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We illustrate how to extend the concept of structural stability through applying it to the 

front propagation speed selection problem. This consideration leads us to a renormalization 

group study of the problem. The study illustrates two very general conclusions: (1) singular 

perturbations in applied mathematics are best understood as renormalized perturbation 

methods, and (2) amplitude equations are renormalization group equations. 

1. Introduction 

When a very thin film made of diblock copolymers [l-3] in the disordered 
phase is quenched sufficiently, microphase separation occurs, and segregation 
patterns are formed. What happens if we cool the film from one end? We 
would expect the appearance of a segregation pattern invading the featureless 
disordered phase. The quenched film in the disordered state is thermo- 
dynamically unstable. Thus to facilitate the observability of such propagating 
front phenomena, the growth of spontaneous fluctuations before the front must 
be suppressed. This could be accomplished, for example, by sliding a cooling 
block along the film. If we slide the block too quickly or too slowly, however, 
we would not observe any intrinsic front invasion behavior into the disordered 
phase; if it is too fast, the unstable phase may spontaneously order before the 
front invasion, and if it is too slow, the invasion is restricted by the presence of 
the cooling front. What is the natural speed, given the quench depth? How 
does the pattern invade with this ‘natural speed’? For example, suppose the 
equilibrium pattern for the low temperature state is a triangular lattice. When 
this phase invades into the quenched disordered phase, do we observe the 
triangular lattice immediately, or do we observe a lamellar phase first, which 
later orders into the triangular lattice? What are their speeds [4]? 

Now, let us examine an example. Perhaps the simplest model of diblock 
copolymer melt dynamics is the following partial differential equation [5-S]: 
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a,$ = A(-@ + gqb3 - D A@) - B($ - a) , (1.1) 

where II, is the order parameter field, 7, g, D and B are positive constants, and 

(Y is a constant which could be negative. Fig. 1 illustrates the quenching process 

due to the moving cooling front simulated by the cell-dynamical system [9-111 

corresponding to (1.1) [5]. In this particular case, lamellae parallel to the 

cooling front are first formed and then break up into a triangular pattern. In 

the steady state, a set of three modes, Wi = {IV,,, , Wl,2, Wl,3}, where each is 

parallel to one of the three edges of the triangle, invades the disordered region. 

In this illustration, the mode parallel to the cooling front, IV,,, , invades first, 

Fig. 1. A cell dynamics model simulation (for details, see [7]) of a block copolymer film with an 

invading triangular phase. Initially, a periodic pattern is imposed on the right edge of the system. 
As time proceeds, clearly the lamellar mode parallel to the invasion front leads the ordering 

process into the unstable uniform phase. Eventually the lamellar pattern breaks up into the final 

triangular pattern (defects may be introduced in this example because of a slight mismatching of 

the parameters and the system size). Thus, IV,,, invades first, followed by the remaining two 

modes. 
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followed by the remaining two. Under the same boundary condition, but with 
different polymer parameters, sometimes a triangular lattice is formed by the 
invasion of the set WZ = {W2,1, W2,2, W2,3}, which is rotated by 30 degrees with 
respect to W1. In general, prior to the establishment of a steady state 3-mode 
invasion, there is a competition between W1 and “ur, (and any other modes 
which happen to be present). The time evolution of the invasion is governed by 
a set of simultaneous semilinear parabolic equations of the form [4] 

at’Pi=DiA~i+Fi(‘pl,...,(PN) (i=l,...,N), (1.2) 

where cpi denotes the amplitude of the ith mode, N is the total number of 
relevant modes, Di is the diffusion constant for the ith mode, and Fi is the 
‘reaction term’ (a smooth function). 

In this paper, we first wish to discuss the front selection problem for (1.2): 
when many stable propagating fronts are allowed by the model, what front can 
we actually observe under an ordinary experimental setting? 

This question is, however, only the starting point of the present paper, 
whose main aim is to discuss and illustrate the fundamental role of re- 
normalization-group ideas in macroscopic physics. 

The above question about selection has led us to the structural stability 
analysis [12] of (1.2) (section 3). A renormalized perturbation approach is 
given as an algorithm to check the observability criterion due to the structural 
stability analysis (section 4) [13]. This analysis leads us to a vast frontier of 
renormalization group theory (section 5) [14]. In section 2 we give a brief 
review of the selection problem. The last section contains a summary and 
comments. This article contains some pedagogical material to clearly demon- 
strate our points, but its main purpose is to announce an intimate relation 
among structural stability, renormalization and singular perturbation. More 
accurate and detailed statements will be published elsewhere. 

2. Selection problem 

The simplest case of (1.2) is obviously the following scalar equation: 

Fisher introduced the equation with F(q) = cp(1 - cp) (Fisher’s equation). We 
assume F(0) = F(1) = 0. If we also assume that F(p) > 0 Vcp E (0, l), then 
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there exists a stable traveling wave solution interpolating between 1 and 0 with 

propagating speed c for all c E [c*, +m). If F is differentiable at 0, then 

c* 2 E = 2m. Thus there are uncountably many stable propagating wave 

solutions for (2.1). However, usually only one of these is reproducibly 

observable in actual or computer experiments. Thus we have the selection 

problem: what stable traveling wave solution of (2.1) is actually observed? 

To study the selection problem, we must carefully distinguish between the 

model and the system being modeled. We use the word ‘system’ to denote an 

actual physical system on which we can perform actual experiments. In 

contrast, a model is a mathematical procedure (or equation) describing the 

behavior of some observable(s) of the system which the model is to simulate. 

For example, the model (2.1) simulates a front propagation phenomenon such 

as the spreading of an allele of a gene locus in a population (the system). While 

the system apparently exhibits reproducibly a unique propagating front, the 

model allows uncountably many such fronts to exist. What is the selection rule 

for the propagating front solution which corresponds to the actually observed 

front in the system? This is the precise statement of the selection problem. 

In an actual front propagation experiment, say, fire propagation along a 

fuse, we must prepare an initial condition. Fire is set by elevating the fuse 

temperature in front of the observer/experimenter. Thus, in practice the initial 

condition for the system is modified only on a finite region of the system. In the 

model, we must prepare the corresponding initial condition to have a compact 

support. Let us call such an initial condition a physical initial condition. We 

define the ‘physical observability’ (in the present context) of a solution to a 

given model as follows. If the traveling wave solution is attainable as an 

asymptotic state of the initial value problem with a physical initial condition, 

we call the traveling wave solution physicaZly observable. This is sensible, since 

we cannot manipulate infinite space to prepare an initial condition. We can 

only modify the system just in front of us. 

Aronson and Weinberger proved the following: 

Theorem A (Aronson and Weinberger [15]). For (2.1) if F(0) = F(1) = 0, 

F(x) > 0 for any x E (0, l), and if F’(0) > 0 (these conditions will henceforth be 

called the AW condition), then the boundaries of any level set for the value in 

(0,l) of the solution with a physical initial condition asymptotically travel with 

the speed c*. 

This implies that under the AW condition, the propagating speed we can 

actually observe is the minimum stable speed. We may call this the minimum 
speed principle. Empirically, this is what seems to be generally believed. 
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Certainly, we do not have any counterexample for (2.1), even without the AW 
condition. We do not, however, know any rigorous result other than this 

theorem. 
There is a hypothesis of marginal stability due to Langer [16]. The linear 

marginal stability analysis is motivated by the following observation. Suppose a 
small localized perturbation is added to the cp = 0 state. Since this state is 
unstable, the disturbance grows, and consequently its fronts propagate in both 

directions. We wish to observe the front from a moving frame. If the speed of 
the frame is too slow, the disturbance front outruns us, so that we observe a 
growing disturbance and conclude that cp = 0 is unstable. If the speed of the 

frame is too fast, we outrun the disturbance, and we say cp = 0 is stable. 
However, the natural front should be self-sustained; the growth of the invading 
disturbance into the unstable state should be the cause of front propagation. 
Hence, the speed of the front should be the one which makes the cp = 0 state 
marginally stable. 

In the moving frame with speed c, (2.1) reads 

arcP = cd: + CQcp + F(9) > (2.2) 

where 5 =x - ct. We study the stability of the tip of the traveling wave in the 
following form: 

rp = c(t) ek5 , (2.3) 

where E is assumed to be very small. We get 

e’(t) = a(k) e(t) ) (2.4) 

with 

r(k) = k2 + ck + F'(O) . (2.5) 

The marginality condition is Rev(k) = 0 and dc(k)ldk = 0. From these, we 
conclude that c = 2m is the selected speed according to the hypothesis. 
Notice that this value is a lower bound 2 for the minimum stable speed allowed 
to the model. Mathematically, we classify (2.1) into two cases [17]: if c* = t, 
the model is called a pulled case, and if c* > 2, a pushed case. The linear 
marginal stability analysis works only when the model is pulled. There is no 
established method to distinguish pulled cases from pushed cases. 
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3. Structural stability 

To motivate our approach to the selection problem, we first wish to reflect 
upon what we should mean by a good model of a natural phenomenon (or a 
given system). 

Suppose we repeat the same experiment many times and collect data on the 
same observable for a given system. If the observed data cluster around some 
definite value, and the fluctuation around this value is small, we may say that 
the observable is reproducibly observable. Fluctuations around its most 
probable value are due to factors we cannot control. For example, they may be 
due to details in the initial condition or in the system preparation or 
maintenance itself. Now, let us assume that we have a mathematical model M 
of the system under study. If this is a good model of the system, then its 
behavior (at least that corresponding to the reproducible observables) must be 
stable against its modification. That is, in a certain sense, M is close to 
M + 6M, where 6M corresponds to the details beyond our control. 

This is exactly the idea of ‘structural stability’ of a model first introduced in 
the context of dynamical systems by Andronov and Pontrjagin [Ml. Since the 
coefficients of most differential equations important in practice (in physics, 
biology, engineering, etc.) cannot be determined exactly, it is crucial that their 
global features be largely unaffected by tiny changes in these coefficients. 
Therefore, Andronov and Pontrjagin proposed that only structurally stable 
models are good models to do scientific work. An epoch making theorem was 
later proven by Peixoto [19]: The set of all the structurally stable C’-vector 
fields on a C” compact 2-manifold is open and dense in the totality of Cl-vector 
fields. This was a very encouraging result, suggesting that we might dismiss all 
the structurally unstable models from science, as suggested by the original 
proposers of the concept”. However, soon it was recognized that if the 
dimension of the manifold is larger than 2, the structurally stable vector fields 
are not dense (see, for example, [20]). 

What does this mean to science? It means at least that: 

(i) the World is full of systems which are in a certain respect unstable and 
whose observable results are at least in part irreproducible. 

Then, probably 

(ii) the conventional definition of structural stability is too restrictive for 
science, since the fact that many things are not reproducible is reproducible. 

#l An open and dense subset of a set should not be imagined to contain a ‘majority’ of the points 

in the set. For example, we can easily make an open dense subset of the interval [0, 11 whose 
Lebesgue measure can be any small positive number, since there is a Cantor set whose measure is 

indefinitely close to unity. 
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If there are unstable or irreproducible aspects in the actual system being 
modeled, then a good mathematical model of the system must have features 
unstable with respect to the perturbation corresponding to that causing 
instability in the actual system. Thus a good model should be structurally stable 
with respect to the reproducibly observable aspects, but must be unstable with 
respect to the hard-to-reproduce aspects of the actual system. 

Let us consider Fisher’s equation 

(3.1) 

We wish to add 6F to its ‘reaction’ term. If 6F is Cl-small, that is, 16Fj is small 
and 16F’I is also small in [0, 11, then c* changes only a little, and it is easy to 
demonstrate that actually all aspects of the model are structurally stable. That 
is, all changes are continuous with respect to the Cl-norm of SF. Unfortunate- 
ly, it is easy to demonstrate that (3.1) is not stable against certain Co- 
perturbations (i.e., without the smallness condition of ISF’I). Consider a small 
spine-like perturbation near the origin. Its size can be made indefinitely small 
while simultaneously making the slope of 8F indefinitely large. Hence, we can 
indefinitely increase the slope of the reaction term at the origin with indefinite- 
ly Co-small perturbations. This implies that the lower bound t of c* can be 
increased without bound. Hence, the model cannot be structurally stable. 

Is this an artifact of the mathematical model and thus a mere pathology? 
Consider the following analogy for (2.1). We may regard the equation to be 
describing the propagation of a flame along a fuse. In this analogy, cp is the 
temperature; 0 is the flash point of the fuse and 1 the steady burning 
temperature. The reaction term F may be regarded as the generation rate of 
heat due to burning. (Actually, it is the net rate of heat deposition on the fuse: 
the heat generation due to burning minus the loss of heat to the environment. 
In the steady state these must be the same, so F( 1) = 0.) For cp = 0, we may 
linearize (2.1) as 

drq = dfq + F'(0) cp . (3.2) 

If we put a very small amount of explosive powder along the fuse, we can 
increase F’(0) considerably. The explosive burning near temperature 0 will 
therefore trigger a very fast propagation of fire along the fuse. Thus, we can 
imagine an actual system in which a drastic change of c* is possible with a very 
small change of F. We may conclude that the structural instability of the model 
(2.1) is a desirable feature of a good model. This example thus provides an 
illustration of assertion (ii) above. 

To relax the structural stability requirement of Andronov and Pontrjagin, 
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which requires every aspect#” of the model to be structurally stable, we must 
consider two things. First, we must require the stability of the model only 
against structural perturbations corresponding to perturbations of the actual 
system which affect its reproducible observables only slightly. We call such 
perturbations physically small perturbations of the system and the corre- 
sponding mathematical expressions p-small perturbations of the model. We 
require the structural stability of the model only against p-small perturbations. 
Secondly, we need not require every aspect of the model to be stable against 
p-small perturbations; we have only to require the stability of reproducibly 
observable features. 

Our general conjecture is: solutions structurally stable against p-small 
perturbations describe reproducibly observable phenomena. More precisely, 
we conjecture a structural stability hypothesis: For a good model, only 
structurally stable consequences of the model are reproducibly observable. We 
must admit that there is potentially a tautology here. If we could reproducibly 
observe a phenomenon of a system which is not structurally stable in the 
model, or if we could not reproducibly observe something which the model 
says is structurally stable, then we conclude that the model is not a faithful 
picture of the system. 

4. Structurally stable solutions of semilinear parabolic equations 

For semilinear parabolic equations, we say 
if 

a Co-small perturbation is p-small 

sup 
uE(n,tl 

~<JUS%) 2 (4.1) 

where (( . Ijo is the Co-norm, andf is a continuous function such that f(x)+ 0 as 
x-+0. Notice that the condition has no absolute sign, and only the upper 
bound of 6Flu is specified. Thus we are not demanding the differentiability of 
SF. 

Now, we have the following theorem: 

#‘Although we said ‘every aspect’, this applies to the flow structure of the dynamical system. 

This does not mean that each trajectory is stable against small perturbations. Actually, as seen in 
Anosov systems, structurally stable systems are often highly chaotic. However, as is explicitly 

noted in [21], microscopic instability is the basis of macroscopic stability as exhibited in the 
pseudo-orbit tracing properties and the stability of invariant measures which minimize the 

topological pressure. 
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Theorem B (Paquette and Oono [12]). For (2.1) with F(0) =F(l) =O, let 
c*(F) be the minimum traveling wave speed for the reaction term F. Then, if 
6F is p-small, limliSFllO_O c*(F -t SF) = c*(F). 

An intuitive idea behind theorem B is as follows. Suppose cp(x, t) = 4(t) 
(where 5 =x - t) c is a traveling wave solution to (2.1). 4 obeys 

3 d4 

d5* 
+cz+F(4)=0, 

or, replacing 4 with q, 

dV 
9=p, 

ti=-cp-dq’ 

(4.2) 

(4.3) 

where F(q) = dV/dq. That is, the problem can be interpreted as a particle of 
unit mass (position q and velocity p) sliding down a potential hill V with 
friction constant c. Hence in this particle analogy, the speed in the original 
problem corresponds to the friction constant. 

A propagating front connecting 1 and 0 corresponds in the particle analogy 
to an orbit connecting the saddle S and the sink (at the origin) 0, as shown in 
fig. 2. If c is too small, the particle overshoots 0 and goes into the region q < 0. 
The corresponding solution of the original partial differential equation is thus 
unstable in the ordinary sense of this word. As can be seen from fig. 2, c* is the 
boundary between overdamped and underdamped motion. Now let us put a 
small potential bump at the origin; this can be done with an indefinitely 
Co-small perturbation to F (or indefinitely Cl-small perturbation to V). 
Obviously, overdamped saddle-sink connection orbits no longer exist. That is, 
all the front solutions with speed faster than c* are destroyed by this 
perturbation. Again obviously, sufficiently underdamped orbits still overshoot 
the origin, so that there must be a boundary between over and underdamped 
orbits which is not far away from the original c*. For c < c*, an appropriate 
bump would convert this c into the critical damping factor (that is, the 
minimum speed of the stable stationary front). However, in this case we can 
always choose a much smaller bump to leave c as an insufficient friction 
constant for the particle to stop at the origin. Hence, the boundary between 
over and underdamped cases must be infinitesimally close to the original c*, if 
the perturbation is infinitesimally small. 

This intuitive demonstration is technically not easy to rigorize, since allowed 
perturbations are not necessarily a simple bump. Still, it captures the salient 
physics (and mathematics) behind the structural stability of c*. 
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Fig. 2. An intuitive explanation of the structural stability of the slowest stable propagation speed 

c*. The trajectories corresponding to the traveling wave solutions are illustrated for (4.3). The left 

column with U is for the unperturbed model, and the right column with P for the model perturbed 

with a small potential bump at the origin. S is the saddle, and A is the newly formed stable point 

with the potential bump. The friction constant c (that is, the front propagation speed in the original 

problem) is decreased from A to C of the figure for both columns. BU illustrates the critical speed 

c* case; if c is slightly decreased further, then the trajectory overshoots the origin as CU. The 

potential bump at the origin prevents all the overdamped trajectories like AU from reaching the 

origin, as illustrated in AP. For most underdamped cases like CU, a small bump is not enough to 
stop overshooting. Between AP and CP there must be a critical friction coefficient for the 

perturbed model, but it must not be far away from the unperturbed one. Hence, c* must be 

structurally stable. Furthermore, no other c can be structurally stable. 

If 4 = 0 is not an isolated minimum of V, the propagating solution of (2.1) is 
unique. This can easily be seen from the particle analogy above. Notice that it 
is always possible to eliminate the isolated minimum at q = 0 with a p-small 
perturbation. This, together with theorem B, implies that c* and only c* is 
structurally stable against physically benign perturbations. 

In the present context, we accept that semilinear parabolic equations are 
good models of front invasion into unstable states. Then the structural stability 
hypothesis implies that the physically observable front speed is the minimum 
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stable speed. If the equation satisfies the AW condition, this is true thanks to 
Aronson and Weinberger’s theorem A. But theorem B is valid even without 
this condition. 

For the multimode case of (1.2), if Fi = aipi + higher order terms, that is, if 
the cp are linearly decoupled, then we can prove a theorem analogous to 
theorem B [12]. In this case, however, structurally stable speeds need not be 
unique. Generally speaking, there is no further principle to select one among 
the structurally stable speeds. We believe that what we can observe in these 
cases depends on the initial condition. That is, only history can select the 
realized front among the structurally stable ones. Such examples have already 
been given, and in fact, the block copolymer model is one of these [12]. 

We have been unable to prove the general case where no linear decoupling 
assumption holds for (1.2). Still, we believe that what we have seen for the 
decoupled case holds here too (see example (5.1)). That is, what we can 
observe are structurally stable fronts, and only history can select the actually 
realized one among these. 

Why does structural stability imply the minimum speed in this case? The key 
observation to explain this is that the speed c > c* is determined by the tip, 
while the speed c* is determined by the bulk of the propagating front. The 
former may not be hard to understand, because to realize a speed faster than 

c*, we need a fine tuning of the decay rate of the initial condition at infinity, as 
has been demonstrated in the pulled case by Kolmogorov et al. 1221 and 
Kametaka [23]. For the pushed case, see [24]. The assertion that c* is 
determined by the bulk may sound strange in the case of a pulled front, but it 
is easily seen that even in this case, c* is insensitive to the tip. In both the 
pushed and pulled cases, note that if the initial condition is confined to a 
compact set, or decays to zero more quickly than any exponential, the resulting 
solution decays to zero more quickly than any exponential for all time. Also 
note that if the initial condition decays as - exp(-kx), where k is at least as 
large as k* (here exp(-k*x) is the asymptotic form of the steady state solution 
with speed c*), then this asymptotic form is maintained for all time. In all of 
these cases, the asymptotic speed is c*. The initial decay rate therefore 
determines the tip shape for all time, and hence this tip shape has nothing to 
do with the selected speed. Hence, the words ‘pushed’ and ‘pulled’ may both 
be misleading. (See [12] for a more detailed explanation.) 

Now it is easy to understand why the minimum speed is structurally stable. 
Since the tip is extremely fragile against small modification of F near the 
origin, all speeds c >c* are unstable structurally. On the other hand, c” is 
determined by the bulk of the propagating front, which is obviously insensitive 
to a small perturbation. In terms of the fuse analogy, imagine we put a thin 
film of water on the fuse. This would be sufficient to kill the fast propagation of 
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fire determined by the tip even if such propagation could be realized in the 
unperturbed system. Thus the structural instability of faster solutions is an 
actual phenomenon; that is, it is not an artifact of the modeling process. In this 
sense, the reaction-diffusion equation is a very good model of, e.g., the 
invasion of a stable phase into an unstable phase. 

Since unstable states are unstable against spontaneous fluctuations due to, 
e.g., thermal fluctuations, it is not possible to prepare a wide unstable phase 
region. This is why the moving cooling front is used in the diblock copolymer 
example at the beginning of this paper. Therefore one might think that the 
nonuniqueness of the propagating front in the model is due to an excessive 
idealization of the actual system: the unstable state of the model is really a 
metastable state with a very small ‘activation barrier’. One might conclude that 
this is the reason why in the actual system there is only one propagation speed 
which we observe. We need not deny that there are such cases, but in many 
actual examples, the unstable states are really unstable against some particular 
invasion mode, although they are metastable against spontaneous fluctuations. 

Consider Fisher’s original example of the spreading of an allele in a 
population. Of course, the invading allele could be produced de now by 
mutation in the population, but this is extremely improbable, so the initial 
population is quite stable against spontaneous fluctuations. If the allele is 
advantageous, then the initial population is unstable against its invasion. In the 
case of the fuse analogy we have been using, the flash point TF is the 
temperature at which the fuel becomes unstable against the invasion of 
radicals, while the ignition point T, is the temperature at which the fuel can 
spontaneously produce radicals (reacting with oxygen). That is, between T, 
and T,, the fuse is unstable against the invasion of fire, but metastable (almost 
stable) against spontaneous thermal fluctuations. The distinction between flash 
point and ignition point parallels the distinction between the secondary and 
primary nucleation processes. For example, a melt below the melting point 
should not be considered a metastable state when a crystal nucleus is already 
present. The melt is really unstable against the invasion of the crystal phase. 
Thus, the structural stability requirement cannot be regarded as simply an 
augmenting or auxiliary rule to make excessively idealized models realistic. 

5. Renormalization and structural stability 

Renormalization group (RG) methods are generally interpreted as a means 
to extract structurally stable features of a model [2.5,26]; the structurally stable 
features of the model characterize the universality class to which it belongs. In 
RG terminology theorem B implies that p-small perturbations are marginal 
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perturbations for c*, but that some p-small perturbations are relevant to speeds 
larger than c*. Furthermore, we know that generally speaking, Co-small 
perturbations could be relevant. 

Thus theorem B affords a method to judge whether the front with speed co is 
observable or not through the study of its response to 6F corresponding to a 
small potential bump added to the model: if the change of the speed SC 
vanishes in the limit of vanishing bump (that is, if 6F is a marginal perturba- 
tion), then co is observable. Otherwise, co is not observable. As we have 
found, this procedure works numerically. In response to a p-small perturbation 
SF, the change in the speed of (1.2) observable in numerical computations 
vanishes with llSFl[ o. Let us consider an example. 

As stated above, we have been unable to prove a statement analogous to 
theorem B for multi-mode equations which display linear order coupling. We 
believe, of course, that our structural stability hypothesis applies to these 
equations as well, and in support of this conjecture, consider one such model 
for the present study. We note that similar behavior can also be easily observed 
for single-mode and multi-mode, linearly decoupled equations. Consider the 
following model equation: 

(5.1) 

where Fl = I,!+ ++I,!I~ -I/J:, and F2 = 3t,!1~ + +I+!I~ - $: - +!J;. We numerically 
studied the behavior of (5.1) in response to the perturbation Fl + Fl + SF, and 
F2+ F2 + 6F,, where SF, = -lo& if & < E and 0 otherwise. Note that 
(SF,, SF,) can be considered as the discretization of a p-small perturbation. 
(6F,, 6F,) is analogous to the film of water discussed in the context of the fuse 
analogy. If a traveling wave solution of (5.1) with speed c is observable 
(structurally stable), the speed of the observable solution of the perturbed 
equation must converge to c as e-0. We numerically determined the 
observable propagation speed of the unperturbed equation, as well as those of 
perturbed equations with several values of E. The results of this study, shown in 
table I, support our structural stability hypothesis; the observable speed 
changes continuously in response to a p-small perturbation. 

We next studied a “tip driven” solution (as opposed to the “bulk driven” 
solution considered above) of (5.1). We were able to produce such a solution 
by choosing two small positive values e1 and Ed to move at speed c = 10. We 
chose l 1 = 0.248 x lo-” and Ed = lo-” . With these values, the eigenfunction of 
the linear equation corresponding to (5.1) for the traveling wave solution with 
c = 10 is given by: const. x (q, Ed) exp(-kx), with k = 0.323. We then com- 
puted the speed of the resulting front by watching the point at which +i = 0.01. 
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Table I 

The observed speed of the front as a function of the size 

of perturbation. The speed is a continuous function of 

perturbation. That is, this observable speed is structurally 

stable. 

8 C 6 c 

1om5 3.68 lo-’ 3.81 

1om6 3.73 lo-l2 3.83 

lo-’ 3.17 0 3.86 
WR 3.79 

Not surprisingly, this value was 10. However, when we applied perturbations 

to the tip driven model identical to those applied to the bulk driven model, in 

each case, the propagation speed computed was also identical to that found for 

the bulk driven model. For the tip driven solution, the response of the model 

remains finite as the size of the perturbation vanishes. The above considera- 

tions thus lead us to conclude correctly that it is unobservable. 

Once more returning to the propagation of fire as a physical analogy, this 

result can be interpreted as follows. For the dry fuse, we are able to force the 

system to exhibit ‘fast’ flame propagation by running a torch along the fuse to 

ignite it at the desired speed. When we add a film of water which the torch is 

not able to evaporate as it runs past, however, the behavior of this torched 

system cannot be distinguished from that of the untorched system. Its response 

to this small perturbation is therefore large. 

Let & be a stable traveling wave solution of (2.1) with speed cO. Let us add 

a p-small structural perturbation 6F to (2.1) with ll8Fll 0 of order E, and assume 

that in response the front solution is modified to &, + 84. Linearizing (2.1) to 

order E in the moving frame with velocity c,,, we obtain formally the following 

naive perturbation result: 

6$( 5, t) = emco5’* 
I I 

dt’ d5’ G( 5, t; c’, t’) eco5”2 W(&( 5’)) . (5.2) 

Here t, is a certain time before 6F(&(t)) becomes nonzero, and G is the 

Green’s function satisfying 

z-cYG=c?(t-t’)@-5’) (5.3) 

with G+O in 1.$--t’[+m, where 
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(5.4) 

Since by Co-infinitesimally modifying F, we can always cause .2? to have 0 as 
an isolated eigenvalue, we may safely disregard all possible complications 
introduced by the presence of a 0 eigenvalue which is not isolated from the 
essential spectrum. Formally, G reads 

G(S, t; 5’, t’) = u,(t) u*,((‘) + C e-An(‘-“)u,(~) u;(t’) , (5.5) 

where au, = 0, and 2?u, = A,u,. The summation symbol, which may imply 
appropriate integration, is over the spectrum other than the point spectrum 
(0). Since the model is translationally symmetric, u. m ec0”2&,( 0. Due to the 
known stability of the propagating wavefront, the operator Y is dissipative, so 
0 is the least upper bound of its spectrum. Hence, only u. contributes to the 
secular term (the term proportional to t - to) in 84. Thus we can write 

scp, = sq5 = -(t - to) SC g)(5) + (W), 9 (5.6) 

where the suffix B means “bare”, (64), is the bounded piece (regular part), 

and 

(5.7) 

One may immediately guess that this & is the change in the front speed, but 
the naive perturbation theory is not controlled. A renormalization procedure 
can be used to justify the guess as follows [13]. 

The first term in (5.6) is divergent in the to-+ --cc, limit. We introduce an 
arbitrary subtraction factor p to separate the divergence by splitting t - t, as 
t - p - (to - p), and then absorb the divergence p - to through renormaliza- 
tion of 4o(5) to &(t, CL). To order E we get 

where & in the second term is replaced with &, because & 
E, as seen from (5.7). The RG equation is a+,({)/@ = 0. 
the RG equation is, after equating F with t, 

(5.8) 

is already of order 
Hence, to order E 

(5.9) 
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Thus the speed of the renormalized wave is indeed cO + 8~. 
The formal expression (5.7) is legitimate only when both 6F and -6F are 

p-small. That is, the formula is legitimate only when 6F is linearizable near the 
origin. Since we do not know whether the renormalized perturbation result is 
asymptotic or not, strictly speaking the formal expression (5.7) and the true 
change 6c = c(F + SF) - c(F) itself should be distinguished. Furthermore, the 
expansion is correct only if the terms obtained are finite, so if c is not 
structurally stable, the formal expression may not be justified. Still, (5.7) seems 
to give us the correct information about the observability of c. 

For example, if we add 6F = l $(l - 4) to (3.1) with F = ~$(l - 4), then 

(5.7) gives c* 2: 2 + E; the exact result is, of course, c” = 2s. If we add 

SF= O(+ -A) (4 - A)(1 - 4) - 4(1- 4), with A > 0 and 0 being the unit step 

function, then SC = S(a) for small A if cg = 2, and SC 0~ v- if c, 2 2 in the 
A-+ +0 limit. Hence, only when c,, = 2 does c change continuously with the 
perturbation. 

6. Singular perturbation and renormalization 

The reader may make the criticism that the renormalization approach in the 
preceding section is nothing but a singular perturbation approach (the method 
of stretched coordinate). Why do we need such a (purportedly) heavy 
machinery as RG? Before answering this question, we must stress that RG is 
not an esoteric machinery. As mentioned in the preceding section, it is a (the?) 
method to extract structurally stable features of a given model. For example, in 
the case of critical phenomena, we wish to study global features which are 
insensitive to small scale details. That is, we are pursuing the features of the 
model stable against structural perturbations corresponding to the small scale 
details. 

In this section, we first demonstrate that the calculation in the preceding 
section is just the standard renormalization group theory for partial differential 
equations [14,26]. Then, we demonstrate that the ordinary singular perturba- 
tion method is understood very naturally from the RG point of view. Actually, 
we wish to claim that singular perturbations are most naturally understood as 
renormalized perturbations. 

Introducing new variables X = e” and T = e’, the propagating front solution 
reads 4(x - ct) = @(XT-“). Thus the front speed is interpreted as an anomal- 
ous dimension. This is obvious; since the variables inside logarithms must be 
dimensionless, c cannot be determined by dimensional analysis. If we intro- 
duce To, defined by t, = In To, then t - t, = ln(T/ To). From this we may 



L.-Y. Chen et al. I Selection, stability and renormalization 127 

interpret T, as an “ultraviolet cutoff” scale. Hence, the t,-+ --cc, limit 
corresponds to the cutoff+0 limit in the usual field theoretic calculation or in 
our PDE calculation. In the ordinary multiplicative renormalization group 
scheme (see, for example, [27]), the logarithmic singularity ln(TIT,,) is 
absorbed into the renormalization group constants. Usually, we introduce an 
arbitrary length scale L and rewrite TIT, as (TIL)(LIT,). ln(LIT,) is then 
removed by renormalization. Our Al. above is nothing but In L, and the splitting 
of the logarithmic terms should correspond to the splitting t - p + p - t,. 

p - t, represents the divergence to be absorbed into some phenomenological 
parameter. 

Now, with the aid of the presumably simplest (but representative) example, 
we demonstrate our point that singular perturbation is best understood as 
renormalized perturbation. Consider the following linear ODE: 

cif+i+x=o. (6.1) 

We pretend that we cannot obtain its closed analytic solution and apply a very 
simple-minded perturbation approach. Expand x as x = x0 + EX~ + . . . . We 
have 

i’,+x,=o, (6.2) 

i&+x,=-io. (6.3) 

Solving these equations, we can easily get the following formal expansion: 

x=A,e --(f--fO) _ EAO(t _ to) e-(‘-rO) + fJ@) , (6.4) 

where A, is a constant determined by some initial condition. Now, the second 
term contains the prefactor t - t,, and is thus a secular term; the ratio of the 
first and the zeroth order terms diverges in the to+ --co limit. As done above, 
we now introduce p, split t - t, as t - p + p - t,, and absorb I_L - t, into A,, 

which is due to the initial condition we do not know. In this way, A, is 
renormalized to A. We rewrite (6.4) as 

x = A e-(r-p) - EA(t - p) e-(‘-‘l) + O’(E’) . (6.5) 

Here A is a function of p. Since I_L is not in the original problem, obviously 
axlap = 0. This is the renormalization group equation. After differentiating 
(6.5) with p and then setting p equal to t, we get 

(6.6) 
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This is exactly the equation obtainable, for example, by the reconstitution 
method [28]. Solving this equation (ignoring the second order term), and 
putting the result into (6.5) with p = t, we get 

x = B eP(‘+‘P ) 
(6.7) 

where B is the ‘phenomenological constant’ we must fix appropriately to 
reproduce the observable result. Clearly (6.7) is the formula obtained by the 
usual stretched coordinate method, or a multiscale expansion scheme. Here the 
result is obtained without the introduction of modified variables or coordinates. 

One might think this agreement is only fortuitous. To see that this is not the 
case, consider (6.4) again. This formula is reliable if l (t - t,,) is sufficiently 
small. Instead of calculating the result at t at once from t,, we could proceed 
step by step just as in the Wilson renormalization group theory [29]. Let us 
divide t into N time spans and first solve the problem from 0 to t/N (for 
simplicity, we set t, to be 0). We get 

x(tlN) = B emriN(l - d/N) + O((E/N)‘) . (6.8) 

Now use this as the initial value and solve x(2tlN) to order E, etc. We 
eventually get 

x(t) = B[e-“N(l - EtIN)IN (6.9) 

Taking the N--+m limit, we get (6.7). 
To obtain a solution reliable not only for large t but for all t, in the standard 

singular perturbation procedure, the so-called inner and outer expansion and 
their matching are required (see, for example, [30]). Now we demonstrate that 
from only the inner expansion, we can construct a uniformly valid solution by a 
renormalization group method. 

First (6.1) is rewritten as 

x”+X’+EX=o, (6.10) 

where ’ implies the derivative with respect to T = t/e. Naive perturbation gives 
the following result: 

x=A,+B,e-’ - E[A,(T - 1 + e-‘) + B,(l - T eP7 - e-‘)I + a(~‘) . 

(6.11) 

Introducing p into the secular terms through 7+ 7 - p + p, we wish to absorb 
/A (here T,, is set to be 0 by an appropriate time shift) by renormalizing A, and 
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B,. Let us proceed more systematically by introducing the multiplicative 
renormalization factors, 2, = 1 + ear + * . * and 2, = 1 + ebr + . * . , and re- 
normalized coefficients as A = &A, and B = Z,B,. Putting everything into 
(6.11), we get to order e 

x = A(1 - EU~ +. . .) + B(l - l bI + *. a) epr 

- E[A(T - p + p - 1 + e-‘) + B(l - (r - p + II) e-’ - e-‘)I 

+ C?(Z) . (6.12) 

Thus the choice a, = p and b, = --k successfully eliminates the secular terms, 
and we get the renormalized perturbation result 

x=A+Be-‘- E[A(T - p - 1 + e-‘) + B(l - (7 - l.~) epT - ee7)] 

+ 0(E2) . 

(6.13) 

Notice that A and B are now functions of p. Since x should not depend on p., 
which is introduced independent of the original problem, we have the 
renormalization group equation axlap = 0. From (6.13) we get 

dA dB _7 
O=z+Te - E(-A + B emT) + O(E”) . (6.14) 

Here we have used the fact that derivatives are of order E. Due to the 
functional independence of 1 and epT, we get 

dA dB -= 
dp 

-EA , -= +EB . 
dp 

(6.15) 

Solving these and equating p and r in (6.13), we get 

xn = A em” + B e-(1-E)r + E(A - B)(l - eeT) . (6.16) 

Let us compare this with the result obtained by the standard inner-outer 
matching method to order E (that is, both the inner and outer solutions are 
obtained to order E; notice that this calculation is partially second order): 

x = A eMET + p epT + BET eeT + E(A - B)(e-” - e-T) - E*AT eecT . 

(6.17) 

Except for the E’ term, all the terms are correctly given by the RG procedure. 
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7. Reductive perturbation and renormalization 

Now, let us look at (5.9). This is the equation of the wavefront as seen from 
the moving coordinate translating with the speed of the unperturbed front. 
From this frame the motion of the perturbed front is very slow. Hence, (5.9) is 
regarded as a slow-motion equation, like an amplitude equation obtained by 
the so-called reductive perturbation methods [31]. That an amplitude equation 
is an RG equation is not a fortuitous relation but a rule. 

To see the point, let us consider the following slightly dissipative nonlinear 
hyperbolic equation: 

(7.1) 

where h(u) is a sufficiently smooth function of U, and 7 is a positive constant. 
We consider a small amplitude wave in the background of the constant solution 

UOl 

u = u. + EU1 + Al2 + . . . ) (7.2) 

where E denotes the amplitude of the wave. 
First we study the case without dissipation (v = 0). Let us perform a naive 

perturbation approach. Let A, = A(u,). We have 

dtul + hOdxUl = 0 ) (7.3) 

dtu2 + AOdxu2 = -A’@,) ula$, , (7.4) 

and so forth. Introducing independent variables (5 =x - hot, t) to replace 
(x, t), these equations can be rewritten as (notice that d, now reads 8, f hod,) 

a,u, = 0) 

d,u, = -A'@,) u,dp, 
(7.5) 

Thus the right hand side of the second equation is a function solely of 5 in this 
coordinate system, so that it gives a secular term. Thus to order E’ we have the 
following general solution: 

u = uo + l Fe(S) - c2(t - %P’(uo) F,(S) F,(5) (7.6) 

We introduce Al. as we did for the propagation wave and split t - to as 
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t - p + /.L - t,. Then we absorb p - t, into the renormalized version F( 5, /.L) of 
F,( 5). The renormalized perturbation result reads to order E’ 

The renormalization group equation must be &.L/c~~_L = 0, so that we get to 
order E* 

d,F + d’(uo) Fd,F = 0. (7.8) 

If we identify p and t in (7.7), we get u = u0 + F(&, t), so (7.8) with I_L = t, or 

a,F + h,a,F + Ed’ Fd,F = 0, (7.9) 

in the original coordinate system is the equation of motion for the small 
amplitude wave. 

With the introduction of a weak dissipation, the first equation of (7.5) should 
not be affected (this is the precise meaning of weak dissipation). At worst, only 
the second equation is modified as 

arU2 = -A'(u,)u,~~~ +($~)a&. (7.10) 

Thus (7.6) is modified to be 

u = uo + l Fe(5) - (t - to)k2Wo) F,,(5) F;(5) + w@o(~)l . (7.11) 

Hence instead of (7.8), we arrive at the Burgers equation 

d,F + EA’(u,) Fa,F - @fF = 0. (7.12) 

This is of course a standard result obtained by a reductive perturbation 
method. 

8. Summary 

At the beginning of this paper, we illustrated how to generalize the concept 
of structural stability so that it is not excessively restrictive, and we applied it to 
the selection problem of front propagation speeds. Since the basic idea of 
renormalization group theory is to extract structurally stable features of a given 
model, this consideration naturally led us to the RG study of front propaga- 
tion. 
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This study in turn revealed two very general conclusions, which are 
illustrated with simple examples: 

(1) singular perturbation methods are best understood as renormalized 
perturbation methods, and 

(2) amplitude equations are just RG equations. 
The latter in particular strengthens our belief that RG is a prerequisite to do 
physics without being affected by unknown (high-energy) details of the world. 
A more systematic presentation with numerous examples (1) and (2) as well as 
the relations to the solvability condition, center manifold theory [32], etc. will 
be given elsewhere. 
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