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SPECIFIC HEAT OF A SINGLE CRYSTAL OF YBaZCu307_8: FLUCTUATION EFFECTS IN A BULK SUPERCONDUCTOR
IN ZERO MAGNETIC FIELD AND IN A MAGNETIC FIELD
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We have measured the specific heat of a single crystal of YBaECugog_s. Thermodynamic
e 3tep, ar

fluctuations, evident in deviations of the data from a BCS-1i

e well described by 3-

dimensional (3D) Gaussian fluctuations. The results imply that the number of components of the
order parameter is 7 * 2. When a magnetic field is applied parallel to the ¢ axis, the
specific heat peak broadens and decreases in amplitude, with 1ittle shift in position. The
difference between the zero field specific heat and that measured in a field is found, however,

to satisfy a scaling relation suggesting critical

1. INTRODUCTION

In the high-temperature superconductor
YBa,Cuz0, . the BCS coherence length §, is
ordgrs oz *agnitude smaller than in
conventional superconductors, making it
possible to study the effect of thermodynamic
fluctuations in the neighborhood of T_ for bulk
samples. The fluctuation of small regions of a
sample into the superconducting state when T is
just above T_ has been studied in
po]ycrysta]]?ne samples by measurements of
resistivity and susceptibility (1-3), and has
been interpreted in terms of 3-dimensional (3D)
Gaussian fluctuations of short-lived Cooper
pairs. We report here the first observation of
the specific heat anomaly in a single crystal
of high temperature superconductor, and the
first observation of the Gaussian-fluctuation
contribution to the specific heat of a 3D
superconducting transition.

2. SAMPLE PREPARATION

The crystal was made by a flux technique
similar to that used in the pioneering work of
Schneemeyer et al. (4). The starting materials
were at least 99.999% pure. They were
carefully weighed out without first
contaminating them with water vapor, 0, or CO,,
were thoroughly mixed and ground, and &ere thEn
loosely poured into a crucible made of 10.5%
yttria-stabilized zirconia. The material was
heated by stages in air and cooled again We
crushed the crucible in a hydraulic press,
revealing a flat cavity that had formed in the
matrix near the bottom of the crucible.
Numerous crystals had broken away from the
cavity walls, and were harvested. Other

, rather than Gaussian, fluctuations.

crystals were plucked gently from the cavity
wall with tweezers. Laue backscattering x-ray
diffraction showed that the c axis was
perpendicular to the largest faces, and that
the lattice constants had the expected values.
To bring the oxygen stoichiometry to the
desired value, the crystals were heated and
then cooled in flowing oxygen on a wafer of
polycrystalline YBa,Cu,0, .. (5). The
transition occurs a% aBpZoQimate1y 90K; it is
narrow and well shaped. (5)

3. EXPERIMENTAL METHODS

The crystal, with a mass of 620 ug, was
mounted with a small amount of GE varnish on a
thermocouple formed from thin, flattened
Chromel and Alumel wires. We used a standard
ac calorimetric method. The exposed (001) face
was darkened with DAG colloidal graphite to
enhance tight absorption. One arm of the
thermocouple detected the ac temperature
oscillations induced by chopped-light heating;
the second arm monitored the slight dc
temperature offset of the sample from the
thermal bath. The data were taken by
increasing the sample temperature at a rate of
about 0.1K/min.

4. 7ERO-FIELD SPECIFIC HEAT DATA AND THEIR
INTERPRETATION

In Fig. 1, C/T is plotted in the vicinity of
the superconducting transition. Because the
BCS coherence length ¢ of ordinary
superconductors is large, mean-field theory is
valid to extremely small values of t = (/7. -
1), and the specific heat jump predicted bycthe
BCS theory is observed for those materials.
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FIGURE 1

Specific heat of the sample in zero applied
field. The step-like curve is the sum of the
BCS-1ike and background contributions. The
solid line is a fit to the sum of all the
contributions.

Thouless (6) and then Aslamazov and Larkin (7)
predicted that the specific heat has a
Gaussian-fluctuation contribution in the mean

by
ac = ¢, ]t] V2 (1)

For quadratic (i.e., Gaussian) fluctuations
about mean-field theory in a O(n) model, the
amplitudes are in the ratio

¢,/c_ = n/2Y/? (2)

where n is the number of components of the
order parameter and d is the dimensionality.
(8) In can be shown that electromagnetic
interactions between fluctuations make a
negligible correction to Eq.(2) for extreme
type II superconductors. Note that even for
the small Ginzburg-Landau coherence lengths
expected (9) for YBaZCu307_5, the Ginzburg
criterion for n=2,

lt] >> (1/320%) (kg/ace )2

field regime, given above (+) and below (-) Tc

predicts that critical effects (from
interactions between fluctuations which should
occur close to |t[=0) should not be observable
for |t[>10 . In addition to the contribution
of the Gaussian fluctuations to the specific
heat, there is, presumably, the usual BCS
contribution for (-0.1<t<0),

CBCS = 1.437eff(l + 1.83t), (3)
where the specific heat coefficient ¥
jncludes possible strong-coupling cor?ggtions.
Eq.(3) is a fit to Muhlschlegel’s theoretical
results. (10) The lattice contribution to the
specific heat is approximated by a Tinear (in
t) background. We treat the magnitude and
slope of that background as well as C and v £
as adjustable parameters, making no a§sumpt18£
that the mean-field discontinuity in the
specific heat is necessarily as predicted by
the BCS theory. We vary the ratio C,/C_ and Tc
manually to reduce the number of fitting
parameters, while looking at log-log plots of
the data to be sure that the specific heat
singularity is a power law with the same
exponent above and below T_.. In Fig. 1 we have
plotted the sum of all contributions as a curve
through the data, using C+/C_ = 2.5 and TC =
89.7K. The step-like curve is the sum of~the
BCS-1ike and background contributions, showing
clearly the fluctuation terms. The fit yields
the value

C, = 2.0 £ 0.1 md/cmK. (4)

This value of the amplitude corresponds to a
Ginzburg-Landau coherence length of 7A.
Assuming a density of 6.4 g/cm”, the fit of
Fig. 1 gives a value

1437 (T, = 36 £ 2 md/cmK, (5)

which agrees well with our earlier value {11)
of 40 + 4 mJ/cm K for a polycrystalline sample.
To explore the possibility of 2D Gaussian
fluctuations or critical phenomena, we plotted

the specific heat data on a log-log plot in
Fig. 2. We have subtracted from the data both
the linear background and the fitted BCS-Tike
contribution given in Eq.(3). For t>0 the data
fit a power law over one and one half decades
with an exponent of 0.5, clearly ruling out
both an exponent of 1 (2D Gaussian
fluctuations) and a logarithmic divergence.

The dimensionality is evidently d = 3. For t<0
the signal-to-noise ratio is not as good, so a
definitive analysis is impossible. The data
are, however, consistent with a square-root
power law with the amplitude ratio C+/C_ = 2.5
+ 0.6. From Eq.(2) we find

n=17¢t%2. (6)

This result rules out the possibility of a two-
component order parameter, as in the Landau-
Ginzburg theory. The sample data show some
signs of a crossover to true critical behavior.
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FIGURE 2

The specific heat, after subtraction of both
the background and the BCS-like contributions,
vs. IT/T - 1| on a log-log plot. The solid
lines shbw the fit of Fig. 1. The dashed lines
give the range of possible Gaussian amplitudes
below Tc‘

5. EFFECT OF A MAGNETIC FIELD

In conventional superconductors, the main
effect of a magnetic field is to shift the
transition to a lower temperature, with little
broadening of it. However, the resistive
transition in YBa Cu30; . is strongly broadened
in a field, even For szn81e crystal samples.
(12) We find that the specific heat peak is
also broadened.

Lee and Shenoy (13) calculated the field
dependence of the excess specific heat C
caused by Gaussian fluctuations in both @he
clean and dirty limits:

¢y = h M2t /m) (7)
where h=€2(0)H/¢o. tH=T/[TC(H)-1], and ¢_ is

the flux quantum. For x>>1, f(x) - x Y/ ,
leading to Eq.(1).

For the field-dependent measurements, sample
rotation was carefully prevented. The
temperature was measured with carbon-glass
sensor, and the usual corrections for magnetic
field effects were made. The field was applied
in the c-axis direction above 100K, and the
sample was cooled to about 75K in the field to
guarantee field uniformity. The specific heat
data were collected while the sample was
heated.

Since no field dependence was detected at
77K, we normalized each run to the bulk
specific heat of the polycrystalline material
measured at 77K. To eliminate the Targe
lattice background, we subtract the specific
heat in a field from that in zero field at the

same temperature; the result is plotted in Fig.
3. The results shown in Fig. 3 are
qualitatively different from the behavior of
other superconductors, where the shift of the
specific heat anomaly to lower temperatures is
larger, and the broadening less, than we see.

Lee and Shenoy demonstrated theoretically
that the magnetic field broadens the width of
the critical region significantly. We
therefore perform a scaling analysis, assuming
that the magnetic field enters into the
singular part of the free energy through the
term (p-2eA/c); A scales, therefore, as an
inverse length. We then conclude that the
fluctuation contribution to the free energy has
a scaling form

Fep = h%g(t,/m1/%) (8)

where v is the exponent governing the
divergence of the correlation length. The
specific heat which one calculates from Eq.(8)

is of the form
¢y = YEygrig, ml/2), (9)

The mean field result v=1/2 leads back to
£Eq.(7), as it must. If we measure C in zero
field and in a field at temperatures which are
equidistant from the critical point on a t
plot, we can write

(g IV 9/2) g nl/2y (10)
where f(x) is a scaling function. Only the
part of the specific heat associated with the

superconducting transition satisfies Eq.(10).
To perform the subtraction at equal values of

YBa,Cuz0;_;
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FIGURE 3
C_-C, vs temperature T at various fields.
Igse@: Zero-field and 45 kOe data from which
difference data were extracted.
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t, we would first have to remove the dominant
Tattice and normal electron background from
each curve - a very imprecise procedure.
Fortunately, the subtraction in Fig. 3 shows
that the peak pggition shifts only by about
0.3K (ét=3 x 10 ~) over our field range, and
this has negligible effect on the scaling which
we discuss. Note in Fig. 3 that the peak
increases with field. If we take the peak to
be at t=0, Eq.(10) requires a negative power of
h on the left hand side; i.e., v>2/d. Indeed,
the data can be collapsed onto a single curve
by choosing a value v=0.75t0.03, as shown in
Fig. 4. Note that the d=3 Gaussian-fluctuation
value v=1/2 gives the wrong qualitative
behavior, while both the d=3 critical behavior
(14) (v=2/3) and the d=2 Gaussian fluctuations
(v=1) predict no field dependence for C -CH at
t=0. The value v=0.75 corresponds, in the 0(n)
model, to n=6 (epsilon-expansion) or n=4 (1/n
expansion) in agreement with our conclusion
from the zero-field data that n > 2.
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FIGURE 4
Scaling of the data of Fig. 4. The values of
T (H) used are: 89.7K at 15kOe; 89.6K at 30kOe;
85.5K at 45k0e; and 89.3K at 60kOe.

6. CONCLUSIONS

We have interpreted our data in zero field
in terms of Gaussian fluctuations. An attempt
to fit those data to critical behavior yields a
far poorer fit. (15) On the other hand, the
effect of an applied magnetic field is more
indicative of critical behavior. These
observations suggest that the magnetic field
may expand the critical region of temperature.

Our specific heat measurements are being
reported in more detail elsewhere. (16,17).
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