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Superconducting fluctuations induce remnants of the Josephson effect above T.. To explore this,
we consider a paraconducting cylinder, composed of two thin films connected by tunnel junctions, and
threaded by magnetic flux. The electrical conductance includes a component that is an oscillatory
function of the flux, having an amplitude proportional to the square of the Josephson coupling, and
decaying exponentially with the circumference over a length scale £(T"). We estimate the typical
magnitude of this effect, and contrast it with related mesoscopic effects in normal-metal systems.

At temperatures T above but close to the super-
conductor—normal-metal transition temperature T, rem-
nants of superconducting phenomenology can be ob-
served due to the presence of thermally excited su-
perconducting fluctuations.! Examples include the en-
hancement of Landau diamagnetism? and electrical
conductivity3™® by such fluctuations, the coherence of
which persists up to lengths of order of the temperature-
dependent correlation length £(T) and over times of or-
der the zero wave number relaxation time 7o(7). Their
consequences are more pronounced in effectively lower-
dimensional structures, such as films, wires, and grains,
in which sample dimensions considerably narrower than
&(T) are suppressed.

Below T,, one of the striking consequences of super-
conductivity is the possibility of supercurrents flowing
through insulating barriers or weak links, i.e., the Joseph-
son effect.®” The sensitivity of these currents to magnetic
and electric fields is a reflection of coherence in the super-
conducting order parameter. In particular, magnetic flux
penetrating a Josephson junction leads to interference ef-
fects characterized by the familiar diffraction pattern for
the maximum supercurrent as a function of flux.® Sim-
ilar interference effects are exhibited by a SQUID ring
threaded by magnetic flux, for which the diffraction pat-
tern is replaced by a two-slit interference pattern.® Fur-
thermore, chemical potential differences cause supercur-
rents which oscillate in time.!%?!

As demonstrated by Kulik,'*''2 superconducting fluc-
tuations also lead to remnants of the Josephson effect
just above T.. Kulik showed that, due to the weak cou-
pling between fluctuations on either side of a junction,
the frequency-dependent conductivity has a resonance
with width of order 70(7")~! at the Josephson frequency
wy = 2eVjy/h, where V; is the potential difference across
the junction. This enhancement of the conductivity is a
manifestation of the long temporal coherence of the fluc-
tuations near 7.

The purpose of the present paper is to explore the
remnants, above T, of the Josephson effect, associated
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with the spatial coherence of superconducting fluctua-
tions, i.e., the remnants of SQUID phenomenology. We
focus on the flux dependence of the electrical conductiv-
ity as a probe of the spatial extent of fluctuations.!3 To
do this, we choose to consider a multiply connected para-
conducting two-junction SQUID-like structure, threaded
by a flux. Then, sensitivity to this flux is expected, pro-
vided that coherent multiply connected fluctuations can
arise with non-negligible probability. We note that the
related problem of the flux sensitivity of a perfect thin-
walled paraconducting cylinder has been addressed by
Kulik and Mal’chuzhenko.®

We therefore consider a system composed of two iden-
tical hemicylindrical thin films of a paraconductor, con-
nected by two identical tunnel junctions so as to form a
cylinder, as depicted in Fig. 1. We study the fluctuation
contribution to the conductivity of the system, and show
that it contains a component which varies periodically

FIG. 1. Geometry of the paraconductor-insulator-para-
conductor SQUID cylinder. Here r and ! denote the right
and left hemicylinders, respectively.
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with the flux threading the cylinder. The amplitude of
this component is attenuated by a factor which is propor-
tional to the square of the Josephson coupling constant,
and decays exponentially with the circumference of the
cylinder, over a length scale £(T). Thus, we expect such
a flux dependence to be observable in tubular structures
of internal circumference not much greater than £(T').
Consider a cylindrical system of circumference 2L,
J

F=Ft4+F +F’,
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height M >> L, and thickness d < &(T'), so that the
system is effectively two dimensional. The cylinder is
threaded by a time-independent magnetic flux ¢. As we
shall be concerned with temperatures T' that are close to
but greater than the superconducting transition tempera-
ture T., we describe the system by a quadratic Ginzburg-
Landau (GL) free energy F,'%!® given in terms of the
superconducting order parameter 1 by

(1a)

L M
Fe= a(T)d/O dac/o dy{|¥* ()2 + £(T)?|[V — 2nis(d/2Ldo)es]* (5) |}, (1b)

M
FJ=—Jd/O dy{9*(0,3)"¥7(0,3) +¢7(0,9)%7(0,3)" + ¥ (L,y)*v ™ (L,y) +¥* (L, y)¢~ (L,y)*}, (Lc)

where the superscript s = +(—) denotes the left (right)
hemicylinder of Fig. 1, and F* and F are, respectively,
the free energies of the uncoupled paraconductors and
the junctions. The GL parameter o(T) = (T/T, — 1)’
represents the usual temperature-dependent condensa-
tion energy, the correlation length is given by £(T)2 =
h2/2ma(T), m is the effective mass of the Cooper pair,
¢o = h/2e is the superconducting flux quantum, J is the
coupling constant associated with each tunnel junction,
e, denotes the unit vector in the p direction, and the
coordinate system is specified in Fig. 1. We assume that
there is a negligible amount of magnetic flux actually
passing through the sample.

In the experiment we have in mind, leads are attached
to the upper and lower circular edges of the cylinder in
Fig. 1. An infinitesimal transport current I is passed
between the leads, and associated with this current is a
voltage difference V. Our aim is to establish the super-
conducting fluctuation contribution to the conductance
G = I/V associated with this setup. To do this, we
construct the current

L
I(w) = dZ/O dz ji, (r,w) (2)

from the transport current density ji, given by Ohm’s
law

L M
Jiu(rw) = dZZ/Odz'[) dy'ors (v, v, w) B (r',w),
sl “’

3)

where cr;’,‘;’, is the electrical conductivity, and E°(r,w) =

M~V (w)e, is the frequency-dependent electric field cor-
responding to the envisaged experiment.

To compute 0';’;’ ,+» the contribution to the conductiv-
ity due to the equiiibrium superconducting fluctuations,
we use the Kubo formula

8,8’ 1 i . .s'
O¢ o (T r,w) = AT /0 dt (j;(r,0) 75 (r',t)) coswt,

(4)

[
where j° is the fluctuating supercurrent, given by

_2eh

i’(r,t)= Im {4°(r,t)* [V —is(w¢/Lepo)es |¢°(r, 1)},

(5)

in which —e is the electronic charge. We assume that
the width of the junction is vanishingly small, compared
with L, so that a negligible current is carried along the
junction itself.

We obtain the required current-current correlator by
using the stochastic time-dependent (TD) GL equation
for the superconducting order parameter (in the absence
of an electric field),

m

o . . 1 GF .
Tob—id) (r,t) = TSP @) e +¢*(r, t), (6)

where 70 = wh3/8(1 — T./T) is the zero wave num-
ber relaxation rate, 8 = 1/kgT, and (°(r) is a random
Gaussian noise with mean zero and covariance

() = ilg S(r—r)st—t)e, (D
chosen to satisfy the fluctuation-dissipation theorem.

It will prove convenient to work in a basis in which the
free energy of the uncoupled (i.e., J = 0) paraconductors
is diagonal. To this end, we introduce the complete basis
of functions'”

16

uzq(:c,y) = \/:llz—M exp(ismopz/poL) cos(kz) exp(igy),
(8)

orthonormal in their subscripts, where Mq/2m ranges
over all integers, Lk/m = 0,1,2,..., and pr = 1 (px =
V/2) for k = 0 (k # 0). Expanding the order parameter
in this basis,

PO, 8) = D %l (t) uig(e,y) 9)
kq

(and similarly expanding the noise term), and using or-
thonormality, the TDGL becomes
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ToOtp(t) = —A - P(t) +((t), (10)
where the vectors % and ¢ have components 1/),‘;1 and ¢} g0

and the matrix A has components A,’c’;’k, o'+ iven by

fkqdqq: Jkk’ for s = SI ,
=L 644 Prpir {1 + cos(kL) cos(k'L) ei(s=2 )79/ %0}
for s # s,

in which frq = 1+ £(T)2(k? + ¢?).
Following the standard approach,'® we obtain the
|

eh \? 1
Grlw) = (mM) wkgT

where o denotes Fourier convolution.

ss'qq' kk’

Fourier transform of the stationary correlation function

(@)= /_ dt =t (2 (B (0)°)

= %%) (A + 'icu'roI)_1 (AJr — inOI)

—1]8%8

ka,k'q"’
(11)
where I is the appropriate identity matrix. Employing

Egs. (2)-(5), we find the fluctuation contribution to the
conductance

aa’ (Stia © Stvtna) @) (12)

Using Eq. (11), we evaluate SZ;k’q’ (w) perturbatively, to second order in J/aL, and insert the result into Eq. (12).
We then evaluate the remaining summations at w = 0, retaining terms to leading order in L/£(T'), thus obtaining the

dc fluctuation conductance G(0),

G(0) = GaL {1 + }15% (EJI) 5(1%)

which we have expressed in terms of the conductance
GarL = (2Ld/M)o’AL, with oa;, = ez/lﬁdh(l — TC/T)
being the usual Aslamazov-Larkin contribution to the
conductivity of an effectively two-dimensional paracon-
ducting film.# Equation (13) is the principal result of this
paper, demonstrating the existence of interference phe-
nomena due to the coherence of superconducting fluctua-
tions over a length scale {(T"). Higher-order perturbative
contributions in J lead to higher harmonics in the flux
dependence of the conductance, but with additional ex-
ponential attenuation in 2L/&(T"). Unlike the case of the
homogeneous cylinder (i.e., uninterrupted by junctions),
even for L < £(T) the essential contribution to the flux
dependence arises at the fundamental frequency, higher
harmonics being suppressed. It should be noted that the
total conductance G does of course contain a normal con-
tribution Gy, in addition to Gy.

We anticipate qualitatively similar flux sensitivity for
the conductance associated with an alternative experi-
ment, in which the current is passed perpendicular to
the cylinder axis, necessarily passing through the junc-
tions. In this case, the normal contribution to the con-
ductance is due to single-electron tunneling through the
junctions, and is therefore suppressed with respect to
the axial normal conductance (i.e., G,) by a factor pro-
portional to J. Hence, the flux-dependent term, being
O(J 2), will be relatively more pronounced. However, a
slightly ‘more refined theoretical treatment seems appro-
priate for this case, owing to the necessity of considering
inhomogeneous electric fields.®

For the sake of illustration we give a rough estimate of
the magnitude of the lux-dependent part of the conduc-
tance relative to the Aslamazov-Larkin part. To do this,
we take L ~ &(T'), where £(0) ~ 1000 A and (T/T.—1) ~
1072, a(0) ~ 107! peV and J ~ 1078 yeVcm, corre-

- 1;\2/7? (s

3/2
) e 2L/4(T) cos(27r¢/¢o):| } , (13)

[
sponding to the geometrical parameters d ~ 1072 um,
L ~1pm and M ~ 10 um, and the normal state junc-
tion resistance R, ~ 50 Q. Then [Gf(0) — GaL]/GaL ~
1072 cos(2md /o).

Related phenomena may be anticipated for a single
junction above T, in the presence of a magnetic field in
the junction plane. However, in contrast with the situ-
ation below T,, imperfect diamagnetism above T, is not
sufficient to confine the magnetic field to the junction re-
gion. Thus, the flux-dependent contribution to the phase
of the junction tunneling amplitude is not unique (i.e., is
dependent on the initial and final position). Therefore,
the flux-dependent contribution to the conductance (and
all macroscopic observables) is suppressed.'®

There is an additional contribution to the paraconduc-
tivity, known as the Maki-Thompson contribution.! This
contribution increases, relative to the Aslamazov-Larkin
contribution, the lower the dimension. The present the-
ory does not account for the Maki-Thompson contribu-
tion. Thus, the quantitative estimate of the effects pre-
dicted here are expected to be more accurate for higher-
dimensional structures (i.e., cylinders) than for lower-
dimensional ones (i.e., rings). We do, however, expect
that the effects reported here would occur in rings as well
as cylinders, in fact being more pronounced for rings.

It is worthwhile to contrast the present interference
phenomena with those exhibited by normal mesoscopic
rings and cylinders threaded by magnetic flux,?° a jux-
taposition which has received considerable attention
recently.?! In such structures, single-particle phase co-
herence leads to flux sensitivity, e.g., of the conductance,
provided the circumference does not greatly exceed the
dephasing length L4; in the paraconducting environment
&(T) plays an equivalent role. However, the tempera-
ture dependence of the two origins of flux-dependence
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are quite distinct. Thus, in order to deconvolute para-
conducting from single-particle mesoscopic effects, Ly
should be much smaller than £(T'), over as wide a range
of temperatures near 7, as possible. This range is larger
at higher temperatures, where Ly is small, e.g., due to
electron-phonon scattering. This desideratum is not re-
alized in aluminium, but may be achievable in a higher
T. superconductor. Moreover, in rings the lack of self-
averaging leads to single-electron conductance oscilla-
tions with period 2¢o (= h/e). In contrast, oscillations
due to paraconductivity occur with period ¢q.

Finally, we note that in effectively one-dimensional
ring structures the fluctuation correlations induced by a
Josephson junction are analogous to single-particle scat-
tering by a localized impurity potential. However, the
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analogy ceases for long cylinders. In the normal cylin-
der the impurity configuration varies randomly along the
length,?? whereas in the paraconducting cylinder the lo-
cation of the junction remains fixed. Consequently, in
contrast with the case of the normal cylinder, the contri-
bution to the flux dependence of the conductance with
(fundamental) period ¢ does not average to zero.
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