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We show that the ambiguity in the fluxoid unit in the resonating-valence-bond model arises
from the choice of an order parameter which violates a local gauge symmetry. We give an expli-
cit example of a gauge-invariant order parameter, other than electron pairs, which possess a non-

trivial topology depending upon the lattice.

I. INTRODUCTION

In Anderson’s resonating-valence-bond (RVB) model
for high-temperature superconductivity,' ~® electrons
residing on a square lattice of copper atoms are described
by a superexchange Hamiltonian H. This may be thought
of as having been derived from a single-band Hubbard
model near half filling, in the limit of strong on-site repul-
sion U. In the postulated RVB state, the atoms are bond-
ed to a neighbor by a singlet electron pair; in the mod-
ification of Kivelson, Rokshar, and Sethna (KRS), the
bonded atoms are nearest neighbors.® The half-filled lat-
tice is an insulator, but charge transport is possible when
vacancies are present.

In mean-field treatment of the doped RVB state, super-
conductivity arises either by the Bose-Einstein condensa-
tion of the vacancies,? or by the pairing of fermionic exci-
tations.* This has been taken to imply that the unit of
magnetic-flux quantization is h/e in the former case, and
h/2e in the latter case.

This note shows that the origin of this apparent ambi-
guity is the failure of mean-field theory to respect a local
gauge symmetry. This failure occurs in the assignment of
charge to the slave bosons and fermions, which physically
enforce the limit of large U, and in the subsequent approx-
imations. This gauge symmetry applies even in the doped
state, and should not be confused with the SU(2) symme-
try which is present at half filling.” It is evident that the
order parameter for superconductivity must be gauge in-
variant, and we give two examples of such an order pa-
rameter. A trivial example is the anomalous pair of elec-
tron operators, while a second nontrivial example corre-
sponds to a topological boson, whose precise nature de-
pends upon the lattice. In the case of a square lattice, this
object corresponds to a hole attached to a string extending
to infinity, or a pair of holes attached by a string.

II. CHARGE-ASSIGNMENT SYMMETRY

When the on-site Coulomb repulsion U is much larger
than the effective intersite-hopping matrix element ¢, dou-
ble occupancy of sites by electrons is effectively forbidden.
An approximate way to proceed in this limit is to perform
a canonical transformation to derive the superexchange
Hamiltonian which acts on a subspace T of the real Hil-

39

bert space S, in which double occupancy is forbidden.®
This awkward constraint can be achieved by representing
the electron annihilation and creation operators with spin
o at site i (c;c and c,-’f,, respectively) in terms of slave
fields® e;, d;, and s,

c,~a=e,~Ts,-(,+0'd,-Ts;_a. (1)

Here e; and d; are boson fields and s;, are fermion fields,
which obey

Q,»Ee,-Tei+d,'Td.-+ZSi§Sia= l, (2)

in order that the ¢;, satisfy the usual anticommutation re-
lations. The no-double-occupancy condition now becomes
the simple condition d; =0.

The slave-boson (SB) formalism introduces an ambi-
guity into the definition of a physical observable such as
charge because, e.g., one can identify the operator

gil@)=—U—-a)ee;+aX sihsis—a 3)

for any a to be the charge operator. Now the ambiguity
occurs when one introduces approximation schemes which
fail to treat the SB constraint exactly. For example, the
authors of Refs. 2, 4, and 5 replace the constraint by add-
ing a Lagrange multiplier A;Q; to the Hamiltonian and
then make a Hartree-Fock-type mean-field approxima-
tion. This, in effect replaces A; with a constant A chosen
such that (Q;>=1. The constraint Q;=1 is thus only
satisfied on average. It is at this point that results become
dependent on the choice of the charge operator g;(a). In
particular, if a is chosen as zero then only the slave bosons
carry charge and hence the conclusion by Zou and Ander-
son? and by Isawa, Maekawa, and Ebisawa® that the con-
densate consists of charge-e holes. If, on the other hand, a
is chosen as one, then only the slave fermions carry charge
which suggests that one has a charge-2e condensate. Pro-
vided one treats the constraint Q; =1 on every site exactly,
however, all physical results should be independent of a.
Now this charge assignment freedom is not only impor-
tant because of the demands it places on approximation
schemes but also because it tells us something about the
nature of the condensate. For example, a ground state
| ) in which (y|sis5; -+ | ¥)#=0 would be aphysical in the
sense that g;(a) | y) is a dependent for some i and charge
becomes an ill-defined quantity. This can be seen as fol-
lows: from Eq. (4), ¢;(a)|y) is a independent only if
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(Q;: —1) | w) =0 for all sites i. This, in turn, implies that
(| si08j—o | w) =0 since si5;, decreases the “Q number”
on both sites i and j by one unit and hence can only con-
nect states whose Q; and Q; each differ by one unit.

An alternative and particularly direct way to look at
this is that the slave-boson constraint Q; =1 generates a
local U(1) gauge symmetry and, therefore, any operator
which transforms nontrivially under this gauge symmetry
vanishes according to Elitzurs!® theorem. In this way we
see that neither e; nor e;e; can acquire an expectation
value. Furthermore, due to the local nature of the sym-
metry, off-diagonal long-range order cannot occur either.
Of course, one need not appeal to the charge-assignment
freedom to realize this consequence of the slave-boson
constraint. Obviously there is no prohibition of the con-
densation of physical electrons since c;s¢j—, commutes
with Q;. It is also possible to construct operators which
commute with the constraint, but which do not have any
obvious relation to the physical electron operators. We
give an example of such an operator below.

III. TOPOLOGICAL BOSON OPERATOR

The above arguments do not prohibit a condensate of an
operator E; which creates a single charge-e hole at site i.
J

However such operators must be nonlocal. The topologi-
cal solitons envisaged by KRS are examples of this, and
are not to be identified with slave-boson operators e;,
which are strictly defined on a single site. A corollary of
the nonlocal character of E; is that its nature will depend
on the lattice. To see these points explicitly, let us first
construct a physically observable operator E; on a tri-
angular lattice, such that E,~*E,~ =e,-*e,', but which never-
theless commutes with Q;. States created by E ,-T possess a
well-defined charge.

We first write down the Euclidean action for a one-
band Hubbard model in two dimensions in imaginary time
7. The starting point is the superexchange Hamiltonian

H=tY CiLcja_ 2J X bi}bij s
G G

where b;; =(c;cit —cj1ci))/~/2. Additional pair hopping
terms arise if H is derived from the one-band Hubbard
model using the canonical transformation method,?® but
these have not been included above, as they are not crucial
to our main points here. In the slave-boson representation
the corresponding Euclidean action fdzL involves a set of
fields A; to implement the constraints Q; =1 and a Hub-
bard Stratonovich field A;; =A4;;exp(—i¢;;) introduced to
decouple the four fermion interaction

L -Z (s,-f,a,s,-,,+e;'8,e,')+t (Z)e,-efsif,sja+ZJ -l | A,'j I 2+<Z) [A,j (SjjSiT _'Sjts,'g)'f'C.C.] +iZli(s,-Ls,-a+e,»Te,- —1 ) . (4)
i i,j i,j i,j i

Now consider sites i, j, and k forming a plaquette on a
triangular lattice, and define

(%)

E;=e;exp [é(cp.-j — ¢kt ui)

By construction ElE;=ee;. The action is invariant un-
der the local gauge transformations

U=exp|iX, Q;0;+> (6,+6;) 9 ,
7 i 99i;
for real 6;. The fields e; and ¢;; transform in the following
way:

e — l]e,'l/-1 =e;e _io, oij— U¢,‘jU_l =¢,’j+9,~+9j .

Thus E;— UE;U ~'=E,, showing that E; is a physical
operator since it is gauge invariant.

On a square lattice this rephasing is much more difficult
since the cancellation of aphysical phases requires an odd
number of bonds around a plaquette. However, even this
does not prohibit the construction of physical holon opera-
tors. Indeed in Anderson’s basic picture, one creates a
holon by first destroying an electron and then moving the
spin defect to infinity. Thus we see how the spin degrees
of freedom are affected nonlocally. This suggests that E;
should be constructed by rephasing e; using the phases of
an infinite number of bonds. Say

E; =e;exp ‘;—(%‘j —¢ixtou—ont )|, (6)

[

where (ij), {jk), (kl) is a string of bonds to infinity. We
see that E; defined in Eq. (7) would create a string similar
to that of a Dirac monopole.

Note that the fluxoid quantum in the superconducting
state is different for these two cases. On the triangular
lattice the boson operator given by Eq. (6) has a well-
defined physical charge of e (since only bonds in a finite
region are affected). A condensate of this boson would
thus have an hc/e fluxoid. On the other hand, it is not so
easy to define the charge of the boson operator on the
square lattice given in Eq. (6) because of the infinite
string. One possibility would be to end the string on
another boson, thus giving boson pairs with physical
charge 2e and hence an hc/2e fluxoid. A similar argu-
ment has been given in Ref. 11.

To summarize, we have shown that because of the
slave-boson constraint neither slave bosons or slave fer-
mions can be assigned physical charge, nor can the bosons
or fermion pairs condense. Operators which may con-
dense include physical operators such as electron pairs as
well as operators which are not so easily expressed in
terms of electron creation and destruction operators, i.e.,
the topological bosons. The no-condensation theorem, in
our opinion, does not provide a serious obstacle to
Anderson’s picture, since according to Anderson, a holon
creation operator is the product of an electron annihilation
operator followed by a Gutzwiller projection operator, i.e.,
an infinite product of physical operators. It does, howev-
er, suggest that slave-boson operators are unrelated to the
elementary excitations of RVB theory.
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