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We consider the problems of: (1) the stress field in an infinite wedge when a moment is applied
at the tip. and (2) the flow of an inviscid incompressible fluid past an infinite wedge. Both prob-
lems are lincar. but nevertheless exhibit anomalous dimensions for wedge angles, «, larger than a
critical value a.. In (1) it is the stress field and in (2) it is the velocity potential which can have
anomalous power law behaviour in distance from the tip. We use these problems as simple exam-
ples to illustrate how partial differential equations can be solved using the renormalisation group.

1. Introduction

In a series of recent papers [1-4], we have begun to develop a renormalisation
group (RG) theory for the asymptotics of partial differential equations (PDEs). In
particular. we showed, by explicit example, that certain problems encountered in po-
rous medium flow may exhibit anomalous dimensions in the long time limit, and,
furthermore, that the appropriate exponents could be computed using both pertur-
bative RG techniques and Wilson’s RG. Our work establishes a direct correspond-
ence between intermediate asymptotics (IA) [5] and RG.

The purpose of the present paper is to elaborate further on this correspondence, by
solving two linear problems in continuum mechanics, discussed by Barenblatt [5].
These problems are simple enough that they permit an exact solution, but neverthe-
less are rich enough to exhibit interesting asymptotics. The application of the RG to
these problems does nevertheless add insight into the asymptotics, and serves to illus-
trate what we believe to be the physical meaning of the RG. This work is a response
{o a very stimulating challenge by Professor Barenblatt [6].

It is both appropriate, and with great pleasure, that we dedicate this article to Michael
Fisher on this auspicious occasion. Michael has always been clear about both the
physics of RG and the connection with asymptotics. We have learned much from him.
We send him our very best wishes for his birthday and for the future.
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2. Observables, renormalisation and asymptotics

In this paper, we consider two linear problems in continuum mechanics, suggested
to us by Barenblatt [6]. Since these linear problems can be solved exactly, it might be
thought that the RG does not yield any new quantitative information, in these cases.
However, the RG method does make a conceptually important contribution, by jus-
tifying the functional form assumed in the IA approach. This is important, even for
the simple problems treated in this paper, because the RG, together with a perturba-
tive analysis (which is often not hard to obtain), allows one to compute the anoma-
lous dimension in a series form just as in the case of the e-expansion [7] in critical
phenomena. We emphasise, however, that the RG is essentially non-perturbative, and
that renormalisation, as discussed here, occurs even outside perturbation theory[3,4].

The two problems which we discuss [ 5] concern the stress field of an infinite wedge
at whose tip is applied a moment (the Sternberg-Koiter problem [8]), and the flow
of an inviscid incompressible fluid past an infinite wedge. Both of these cases are
linear problems, but naive dimensional analysis does not work, and strange power
laws emerge. In this section, we analyze both of the problems from the RG point of
view, paying attention to the question of which quantities are actually observable.
These considerations enable us to anticipate the number and nature of the renormal-
isation constants required to renormalise the perturbation theory. The requirement
that the physics on large length scales is well defined as the regularisation parameter
is taken to be arbitrarily small, dictates the functional form of the quantity we compute.

2.1. The Sternberg—Koiter problem

The Sternberg-Koiter problem in its original form (as is explained in ref. [5], ch.
10) is to compute the stress tensor of an infinite two-dimensional wedge, whose di-
hedral angle is 2c, under the application of a couple of moment M at the tip of the
wedge. We use the polar coordinate system (r, §). We wish to study the stress o,,,
which is directly observable. There are five quantities in the problem: M, «, r, 0 and
the stress g,,. Dimensional analysis (DA) implies the following functional relation
51
M
r?

$o(0, o) (2.1)

Grr =
where ¢, is a function, whose explicit form has been given by Carothers [9] and Inglis
[10]:

_ 2M sin(26)
“ sin(2a) —2a cos(2a)

Po (2.2)

Unfortunately, the denominator of (2.2) vanishes when the dihedral angle
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a=a.~0.71514839~, leading to a divergent stress ficld at a dihedral angle which is
perfectly acceptable physically. Sternberg and Koiter analyzed this “paradox” by
regularising the problem: they introduced a more detailed microscopic model of the
physical problem, taking into account the distribution of forces near the tip of the
wedge. In other words, they attributed the failure of the macroscopic elasticity theory
calculation to the omission of certain microscopic parameters.

This procedure led them to a satisfactory solution, which is interpreted by Baren-
blatt from the IA point of view. Barenblatt explains that there is a small cutoff length
scale, r,, near the tip, over which act the forces generating the moment M. This intro-
duces a new length scale, which must be taken into account when performing dimen-
sional analysis. This revises (2.1), which now becomes

o=, (i,e, a). (2.3)

0

Next, Barenblatt assumes that in the r/ry— oo limit, the scaling function ¢ is singular
for a> « in the following way:

meg(r‘o) p(0, ) as — —oo. (2.4)
rr ¥o
Here, 4 is an exponent to be determined. In general, such exponents are determined
by substituting the ansatz (2.4) into the original PDE. Only for special (sometimes
unique ) values of 4 can all the boundary conditions be satisfied, and this solvability
condition determines A.

Let us now consider this problem from the RG point of view. It is possible to pro-
ceed blindly with the problem, and calculate (e.g. in perturbation theory), introduc-
ing renormalisation constants where necessary, in order to get a finite theory. An ex-
ample of this is the calculation presented in ref. [2], where the interpretation of the
renormalisation procedure is provided post hoc. On the other hand, it is useful to
anticipate the behaviour of the theory, using physical arguments, as explained in ref.
[ 1], and this is what we will now do with the problem at hand.

The crucial question to ask is: which quantities are observable (under given con-
ditions) and which are not. Among the five quantities considered in the original for-
mulation of the problem, r, 6, and « are obviously directly observable. The stress
tensor has some ambiguity due to gauge invariance [11], but it is also essentially
observable. The moment M is concentrated ““at the tip of the wedge” in the original
formulation of the problem, and over a distance r, in the regularised version of the
problem. The original formulation of the problem is a degenerate limit of the regular-
ised problem, but supposedly corresponds to the description of what we are able to
observe in the laboratory. Thus, if M, is the microscopic moment applied near the tip
in the regularised problem, the moment M applied at the tip in the original formula-
tion is a renormalised counterpart of M. The value of M, will in principle depend
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upon the regularisation r,. This means that as the degenerate limit r,—0 1s taken, there
is nothing that guarantees that M and M, will be the same; in general, they will not
be. The concept of a moment applied precisely at the tip is a fiction due to the mac-
roscopic (or phenomenological) description that we have chosen.

To summarise, M, and r, are the bare parameters of the problem, which are not
accessible to our chosen level of description. The usual hypothesis of phenomenology
is that there is a closed functional relation among directly observable and phenome-
nological quantities, and this should be true irrespective of the microscopic details.
In particular, this should be true in the limit r,—0. The observable M is related to the
bare M, by the relation M= ZM,. The renormalisation constant Z is dimensionless,
but must depend upon r,, because M, depends upon r, and M does not. Dimensional
analysis then requires that there be another length in the problem, which we will call
L. introduced in order to ensure that Z is dimensionless. This is the length that sets
the scale, in the language of statistical field theory, and is arbitrary. Thus

G, = M&(f 0, a), (2.5)

r 0
with ¢ being some function to be determined. We can write this as

C Zlr/LMy (r
AT ¢<L,0,a), (2.6)

where ¢ is another function to be determined.

We may use the Gell-Mann-Low argument [ 12] to establish the functional form of
a,.. Since L is not present in the original specification of the problem, it should not be
present in the solution of the problem. Hence, we arrive at the RG equation:

a0,
o 2.7
L oL 0, (2.7)
and thus
99
.y = _ 2.
Ap+p o 0, (2.8)

where p=r/L, and

olnZ
A=— . 2.
dln L (2.9)

All the partial derivatives above are taken with bare parameters kept constant. Solv-
ing this linear partial differential equation, we get

a,‘,:/—v:[(I—J)-(b(@.a). (2.10)
PAr
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This is the form (2.4) postulated by the IA approach.

2.2. Ideal flow past a wedge

This is the problem discussed in the last section of ch. 10 of Barenblatt’s book [5].
Consider an infinite wedge with dihedral angle 2 whose symmetry axis is along the
x-axis, with the tip at the origin. The problem is to find the velocity field of an ideal
incompressible fluid past this wedge with the condition that as x— — co, the velocity
is U parallel to the x-axis. Since this is a two-dimensional problem, we need only
calculate the velocity potential ¢. We use the polar coordinate system (7, #). Thus
there are five quantities in the original specification of the problem: r, 0, a, U and ¢.
Dimensional analysis tells us that [5]

p=Urd(0, ), (2.11)

where @ is a function to be determined.

In fact, for a> 0, there is no solution of this form! This follows from the fact that ¢
satisfies Laplace’s equation. The ansatz (2.11) implies that @= A cos 8+ B sin 6, where
4 and B are determined by the boundary conditions d,9=0 for = * . These bound-
ary conditions do not lead to a non-trivial solution for @.

Barenblatt regularises the problem by considering instead a wedge of finite length
L. For the finite length problem, dimensional analysis dictates that

Y= L])'CD(I'/L(M 0, a). (212)
Then he assumes the following IA form in the »/Ly—0 limit:

go:Ur(i) D0, a) . (2.13)
Ly

Let us now consider this problem from the RG point of view. Again, it is important
1o know what is directly observable at the given level of description. Unobservable
quantities are always at the very microscopic scale as in the Sternberg-Koiter problem
and critical phenomena or at the very large scale. In the present flow problem, it is
tempting to relate unobservable quantities to the tip of the wedge as in the former
problem. But in this problem, there is no obvious candidate parameter depending
upon the tip. The parameters r, @ and « are obviously unambiguous observables. The
velocity potential itself is not directly observable, but it is straightforwardly related to
the velocity field, which is directly observable. Hence, the only remaining candidate
for the unobservable quantity is U. For a wedge of finite extent, the velocity “at infin-
ity” has a direct meaning. But in the limit of an infinite wedge, this is not the case.
Thus for the regularised problem, with a wedge of extent L,, we denote the speed at
infinity by U,. Thus U, and L, are the bare quantities in the present problem. Renor-
malizing this problem as L,— oo introduces an arbitrary length scale, as before, and it
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is straightforward to obtain the final result
§0=UV(£) D0, ) . (2.14)

This is the functional form used in Barenblatt’s book.

3. Conclusion

In this paper, we have seen that simple physical insight, together with RG argu-
ments, suffice to predict the form of the asymptotics, even when naive dimensional
analysis fails. Just as in field theory and statistical mechanics, this prediction of the
RG has two important implications. The first is that perturbation theory about the
solution expected on the ground of naive dimensional analysis must be divergent. The
second implication is that this divergent perturbation series, when combined with the
RG, yields an expansion for the anomalous dimensions. For the problems under con-
sideration here, we will simply quote the final result; the details contain many subtle-
ties and will be published separately.

For the Sternberg-Koiter problem, we find that the anomalous dimension of (2.10)
1s given by

A=—2e+((€?), (3.1)

where €= (a— )/ a, which agrees with the result given in ref. [5] to order e. In
practice, this linear approximation is quantitatively reliable only when &/« is less
than of order 10~ 3. For the problem of fluid flow around a wedge, we find that

i=2 1 (a?), (3.2)
T

which is indeed the correct result to first order in «.
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