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Transition to spatiotemporal chaos in the damped Kuramoto-Sivashinsky equation
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The transition from a lamellar or periodic state to spatiotemporal chaos was examined numerically in the
damped Kuramoto-Sivashinsky equation. The behavior of several quantities was examined near the transition
as the system size was doubled five times and no systematic changes were observed. Thus there was no
evidence to support a divergence at the transition in the infinite system size limit. This provides strong
evidence of a discontinuous transitig®1063-651X97)11908-0

PACS numbgs): 05.45:+b, 47.20.Lz, 64.66i

Spatiotemporal chaos is a complex phenomena that arises In the case of the one-dimensional complex Ginzburg-
in many driven nonequilibrium systems such as directionaLandau model, for example, it is known that one can have
solidification[1-3], Rayleigh-B@ard convectio4,5], para- phase defect chaos, in which the amplitude of the complex
metrically driven surface wavel6], electroconvectiof7]  order parameter vanishes at a finite density of points, and
and directional viscous fingerin@]. These examples illus- where the phase can slip by a multiple ofr2Numerical
trate the ubiquitous and diverse nature of spatiotemporatudies also suggestét] that there was phase chaghase
chaos. The purpose of this paper is to provide an accuratirbulence, which is a chaotic state defined by the absence
description of the transition from an ordered regular  of defects. This study also reported that there were continu-
lamellap state to spatiotemporal chaos for the specific caseus and discontinuous transition lines separating phase de-
of the damped Kuramoto-Sivashinsky equatiér13. Sev- fect chaos and phase chaos states. However, more recent
eral attempt$10-12 have been made to understand the or-simulations on larger systems show that the continuous tran-
der of this transition, but have led to somewhat ambiguousition is more accurately described as a smooth crossover
results. To provide a more definitive description, the behavrather than a sharp transition, and suggest that phase chaos
ior of the system was analyzed as a function of system sizemight not exist in the thermodynamic lin{i20,21. The tran-

The results of these calculations show no systematic changegtion studied in this paper is from an ordered periodic struc-

near the transition as the system size was doubled five timesyre to spatiotemporal chaos, and thus is distinctly different

providing strong evidence of a discontinuous or first-orderfrom such chaos-chaos transitions. Reviews of other ex-
transition. Furthermore the simulations indicate that the tranamples of spatiotemporal chaotic states and corresponding
sition is initiated by an instability to breathing modes. transitions are given in Ref§22] and [23] for the two-

In many driven nonequilibrium systems, primary insta- dimensional complex Ginzburg-Landau model and coupled
bilities generate periodic patterns that become unstable tmap lattice models, respectively. The one-dimensional
secondary instabilities which generate chaotic or disorderedoupled map lattice models studied by Chael Manneville
structures. A classic example of this is in directional solidi-[24] and others are perhaps more relevant to this work, as the
fication [1-3,9,14—17 in which a liquid-solid system is maps described a transition from lamellar states to spa-
driven through a temperature gradient at constant velocityiotemporal chaos. The numerical work on these models sug-
such that the liquid is continuously converted to a solid. Ifgest a continuous transition.
solidification is accompanied by impurity rejection, the The damped Kuramoto-Sivashinsky equation provides a
buildup of impurities at the interface can lead to a primarycrude model of directional solidification that encompasses
instability known as the Mullins-Sekerfd 4,15 instability.  the generic behavior described earlige., at small driving
At small pulling velocities this tends to select a periodic forces a primary instability leads to stationary periodic or
cellular interface with characteristic wavelengthAt some  lamellar patterns, while at large driving forces secondary in-
critical driving force, experiment§1,16] and theoretical stabilities generate spatiotemporal chao#dditionally,
work [2,3,17 have shown that secondary instabilities gener-many of the secondary instabilities that appear in the damped
ate dynamical behavior, such as breathing and solitary moddéuramoto-Sivashinsky equation, such as breathing and soli-
and birth and death sequences, which can give rise to patary modes, birth and death sequences, and tip splitting, have
terns that are disordered in both space and time as observeden observed in directional solidification experiments
in experimen{1]. For systems with a large aspect rafi@., [1,16]. The purpose of this paper is to use the damped
LIN>1, whereL is the system widththis behavior is re- Kuramoto-Sivashinsky equation to examine the transition
ferred to as spatiotemporal chafdsl] or weak turbulence. from periodic stationary states to spatiotemporal chaos. It is
While this novel behavior occurs in a wide variety of sys- hoped that the results of these calculations will be relevant to
tems[18], the nature of the chaotic states and the transitionmeal directional solidification and other similar one-
to these states can take many forms. dimensional driven interfaces.
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The damped Kuramoto-Sivashinsky equation can be writManneville[11] admit the possibility of a discontinuous or at

ten least weakly first-order transition. In this regard, it is worth
noting that Chatand Manneville originally reporteld 0] the

ap=[r = (1+ dy) *1h— o, (1) Hopf bifurcation to be subcritical. This makes a discontinu-

, . ous transition to spatiotemporal chaos more likely than if the
wherer is a control parameter related to the driving force.HOpf bifurcation had been supercritical.

To.thg Iimited extent t.hat this equation .models. direct.ic_mal Numerical simulations conducted in 198B] found dis-
solidification, ¢ can be interpreted as the interfacial position, continuities in all quantities that were considered at the tran-
x is the distance along the interface, anis time. The pri-  sjtion. Nevertheless, as the transition was approached from
mary instability to forming periodic structures can be easilyahove, many quantities, such as the average lamellar domain
be obtaned by a linear analysis which givessize, increased. This behavior is consistent with a continuous
#(q,t)=e"Dy(q,0), where y(q,t)=Sdxd"*y(x,t) and transition in a finite-size system. In a continuous transition
a(q)=r—(1—q??2 Thus Fourier modes in the region these quantities should diverge with system size s ap-
\/1_ ﬁ <q< \/1+ Jr are linearly unstable, and the most proached. To examine this possibility, simulations of Eq.
unstable mode is a=1. This primary instability leads to a Were conducted on a system of siZe=536. The results of
family of stationary periodic solutions, which exist in the this simulation were then compared with successively larger
region bounded by (£ q§)2<r<(1_4qg)2’ where the sta- Systems of SIZ.GS{:=1072, 2145, 4289, r?md 8579. Th(:‘,‘. five
tionary solutions are written in the form= Sa,sin(ng,Xx). systems considered have aspect ratios of approximately
The stationary solutions are dynamically unstable near th80, 160, 320, 640, and 1280-_ i i _
upper and lower boundaries. These instabilities are known as 1he damped Kuramoto-Sivashinsky equation was simu-
secondary instabilities, and were described by Misbah antfted using a standard forward-Euler scheme for the time
Valence[13]. The particular solutions that are selected ared_enyatlve and cgntral dlffere_nce formulas for the spatial de-
dependent on both the aspect ratio and initial conditions. ThEvatives. A relatively large time stepd¢=0.01) and mesh
present work focuses mainly on the behavior of @gjin the ~ Size {@x=7/6) were chosen in an attempt to study the late
large aspect ratio limit with a random initial condition. For time large wavelength behavior of the equation. Although
these conditions a lamellar state is selected for small the convergence of the solutions to the continuum limits was
while, for larger, secondary instabilities appear and lead tonot €xamined, the numerical solutions did contain the same
the disordered state that is characteristic of spatiotempordistabilities as detected in other work3], although the pa-
chaos. The critical value af at which the transition to spa- '@meter ranges over which the various solutions occur are
tiotemporal chaos occurs israt~0.688[10]. The disordered sl_lghtly altered. I_:or example the transition from periodic to
and lamellar states are respectively characterized by correlgisordered solutions occurs at rougfnky 0.635 for the nu-
tions that decay exponentially in space and time and by largg€rical algorithm, while it occurs at~0.68 for the con-
(i.e., of the order of the system sjzerdered periodic or tinuum model. _ o 3
lamellar regions. Some discussion of other initial conditions 10O Provide a detailed description of the transition, the
is given in Ref[11]. power spectrum or structure fa}ctor was determined as a func-
The first numerical investigation of the transition in the tion of r. The structure factor is defined to be
damped Kuramoto-Sivashinsky equation was conducted by "o
Chafeand Mannevillg/10] in 1987. An interesting transient S(a)=(| 14l @)
behavior was observed, in which well-defined disordered and
lamellar regions coexist. It was found that the disorderedWhere

lamellar front moves at a constant velocity such that the dis- j=N

ordered regime invades the lamellar phase above the transi- P =N"1 elidxay, (3)
L . q e i

tion and recedes below. The front velocity was found to go j=1

continuously to zero at the transition. This continuous

change in the front velocity was interpreted as an indicatiothe brackets (()) refer to an average over 100 runs,
of a continuous transition. In support of this interpretation,d=2mk/Ndx, and N is the number of spatial grid points
the distribution of lamellar domains was shown to be nonexused. A sample structure factor is shown in Fig. 1. This
ponential at the transition. The behavior of the front velocitySpectrum can be characterized by a correlation letigtieak

is, however, consistent with a standard first-order or disconheightSp, and peak positiomp, as shown in Fig. 1. The
tinuous transition. For example, in a liquid-solid transition correlation length in this instance is a measure of the average
the velocity of a liquid-solid front is proportional to the un- size of lamellar domains, and should diverge for a continu-
dercooling and continuously goes to zero at the melting tranous transition.

sition. In addition it is not obvious that an exponential dis- At very larger, the system rapidly relaxes to a state char-
tribution should occur exactly at a discontinuous transition inacterized by a broa(k). As r decreases, the correlation

a one-dimensional system. At the transition it is very difficultlength and peak height increase. To determine whether these
for one state to dominate, since in one dimension the velocitguantities diverge as approaches, five different system

of the domain walls is exactly zero and there are no curvasizes were examingde., N=210, 2%, 212 213 and 249). In

ture effects to eliminate small domains. Thus it is easy forFig. 1, S(k) is shown for three different system sizes just
the system to get stuck in metastable states that would nefover . This figure shows that the power spectrum for the
necessarily have exponential distributions. More recent disdifferent system sizes are statistically indistinguishable at
cussions of the damped Kuramoto-Sivashinsky equation by=0.64. Similar results are obtained for all values above
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FIG. 1. Power spectrum at=0.64, for systems of sizes FIG. 3. Dynamics of peak height for=0.634 and 0.638.

N=210 2%2 and 2“4 The solid line is a guide to the eye.

Forr very close to but below,, the system first relaxes
ro. To illustrate this point, the peak height and correlationto a disordered state, that is characterized by a power spec-
length were determined as a functionrofor five different  trum very similar to that shown in Fig. 1. However, this is a
system sizes. The results of these calculations are displayeghetastable” state that will eventually “nucleate” periodic
in Fig. 2. A finite-size scaling analysis of the data was at-regimes. An example of such a nucleation event is shown in
tempted by fitting the numerical results to a scaling I‘e|ati0n-Fig_ 3. In this figureS; is displayed for a single run for two
ship of the formy=LPF[ (r —r)*/L]. The analysis is some- values ofr, one just above . (i.e., r=0.638) and one just
what trivial in that no variation off with £ was found, below(i.e.,r=0.634). At early times these systems are more
consistent with an exponent gf=0. The quality of the data or less indistinguishable, but at later times the system just
could not lead to a more precise conclusion. Thus there waselowr . nucleates an ordered periodic regime. For values of
no evidence that the correlation length would diverge as very close to the transition, it is possible to obtain a coex-
r—r in the infinite system size limit. This is very strong istence of periodic and chaotic regimes for long time periods.
evidence that the transition is discontinuous. It is also possible to nucleate a disordered state alppve

the system is initially prepared in the lamellar state. In fact if
r is ramped through the transition, hysteresis loops can be

Lo R obtained[11]. All these observations are consistent with a
C %n 9 o E - éffgg“ ] discontinuous phase transition.
3T %% e o « N = 4096 ] As the transition is crossed, there is a sharp jump in the
et e g X 11:11 - fggi 1 value of all measured quantities. This was observed in pre-
v [ < e s 8 g ] vious studies of a single system s[A&]. To understand this
25 = 8 e B transition it is useful to consider the jump in the peak wave
ro 5§ e g ] vector (@p). This is shown in Fig. 4. The dashed line in this
LA ° Yox figure corresponds to the boundary above which periodic so-
s “i S S S lutions are dynamically unstable to breathing modes for the
[ ko ] numerical algorithm used in this work. As the transition is
25 - 4EaT i o . . approached there is a discontinuous jump dp at
i w;?é%o o © i r.~0.6375 such thatp is to the left of the breathing mode
Co y 435 . . boundary forr>r. and to the right forr<r.. Thus it is
e 20 L ! ° oo o N apparent that the transition coincides with the appearance of
Lo Bt e ) breathing modes.
- b) . E - In summary, the results of the numerical analysis of the
5L ! s N damped Kuramoto-Sivashinsky equation indicate that the
e L transition from an ordered lamellar state to spatiotemporal
0.64 0.66 0.68 0.7

chaos is discontinuous. Furthermore, it is shown that the on-
set of spatiotemporal chaos is coincident with the appearance

FIG. 2. Finite-size scaling analysis of the correlation lengthOf the breathing modes. While this work cannot identify
(2) and peak height 08(q) (Sp). In both(a) and(b) systems from  cause and effect, it is tempting to speculate that the selection
N=21to N=2% are examined. of breathing modes leads to spatiotemporal chaos.

r
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; — , ‘ —— different in other systems. It is also likely that dimension will

- . play an important role in determining the nature of the tran-

0.9 - ' - sition as occurs in equilibrium systems. An interesting two-

" 1 dimensional example is parametrically driven surface waves
P [6]. In this system at small driving forces a primary instabil-

ity (the Faraday instabilifyproduces spatially periodic struc-

i tures, while at larger driving forces a secondary instability

7 appears(i.e., a transverse amplitude modulajichat does

) s not break the lamellar order. At very large driving forces

L e ] spatiotemporal chaos does appear. This transition to spa-

L s . tiotemporal chaos most likely arises when the amplitude of

0.7 - ,;o v — the transverse amplitude modulations becomes of the order

- :s - . of the wavelength of the original periodic structures. A very

- )". - . similar behavior was observed in recent simulations of the

r, R > two-dimensional damped Kuramoto-Sivashinsky equation

0.8 |- [

Ve - [25], in which a well-ordered breathing state appeared at
0.6 + -~ o — - . L.
intermediate driving forces. Although the results of these
09 008 001 596 098 1 simulations were not conclusive, the transition from the
' ' ' G ' breathing state to spatiotemporal chaos was consistent with a
continuous transition. Thus the nature of the transition ap-

FIG. 4. Selected wave vector. The solid points correspond to th@€ars to be different in two dimensions.
peak wave vector selected for a giveriThe dashed line defines the
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