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We investigate the use of renormalization group methods to solve partial dif-
ferential equations (PDEs) numerically. Our approach focuses on coarse-graining
the underlying continuum process as opposed to the conventional numerical
analysis method of sampling it. We calculate exactly the coarse grained or
"perfect" Laplacian operator and investigate the numerical effectiveness of the
technique on a series of 1 + 1-dimensional PDEs with varying levels of smooth-
ness in the dynamics: the diffusion equation, the time-dependent Ginzburg-Landau
equation, the Swift-Hohenberg equation, and the damped Kuramoto-Sivashinsky
equation. We find that the renormalization group is superior to conventional
sampling-based discretizations in representing faithfully the dynamics with a
large grid spacing, introducing no detectable lattice artifacts as long as there is
a natural ultraviolet cutoff in the problem. We discuss limitations and open
problems of this approach.

KEY WORDS: Renormalization group; partial differential equations;
numerical analysis; pattern formation; spatiotemporal chaos.

1. INTRODUCTION

It is a rare event in science that a single paper contains an idea so powerful
that it revolutionises an entire field. Rarer still are those gems which trans-
form two or more apparently separate fields, such as the paper entitled
Scaling Laws for Ising Models near Tc by Leo P. Kadanoff,(1) published in
the regrettably short-lived journal Physics. Indeed, this organ, edited and
founded by P. W. Anderson and the late B. T. Matthias, announced as its
by-line the memorable claim "An international journal for selected articles
which deserve the special attention of physicists in all fields"; and perhaps
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no other journal before or since has lived up to this hubris. Kadanoff's
famous article developed the notion of what came to be called "block
spins," and was cited in the title of the early seminal paper by K. G. Wilson
which introduced the modern form of the renormalization group (RG) in
both condensed matter and high energy physics.(2)

Although these theoretical developments have become part of the
canon of modern physics, the "spin-off" from Kadanoff's work continues to
this day, as mathematicians and physicists, including Kadanoff and
colleagues at the University of Chicago, study the singularities and patterns
which arise in extended physical systems, governed only by sets of partial
differential equations (PDEs).(3) On the auspicious occasion of this 60th
birthday Festschrift to honour Leo P. Kadanoff, it therefore seems appro-
priate to contribute a brief account of our recent unpublished work(4)

which extends the "block spin" insights and renormalization group theory
to the numerical solution of PDEs. Some, but not all of our results have
recently been rederived independently by Katz and Wiese,(5) and we shall
comment on the differences in the sequel. This work is part of our program
to utilise RG methods for PDEs,(6, 7) and is distinct from our earlier work
applying RG iterative methods to construct similarity solutions and travelling
waves.(8)

II. THEORY OF PERFECT OPERATORS

A. Motivation

Discretization is an inevitable part of numerical analysis. Let us sup-
pose that we wish to solve a partial differential equation numerically. The
standard procedure in real space is to suppose that the solution U(x) is
sampled at points xi and an algorithm devised to approximate the values
«, = u(Xj). If the points are equidistant with spacing dx, then we naturally
require that in the continuum limit dx -> 0, the sequence ui converges to
u(x).

The disadvantage of the sampling approach is that one is forced to
reproduce as faithfully as possible all the detail and fine structure of the
solution, even on a scale that may be of no interest or worse, beyond the
regime of applicability of the differential equation itself. This has two con-
sequences:

• a small grid size dx must be used, which implies many grid points
must be calculated and stored;

• a small time step 5t is implied by the small dx, either for reasons
of accuracy or stability of the numerical method.
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As a result, the numerical method is subjected to an unnaturally large
degree of computational complexity. Finally, for a given sampling proce-
dure there is no unique prescription for obtaining the equation governing
the sampled points ui. The only criterion for admissibility is that it con-
verges in the continuum limit; in practice of course, one seeks schemes
which are numerically stable and attain the continuum limit rapidly.

From the statistical physicist's point of view, Kadanoff's 1966 paper
suggests that a more natural approach to discarding information is to
coarse-grain rather than to sample. Such a procedure focuses on the scale
of interest, whilst allowing the possibility of accessing the continuum func-
tion to an arbitrary level of detail if desired. Suppose that we denote the
coarse-graining operator at scale A by the symbol CA, with capital letters
denoting coarse-grained quantities. Then conceptually we need to find the
operator LA which connects U(X, 0) and U{X,t) given the microscopic time
evolution operator L connecting u(x, 0) with u(x, t), as shown schematically
in the commutativity diagram below:

In practice, we coarse-grain onto a lattice xi with a specified CA. The
freedom of choice in this coarse-graining operator parallels the lack of
uniqueness in defining a governing equation for sampled points ut in the
sampling approach; but once a coarse-graining operator CA has been
defined, there should be a unique prescription to obtain LA.

Our diagram suggests that coarse-graining and time evolution com-
mute, but it is not clear that this is correct, even in principle. For example,
an equation with a positive Liapunov exponent might have the following
property: two initial values u1, 2(x, 0) differing only in field configuration at
two nearby points in space, but with the same coarse-grained representation
U(X, 0), might differ substantially at very long times t: M,(X, t) # u2(x, t) even
though the coarse-grained initial fields would evolve identically. This
example raises the interesting question of whether such equations are well-
defined: no numerical procedure would be appropriate, unless the divergence
of the trajectories was still bounded (as in a strange attractor).

We also need to consider the appropriate coarse-graining scale. Two
situations are possible here. In the first, we suppose that the solution we
wish to obtain has a natural scale A below which there is no significant
structure. In that case, our goal is to avoid having to over-discretize the
problem merely in order to attain the accuracy of the continuum limit.



Thus, we would like to be able to use as large a value for the grid spacing
dx as possible without sacrificing accuracy. In the second situation, there
is no such obvious scale, or at least, it is not known a priori, but the com-
putational demands are so large that it is simply not feasible to work with
a grid spacing dx smaller than some size A. In this case, we would like to
minimise in some sense the artifacts that must inevitably arise.

We will mainly have in mind the first situation, which is more straight-
forward because the only issue is speed of convergence to the continuum
limit: there is no explicit discarding of important dynamical information.
Instead the focus is how to remove lattice discretization artifacts.(4, 5) We
will refer to an operator or equation as being "perfect" if it has been con-
structed by coarse-graining appropriately so that it has no lattice artifacts;
our discussion follows the pioneering work of Hasenfratz and Niedermeyer
in the context of lattice gauge theory.(9)

In the second situation, however, one is making an uncontrolled and
potentially severe truncation of the correct dynamics, and issues of modelling
must be faced. For example, can one model the neglected unresolved scales
as effective renormalizations of the coefficients in the original PDE? Are
the neglected degrees of freedom usefully thought of as noise for the
retained large-scale degrees of freedom? And how can any available statisti-
cal information on the small-scale degrees of freedom be used to improve
the numerical solution for the largescale degrees of freedom? Such ques-
tions may perhaps be treated by combining constrained Monte Carlo
simulation of the microscopic degrees of freedom with a maximum entropy
criterion for discretization of the large-scale degrees of freedom. An alter-
native but related approach has been implemented by Kast and Chorin,(10)

who minimise the RMS error, estimated from knowledge of the microscopic
probability distribution.

B. The Perfect Laplacian

Our goal in this section is to examine the simplest possible problem,
namely the diffusion equation in d+ 1 dimensions:
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subject to appropriate initial conditions and boundary conditions.
The coarse-graining is defined with respect to a d-dimensional hyper-

cubic lattice of spacing a on whose vertices reside the lattice variables
U(n,t) defined by
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The numerical scheme that we will adopt is Euler discretization in
time, but with a perfect discretization for the Laplacian:

where the perfect Laplacian Ja at scale a is given by

where the delta function enforces the definition of the coarse-grained field

This definition of the coarse-grained operator is of course motivated by
field theory, but is unsatisfactory for several reasons. First, it is admittedly
ad hoc; in some sense, it is imposing a probability distribution on the high
wavenumber degrees of freedom which is not necessarily present in the actual
solution of the PDE being solved. Second, we are implicitly assuming that
the coarse-graining of a differential equation is accomplished by simply
coarse-graining the separate terms in the equation according to the prescrip-
tion given above. We would prefer to able to start with the governing PDE
and coarse-grain the entire equation in a systematic procedure. We hope to
report on this methodology in a future publication. The delta-function con-
straint in Eq. (4) can be softened by writing S(x) -* C(K) exp( —2KX2), with
C(K) being the normalization.

The calculation of the functional integral in Eq. (4) is straightforward(9)

and yields a convolution expression

where R is a d-dimensional lattice integer, and
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Here, the vector p lies in the first Brillouin zone: | pi| < n. Evaluation of the
coefficients p(R) requires numerical integration in general, but in the case
of d = 1 there is a simplification because

which can be summed by contour integration to yield

In the case K = 2,

which looks just like the conventional lowest order finite difference expres-
sion for the second derivative. This is, however, slightly misleading, because
this kernel acts on the coarse-grained function U(n), not the sampled value
of the continuum function.

The general result for arbitrary K is

where A = —6K/(K — 2).
These formula are problematic to interpret for the cases where K < oo,

because the functional integral in Eq. (4) does not exactly enforce the
definition of the coarse-grained field U. Thus, for example, is it consistent
to coarse-grain the initial condition using Eq. (5), whilst at the same time
using the perfect Laplacian operator with K<OO? We will return to this
issue below.

III. NUMERICAL RESULTS IN ONE DIMENSION

In this section, we present numerical results obtained on differential
equations in one space and one time dimension, but with varying character
of solutions. All the results were initiated from the random initial condi-
tions shown in Fig. 1, defined on a lattice of 1024 points with grid spacing
dx = 0.5. In all cases we used periodic boundary conditions.
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Fig. I. Random initial condition with dx = 0.5, N= 1024 grid points. The inset shows the
power spectrum of the initial condition, S{k).

First we examine the diffusion equation, where high wavenumber
behaviour dies away rapidly. As expected, the RG numerical method per-
forms well compared to the standard algorithms. The second example is the
coarsening dynamics of the time dependent Ginzburg-Landau equation
(sometimes known as model A), where the coalescence of domains is the
dominant behaviour; we will see that over-aggressive coarse-graining of the
initial conditions can lead to late time configurations which differ from the
correct solution. Although it seems plausible that the statistical information
is preserved, i.e., the ensemble averaged structure factor, we have not yet
explicitly checked this hypothesis. The third example is the Swift-Hohenberg
equation, which in the parameter range we studied forms a lamellar phase
with a well-defined periodicity. Again, over-aggressive coarse-graining is
seen to be counter-productive. Lastly, we studied the damped Kuramoto-
Sivashinsky equation, which is a toy model for directional solidification
and other systems which form interfacial patterns. The interesting aspect of
this benchmark is that a spatio-temporal chaotic phase exists for certain
parameter ranges. As one might expect from the heuristic comments earlier,
faithful reproduction of the solution is not really possible with any significant
degree of coarse-graining.

In order to perform these numerical experiments, we have had to
make two uncontrolled approximations. First, we have followed Katz and
Wiese and used the exact coarse-graining operation Eq. (5) but allowed the
Laplacian operator to have any K, not just the value K = oo. In particular,



we have used the special value K = 2, where the Laplacian takes on its con-
ventional and very local form. Our results are essentially unchanged when
we use the form of the Laplacian, but there is a slight loss of stability of
the Euler algorithm in this case, which sets a limit on the maximum value
of dt/dx2. For a general value of K, the stability limit (calculated for the dif-
fusion equation) is given by

implying that dt/dx2 < 1/6 for K = oo.
Second, we have not yet calculated the coarse-grained operators corre-

sponding to nonlinear operators such as u3 and udxu: instead we have
simply replaced each nonlinear operator N(u) by writing CAN(U) = N{U).
This approximation can be controlled in a more systematic derivation of
the theory.

A. Diffusion Equation

We used the random initial condition shown in Fig. 1, defined on a
lattice of 1024 points with grid spacing dx = 0.5, and evolved it in three dif-
ferent ways to time t = 100. The first way was a benchmark calculation
using a conventional numerical analysis Euler scheme with dt — 0.001.

The second way used the RG methodology we have described above.
We coarse-grained the initial condition down to a smaller lattice of 128
grid points and dx = 4, using the coarse-graining of Eq. (5), yielding the
function exhibited in Fig. 2. We evolved this forward in time using the per-
fect Laplacian of Eq. (11) with k = 2, and dt = 5. Such a large value was
stable because of the much larger value of dx than in the benchmark.

In the third way, we sampled N=128 points of the initial condition
with a uniform grid spacing of dx = 4, and then evolved this forward in
time using the standard Euler method.

The appropriate comparison is between the two calculations using 128
points: how well does each reproduce the benchmark calculation?

In Fig. 3 is plotted the benchmark configuration at t= 100 along with
the results from the coarse graining or sampling methods. The coarse
grained result almost exactly falls onto the benchmark calculation, even
though it uses an 8-fold coarser lattice and a bigger time step size. Numerical
stability dictates that dt < dx2/2. This means that the largest time step size
one can use for the benchmark lattice is about dt — 0.\. Therefore, by
coarse graining by a factor of eight and using a dt 50 times larger than the
maximum permitted for the benchmark, the calculation was accelerated by
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Fig. 2. Random initial condition coarse-grained so that dx = A and N= 128 grid points.

a factor of 400, without introducing any noticeable lattice artifacts. The
reduction in CPU time will be more pronounced when we go to higher
dimensions. Furthermore, one sees clearly that with the same degree of dis-
cretization, the uniform sampling result is inferior to the coarse-graining
result and does not reproduce the benchmark calculation very well.

The reason that coarse-graining works well in this instance is because
our procedure preserved all relevant information down to the coarse grained

Fig. 3. Comparison of results for the diffusion equation for t= 100 and N= 128. The solid
line represents the benchmark, the circles the coarse-grained method, and the triangles the
conventional sampling method.



scale A. In the uniform sampling method, however, one grid point is used
to represent all those within a neighbourhood of size A; thus, this point is
likely to be in the tail of the spectrum spanned by function values in the
neighbourhood.

What is an appropriate scale at which to coarse-grain? A should be set
such that the time scale of interest is larger than the relaxation time trelax

of details on a scale smaller than A. In the case of the diffusion equation,
if the initial configuration is very smooth on the scale of A, we can safely
coarse grain to that level; the inset to Fig. 1 shows the power spectrum of
the initial data, and reveals that the coarse-graining level used preserves the
salient long-wavelength features. When there are significant high wavenum-
ber modes, given that xrelax of a fluctuation on the order of dx is roughly
proportional to dx2, we can at most coarse grain to a level A ~ JT with
T being the time scale of interest. Because computation is most consuming
in simulations with long evolution time and large lattices, we almost always
want to coarse grain to some level. But if we are interested in the early time
evolution of the configuration with significant high wavenumber modes, we
should not coarse grain at all.

B. Time-Dependent Ginzburg-Landau Equation

The time-dependent Ginzburg-Landau equation was studied with the
discretization
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It has a nontrivial fixed point u(n, t) = ±y/e when £ is positive. Unlike
the diffusion equation, where the configuration continually flattens, one sees
regions of u(n, t) — y/e and u(n, t)= —^/s forming, separated by domain
walls. As time progress, these regions coalesce and expand as shown in Fig. 4.

In our simulation, e = 0.3, and the benchmark lattice was evolved with
dx = 0.5, dt = 0.001. Coarse graining and sampling were used to evolve the
system with dx = 2, dt = 0A, and dx = 4, dt = 0.001. As shown in Fig. 4,
coarse graining always yields superior results than uniform sampling. Also,
one notices that when coarse grained to dx = 4, there are some spurious
offshoots in the configuration. This is because we coarse-grained too
aggressively. The structure factor S(k) = \u{k)\2 of the initial configuration
is plotted in Fig. 1. It has significant spectral weight beyond k = n/8. Each
coarse-graining step (defined as double the dx size) discards half of the
Brillouin zone with larger wavenumber. So coarse-graining three times
loses the modes with k>n/%. This is not serious for diffusion where the
dynamics is a trivial decay of large wavenumber modes, but is a poor
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Fig. 4. Comparison of results for the TDGL equation with « = 0.3 for t= 100 and N= 128.
The solid line represents the benchmark, the circles the coarse-grained method, and the tri-
angles the conventional sampling method.

approximation for model A where domains grow from the initial configura-
tion.

In Fig. 5 we have compared the results when a smaller dx is used (i.e.,
finer level of sampling or coarse-graining): with this resolution, the coarse-
graining algorithm still captures most of the correct features of the solu-
tion, whereas the sampling method introduces a spurious domain.

Fig. 5. Same as Fig. 4 but with N = 256.
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C. Swift-Hohenberg Equation

The discretized form of the Swift-Hohenberg equation(11)

was studied using the comparison methodology described above, and the
results are shown in Fig. 6.

Because of the (1 + Aa)
2 term, there is an intrinsic length scale of 2n

and a periodic ground state. The dynamics is interesting because u not only
has an amplitude but also a phase. We choose £ = 0.5. The benchmark
lattice was evolved with dx = n/16, dt = 0.0001 to time t = 4. The coarse-
graining and sampling methods used dx = n/4, dt = 0.001. Again, the
coarse-grained result reproduces the benchmark quite well, better than
sampling, but not as well as found in experiments on the diffusion and
TDGL equations. We attribute this to the existence of the intrinsic length
scale. When we coarse-grain to a level close to this period, many relevant
modes are ignored. Indeed, when we coarse-grain further to dx = n/2, the
dynamics no longer follows the benchmark very closely, as shown in Fig. 7.

D. Damped Kuramoto-Sivashinsky Equation

We also considered the damped Kuramoto-Sivashinsky equation,(12)

which can undergo a phase transition from a lamellar phase to spatio-

Fig. 6. Solution of the Swift-Hohenberg equation with c = 0.5, dx = n/4, dt = 0.001, t = A.
The solid line represents the benchmark, the circles the coarse-grained method, and the tri-
angles the conventional sampling method.
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Fig. 7. Solution of the Swift-Hohenberg equation with £ = 0.5, dx = n/2, dt = 0.001, t = A.
The solid line represents the benchmark, the circles the coarse-grained method, and the tri-
angles the conventional sampling method.

temporal chaos when the control parameter e exceeds a critical value
ec ~ 0.68. The discretized equation of motion studied was

where Vu(n, t) is the usual central difference formula for first derivative.

Fig. 8. Solution of the damped Kuramoto-Sivashinsky equation with e = 0.9, dx = K/8,
dt = 0.0001, t=16. The solid line represents the benchmark, the circles the coarse-grained
method, and the triangles the conventional sampling method.



We examined both the lamellar phase (e = 0.4) and the chaotic phase
(e = 0.9). The former situation is very similar to that found in the Swift-
Hohenberg equation. In the chaotic phase shown in Fig. 8, one finds that
even coarse-graining once does not give us a result satisfactorily close to
the benchmark. This is not surprising given that the chaotic phase has
positive Liapunov exponent as discussed before. In Fig. 8, the benchmark
was obtained using dx = 7/16, dt — 0.0001 to time t = 16, whereas the coarse
graining and sampling methods used dx = n/8, dt = 0.0002. Of course, the
interesting question to address is whether the statistical properties of the
dynamics are faithfully reproduced by coarse-graining in a way that is supe-
rior to sampling methods.

IV. DISCUSSION

We have presented a feasible alternative to the numerical solution of
differential equations, in which the continuum limit is attained from a
sequence of coarse-grained function values rather than a sequence of sampled
functions. The numerical results that we and others(5, 10) have obtained are
promising and a fully systematic study is clearly warranted. In particular,
useful acceleration of appropriate problems is possible without loss of
accuracy or even the need to use adaptive methods.

There are many issues left unresolved by our work (which is why it
has remained unpublished until this timely occasion). First and foremost,
what is the correct interpretation to place on the RG scheme when K < 00?
It can be shown that a literal interpretation requires a stochastic coarse-
graining transformation; in this case, should one (in principle) average over
realizations of the coarse-graining noise in order to obtain the appropriate
solution of the PDE? Is it correct to take the mean of this distribution,
which seems to offer a justification for using an exact (i.e., K = oc) coarse-
graining procedure with a K = 2 formula for the dynamics? How can one
properly extend the philosophy espoused here to nonlinear problems in a
systematic way?

Katz and Wiese(5) implicitly addressed these issues by deriving the
coarse-grained equations of motion from a postulated action functional S,
which they varied with respect to all its arguments. In fact their procedure
is equivalent to ours, and their action S can be derived from our Eq. (4)
by making the Hubbard-Stratonovich transformation
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can one use the coarse-grained equation of motion for any K consistently
with the constraint of Eq. (5) (Eq. (3.8) of ref. 5).

Despite these questions we are optimistic that the spirit of the
program initiated by Leo P. Kadanoff in critical phenomena will be equally
useful in the fields of pattern formation and partial differential equations.
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with

leading to the result that

where

is the action (3.5) from ref. 5. Such a functional integral formulation does
not possess a small parameter in which to make a loop expansion based
around the classical action

Furthermore, only by requiring the additional constraint
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