as D(w)=3y={(w—w,), in which
w,=B, k™. Here m,=(1,1,2,2) and B, are con-
stants. With use of this form, the vibrational free en-
ergy at low temperatures of a rod i, monomer units
long can be evaluated from the general form

BF = —1nuy;_= [ do D (w)In(1—e=Fhv).

(6)

Here we omit a temperature-independent term arising
from zero-point motion which has no effect on our
results. The effects that we consider are essentially
classical and the only role of quantum mechanics here
is in providing cutoffs at high frequencies. [In the sys-
tems of interest, the classical approximation to the in-
tegral in Eq. (6) is not valid for the entire spectrum.]
Equation (6) gives equation (2a) with

S )

of the vibrational modes of coiled parts of the chain.
We will assume on the basis® of analytical and numeri-
cal studies of the vibrational modes of coiled chains
that vibrational modes make a negligible contribution
to the coil free energy at low temperatures because the
frequency spectrum is essentially bounded from below.
Though the conclusions of Ref. 9 depend on some
features of the harmonic model used, we can show
that other reasonable harmonic models do not change
our qualitative conclusions. With these assumptions
we find equation (2b) with

w=e(—AB+Inz) 9
at low temperatures, and with
w=(kgT/ hwpay)*? 10)

at high temperatures. Here wp,,, iS an upper limit to
the vibrational spectrum of the coil.

Phase transitions.—We turn now to the calculation of
the thermodynamic behavior, which is performed by
use of the generating functions! 219

n
oo a
Upx " "=e"% 3 ef L
n s
n=1% n¢

V(x)= i vx T P=w/(x—w).

n=1

U= S
n=1

an
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U(x) is convergent for x > e% For c<1, U(e? is
divergent. For 1< c=<2, U(e% is convergent but
[dU/dx] , diverges, while for ¢ > 2, both U(x) and
dU/ dx diverge at x = e° Lifson'® has shown (see also
Ref. 2) that the partition function Zy is the largest
root of

Ux)—1/V(x)=0, 12)

so that a nonanalyticity can arise in the free energy
when x=e¢e% This is shown in Fig. 1, where the
features of a graphical solution of (12) are illustrated.
(The following discussion of the phase transition is
similar to that found in Refs. 2 and 10 but, because
our model is physically different, the temperature
dependence of U and Vis different.) As the tempera-
tures rises from 7=0, the line y = ¥~ !(x) pivots in a
clockwise direction about x=0, y= —1. In Fig. 1(a)
(for ¢=<1), the point of intersection of y= V~1(x)
and y = U (x) moves continuously to the right at Tin-
creases, and there is no nonanalytic behavior in Zy.
In Figs. 1(b) and 1(c), the point of intersection begins
to move only when T'is sufficiently large. The discon-
tinuity in slope and the value, respectively, of U(x)
give rise to a continuous phase transition in the case
1 < ¢ =2 [Fig. 1(b)] and to a first-order transition in
the case ¢ > 2 [Fig. 1(c)]. These results are consistent
with the Landau argument presented above. In the

y=V(x)™

0 T X
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y y=V(x)™
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FIG. 1. Illustration of graphical solution to Eq. (12). As
the temperature is varied, the intersection of y = U(x) and
y = V(x)~! traces out the partition function. Depending on
the nature of the singularity in U(x) at x=e% three
behaviors can occur: (a) ¢=1, no phase transition; (b)
1= ¢ =2, continuous transition; or (c) ¢ > 2, first-order
transition.
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case of interest here, ¢ =3, and so we expect the tran-
sition to be first order. (The critical exponents for the
case 1 < c=2 have been calculated previously.2!?)
The order parameter may be taken to be the fraction
of monomers in the rod phase and changes discontinu-
ously across the transition.

It remains to show that our model gives rise to a
phase transition given the specific temperature depen-
dence of the parameters a, b, and w given in Egs.
(7)-(10). The condition U(e%) = V~1(e?) implies
that the transition temperature is given by the solution
to the equation

f(T)=eYw—1—e"b(c)=0, (13)

where ¢ is Riemann’s zeta function. By use of Egs.
(7)-(10) we establish that the high- and low-
temperature limits of the function f(7) are

(1/2)*T kpT << hwpy,

D= (1/2) (e Wmax)P— 1,  kgT >> hwmax.

14)

The low-temperature limit is strongly positive, while
the high-temperature limit is negative as long as the
condition

(w;nax/wmax)3p< z (15)

is satisfied. Thus, under the condition (15) there will
be at least one solution to (13) and a phase transition
from a iow-temperature phase with no coiled parts to a
high-temperature coiled phase. z is expected to be of
the order of 10 and wp,x and w,, are of the same or-
der (as expected on physical grounds and confirmed by
numerical simulations). Thus the condition (15) can
be expected to be satisfied in realistic situations. The
argument does not exclude several transitions, but un-
less D(w) is unexpectedly singular at finite frequen-
cies we do not anticipate them. To exclude multiple
transitions rigorously requires a detailed model of the
density of states at all frequencies which we do not for-
mulate here.

Solvent effects and experiment.—The experiments
mentioned in the introduction were performed on pol-
ymers in dilute solution, while our theory is formulat-
ed for an isolated chain. We argue here that the
theory can in fact be applied to a chain in solution as
long as the low-lying modes of the chain which give
rise to the infrared singularity associated with the term
cIniy in (2a) are slower than any modes of the sol-
vent. If this is the case, then the solvent will act as a
Gaussian white-noise source on the polymer and will
cause it to relax to an equilibrium distribution charac-
teristic of the short-range interactions between the po-
lymer monomers alone. Thus our equilibrium theory

3,12
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for the isclated chain can be applied. Such an argu-
ment can be put on a more precise basis by deriving a
Langevin equation for the slow degrees of freedom of
the polymer-solvent system.!> Under these conditions
the modes are actually overdamped but still provide an
effective coupling between the coiled parts of the
chain and the same conclusions follow. If the transi-
tion were second order, then the transverse modes of
the chain would always be slower than any modes of
the liquid if one were close enough to the transition,
because the transverse-mode frequencies go as the
wave vector squared while the acoustic-mode frequen-
cies of the three-dimensional solvent are linear in the
wave vector. In the case of a first-order transition, one
can only be sure that the low-lying modes of the chain
are lower than any solvent frequencies if the mass of a
monomer is much larger than the mass of a solvent
molecule. If the acoustic and torsional modes are not
obeying the required conditions but the transverse
modes are, then the structure of the theory will not
change essentially except that the value of ¢ will
change from 3 to 2, giving rise to a transition which is
at the border between first and second order. We have
not studied this interesting possibility, which is sugges-
tive of tricritical phenomena.

In the experiments of Heeger and co-workers® 12 we
note that some reported features do appear to suggest
the first-order transition which we predict. In particu-
lar, the light-scattering data® seem to indicate a very
sharp change from rod to coil, and hysteresis and very
slow kinetics are reported in several of the optical-
absorption studies of the transition.!? Our model in-
corporates only features which apply quite generally to
a wide class of polymers and we can therefore antici-
pate that similar transformations may occur in other
dilute solutions of natural and synthetic polymers.

We wish to acknowledge discussions with many col-
leagues at all stages of this work. In particular we
thank J. M. Deutsch, H. Frisch, A. Heeger, S. Kivel-
son, H. Nakanishi, R. E. Peierls, and J. R. Schrieffer.

2

One of us (J.W.H.) thanks the Institute for Theoretical
Physics and the Chemistry Department of the Univer-
sity of California at Santa Barbara for their hospitality
at intermediate stages and one of us (N.D.G.) thanks
the Physics Department of the University of Minneso-
ta for hosting a visit toward the end. This work was
supported by the U. S. Department of Energy through
Grant No. DE-FG0384ER45108, and by the National
Science Foundation through Grant No. PHY82-17853,
supplemented by funds from the National Aeronautics
and Space Administration.

1D. Poland and H. Scheraga, Theory of Helix-Coil Transi-
tions in Biopolymers (Academic, New York, 1970).

2F. Weigel, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. Lebowitz (Academic, New York,
1983), Vol. 7, pp. 101-147.

3K. C. Lim, C. R. Fincher, and A. J. Heeger, Phys. Rev.
Lett. 50, 1934 (1983).

4G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L
Swicord, Phys. Rev. Lett. 53, 1284 (1984).

5S. M. Lindsay, J. W. Powell, and A. Rupprecht, Phys.
Rev. Lett. 3, 1853 (1984).

6J. W. Halley, J. Onffroy, M. Thorpe, and A. Walker,
Phys. Rev. B (to be published).

7L. D. Landau and E. M. Lifschitz, Statistical Physics (Per-
gamon, Reading, Mass. 1958), p. 482.

8L. D. Landau and E. M. Lifschitz, Theory of Elasticity
(Pergamon, New York, 1970), pp. 113-117; see also W. N.
Mei, M. Kohli, E. W. Prohofsky, and L. L. Van Zandt,
Biopolymers 20, 833 (1981); a somewhat similar study by A.
Peterlin and E. W. Fischer, Z. Phys. 159, 272 (1960), in-
cluded only the longitudinal mode.

SH. and B. S. Jeffries, Mathematical Physics (Cambridge
Univ. Press, Cambridge, Mass., 1966), p. 279.

108, Lifson, J. Chem. Phys. 40, 3705 (1964).

11M. Ya. Azbel, Biopolymers 19, 95 (1980), and Phys.
Rev. A 20, 1671 (1979).

12K. C. Lim and A. J. Heeger, unpublished.

13G. F. Mazenko, in Correlation Functions and Quasiparticle
Interactions in Condensed Matter, edited by J. W. Halley (Ple-
num, New York, 1977), pp. 152~166.

733



