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Transition to spatiotemporal chaos in the damped Kuramoto-Sivashinsky equation
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The transition from a lamellar or periodic state to spatiotemporal chaos was examined numerically in the
damped Kuramoto-Sivashinsky equation. The behavior of several quantities was examined near the transition
as the system size was doubled five times and no systematic changes were observed. Thus there was no
evidence to support a divergence at the transition in the infinite system size limit. This provides strong
evidence of a discontinuous transition.@S1063-651X~97!11908-0#

PACS number~s!: 05.45.1b, 47.20.Lz, 64.602i
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Spatiotemporal chaos is a complex phenomena that a
in many driven nonequilibrium systems such as directio
solidification@1–3#, Rayleigh-Be´nard convection@4,5#, para-
metrically driven surface waves@6#, electroconvection@7#
and directional viscous fingering@8#. These examples illus
trate the ubiquitous and diverse nature of spatiotemp
chaos. The purpose of this paper is to provide an accu
description of the transition from an ordered regular~or
lamellar! state to spatiotemporal chaos for the specific c
of the damped Kuramoto-Sivashinsky equation@9–13#. Sev-
eral attempts@10–12# have been made to understand the
der of this transition, but have led to somewhat ambigu
results. To provide a more definitive description, the beh
ior of the system was analyzed as a function of system s
The results of these calculations show no systematic cha
near the transition as the system size was doubled five tim
providing strong evidence of a discontinuous or first-ord
transition. Furthermore the simulations indicate that the tr
sition is initiated by an instability to breathing modes.

In many driven nonequilibrium systems, primary inst
bilities generate periodic patterns that become unstabl
secondary instabilities which generate chaotic or disorde
structures. A classic example of this is in directional soli
fication @1–3,9,14–17# in which a liquid-solid system is
driven through a temperature gradient at constant velo
such that the liquid is continuously converted to a solid.
solidification is accompanied by impurity rejection, th
buildup of impurities at the interface can lead to a prima
instability known as the Mullins-Sekerka@14,15# instability.
At small pulling velocities this tends to select a period
cellular interface with characteristic wavelengthl. At some
critical driving force, experiments@1,16# and theoretical
work @2,3,17# have shown that secondary instabilities gen
ate dynamical behavior, such as breathing and solitary mo
and birth and death sequences, which can give rise to
terns that are disordered in both space and time as obse
in experiment@1#. For systems with a large aspect ratio~i.e.,
L/l@1, whereL is the system width! this behavior is re-
ferred to as spatiotemporal chaos@11# or weak turbulence.
While this novel behavior occurs in a wide variety of sy
tems@18#, the nature of the chaotic states and the transit
to these states can take many forms.
561063-651X/97/56~2!/1631~4!/$10.00
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In the case of the one-dimensional complex Ginzbu
Landau model, for example, it is known that one can ha
phase defect chaos, in which the amplitude of the comp
order parameter vanishes at a finite density of points,
where the phase can slip by a multiple of 2p. Numerical
studies also suggested@19# that there was phase chaos~phase
turbulence!, which is a chaotic state defined by the absen
of defects. This study also reported that there were cont
ous and discontinuous transition lines separating phase
fect chaos and phase chaos states. However, more re
simulations on larger systems show that the continuous t
sition is more accurately described as a smooth cross
rather than a sharp transition, and suggest that phase c
might not exist in the thermodynamic limit@20,21#. The tran-
sition studied in this paper is from an ordered periodic str
ture to spatiotemporal chaos, and thus is distinctly differ
from such chaos-chaos transitions. Reviews of other
amples of spatiotemporal chaotic states and correspon
transitions are given in Refs.@22# and @23# for the two-
dimensional complex Ginzburg-Landau model and coup
map lattice models, respectively. The one-dimensio
coupled map lattice models studied by Chate´ and Manneville
@24# and others are perhaps more relevant to this work, as
maps described a transition from lamellar states to s
tiotemporal chaos. The numerical work on these models s
gest a continuous transition.

The damped Kuramoto-Sivashinsky equation provide
crude model of directional solidification that encompas
the generic behavior described earlier~i.e., at small driving
forces a primary instability leads to stationary periodic
lamellar patterns, while at large driving forces secondary
stabilities generate spatiotemporal chaos!. Additionally,
many of the secondary instabilities that appear in the dam
Kuramoto-Sivashinsky equation, such as breathing and s
tary modes, birth and death sequences, and tip splitting, h
been observed in directional solidification experime
@1,16#. The purpose of this paper is to use the damp
Kuramoto-Sivashinsky equation to examine the transit
from periodic stationary states to spatiotemporal chaos.
hoped that the results of these calculations will be relevan
real directional solidification and other similar on
dimensional driven interfaces.
1631 © 1997 The American Physical Society
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The damped Kuramoto-Sivashinsky equation can be w
ten

] tc5@r 2~11]xx!
2#c2c]xc, ~1!

where r is a control parameter related to the driving forc
To the limited extent that this equation models directio
solidification,c can be interpreted as the interfacial positio
x is the distance along the interface, andt is time. The pri-
mary instability to forming periodic structures can be eas
be obtained by a linear analysis which giv
ĉ(q,t)5es(q)tĉ(q,0), where ĉ(q,t)5*dxeikxc(x,t) and
s(q)5r 2(12q2)2. Thus Fourier modes in the regio
A12Ar ,q,A11Ar are linearly unstable, and the mo
unstable mode is atq51. This primary instability leads to a
family of stationary periodic solutions, which exist in th
region bounded by (12qo

2)2,r ,(124qo
2)2, where the sta-

tionary solutions are written in the formc5(ansin(nqox).
The stationary solutions are dynamically unstable near

upper and lower boundaries. These instabilities are know
secondary instabilities, and were described by Misbah
Valence@13#. The particular solutions that are selected a
dependent on both the aspect ratio and initial conditions.
present work focuses mainly on the behavior of Eq.~1! in the
large aspect ratio limit with a random initial condition. F
these conditions a lamellar state is selected for smalr ,
while, for larger , secondary instabilities appear and lead
the disordered state that is characteristic of spatiotemp
chaos. The critical value ofr at which the transition to spa
tiotemporal chaos occurs is atr c'0.688@10#. The disordered
and lamellar states are respectively characterized by cor
tions that decay exponentially in space and time and by la
~i.e., of the order of the system size! ordered periodic or
lamellar regions. Some discussion of other initial conditio
is given in Ref.@11#.

The first numerical investigation of the transition in th
damped Kuramoto-Sivashinsky equation was conducted
Chatéand Manneville@10# in 1987. An interesting transien
behavior was observed, in which well-defined disordered
lamellar regions coexist. It was found that the disorder
lamellar front moves at a constant velocity such that the
ordered regime invades the lamellar phase above the tra
tion and recedes below. The front velocity was found to
continuously to zero at the transition. This continuo
change in the front velocity was interpreted as an indicat
of a continuous transition. In support of this interpretatio
the distribution of lamellar domains was shown to be non
ponential at the transition. The behavior of the front veloc
is, however, consistent with a standard first-order or disc
tinuous transition. For example, in a liquid-solid transiti
the velocity of a liquid-solid front is proportional to the un
dercooling and continuously goes to zero at the melting tr
sition. In addition it is not obvious that an exponential d
tribution should occur exactly at a discontinuous transition
a one-dimensional system. At the transition it is very diffic
for one state to dominate, since in one dimension the velo
of the domain walls is exactly zero and there are no cur
ture effects to eliminate small domains. Thus it is easy
the system to get stuck in metastable states that would
necessarily have exponential distributions. More recent
cussions of the damped Kuramoto-Sivashinsky equation
t-

.
l
,

e
as
d

e
e

al

la-
e

s

y

d
-
-
si-
o
s
n
,
-

-

-
-
n
t
ty
-
r
ot
s-
y

Manneville@11# admit the possibility of a discontinuous or a
least weakly first-order transition. In this regard, it is wor
noting that Chate´ and Manneville originally reported@10# the
Hopf bifurcation to be subcritical. This makes a discontin
ous transition to spatiotemporal chaos more likely than if
Hopf bifurcation had been supercritical.

Numerical simulations conducted in 1995@12# found dis-
continuities in all quantities that were considered at the tr
sition. Nevertheless, as the transition was approached f
above, many quantities, such as the average lamellar dom
size, increased. This behavior is consistent with a continu
transition in a finite-size system. In a continuous transit
these quantities should diverge with system size asr c is ap-
proached. To examine this possibility, simulations of Eq.~1!
were conducted on a system of sizeL5536. The results of
this simulation were then compared with successively lar
systems of sizesL51072, 2145, 4289, and 8579. The fiv
systems considered have aspect ratios of approxima
80, 160, 320, 640, and 1280.

The damped Kuramoto-Sivashinsky equation was sim
lated using a standard forward-Euler scheme for the t
derivative and central difference formulas for the spatial
rivatives. A relatively large time step (dt50.01) and mesh
size (dx5p/6) were chosen in an attempt to study the la
time large wavelength behavior of the equation. Althou
the convergence of the solutions to the continuum limits w
not examined, the numerical solutions did contain the sa
instabilities as detected in other work@13#, although the pa-
rameter ranges over which the various solutions occur
slightly altered. For example the transition from periodic
disordered solutions occurs at roughlyr'0.635 for the nu-
merical algorithm, while it occurs atr'0.68 for the con-
tinuum model.

To provide a detailed description of the transition, t
power spectrum or structure factor was determined as a fu
tion of r . The structure factor is defined to be

S~q![^uĉqu2&, ~2!

where

ĉq[N21(
j 51

j 5N

ei jdxqc j , ~3!

the brackets (̂&) refer to an average over 100 run
q52pk/Ndx, and N is the number of spatial grid point
used. A sample structure factor is shown in Fig. 1. T
spectrum can be characterized by a correlation lengthz, peak
height SP , and peak positionqP , as shown in Fig. 1. The
correlation length in this instance is a measure of the aver
size of lamellar domains, and should diverge for a contin
ous transition.

At very larger , the system rapidly relaxes to a state ch
acterized by a broadS(k). As r decreases, the correlatio
length and peak height increase. To determine whether th
quantities diverge asr approachesr c , five different system
sizes were examined~i.e.,N5210, 211, 212, 213, and 214). In
Fig. 1, S(k) is shown for three different system sizes ju
abover c . This figure shows that the power spectrum for t
different system sizes are statistically indistinguishable
r 50.64. Similar results are obtained for all values ofr above
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56 1633TRANSITION TO SPATIOTEMPORAL CHAOS IN THE . . .
r c . To illustrate this point, the peak height and correlati
length were determined as a function ofr for five different
system sizes. The results of these calculations are displ
in Fig. 2. A finite-size scaling analysis of the data was
tempted by fitting the numerical results to a scaling relati
ship of the formz5LbF@(r 2r c)

a/L#. The analysis is some
what trivial in that no variation ofz with L was found,
consistent with an exponent ofb50. The quality of the data
could not lead to a more precise conclusion. Thus there
no evidence that the correlation length would diverge
r→r c in the infinite system size limit. This is very stron
evidence that the transition is discontinuous.

FIG. 1. Power spectrum atr 50.64, for systems of size
N5210, 212, and 214. The solid line is a guide to the eye.

FIG. 2. Finite-size scaling analysis of the correlation leng
(z) and peak height ofS(q) (SP). In both~a! and~b! systems from
N5210 to N5214 are examined.
ed
-
-

as
s

For r very close to but belowr c , the system first relaxes
to a disordered state, that is characterized by a power s
trum very similar to that shown in Fig. 1. However, this is
‘‘metastable’’ state that will eventually ‘‘nucleate’’ periodi
regimes. An example of such a nucleation event is show
Fig. 3. In this figureSP is displayed for a single run for two
values ofr , one just abover c ~i.e., r 50.638) and one just
below~i.e., r 50.634). At early times these systems are mo
or less indistinguishable, but at later times the system
below r c nucleates an ordered periodic regime. For values
r very close to the transition, it is possible to obtain a coe
istence of periodic and chaotic regimes for long time perio
It is also possible to nucleate a disordered state abover c if
the system is initially prepared in the lamellar state. In fac
r is ramped through the transition, hysteresis loops can
obtained@11#. All these observations are consistent with
discontinuous phase transition.

As the transition is crossed, there is a sharp jump in
value of all measured quantities. This was observed in p
vious studies of a single system size@12#. To understand this
transition it is useful to consider the jump in the peak wa
vector (qP). This is shown in Fig. 4. The dashed line in th
figure corresponds to the boundary above which periodic
lutions are dynamically unstable to breathing modes for
numerical algorithm used in this work. As the transition
approached there is a discontinuous jump inqP at
r c'0.6375 such thatqP is to the left of the breathing mod
boundary forr .r c and to the right forr ,r c . Thus it is
apparent that the transition coincides with the appearanc
breathing modes.

In summary, the results of the numerical analysis of
damped Kuramoto-Sivashinsky equation indicate that
transition from an ordered lamellar state to spatiotempo
chaos is discontinuous. Furthermore, it is shown that the
set of spatiotemporal chaos is coincident with the appeara
of the breathing modes. While this work cannot ident
cause and effect, it is tempting to speculate that the selec
of breathing modes leads to spatiotemporal chaos.

FIG. 3. Dynamics of peak height forr 50.634 and 0.638.
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The results of this research should be applicable to o
one-dimensional front propagation phenomena such as d
tional solidification and viscous fingering. It is, however, im
portant to note that the nature of the transition can be q

FIG. 4. Selected wave vector. The solid points correspond to
peak wave vector selected for a givenr . The dashed line defines th
boundary between stable and unstable stationary periodic solut
Above this line the stationary solutions are dynamically unstabl
a secondary instability that gives rise to breathing modes. The
ted line is a guide to the eye.
th
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different in other systems. It is also likely that dimension w
play an important role in determining the nature of the tra
sition as occurs in equilibrium systems. An interesting tw
dimensional example is parametrically driven surface wa
@6#. In this system at small driving forces a primary instab
ity ~the Faraday instability! produces spatially periodic struc
tures, while at larger driving forces a secondary instabi
appears~i.e., a transverse amplitude modulation! that does
not break the lamellar order. At very large driving forc
spatiotemporal chaos does appear. This transition to
tiotemporal chaos most likely arises when the amplitude
the transverse amplitude modulations becomes of the o
of the wavelength of the original periodic structures. A ve
similar behavior was observed in recent simulations of
two-dimensional damped Kuramoto-Sivashinsky equat
@25#, in which a well-ordered breathing state appeared
intermediate driving forces. Although the results of the
simulations were not conclusive, the transition from t
breathing state to spatiotemporal chaos was consistent w
continuous transition. Thus the nature of the transition
pears to be different in two dimensions.
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