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I. INTRODUCTION

It is well-known that the asymptotics of partial differential equations
(PDEs) may often be found from consideration of similarity solutions. In the
examples usually encountered, the combinations of variables making up the
similarity variables may be deduced using dimensional analysis; typically, the
similarity variables are products of variables raised to rational fraction
powers. It is not so widely appreciated, however, that there is a large class of
problems where the similarity variables cannot be deduced from dimensional
analysis. As Barenblatt has emphasized, such problems are neither rare nor
pathological, but occur in many situations of physical interest, for example, in
continuum mechanics.1

The purpose of this article is to show how to obtain the asymptotics of
PDEs, even in cases where dimensional analysis fails, using the
renormalisation group (RG).2 Renormalisation and the RG were originally
developed to treat the divergences arising in the perturbation series of
quantum electrodynamics, and, following the work of Kadanoff, Wilson and
others, have found extensive application in later quantum field theories3 and
statistical mechanics.4 Although it has been known for some time that field
theories--be they quantum or statistical--are equivalent to stochastic partial
differential equationsd, it is only recently that it was shown how to use RG
techniques for partial differential equations without noise.2 This article not
only summarizes this development, but also emphasizes the connection with
the problems of velocity selection in dendritic growth and asymptotics beyond
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all orders, discussed elsewhere in this volume. This connection arises
because a travelling wave solution of a PDE in one space dimension, x, and
time, t, of the form

ux,t) = f(x — vt) (1)

may be mapped by the substitutions x = log X, t = log T into a similarity solution
of the form

u(X,T) = Ta g(XTB) 2)
with oo = 0, p = —v. The goal of this work, then, is to calculate exponents such
as o, B, v and the associated scaling functions f, g. Examples of physical
interest occur in (e.g.) elasticity theory, shock wave dynamics, flame
propagation, and flow in porous media.l

The application of the RG to partial differential equations has
implications for the way in which systems approach thermodynamic
equilibrium, and is almost certainly relevant to theoretical attempts to account

for the prevalence of dynamical scaling. This connection has been discussed
in a recent article which complements this one.6

2. ASYMPTOTICS OF THE DIFFUSION EQUATION

We begin with an elementary example, which shows explicitly how
similarity solutions are relevant for asymptotics. Consider the initial value
diffusion problem

1
atu=§8u, — o< X < 00 3)

with u — 0 as I x| — « and initial condition

_Bo _ _x2/9p2 4
U.(X,O) =(27tﬂ2)1/2 e X . ( )

The solution after time t is

Ao x22(t+42) .
u(t) = ooy XA (5)

Note that the dynamics conserves fu(x,t) dx. For long times

A
u(x,t) — (Znt())m e—Xx2/2t ast — eo. (6)



This long time behaviour can also be obtained by keeping t fixed, but letting the
width of the initial distribution vanish:

A
u(x,t) — (2m()’1/2 e—X2/2t as ) —0. (7

We conclude that the long-time behaviour of the initial value problem is given
by the degenerate limit of the initial value problem when f — 0, i.e. the
similarity solution corresponding to a delta-function initial condition.

In this example, the mathematical results follow "common sense"
intuition: at very long times, the distribution should be insensitive to the initial
condition. That is, when

<x2>= J x2u(x,t) dx >> 2 (8)

we expect that the solution u(x,t) should not depend on {, and thus we can
safely take the limit § — 0 whilst maintaining the conservation of f u(x,t)dx.

This sort of "common sense" argument is encountered frequently.
Suppose a physical problem has been cast in dimensionless form, and the

relationship between the dimensionless parameters II, Iy, IT1,....II, is
written as
= f(Il,, I, . . . ., ). 9

Then "common sense” intuition states that as (e.g.) I1; — 0,
IT— f(0,I13,. . .Il). In the diffusion equation example,

M=gVts To=oi Mm=Z (10

3. ASYMPTOTICS OF THE SECOND KIND

Barenblatt! has pointed out that there are a wide class of problems
where "common sense" intuition fails, because the limit I, — 0 is singular.
He uses the term "intermediate asymptotics of the first kind" to denote the case
when the limit I1, —» 0 is regular, and the term "intermediate asymptotics of
the second kind" to denote the case

—OL
I ~ I, o an (11)

0o (o]

as I, — 0. All other possibilities are included under the category "third kind."
The use of the term "intermediate asymptotics” has the connotation "prior to
the final state of the system", which in the diffusion equation example is

u(x, o) = 0.
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When the asymptotics is of the second kind, a number of exponents, o,
®1,. .. 0y are introduced. These cannot be determined by dimensional
analysis, since the II's are already dimensionless. Usually, the exponents are
found to satisfy a non-linear eigenvalue equation, obtained by seeking a
solution to the governing PDE of the form of equation (11). In general, the
exponents must be determined numerically, and the appropriate form of
equation (11) obtained initially by guesswork.

In the following section, we consider a specific example with
asymptotics of the second kind, and show that it is possible to determine
systematically, using the RG, how many exponents are introduced, what their
values are, and the form of the scaling function.

4. BARENBLATT'S EQUATION

When an elastic fluid flows through a porous medium which can
expand and contract irreversibly, in response to the pressure u(x,t), the time
evolution depends upon whether or not the pressure is increasing (medium
expanding) or decreasing (medium contracting). The resulting equation for
the pressure, using Darcy's Law, can be written asl

du d2u
5 =D ) (12)
with D = % for aiu >0and D=1 (1+¢)for aiu < 0. The parameter € depends
upon the” elastic constants of the fluid and the porous medium and the
permeability. We consider only the initial value problem with u — 0 as Ix| —
> and u(x,0) given by equation (4). The question we address is: what is the
long-time behaviour of the Barenblatt equation?

The long-time behaviour cannot be of the form u(x,t) ~ t-1/2 f(x\/?, e) for f
having continuous second derivative. This can be seen by substituting this
form intp the Barenblatt equation; it is impossible to match across the point
where d,u = 0. Nevertheless, uniqueness and existence of the initial value
problem with continuous second derivatives in space have been proved.?

The renormalisation group approach to this initial value problem has
six steps, each a direct counterpart of the procedure followed in quantum or
statistical field theory. The first step is to construct a naive perturbation
expansion in €: it has the form, in the limit 2/t — 0,

Aoe—x2/2t t
u(x,t) ~ ug(x,t) = log 05 + 0(82)} + r.t. (13)

(2mt)1/2 {1 " (2ne)1/2 i

where "r.t." stands for terms which are regular in the limit, and the subscript
"B" stands for "bare", in conformity with field theoretic usage. It is convenient
to achieve the limit by keeping t fixed, and letting § — 0, as we did for the
diffusion equation.

The second step is to cure the logarithmic divergence of the perturbation
series, by introducing the renormalised pressure
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ug (x,t) = Z(/) ug(x,t), (14)

where | is an arbitrary length, about which we will say more shortly. The
renormalised pressure, upg, will eventually be found to be the correct
asymptotic solution of the Barenblatt equation, as opposed to the naive
perturbation expression ug which is (incorrectly) divergent. The function Z is
referred to as a renormalisation constant, and strictly speaking, it is
associated with Ay = Iu(x,O)dx. Since the Barenblatt equation does not
conserve |u(x,t)dx, A, cannot be deduced from knowledge of u(x,t) at long
times (i.e. when the origin of time is indeterminate). In this sense, A, is
unobservable at long times, in the same way that the bare electric charge is
unobservable at long distances, according to quantum electrodynamics. The
renormalisation constant depends on f{, so that as § — 0, the divergence in ug
may be absorbed into Z to yield a finite ug. In the procedure described below,
the removal of the divergence in ug occurs order by order in g, so we will
assume that Z has an expansion in powers of €. However, Z is, by definition
dimensionless, and therefore cannot depend solely on the dimensional
parameter §. For this reason, an arbitrary parameter p with the dimensions
of length must be introduced.

In the third step of the renormalisation procedure, we expand
Z=1+a1(/n) e+ ag(W/pe2 + ... (15)

and choose aji, ag,... to cancel order by order in € the divergence in ug as § — 0.
We find that

1
ai= log [C1(u2/02)] (16)
\ 2ne
giving
up(x,t) =—— |1~ log +0@E2)| . an
R \ 2nt l: 2me (Cluz) }

Here Cj is an arbitrary number. Although this formula has two arbitrary
parameters, it is more useful than it may seem; and it has the obvious virtue of
being (trivially) finite as # — 0, since { is not present in the formula.

In fact, the formula (17) describes a family of solutions. Step four of the

procedure is to chose a particular member of the family by requiring that (e.g.)
at some time t*, the value of ug at the origin is some number Q:

ug(0,t) = Q..

Then the corresponding solution, to 0(¢) is



%
up(x,t) = Q (%)1/2 e x2/2t [1 10 ti* + 0(52)]. (18)
2me

This expression will be referred to as the renormalised perturbation
expansion. Note that to this order in ¢, the constants C; and p have dropped
out. A proof that this occurs to all orders in ¢ for the arbitrary constants Cj,
Cg, ... introduced by the renormalisation procedure would constitute a proof of
renormalisability. Although we do not doubt that the Barenblatt equation is
renormalisable, we have not proven this. The renormalised perturbation

log (t/t*). Fort

€
expansion is useful at best only for times such that 1 >>
(2me) V2

>> t*, the renormalised perturbation expansion breaks down. Nevertheless,
we will now show that the arbitrariness of t* enables the renormalised
perturbation expansion to be improved.

In step 5, we use the renormalisation group argument, due to Gell-
Mann and Low®: The renormalised perturbation expansion involves a
parameter t* not present in the original problem. How can the asymptotics
depend upon such a parameter? The point is that Q must also depend upon t*.
After all, during the diffusion process, u(0,t) is expected to be a decreasing
function of time. The dependence of Q on t* can be found because its t*.
dependence must be that to cancel out the explicit t*-dependence of the
renormalised perturbation expansion. Thus

dt* =5t * 3Q dr*=9- (19)

The partial derivatives can be explicitly evaluated, at least to 0(e), from
equation (17). The result is

dQ 1. &
t* gp+ = —Q{2+ (2ne)1/2+ 0(82):| . (20)

The final step is to solve this differential equation for Q. Substituting
back into equation (17) and setting t* = t, we finally obtain

uROD) = i eX2 (1 + 0e2) (1)
with
o= m + O(e2). (22)

Thus, the logarithmic terms in the perturbation expansion came from the
expansion of t-%: the divergence of the perturbation series pointed the way to
the correct asymptotics. The expansion of a(e) is almost certainly divergent; it
would be useful to know if it is Borel summable. We shall refer to o as the
anomalous dimension.
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5. GEOMETRICAL INTERPRETATION OF THE RG

So far, the exposition has been tied to perturbation theory. In fact, the
RG approach is non-perturbative, and can be used as a procedure even when
the expansion in € is a poor approximation. We shall illustrate this here.
Define the RG transformation on the space of functions u(x,t,) at a given value
of to:

u’(x,t0) = Rp ¢ [ulx,te)] . (23)

The RG transformation depends on 2 parameters and involves 3 steps: (1)
Evolve the function u(x,t,) forward in time to t; = bty, b > 1, using the PDE. (2)
Rescale x i.e. x — b®x, ¢ arbitrary. (3) Rescale the function itself so that u’(0,t,)
= u(0,ty). The general idea is that similarity solutions, if they exist, are fixed
points of the RG transformation. That is, we iterate the RG transformation
and if the initial conditions are in the basin of attraction of a fixed point, then
the fixed point will be reached after an infinite number of iterations. The real
power of the RG derives from the fact that it is relatively easy to approximate
step (1), because the evolution is over a finite time. The RG procedure then is
capable of giving a good approximation to the long time behaviour.

It should also be noted that for generic values of ¢, there may not exist
fixed points of Ry . Thus, ¢ must be varied to search for fixed points. To
illustrate the RG expressed in this form, we will use the renormalised
perturbation expansion to approximate step (1), again starting from a
Gaussian. We obtain

wix,ty) = ﬁ u(bdx,bt,) 24)
with
—p12(1___F 2
Z0b) = b (1 i logb)+0(£) 25)

The RG transformation forms a semi-group (semi, because b > 1):

Rb1,0 Rbg,e = Ribibe)e - (26)

This implies Z(b) = b Q for any exponent yq, Or

d(log Z 1
yQ = a((lgg b = [5 N O(EZ)] @7
2ne

Now let us determine ¢. Performing one iteration on the initial condition, we
obtain



£

u(b®x,bto) = Q(to) b—L/2 exp[— b20x2/2bt, | X [1 - log b + O(e2) | (28)

2ne

A fixed point is only possible if ¢ = 1/2. At the fixed point

w*(x,t) = b ° Q u*(xb2, bt) . (29)

Choosing b = 1/t, we obtain the result.

u* (x, t) = t-a-1/2 u*(\% 1) (30)

with a(e) given as in the preceding section.

We conclude this section with several remarks. First, step (1) can in
principle be carried out numerically?. There is no restriction to using
perturbation theory, as we have done here for pedagogical purposes. Second,
the origin of the anomalous dimension in PDE problems is precisely the same
as in critical phenomena. Consider, for example, the two-point correlation
function G(k), of a scalar field at the critical point, as a function of
wavenumber k: conventionally, G(k) ~ k=2+M as k — 0, and p is an anomalous
dimension. We assume, for concreteness, that the field is defined on the
vertices of a regular lattice, with lattice spacing 2. It can be shown that G
must have the dimensions of (length)2. How then, can it have the conventional
form at the critical point? The answer is that even though the correlations in
the system have infinite range, the lattice spacing 2 is still important and
cannot be neglected (i.e. set to zero). In fact, the correlation function is
singular as § — O:

G(k) ~ (M k—2+n | (31

It is this singularity, combined with the necessity to respect dimensional
analysis, which leads to the anomalous wavenumber dependence of G(k) at the
critical point. Finally, the geometrical formulation of the RG given here is the
counterpart of Wilson's method in statistical physics.10

6. SPECULATIONS

We conclude this article by offering a number of speculations? on future
applications of this work. At the time of writing, these and other avenues of
research are being actively followed.

Perhaps the most interesting application, from the point of view of this
workshop, is to velocity selection in dendritic growth. We shall restrict
ourselves to models such as the geometric modelll (GM) or the boundary-layer
modell2, where there is no doubt about the procedure to construct the steady
states or needle crystals. In the GM, for example, the velocity of steady states
is given by the non-linear eigenvalue problem
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22k v cos 6
= 32
(K * dsz) 1 + € cos (m#) (32)

with boundary conditions

dk

dsls=0 =0 x> 0ass oo, (33)

Here, ¥ = d0/ds is the curvature of an interface whose normal is at an angle 6
to the axis of symmetry of the needle crystal, at an arc length distance s from
the tip. The degree of symmetry is m. Only for special values of v can the
boundary conditions be satisfied. The solution corresponding to the largest
value of v is the needle crystal which forms the tip of the dendrites in the GM.
The steady state equation (32) is the analogue of the equation determining the
scaling function f and the anomalous dimension ¢« in Barenblatt's equation:
substituting u = t~a + V2) f(¢), £ = x/\V't in Barenblatt's equation yields a non-
linear eigenvalue equation for a and f. Indeed, this is typically how Barenblatt
and others have solved problems with asymptotics of the second kind.

It is natural to conjecture that the scaling of v with € can be obtained by
studying the asymptotics of the initial value problem giving rise to (32), for
small €:

ox 02 821(]
= __ (2,9 , il
Erll N (x + aezj [1 + € cos (me)] [K +32 |

However, this is problematic because the time evolution for € = 0 is quite
different from that when € # 0. In the Barenblatt equation, on the other hand,
the expansion parameter € had no qualitative effect on the time evolution--the
perturbation is a marginal operator in the language of statistical mechanics.
We do not yet know how to resolve this apparent difficulty.

Finally, it is of interest to apply the converse of our results to statistical
mechanics: instead of determining critical exponents by performing
successive renormalisation group transformations in space, which is the
analogue of the initial value problem for PDEs, can one determine a non-linear
eigenvalue problem for the critical exponents, which is the analogue of the
steady state equation (or the equation for the scaling function f)?

ACKNOWLEDGEMENTS

One of us (NDG) thanks the organisers of the workshop for the
opportunity to participate and present this work. He also gratefully
acknowledges receipt of an Alfred P. Sloan Foundation Fellowship. NDG and
YO are partially supported by the National Science Foundation through grant
no. NSF-DMR-90-15791.



REFERENCES

7.
8.
9.

10.
11.
12.

G. I. Barenblatt, Similarity, Self-Similarity and Intermediate
Asymptotics, (Consultants Bureau, New York, 1979).

N. Goldenfeld, O. Martin, Y. Oono and F. Liu, Phys, Rev, Lett. 64:1361
(1990); N. Goldenfeld, O. Martin, Y. Oono, J, Sci. Comp. 4:355
(1989).

D. J. Amit, Field Theory, The Renormalisation Group and Critical
Phenomena, (McGraw-Hill, New York, 1978).

S.-K. Ma, Modern Theory of Critical Phenomena,
(Benjamin/Cummings, Reading 1976).

See (e.g.) J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena, (Clarendon, Oxford, 1989).

N. Goldenfeld, in: Proceedings of the Institute of Mathematics and its
Applications, Workshop on the Evolution of Phase Boundaries, M.
Gurtin and G. McFadden (eds.), (Springer-Verlag, to appear).

S. L. Kamenomostskaya, Dokl. Akad. Nauk SSSR 116:18 (1957).

M. Gell-Mann and F. E. Low, Phys. Rev. 95:1300 (1954).

The work of M. Berger and R. Kohn, Comm, of Pure and Applied Math.
41:841 (1988) is closely related to the renormalisation group.

K. G. Wilson, Phys. Rev, B 4:3174 (1971); ibid. 4:3184 (1971).

D. Kessler, J. Koplik and H. Levine, Phys, Rev, A 31:1712 (1985).

E. Ben-Jacob, N. Goldenfeld, B. Kotliar and J. Langer, Phys. Rev, Lett.
53:2110 (1984).

~(0~



