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Dynamic scaling and spontaneous symmetry breaking at the gel point
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The gel point is a continuous transition between fluid and solid states, and therefore exhibits a
variety of scaling laws for the linear viscoelastic behavior. These are derived, together with a scaling
law for the nonlinear shear relaxation modulus and a sum rule, valid in both fluid and solid states,
which has a counterpart in superconductivity. Our results are generic consequences of both dynamic
critical phenomena and spontaneous symmetry breaking, and therefore are not equivalent to some pre-
vious predictions, based on an analogy with percolation.
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When a sufficient number of permanent cross-links is
incorporated into a system of linear polymer chains, either
in the melt or in solution, an amorphous solid is formed.
This solid is often referred to as a strong gel or rubber, de-
pending upon whether or not a solvent is present. It is
amorphous, despite being in equilibrium, because of the
frustration due to the combination of the permanent
cross-links and the impenetrability of the polymer chains.
Cross-linked macromolecular systems are the only sys-
tems known to form equilibrium amorphous solids. In us-
ing the term solid we refer to a system with spontaneously
broken translational invariance, and a static shear
modulus that is consequently nonzero. In particular, we
distinguish between this state and that of a connected en-
semble of flexible elements (such as polymer chains),
which is not obviously or even necessarily a solid. For
convenience, we shall refer to the point in the phase dia-
gram, where the transition to the solid state occurs, as the
gel point, even though the transition is usually called vul-
canization in the case of rubber.

The phase transition from a fluid to an equilibrium
amorphous solid also exhibits unique features. Landau
theory predicts that the transition is not first order—the
usual case for fluid to solid transitions—but instead is
continuous [1,2]. We emphasize that this result is non-
trivial: In the calculation of the effective Hamiltonian for
the tensor order parameter, the coefficient of the relevant
cubic invariant could potentially have been positive, which
would have led to a first-order transition [3]. This is the
only known case of a continuous solidification transition in
three dimensions.

The purpose of this paper is to examine the dynamic
critical phenomena, which general renormalization-group
considerations [4] imply must accompany a continuous
transition to the solid state [2]. Our starting point is a dy-
namic scaling hypothesis for the shear relaxation modulus
[5]1 G(w) as a function of frequency w, which is the ap-
propriate response function to consider at a phase transi-
tion from the fluid to the solid state. G(w) is related to
the complex modulus, conventionally denoted as G *(w),
whose real and imaginary parts are the storage modulus
G'(w) and the loss modulus G " (@), both of which are ex-
perimentally observable [6,7] as the number of cross-links
N is varied through the critical value V..
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Our results take the form of scaling laws for the moduli
and the viscosity 7, and relations between the critical
exponents characterizing the behavior of these quantities
as a function of @w and reduced cross-link number n
=(N.—N)/N.. We also derive a scaling relation for the
nonlinear shear relaxation modulus G,. Some, but not
all, of these relations have been proposed before on the
basis of an analogy with percolation [8], which takes as a
starting point the existence of a solid, fractal structure at
the gel point.

The bases for our work, on the other hand, are twofold.
First, the power laws that emerge near the gel point are
standard consequences of the dynamic critical phenomena
which accompany a continuous phase transition. Our pre-
vious work [1,2] not only account for the existence of the
transition, but also predicts it to be continuous. Thus,
there is no need to make any analogy with percolation, nor
to assume that a fractal network forms with a particular
fractal dimension [9]. Second, gels are solid, and at the
gel point, translational invariance is spontaneously broken
[10]. This, and not connectivity, is the principal thermo-
dynamic significance of gelation, and is an aspect that
cannot be captured by purely geometrical considerations
such as percolation. Spontaneous symmetry breaking im-
plies the emergence of rigidity in the system, through the
necessary presence [10] of power-law transverse correla-
tions in the strain field, for N > N,, and accordingly, as
the bulk correlation length & decreases, the shear rigidity
increases, with an exponent which we discuss below.

All our predictions are scaling laws and relations be-
tween exponents, and should be satisfied regardless of the
actual values of the exponents; at this stage, we have noth-
ing to say about these values or the possible universality
classes. Thus, our work does not address the issue of a
possible concentration dependence of exponents [7].
However, satisfying our scaling laws is a good consistency
test, and provides a criterion for checking that the data
are in the scaling limit.

As mentioned above, there is nothing particularly
unusual about the way in which dynamic scaling phenom-
ena manifest themselves near the gel point, given that the
transition to the solid state is continuous. Thus, much of
the phenomenology developed in this paper has its direct
counterpart in other systems where the spontaneous
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breaking of a continuous symmetry is probed by transport
measurements. In particular, we shall mention the simi-
larity with fluctuation phenomena in the vicinity of the su-
perconducting transition, with the complex modulus G*
playing the role of the superfluid density p,, and the shear
relaxation modulus G (w) being the analog of the frequen-
cy-dependent conductivity 6(w).

Dynamic scaling. For a shear flow with velocity field
v=_(vy,v,,0:), where vy =k()y and v, =v.=0, the xy
component of the shear stress tensor is related to the rate
of strain k(¢+) by the shear relaxation modulus G(¢)
through

ou@® =" d'Gu—kW). M

Causality requires that G(t—¢') =0 for "> t. In a poly-
mer system, it is conventional to assume that there are two
additive contributions to G, one coming from the solvent,
the other, G”(z), from the polymers themselves. Thus
G(t)=n:6(t)+G"(t), where 1, is the solvent viscosity.
In a steady shear flow, o, =nk, where the static viscosity
isn=n+f5dt'G(').

In a time-dependent flow, it is convenient to consider
the Fourier-transform variables denoted by a caret: thus
6 (0) =G(w)k(w), where, for example,

6= _die=Gw).

We define the complex modulus G*(w) =iwG (w), with
real and imaginary parts G'(w) and G " (w), respectively.

The dynamic scaling hypothesis for the shear relaxation
modulus G (w,n) asserts that

Go,n)=n""F+(wty), )

where n=(N,.—N)/N,, F + is a scaling function and 7¢ is
the relaxation time of the zero wave-number mode, given
in terms of the correlation length £(n) by to=71,,E(n)
Here 7, is some microscopic relaxation time, and z is the
dynamic critical exponent. Near the transition, the cor-
relation length diverges with an exponent v: &(n)
=& |n| 7Y, where & is the bulk correlation length in
the solid (—) or fluid phase (+), well away from the tran-
sition. The frequency-dependent viscosity is defined to be
w,n) =G*(w,n)/iw, and so is equal to G. Thus the ex-
ponent y describes the divergence of the zero frequency or
static viscosity n(n)=lim, _.o#A(w,n), in the limit that
n— 0+, as long as the scaling function F 4 (x) tends to-
wards a constant value independent of x as x— 0. Hence,
well away from the transition, and for #» > 0, the complex
modulus in the fluid phase must have the form

G*(w,n) =g M (iw)+gs M) iw)’+0((iw)3), ((3)

where the g;*(n) are real coefficients. In the limit
n— 0+, the coefficient gi* (n) ~n 7.
In the solid phase, the complex modulus does not vanish

as w— 0, by definition, and so has the form
G*(w,n)=go (n)+g (n)iw)

+g;7 (M iw)*+0(iw)?), ¢))

where g (n) o |n|? for n— 0—: This describes the on-
set of rigidity in the solid phase as the cross-link number is
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increased above the critical value. The terminology B for
the exponent is nonstandard; for now, we shall regard S as
arbitrary, but we will show later that it has the value v in
three dimensions. This result follows from spontaneous
symmetry breaking, and we do not see how it could be ob-
tained from percolation analogs. This form G* requires
that the complex viscosity in the solid phase has the form
at low frequencies

(5)

A . go (n)
fi(@,n) sl”-no io+te
In writing Eq. (5), we have used causality to resolve the
singularity at @ =0: Thus, the real part of the complex
viscosity has a delta function at w =0, which is another
signature of the solid state. This is the analog of the Lon-
don equation in the theory of superconductivity [11]. In
addition, we will show below that this effect can be
quantified in principle, using an application of the f-sum
rule.

Now we derive the form of the complex viscosity at the
gel point. At nonzero frequency, assuming that it remains
finite, we require that as n— 0+, G(w,n) is independent
of n. In the scaling regime, this means that Fi(x)
~x 7" a5 x— o0, so that the n dependence cancels
from Eq. (2). Thus, we conclude that

G(0,0) ~(—iw) "7, (6)

where we have included the correct factor of i, in accor-
dance with the Kramers-Kronig relations. Thus, there
should also be a universal phase lag & at the gel point [12],
with 6=tan ~'(G"/G') =ny/2zv. Power-law behavior of
the storage and loss moduli at the gel point has indeed
been reported [6,7].

Next, we derive a scaling law relating the exponent
describing divergence of the viscosity in the fluid state to
that describing the onset of rigidity in the solid state. For
nonzero frequency, Eq. (5) implies that the scaling func-
tion F —(x) behaves as 1/ix when x — 0. Thus, the scal-
ing hypothesis becomes

n —y+vz
G~ 72 @
iw
which in conjunction with Eq. (4) implies that
B=—r+tvz. (®)
Thus, the viscosity diverges with an exponent y=—p

+vz. For this to be a true divergence, and not a cusp, we
require vz > f.

Away from the gel point, there should still be vestiges of
the power laws described above, which will be observable
as crossover phenomena. Thus, for n=0, but at high fre-
quency where wn ~ "> 1, the large x behavior of the scal-
ing functions F + (x) is probed. Whereas the behavior of
G(w) at low frequency will deviate from pure power-law
behavior, such behavior will be recovered at high frequen-
cies > wo(n), where wo(n) ~n".

Nonlinear response. We can also use scaling ideas to
describe the nonlinear response of the system at the gel
point. The arguments below were used to analyze the
scaling of the nonlinear conductivity near the supercon-
ducting transition [13]. We define the nonlinear shear re-
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laxation modulus G (k) at zero frequency by the relation
between stress and rate of strain

oy =Gm(K)k , ©)

where k is the rate of strain, and we are implicitly discuss-
ing the fluid phase. We can write down a scaling hy-
pothesis for G, by noting two facts: first, G, has the
same dimensions as the linear shear relaxation modulus,
and second, the dimensions of k are inverse time. Near
the gel point, then, k must scale with the relaxation time
t0. Hence Gu(k,n)=n""T'(ké(n)?), with T being a
scaling function. At the gel pont, £— oo, and in order
that G (k,n) remain finite, the » dependence of G, must
cancel out: this requires that I'+ (x) ~x ~"** as x — oo,
Hence, we obtain a scaling law for the dependence of the
nonlinear shear relaxation modulus on strain rate, at the

gel point
Gulk,0)~k ~7v. (10)

As in the linear case, there is also a crossover phenomenon
slightly away from the gel point: when kn ™ ">>1, we
have G o(k,n) ~k ~ 7",

Consequences of symmetry breaking. Up to this point,
we have presented the consequences which follow from the
fact that the transition to the solid state is a continuous
transition, rather than a first-order transition. Now, we
briefly discuss the consequences of the fact that a continu-
ous symmetry— translational invariance— is spontaneous-
ly broken at this transition. The most important conse-
quence from our point of view is that the long-wavelength
free-energy density governing the elasticity of the solid
state is

Fui;(£)) = 5 Ruud (0) +hug (1)1 arn

where u;;(r) is the stress tensor, and A and y are the Lamé
coefficients for an isotropic solid. In particular, u is the
static shear modulus given by gg (n) =lim,, . oG *(w,n)
when n <0. The form of Eq. (4) implies that this is a real
quantity. The long-wavelength free-energy density F
should scale as £(n) ~“ near the transition, whereas the in-
dividual gradient terms in F must scale as £(n) ~2 Thus,
we can determine the scaling of gg (n) near the transi-
tion: gg (n)& "2~¢& 9 which implies that go(n) ~£27¢,
and so the exponent governing the growth of the static
shear modulus in the solid state just below the transition
point is

B=v(d—2). (12)

Thus, in three dimensions, B=v, as announced earlier.
This result imposes an additional constraint on the scaling
laws which we have derived, and is a consequence of the
fact that rigidity is a thermodynamic phenomenon and not
an architectural one.

Sum rule. An interesting signature of the symmetry
breaking at the gel point is an apparent violation of a
rigorous sum rule, valid for viscoelastic materials. The
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sum rule may be derived by recalling that the real and
imaginary parts of G(w) are related by the Kramers-
Kronig relations. At frequencies above some cutoff w,
the real part of G(w), namely, G"(w)/w, tends to zero,
because the response to an external driving force is purely
inertial, and therefore there cannot be any dissipation.
Thus, in the integral relating the real and imaginary parts
of G(w), the upper limit is actually o.. Hence, for high
frequencies w > w,, the response is independent of wheth-
er or not the system is solid or liquid, and we obtain the
sum rule

I G 4= lim G'(w) . (13)
0 W @ — o
We emphasize that the constant on the right-hand side of
Eq. (13) is the same for both solid and liquid, and should
also be essentially model independent. For example, the
right-hand side has the value nnkgT/2 for both Rouse
and Zimm dynamics, where 7 is the monomer density and
kgT is Boltzmann’s constant times temperature. In the
solid phase, the sum rule will appear to be violated if the
integral is performed for w > 0, because of the appearance
of a delta function at the origin, as shown by Eq. (5). Al-
though the cutoff frequency w, is very high, the “missing”
spectral weight may occur at accessible frequencies, and
may be observable by comparing G”(w)/w slightly above
and below the transition. Corresponding effects occur at
the superconducting transition [14].

Conclusion. In the theory of superconductivity, the
complex modulus G* is the counterpart of the superfluid
density, whereas the shear relaxation modulus G (w) is the
counterpart of the complex conductivity. This is a direct
consequence of Egs. (3) and (4). The scaling behavior of
G*, described above, parallels a similar argument in the
theory of superconductivity [15] for the scaling of the
superfluid density with temperature. In the theory of su-
perconductivity, it is the superfluid density which quan-
tifies the rigidity of the wave function of the condensate.

Combining our dynamic scaling results with symmetry
breaking as expressed by Eq. (12), we find that above the
transition, the viscosity diverges with the exponent y
=y(z—1). The loss and storage moduli are power-law
functions of frequency at the gel point, scaling as w'”-
The phase angle at the gel point is §=n(z—1)/2z, and
the nonlinear shear modulus also has a power-law depen-
dence on strain rate, with an exponent of —(z—1)/z. Fi-
nally, the analysis reported here would be applicable to
other three-dimensional systems exhibiting a continuous
solidification transition, if they should exist.
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