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We review the use of phase field methods in solidification modeling, describing their fun-
damental connection to the physics of phase transformations. The inherent challenges
associated with simulating phase field models across multiple length and time scales are
discussed, as well as how these challenges have been addressed in recent years. Specifi-
cally, we discuss new asymptotic analysis methods that enable phase field equations to
emulate the sharp interface limit even in the case of quite diffuse phase-field interfaces,
an aspect that greatly reduces computation times. We then review recent dynamic adap-
tive mesh refinement algorithms that have enabled a dramatic increase in the scale of
microstructures that can be simulated using phase-field models, at significantly reduced
simulation times. Combined with new methods of asymptotic analysis, the adaptive
mesh approach provides a truly multi-scale capability for simulating solidification mi-
crostructures from nanometers up to centimeters. Finally, we present recent results on
2D and 3D dendritic growth and dendritic spacing selection, which have been made
using phase-field models solved with adaptive mesh refinement.
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1. Introduction

The physics of solidification underlies many important processes of scientific and in-

dustrial importance. Solidification microstructures establish the fundamental length

scales that influence the material properties of cast alloys.1 Our understanding of
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microstructure formation in traditional thick-slab casting technologies has been

well developed over the past few decades.2 However, a unified prediction of length

scale selection and microstructural growth kinetics as a function of processing and

material parameters is still lacking. This is particularly true in technologies in-

volving rapid solidification, where alloys inherit many of the as-cast microstructure

properties.

Experimental solidification research in metals often relies on empirical parame-

ter searches required to link microstructural characteristics with processing regimes,

and is often limited in its ability to observe real-time development of microstructure

and the associated segregation patterns. To this end, recent work in computational

modeling has proved to be an “emerging technology” that complements experimen-

tal research. Numerical simulations can guide experiments, as well as define relevant

parametric ranges to be studied. Designing experiments based on predictions from

numerical simulations can thus help to better understand alloy microstructure for-

mation in a systematic, efficient and cost effective manner.

The greatest challenge in solidification modeling involves the multi-scale nature

of solidification microstructures. Liquid-solid interfaces are on the order of a few

nanometers thick, whereas relevant microstructural features are on the scale of tens

to hundreds of microns. Moreover, the time scales involved in solidification span

from picoseconds for atomic attachment kinetics, to seconds for diffusion of heat

and solute. Capturing the physics of solidification over such multiple length scales,

while still capturing long enough times to make contact with experiments requires

innovations in both mathematical models and numerical simulation techniques.

This article discusses new developments in multi-scale modeling of solidifica-

tion. We review recent innovations in dynamic adaptive mesh refinement (DAMR)

techniques, and discuss new developments in phase-field asymptotics that enable

efficient simulation of solidification microstructures. Section 2 begins by reviewing

sharp-interface models of solidification. Section 3 reviews the phase-field method

and its application to modeling solidification of pure materials and binary alloys.

We also discuss new advances in phase-field asymptotics that allow us to recover the

physics of sharp-interface models of solidification in the limit of diffuse phase-field

interfaces. This feature permits the modeling of experimentally relevant time scales.

In Sec. 4 we review a novel dynamic adaptive-mesh refinement technique specifi-

cally designed for phase-field models of solidification. DAMR enables the resolution

of microstructures from the scale of the interface width up to the scale of millime-

ters. Coupled with phase-field asymptotics and modern parallel computing, DAMR

provides the closest approximation to date of a truly multi-scale methodology for

simulating solidification. Section 5 reviews recent work in microstructure selection

in two spatial dimensions. This includes morphological scaling in dendritic growth

and dendritic spacing selection in directional solidification. Section 6 reviews recent

work on coupling dendritic growth to fluid flow using adaptive mesh refinement in

three dimensions.
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2. Kinetics of Solidification

Traditional approaches to modeling solidification have often use so-called sharp-

interface models to describe the physics of dendritic growth. For solidification of

pure materials the sharp-interface model describes diffusion of heat in the solid and

liquid phases, heat flux conservation across a mathematically sharp solid-liquid in-

terface and the depression of local interfacial melting temperature due to curvature

and interface kinetics. In alloy solidification, at low to moderate undercooling, solute

transport is the rate-limiting step because the ratio of solutal to thermal diffusivity

is small. For this reason, one often neglects heat transport when considering alloys.

In this limit, the mathematical description of solidification of a pure material is

mathematically equivalent to the solidification of a dilute binary alloy.3

Isothermal solidification of an alloy is described by solute diffusion in each phase,

expressed as

∂C(~x, t)

∂t
= ∇ · (D∇C(~x, t)) (1)

where C(~x, t) is the solute concentration field in either the solid or liquid phase and

D is the diffusivity. Conservation of mass at the solid-liquid interface is described

by

DS∇C|S · ~n−DL∇C|L · ~n = (CL − CS)Vn (2)

where the subscripts S and L indicate the solid and liquid phases at the interface,

respectively, ~n is the local interface normal vector and Vn is the local normal inter-

face speed. For a flat interface, the concentrations at the interface are given by the

equilibrium phase-diagram. Figure 1 illustrates a generic isomorphous binary alloy

phase diagram. For dilute alloys, a simplification is often made by assuming that

the liquidus and solidus are straight lines with slopes mL and mS , respectively and

where the partition coefficient CS/CL = k is constant. For larger concentrations k

is not in general a constant. The work presented in Secs. 5 and 6 is restricted to

the dilute limit.

When the interface is curved and moving, the local concentration on the liquid

side of the interface is depressed from its equilibrium value CL
eq according to

CL − CL
eq

∆Co

= −dc
oκ− βVn (3)

with dc
o = do/∆T , where do = γTM/L is the capillary length, γ is the surface

tension energy, TM is the melting temperature and L is the latent heat of fusion

(of component A of the A-B alloy). Also, ∆Co = CL
eq − CS

eq. The parameter β is

the interface kinetics coefficient and κ is twice the mean curvature of the interface.

For dilute alloys the freezing range of the alloy of initial concentration C l
o is given

by ∆T = |mL|(1 − k)C l
o. In pure materials do ≈ 10−8 m, while the chemical cap-

illary length can be significantly larger for dilute alloys. In general dc
o and β are

anisotropic, reflecting the variation of surface tension energy and attachment kinet-

ics with crystalline orientation. We denote this dependence on interface orientation
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Fig. 1. Isomorphouse binary alloy phase diagram.

as dc
o(~n) and β(~n), where ~n denotes the local interface normal. Typical forms for the

capillary length and kinetic coefficient that exhibit m-fold and p-fold anisotropy can

be expressed as dc
o(~n) = dc

o[1 − εm cos(mθ)] and β(~n) = βo[1 + εp cos(pθ)], where

θ denotes the angle the unit normal to the interface, ~n, makes with a reference

axis. All cases presented here have m = p = 4, corresponding to cubic crystalline

symmetry.

For very rapid solidification rates (i.e. Vn > 1 m/s) the interface width and

solute diffusion length are comparable and the behavior at the solid-liquid interface

is no longer well represented by Eq. (3). In the dilute alloy limit, the chemical

potential difference across the interface is given by4

µL − µS = − (CL − CS)Wo

MLCL(1 − CL)
Vn (4)

where Wo denotes the interface width, Vn is the interface velocity and ML is the

solute mobility. Models of rapid solidification4–9 assume that the driving force

for solidification is reduced by the amount of energy dissipated within the diffuse

interface during solidification.7 These considerations lead to an effective relation

between the interface temperature and concentration given by9

T = TM +mL

(1 − k) + [k + α(1 − k)] ln(k/kE)

1 − kE

CL − βVn (5)

where k is a non-equilibrium partition coefficient given by

k(Vn) =
kE + Vn/VD

1 + Vn/VD

(6)

where kE represents the equilibrium partition coefficient and VD ≈ DI/Wo and DI

is the interface diffusion coefficient. The parameter α is referred to as the solute drag

coefficient. Solute drag models for rapid solidification are summarized in Ref. 10

and references therein, and will not be considered further in this work.
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Numerical simulation of solidification using sharp interface models poses signif-

icant computational problems. Boundary conditions must be applied at a singular

interface, requiring the interface to be explicitly tracked. For polycrystalline growth,

which involves complicated interface topologies, the problem of interface tracking

becomes non-trivial to implement, particularly in 3D. Furthermore, for many non-

equilibrium phenomena, the sharp interface limit is not known a priori11 and the

simplest fundamental description of a system is obtained by minimization of its free

energy, written in terms of continuous fields.

3. Phase-Field Models of Solidification

3.1. Phenomenology: Pure materials

We begin here with a brief review of the phase-field method by examining the

well-documented case of the solidification of a pure material.12–21 The phase field

method begins with a phenomenological free energy (F ) of the solid-liquid system

expressed in terms of the temperature and the order parameter field φ(x) that

takes fixed values in either phase (e.g. φ = −1 in the liquid and φ = 1 in the solid)

and continuously interpolates between these values across a thin interface whose

width is denoted by Wφ. The interface is defined as the level set of points satisfying

φ(~x, t) = Ci, where −1 < Ci < 1.17 A form of F for a pure material is given by

F [φ, U ] =

∫

(|Wφ(~n)∇φ|2 + h(φ) − λUP (φ))dV (7)

where U = (T − TM )/(L/cp) is the dimensionless temperature field, TM is the

melting temperature, L is the latent heat of fusion and cp is the specific heat at

Fig. 2. Schematic of an interface of the phase field in 1D. The solid phase has a value of φ = 1,
a smooth transition through the interface and a value of φ = −1 in the liquid.
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constant pressure. The constant λ is proportional to the inverse of the nucleation

energy. In cases where we are not concerned with modeling nucleation kinetics

but, rather, the kinetics of dendritic growth, λ can be treated as a free parameter.

The expression |Wφ(~n)∇φ|2 controls the surface tension energy, made anisotropic

through the function Wφ(~n) = WoA(~n),18,22 where ~n is the local normal to the

interface and Wo denotes the isotropic liquid-solid interface width. A typical form

often used for A(~n) is given by18,20,22–27

A(~n) = [1 − 3ε4]

[

1 +
4ε4

(1 − 3ε4)
((nx)4 + (ny)4 + (nz)

4)

]

(8)

where ε4 controls the 4-fold anisotropy strength. The function h(φ) = −φ2/2+φ4/4

is the so-called “double-well” potential that separates the energy between the solid

and liquid phases. The function P (φ) is an algebraic function that assumes the

limits P (±1) = ±1 and P ′(±1) = 0. In the sharp interface limit of phase-field

models, the specific form of P (φ) in the interface is not important, as all that

enters the analysis are its limits at φ = ±1.17,18,26–28 A convenient choice, which

maintains the bulk phases at φ = ±1 is P (φ) = φ− φ3/3 + φ5/5. Its form is shown

in Fig. 3, which illustrates the relative changes in the free energy between the bulk

solid(φ = +1) and liquid(φ = −1) as the temperature changes.

Fig. 3. Free energy density for a pure materials. Top: T < TM the well shifts toward the solid.
Bottom: T > TM the well shifts to the liquid.
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The evolution equation for φ is described by dissipative minimization of the free

energy, expressed as

τ(~n)
∂φ

∂t
= −δF

δφ
+ ξ(~x, t)

= W 2
φ(~n)∇2φ+ φ− φ3 − λU(1 − φ2)2

+Wo

1

2
∇ ·

[

|∇φ|2 ∂A
2(~n)

∂(∇φ)

]

+ ξ(~x, t) (9)

where τ(~n) = τoB(~n) represents the anisotropic interface kinetic attachment time

scale, with τo a constant. The stochastic variable ξ(~x, t) represents noise due to

thermal fluctuations, chosen from a random distribution whose moments satisfy

the fluctuation-dissipation theorem,29 〈ξ(~x, t)ξ(~x′, t′)〉 = 2T/τoδ(~x − ~x′)δ(t − t′),

where α is the thermal diffusion coefficient, kB is Boltzmann’s constant and δ(x)

is the Dirac delta function. The fluctuation-dissipation theorem ensures interface

fluctuates consistently with statistical thermodynamics. When the function B(~n) =

A(~n), it is possible to simulate the limit of β = 0 of the sharp interface model, even

for large ratios18 of Wo/do (discussed further below). For a constant temperature,

Eq. (9) is often referred to as Model A21 and describes the evolution of a single,

non-conserved order parameter field.

The evolution of φ is coupled to the dynamics of the temperature field via a

modified form of the heat diffusion equation

∂U

∂t
= ∇ · (α∇U) +

1

2

∂φ

∂t
+ η(~x.t) (10)

where α is the thermal diffusivity. The second term on the right hand side of Eq. (10)

represents the latent heat released during solidification, as illustrated in Fig. 4. This

form “smears” the latent heat across the diffuse region of the interface, and reduces

to a delta function source in the sharp-interface limit Wo → 0. The stochastic noise

Fig. 4. Schematic of an advancing interface. The interface advances essentially as a propagating
front. The quantity ∂φ/∂t represents a normalized quantity of heat released at the interface.
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term satisfies 〈η(~x, t)η(~x′, t′)〉 = 2αkBT/cp∇2δ(~x − ~x′)δ(t − t′).29 Equations (9)

and (10) can be conveniently studied in dimensionless form by rescaling space as

x → x/Wo and time as t → t/τo. In that case we can treat τo = Wo = 1 in Eq. (9),

while D → Dτo/W
2
o in Eq. (10).

The parameters of the phase-field model can be selected to recover the dynamics

of the sharp interface limit. This can formally be achieved by letting Wo → 0 and

λ → 0, such that Wo/λ ∼ do and τo/λWo ∼ β.27,20 To simulate the important case

of β = 0, use of these relationships would require that the simulation time scale τo

become prohibitively small, as would the minimum mesh spacing. This asymptotic

limit is of little practical value when there is a significant disparity between the

capillary length do and the diffusion length D/V . Since the interface width is of

order 10−9 m, this precludes simulation of large-scale dendritic structures over a

significant amount of time. An improvement in the asymptotic mapping of the

phase-field model to the sharp interface model, when the thermal conductivities

are equal in the two phases, was developed in Ref. 18. That work showed that the

sharp-interface limit can be faithfully reproduced if the interface width (Wo), the

kinetics time (τo) and the coupling parameter (λ) are inter-related according to

do = a1
Wo

λ
(11)

and

β =
a1τo
Woλ

(

1 − a2λ
W 2

o

DLτo

)

(12)

where a1 and a2 are constants that depend of integrals of the steady-state phase-

field function φo. For our choice of the phase-field model described above, a1 =

0.8839 and a2 = 0.6267. The remarkable feature of Eq. (12) is that it allows us

to simulate the β = 0 limit even for large values of the ratio Wo/do merely by

choosing an appropriate interface kinetics time scale τo. Combining such asymptotic

matching results with adaptive mesh refinement algorithms (discussed in Sec. 4)30,31

enabled, for the first time, simulations of dendritic structures at experimentally

relevant undercooling. Figure 5 shows a thermal dendrite simulated at dimensionless

undercooling ∆ = 0.55 for a ratio Wo/do ≈ 4 in a system size that would require

over 6400 × 6400 nodes on a uniform grid. Other algorithms, involving the use of

random walkers to solve the diffusion equation in the liquid phase, have also been

developed to simulate isolated dendritic growth.32,33 These algorithms are fairly

easy to implement but limited in their application to simple interface topologies.

3.2. Solidification of binary alloys

The phase field concept for pure materials has also been extended to simulate trans-

formations in binary alloys (components A and B).4,14,15,17,23,25,26,34–38 The order

parameter field φ is now coupled to a concentration field C and the temperature
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Fig. 5. Snapshot in time of a thermal dendrite grown at ∆ = cp(Tm − T )/L = 0.55 using
adaptive mesh refinement (see Sec. 4). The four views represent: (top right) temperature, with
lighter(darker) shades of gray representing higher(lower) temperatures; (bottom left) phase-field,
with the darker field representing liquid and the lighter field solid; (bottom right) solid-liquid
interface; (top left) dynamic FEM mesh.

field T (in this case, φ = 0 is liquid and φ = 1 is solid). A free energy functional for

a general binary alloy is written as

F̄ =

∫

|εφ(~n)∇φ|2 + |εc(~n)∇C|2 + f̄AB(φ,C, T )]dV (13)

where εφ and εc (
√

J/m) set an energy scale for the order parameter and

compositional39,40 interfaces. The corresponding width of these interfaces is given,

respectively, by Wc = εc/
√

Λ and Wφ = εφ/
√

Λ, where Λ (J/m3) denotes the en-

ergy barrier between solid and liquid phases, and is proportional to the solid-liquid

surface energy (assumed here to be the same for both A and B materials). Both εc
and εφ are made anisotropic by making them functions of the interface normal ~n.

The function f̄AB denotes the bulk free energy density of the A-B mixture. Its is

designed to reproduce the thermodynamic phase diagram of the alloy.

The simplest form of f̄AB is written as4,23,25

f̄AB = (1 − C)f̄A(φ, T ) + Cf̄B(φ, T ) +
RT

vm

[C lnC + (1 − C) ln(1 − C)]

+
RT

vm

C(1 − C)[MSH(φ) +ML(1 −H(φ))] (14)

where vm denotes the molar volume of solid A and B phases and H(φ) is an

interpolation function with limits H(1) = 1 (solid) and H(0) = 0 (liquid) and MS ,
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ML are constants. The functions f̄A,B represent the free energy densities of pure A

and B, respectively. An explicit form for f̄A,B is given by4,23

f̄A,B = Λg(φ) − LA,B(T − TA,B)

TA,B

(1 − P (φ)) (15)

where LA,B and TA,B are the latent heats of fusion and melting temperatures of A

and B, respectively. The function g(φ) = φ2(1−φ)2 provides a double-well potential

between solid and liquid phases, while P (φ) = φ2(3 − 2φ) is a convenient function

that interpolates between the solid and liquid entropy states (we define the solid

phase as the reference state of entropy density). The first two terms on the right

hand side of Eq. (14) describes the bulk energy of independent alloy components in

solid or liquid, weighted by their respective concentrations. The third term describes

the energy of ideal mixing between A-B atoms. Finally, the second line describes

the interaction energy between the two components, modulated in each phase via

the function H(φ).

Through the interdiffusion (chemical) potential µ = ∂f̄AB/∂C, the phase-

diagram of the A-B alloy can be constructed via the Maxwell equal area con-

struction (the common tangent rule) by solving for the values of CS , CL and µeq

that satisfy the equation
∫ CL

CS

(

∂f̄AB(φ,C, T )

∂C
− µeq(T )

)

dC = 0 . (16)

For example, it is a straight forward exercise to show that by setting ML = 0 and

Ms = (44600− 9.19T ) − (5600 − 1.73T )(2C − 1) in Eq. (14), Eq. (16) will yield a

eutectic phase-diagram very close to that of Ag-Cu. Setting MS = ML = 0, Eq. (16)

will yield an isomorphous phase diagram.

An important limit of Eq. (14) is in the dilute limit, C � 1, where the solidus

and liquidus can be approximated by straight lines, and where CS/CL = kE for all

temperatures, in equilibrium. The free energy for this case is obtained by expanding

Eq. (14) to lowest order in C, giving

f̄AB = Λg(φ) + fA(TM ) − ∆TS(φ) +G(φ)C +
RTM

vm

(C lnC − C) (17)

where S(φ) = LA/TA(1 − P (φ)) is the entropy density of the alloy, and G(φ) =

−(T − TB)LB/TB(1− P (φ)) is the energy density of adding B to A. We note that

other forms of S(φ) and G(φ) can also be used for the entropy and energy, yielding

equivalent results.26

The phase-field equation for alloys is similar to that for pure materials,

τ(~n)
∂φ

∂t
= −δF

δφ
+ ξ(~x, t) (18)

where we have defined F ≡ F̄ /Λ. Solute transport in the alloy is described by

conservation of mass,

∂C

∂t
= −∇ · ~J . (19)
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The solute flux ~J is given by

~J = M(φ,C)∇
(

δF̄ [φ,C, T ]

δC

)

+ η(~x, t) (20)

where solute mobility M(φ,C) = vm

RTA
DLq(φ)C(1 −C) and q(φ) is a function that

interpolates between solid and liquid diffusivities (q(0) = 1, q(1) = q− = DS/DL).

When temperature variations cannot be neglected, an additional variational equa-

tion for the evolution of T can be included.38 For many practical cases the diffusion

of solute is several orders of magnitude slower than thermal diffusion, and it is

reasonable to neglect spatial variations of temperature. As in the case of the order

parameter, the noise term in Eq. (20) describes thermal-induced fluctuations in

concentration. In the simulations presented in this paper, noise has been neglected.

The above alloy phase-field model can also be extended to the simulate direc-

tional solidification. The simplest way to model this process is to consider pulling

an alloy sample through a temperature gradient G at a speed V . Since the ratio of

thermal to chemical diffusivity is typically ≈ 104 in alloys, the temperature field can

be approximated by its quasi-static steady state solution T = To+G(z−V t)3,14,15,37

where z measures the distance along the growth direction from a reference point

where the temperature T = To. Expressing temperature in units of mL(1 − k)C l
o,

where Cl
o is the initial alloy concentration, the temperature dependence in the free

energy can be substituted by the term

θ = (1 − k)(z − V t)/lT (21)

where lT = mL(1 − k)C l
o/G is the thermal length, a characteristic length scale

that sets the freezing range of the alloy. We will show below that lT , the capillary

length (do) and the solute diffusion length (lD = 2DL/V ), set the scaling of primary

dendrite spacing selection in directional solidification.

3.2.1. Sharp-interface limit of phase-field models

When the diffusion length is much greater than the nano-scale solid-liquid inter-

face, phase-field simulations must recover the physics of the sharp interface model

described in the previous section. This is done by asymptotically matching the so-

lutions of Eqs. (18) and (19) inside and outside a thin boundary layer defined by

the length scale Wo.
17,18,26,28,36 Specifically, the inner solutions of φ and C are

expanded in some small parameter and matched (order by order) to their outer

counterparts in such a way that the following three conditions are satisfied:

(1) the dynamics outside the interface region are governed by the diffusion equation,

with appropriate diffusion coefficients in each phase,

(2) the interface concentration of the outer C-field satisfies the Gibbs–Thomson

condition,

(3) the derivatives of the outer C-field, evaluated on either side of the interface,

satisfy flux conservation.
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Asymptotic analysis is similar in all its variants,17,18,20,26,28,36 but the specific

outcomes depend on such details as the choice of small parameter(s), the scaling

of the equations of motion, the order of the expansion and the ratio of solid-liquid

diffusivities. We present here the results of a new analysis, which is based on the

following assumptions and procedures: We rescale the inner region of Eqs. (18) and

(19) by Wo and the outer region by DL/Vc, where Vc = DL/do is a characteristic

speed of diffusing across scales of order the capillary length. Time is also rescaled,

in both inner and outer regions, by DL/V
2
c . The inner and outer φ and C fields

are expanded in the small parameter ε1 = Wo/do, after which an order by order

matching of the inner and outer solutions of Eqs. (18) and (19) is performed (up

to order ε21, and to first order in the small parameter ε2 = Woκ). This yields the

following sharp interface limit of Eqs. (18) and (19):

(1) Diffusion in bulk phases

∂tC = DS,L∇2C

(2) Flux conservation across interface:

DS∇C · ~n|S −DL∇C · ~n|L = ∆CoVn + ∆HVnWoκ+ ∆J∂θ(κ∂θµ)Woκ

(3) Local Interface concentrations (C±):

δC = − (σφ + r̄σc)WoΛ

dµ∆Co

κ− τoΛ

Wo

(

1 − γ

D̄Λ

) σφ

dµ∆Co

Vn

where DS,L denotes the solid/liquid diffusivities, δC = C± − CL with CL,S the

equilibrium solid/liquid interface concentrations, ∆Co = CL − CS , r̄ = (Wc/Wo)
2,

~n is the local interface normal, Vn the local interface velocity, D̄ = DLτo/W
2
o

and dµ ≡ ∂Cµ|CL
. Other constants are defined as: σφ =

∫∞

−∞
(∂xφo)

2dx and σc =
∫∞

−∞
(∂xCo)

2dx, where the field Co is the equilibrium concentration profile (obtained

by solving

∂CC f̄AB − Λr̄∂xxCo = µeq (22)

for Co). The field φo solves the lowest order phase-field equation ∂xxφo −
dg(φo)/dφ = 0. Finally, γ = (K + ∆CoF

±)/σφ, with the constants K, ∆F , ∆H

and ∆J defined by

K =

∫ ∞

−∞

∂Co

∂x

(

∫ ξ

0

(Co(x
′) − CS)

Q(φo, Co)
dx′

)

dx

∆F =

[
∫ ∞

0

∆Co

CL(1 − CL)
− (Co − CS)

Q(Co, φo)
dx

]

−
[
∫ 0

−∞

(Co − CS)

Q(Co, φo)
dx

]

∆H =

∫ ∞

0

(CL − Co)dx−
∫ 0

−∞

(Co − CS)dx

∆J =

∫ ∞

0

(Q(CL, 0) −Q(Co, φo))dx−
∫ 0

−∞

(Q(Co, φo) −Q(CS , 1))dx
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where Q(Co, φo) ≡ Co(1−Co)q(φo) and where F+ and F− are defined by the first

and second large square brackets of the ∆F equation. The “0” lower limit in the

above integrals corresponds to the interface location, which, following Ref. 17, we

define by the level set where φ(~x, t) = Ci, where 0 < Ci < 1. The variable θ is the

arc length along the interface.

The sharp interface limit of the phase-field model contains three so-called cor-

rections terms: ∆F (solute trapping), ∆H (interface stretching) and ∆J (interface

diffusion). These emerge in all phase-field models where the solid and liquid diffu-

sivities are different.26,28 The ∆J term can essentially be neglected (or is at least

bounded), since for most solidification structures Woκ � 1. The ∆F and ∆H

terms, however, are velocity-dependent, and become greatly amplified in the limit

Wo � do, which is numerically important to avoid unnecessary mesh refinement and

to decrease simulation times (even up to quite large undercooling). It is straightfor-

ward to show that both ∆H and ∆F can easily be made to vanish by appropriate

choices of (1) diffusivity function q(φ) and (2) interface level set definition Ci.

3.2.2. Non-variational approach

At low undercooling, the only way to simulate experimentally relevant microstruc-

ture sizes, in reasonable time, is to (1) operate the phase-field model with an ex-

tremely diffuse interfaces Wo and (2) use adaptive-mesh refinement (see Sec. 4).

In this limit, all three correction terms above become sizable and must be made

to vanish. It is exceedingly difficult (though not impossible) to simultaneously set

all three correction terms to zero using the thermodynamically consistent phase-

field formulation discussed above. An alternative approach has been developed in

Refs. 26 and 36 for the particular case of the free energy in Eq. (17). In that work,

the variational approach is abandoned in favor of a set of phase-field equations

that are constructed to reproduce the sharp-interface limit. The methodology is

summarized here.

One begins by defining a normalized chemical potential (u = µ− µE)

u = ln

(

2C

Cl
o[(1 + k) − (1 − k)gs(φ)]

)

(23)

where gs(φ) controls entropy interpolation between φ = −1 (liquid) to φ = 1 (solid)

in Eq. (18), and satisfies gs(±1) = ±1. (The energy interpolation function G(φ) is

related to gs(φ) such that the steady-state profile φo = − tanh(x
√

2Wo).) Finally,

Cl
o is the initial alloy concentration.

In terms of the u-field, the equation of motion for φ becomes

τ(~n)
∂φ

∂t
= W 2

φ(~n)∇2φ+
dg

dφ
− λ

1 − k
(eu − 1)

dgs

dφ
(φ)

+Wo

1

2
∇ ·
[

|∇φ|2 ∂A
2(~n)

∂(∇φ)

]

(24)
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where λ = −RTm(1 − k)2Cl
o/vmΛ, Tm is the melting temperature and k is the

partition coefficient. The first, second and fifth terms of Eq. (24) arise because the

interface kinetics time and interface width are made anisotropic according to the

phenomenological function Wφ = WoA(~n) and τ = τoA(~n)2, respectively.

Solute transport is defined by Eq. (19), with the flux ~J modified by a so-called

anti-trapping current ~Jat = −atWoC
l
o(1 − k)eu(∂tφ)~n, where at is a constant. The

current ~Jat makes it possible to eliminate the solute trapped due to the finite

thickness of Wφ. The choice of constant at (more generally, a function of φ), along

with the choice of gs(φ) and q(φ) provide three degrees of freedom with which to

easily eliminate the constraints ∆F , ∆H and ∆J .26,36 The interesting feature of

using the anti-trapping current is that it allows us to recover the sharp-interface

limit for dilute binary alloys using the same definitions for capillary length do and

kinetic coefficient β as those given by Eqs. (11) and (12) for the solidification of

pure materials.

Most of the work on binary alloys presented in this paper is based on the dilute

alloy free energy in Eq. (17), and using the asymptotic analysis in Ref. 36 to simulate

the sharp-interface limit of our phase-field model. Our simulations are all performed

in the limit where we can ignore interface kinetics (i.e. β = 0). (We note that

spurious curvature, temperature and kinetic corrections to the kinetic coefficient

have been ignored in our directional solidification simulations26 as these were found

to be fairly small). Diffusion is simulated using the interpolation function q(φ) =
(1−φ)

(1+k)−(1−k)φ + (1+φ)q−

2 while do/Wo = a1/λ. Furthermore, setting the interface

kinetics coefficient in Eq. (12) to zero gives DLτo

W 2
o

≈ 0.6267λ. The anti-trapping

coefficient at = 1/(2
√

2). In Sec. 5.3, a variational phase-field model is used, which

features a free energy with parallel solidus and liquidus lines. In that case, the sharp

interface limit of those simulations was attained using the new asymptotic analysis

presented in this paper (Sec. 3.2.1).

Figure 6 shows a snapshot in the time evolution of the concentration field of

directionally solidified SCN-0.13 wt% PVA alloy. The parameters of the simulations

correspond to thermal gradient G = 9.75 K/mm, pulling velocity V = 30 µm/s

(cooled bottom to top). Microsegregation is evident between dendritic branches,

while coring occurs in the solid phase.

3.3. Phase-field models in 3D including fluid flow

The phase field methods described above can be extended to 3D with fluid flow

included in the melt along with solidification.24,41–43 We present here the case of

a pure material. Since there is no phase boundary, the model must include some

means for extinguishing the flow inside the solid phase. Beckermann et al.43 intro-

duced a mixture formulation for the continuity, Navier–Stokes and energy balance

equations, and an auxiliary interfacial stress term into the Navier–Stokes equa-

tion to ensure that the shear stress is correct at the interface. The phase-averaged
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Fig. 6. Top: Directionally solidified dendrites grown at a speed V = 30 µm/s and a thermal
gradient G = 9.75 K/mm. Shade of gray (color online) represents solute concentration. Lighter
shades (warmer colors online) represent high concentration while darker shades (cooler colors
online) represent low concentration. Bottom: The corresponding interface position, calculated by
finding the level set φ = 0.

mixture continuity is given by

∇ ·
[

1 − φ

2
v

]

= 0 (25)

where v is the velocity vector, and the momentum balance equation is

∂

∂t

[(

1 − φ

2

)

v

]

+

(

1 − φ

2

)

v · ∇v +

(

1 − φ

2

) ∇p
ρo

= ν∇2

[(

1 − φ

2

)

v

]

− ν
h(1 − φ2)(1 + φ)

8δ2
v (26)

where t is time, p is pressure, ρo is the (constant) density, ν is the kinematic

viscosity, δ = Wo/
√

2 is the characteristic interface width, and h is a constant
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(= 2.757) which ensures that the interface shear stress is correct for a simple shear

flow (see Beckermann et al.43). Finally, the phase-averaged energy equation is writ-

ten in terms of the scaled temperature U (see Sec. 3.1) as

∂U

∂t
+

(

1 − φ

2

)

v · ∇U = ∇ · (D∇U) +
1

2

∂φ

∂t
(27)

where D = ατo/W
2
o in which α is the thermal diffusivity. Wo and τo have the

same interpretation as they did in 2D. The 3D phase-field evolution equation is a

straightforward extension of the 2D form, given by

τ(n)
∂φ

∂t
= ∇ · [Wφ(n)2∇φ] + [φ− λU(1 − φ2)](1 − φ2)

+ ∂x

(

|∇φ|2Wφ(n)
∂Wφ(n)

∂(∂xφ)

)

+ ∂y

(

|∇φ|2Wφ(n)
∂Wφ(n)

∂(∂yφ)

)

+ ∂z

(

|∇φ|2Wφ(n)
∂Wφ(n)

∂(∂zφ)

)

. (28)

4. Multiscale Simulations Using Dynamic Adaptive Mesh

Refinement (DAMR)

4.1. DAMR in 2D

A major computational challenge to simulating phase-field models efficiently in-

volves the disparity between the interface width Wo and diffusion length scales.

While careful asymptotic matching of inner and outer solutions provides recipes for

increasing the ratio of Wo/do (thus increasing the effective kinetic time scale τo),

several orders of magnitude still separate do, D/V and LB (the system size). The

main physics of solidification (and many other reaction-diffusion problems) occurs

near an interface whose area is much smaller than the full computational domain. In

this region, the order parameter varies significantly, while away from the interface

variations in φ are small. Meanwhile, the diffusing field(s), denoted in this section

as U , typically extends well beyond the interface and has much more gradual vari-

ation (lower gradients) throughout the entire simulation domain. A much coarser

grid may be used to resolve U . The most obvious manner to overcome this inher-

ently multiscale problem is to establish a high density of grid points where the φ or

U fields vary most rapidly and a significantly lower grid density in other regions.

To be successful, an efficient method must dynamically adapt the grid to follow the

evolving interface,30,31,46,47 while at the same time maintaining a certain level of

solution quality.

This section describes methods for solving Eqs. (9) and (10) in 2D using the

Galerkin finite element method on a dynamically adapting mesh of linear, mixed
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isoparametric quadrilateral and triangular elements. The algorithm is easily imple-

mented in Fortran 95 and C++, taking advantage of such advanced features as data

structures, derived data types, pointers, dynamic memory allocation and modules

to conveniently store, adapt and manipulate complex grids and their solution fields.

Our algorithm performs functions that can be divided into two classes. The first

deals with the establishment, maintenance and updating of the finite element grid,

and the second with evolving φ and U on this grid, according to Eqs. (9) and (10).

The methodology described below has also been extended to 3D phase-field simu-

lations combined with fluid flow24 (Sec. 4.2), and to solidification of alloys.14,15,37

The method can also be readily extended to most reaction-diffusion problems.

4.1.1. Dynamic adaptive mesh data structures

The first class of functions in our algorithm maintains a grid of finite elements on

a data structure known as a quadtree31,48–50 which replaces the standard concept

of a uniform grid as a way of representing the simulation grid. The quadtree is

a tree structure with branches down to a specified level. Branches of the quadtree

point to element data structures that contain information analogous to their parent

element. Figure 7 illustrates the quadtree structure as well as the relation between

elements at different levels of refinement.

Every node on the quadtree contains information pertaining to a 4-node isopara-

metric quadrilateral finite element.51 This information includes the following:

• values of φ and U at the four nodes

• the nodal coordinates of the element

• the level of refinement of the element on the quadtree

• the current value of the error estimate for the element

• the element number

A

A       B       C        D 

  A     B     C      D A      B     C     D     A        B        C       D

 B
D1 D2 D3 D4 C2 C3 C4 D4

D21  D22  D23 D24

 A1 A2     A4                     

B

D

C

Fig. 7. An illustration of the quadtree element data structure. The first frame shows an element,
and four child elements. Splitting of one of the children and one its children is shown, along with
the branch evolution of the quadtree. Branches with triangles indicate square elements which are
bridged with triangular or rectangular elements.
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• an array mapping the element’s internal node numbers onto node numbers of a

global solution array

• pointers to the element’s nearest neighbors sharing a common edge and at the

same level of refinement

• a variable that determines whether or not an element contains further sub-

elements, called child elements

• pointers to an element’s child elements

• a pointer to the parent element from which an element originates.

An element of the quadtree can be refined by splitting it into four child elements,

each having its own dataset. A parent element and its four child elements are re-

ferred to as a family. Refinement produces a finer mesh within the confines of the

original parent grid by bisecting each side, as shown in Fig. 7. Unrefinement, which

consists of fusing the four child elements back into the parent, has the opposite

effect, locally creating a coarser mesh. Both refinement and unrefinement proceed

via dynamic memory allocation and de-allocation, making storage scalable. We note

that unrefinement can occur only if child elements do not possess further children

of their own. Also, in order to avoid having regions of very different refinement

bordering each other, we impose the restriction that any two neighboring quadri-

lateral elements may be separated by no more than one level of refinement (see

Fig. 7). This constraint is important to maintaining solution accuracy. We define

the level of refinement of an element by le such that a uniform grid at a refinement

level le would contain 2le ×2le grid points in a physical domain LB ×LB . Elements

are connected to their neighbors at the same level using pointers. Cases where an

element has a missing neighbor are handled using null pointers.

All elements at a given level of refinement on the quadtree are “strung” together

in a linked-list of pointers, referred to as G-lists. There are as many G-lists as there

are levels of refinement in the quadtree. Each pointer in the G-list points to the

memory location assigned to one element node of the quadtree. The purpose of the

G-list is to allow traversal of the quadrilateral elements sequentially by level, rather

than by recursively traversing quadtree from the root down, a procedure which is

memory intensive and very slow.

Alongside the main grid of quadtree elements, our algorithm maintains two in-

dependent linked-lists of grids representing special linear isoparametric triangular

and rectangular elements. These elements are used to connect the extra “hanging”

nodes that arise when two or more quadrilateral elements of differing refinement

levels border each other (Fig. 7). These element types are referred to as bridg-

ing elements. They are maintained as two linked-lists of derived data types, one

containing information about triangles and the other rectangles. Elements of both

bridging element grids contain the following information:

• the values of φ and T at the three nodes (four for rectangles) of the element

• the nodal coordinates
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• node numbers that map the element’s internal nodes onto the global solution

array.

The types of bridging triangles and rectangles that can occur are enumerable, as

discussed in Ref. 31.

The main set of operations performed on the grids described above concern

refinement of the finite element mesh. The refinement process is performed only on

the quadrilateral mesh. The triangular and rectangular grids are established after

this process is completed (see Fig. 7). To refine the grid, the code traverses the

elements of the quadtree, refining (unrefining) any element whose error estimator,

discussed below, is above (below) a critical value σh(σl). We note that fusion of four

quadrilateral elements is permitted only if all four of its children’s error functions

are below the critical value σl, where σl < σh. We note that if σl = σh the grid can

set into oscillations, where large numbers of elements become alternatively refined

at one time step, then unrefined at the next.

The processes described thus far are grouped into modules (objects in the C++

version) that encapsulate various related tasks, and which can cross-reference each

other’s data and subroutines. The module highest up in the hierarchy contains

the definition of the quadtree data structure. It also contains subroutines that

construct the initial grid, set the initial conditions and refine/unrefine quadrilateral

elements. Another module constructs the G-lists, including routines that construct

the initial G-list from initial quadtree data structure, as well as add or delete

subsequent element pointers from the G-list as elements are created or deleted.

A third module accessing both the previous data structures creates the bridging

element grids. It contains subroutines that insert triangular or rectangular elements

where appropriate. These are stored in separate element linked lists.

4.1.2. The finite element formulation

The main program evolves φ and U and periodically adapts the dynamic grid. A

flowchart of these processes is shown in Fig. 8.

Time integration of Eqs. (9) and (10) is performed on the dynamic adaptive

grids using the finite element (FEM) method. An FEM module performs four main

processes:

(1) Maps the internal element node numbers to the indices of a global solution

vector. The φ-field is mapped onto the odd numbers, while U is stored on the

even numbers of the global solution vector.

(2) Advances the U and φ field-vectors by M time steps on an adapted finite

element grid.

(3) Calculates error estimate in quadrilateral elements.

(4) Invokes routines in the modules described above to refine the grid according to

this error estimator.
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Define intial mesh: nodes and elements

Construct intial quadtree data structure

Construct G-lists for initial mesh

INITIALIZATION

OUTER TIME SEQUENCE (N)

INCREMENT TIME, M = M + 1

Global node numbers

Map solution data onto work vectors

ASSIGN

Add/remove quadrilateral elements

Update G-lists

Generate new triangular and rectagular elements

REGRIDDING

Traverse quadtree and compute flux variation

Compute error estimate on each element

ERROR ESTIMATION

NEXT TIME SEQUENCE, N = N + 1

INNER TIME STEPS (M)

Assemble finite element equations

Solve explicitly for phase-field

Solve implicitly for temperature

Update solution vectors

ASSEMBLY AND SOLUTION

Fig. 8. Flowchart of the DAMR algorithm.

Steps (1)–(4) are repeated until a sufficient evolution of the microstructure is

established. Step (1) involves searching all elements, and their neighbors, and as-

signing each node a unique number, which will be used to map that element node to

a global solution vector. The upper limit of the variable M in Fig. 8 is dynamically

chosen such that the interface (width Wo) remains entirely within the finest level

of refinement. We have checked that this procedure produces essentially the same

error as simulating the phase-field model on a uniform mesh corresponding to our

finest level of refinement.

The finite element formulation of Eqs. (9) and (10) is done using Galerkin’s

weighted residual method51 for both quadrilateral and triangular elements. Local

element matrices are generated31 using linear interpolation for both φ and U 52 and

a lumped matrix formulation51 is used for time derivatives to avoid matrix inversion
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of the assembled global system of equations. The φ vector is evolved in time using

a forward difference time stepping scheme. For each time step of the φ field, the

global U field can be solved using either explicit or implicit methods.

4.1.3. The error estimator

Regridding is based on an error estimator function, which is obtained following

Zienkiewicz and Zhu,52 based on the differences between calculated and smoothed

gradients of a weighted combination of the φ and U fields given by

Ψ = φ+ γU (29)

where γ is a constant. This is the simplest definition that allows the U and φ fields

to contribute to the mesh refinement. The weight γ is chosen to amplify variations of

the U field compared to the φ field. The selection of γ is discussed in more detail in

Ref. 31, where it is shown that using only gradients of the φ-field in establishing the

grid45 can lead to large errors in calculations of tip velocity in dendritic growth.

This method appropriately meshes regions of steep gradients and regions where

either φ or U change rapidly.

Figure 9 shows a time sequence of dynamically adapting FEM gird for a di-

rectionally solidified alloy of SCN-0.13 wt% PVA. The magnification is chosen to

resolve the finest levels of refinement. In the simulation, the U field of the model

equations described in Sec. 3.2.2 represents the chemical potential. The sample

Fig. 9. Dynamic Adaptive Grid for directional solidification in a gradient G = 9.75 K/mm and
V = 30 µm/s at times 0.96 s, 9.6 s, 11.5 s, 14.4 s and 29.8 s.
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is being pulled through a thermal gradient of G = 9.75 K/mm at a speed of

V = 30 µm/s.

4.2. DAMR in 3D

The need for DAMR is even more acute in 3D phase-field modeling than it is in 2D,

simply because of the dimensionality. The minimum grid spacing is set by the need

to resolve the interface, which must be thin compared to the diffusion length and

tip radius. The size of the box is again set by the need to contain the entire diffusion

field. Thus, the scale requirements affect each dimension equally, and the number

of grid points in a fixed mesh scales as (LB/∆x)
d, where d is the dimensionality.

As in 2D calculations, the grid is adapted such that it is finest in the vicinity of

the interface, and coarser far away, where all of the primitive fields vary slowly. The

typical ratio of largest to smallest element size is 512, but there is no inherent limit.

Element refinement and fusion is done based on the value of an error estimator,

computed from the solution within each element, and described further below.

The data structure in 3D is similar to that used in 2D, with the defined data

types being augmented for the increased dimension and the new variables associated

with the flow (v, p). The basic element is a cube, and refinement is done by bisection

of each face, leading to eight child elements derived from the parent. The elements

are stored on an octree, a straightforward extension of the quadtree used in 2D.

The grid is locally adapted based on an element-by-element error estimate, fol-

lowing a hybrid scheme using the magnitude of φ and the inter-element variation of

the derivatives of U . If an element contains the interface, indicated by the condition

φmin ≤ φ ≤ φmax (30)

then the element is continuously divided until its refinement level is maximal. We

found that using φmin = −0.99 and φmax = 0.9 gave consistent results. The reason

for the asymmetry is that the interface typically moves from the solid region φ > 0

to the liquid region φ < 0. Outside of the interface region (φ < φmin or φ > φmax),

we used an error estimator based on the magnitudes of the derivatives of U as

follows:

Ee =

∫

Ωe

∇U · ∇UdΩ (31)

where Ωe is the element.

The grid refinement procedure begins by noting the refinement level of each

element, and its immediate neighbors. Refinement is required in an element when-

ever the estimated error exceeds the limit value, or when the absolute difference

between the refinement level of an element and that of its neighbors exceeds one.

Refinement is carried out successively at each refinement level, beginning with the

minimum, according to the procedure illustrated in Fig. 10. Unrefinement proce-

dure is accomplished by fusing child elements back into the parent element, when

the error estimate is sufficiently small in all of the children, as we did in 2D.
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Fig. 10. Dividing sequence for refinement. The arrows indicate the sequence of refinement. (Sym-
bols are described in detail in Ref. 24.)

Disconnected nodes appear whenever an element has a neighbor whose refine-

ment level differs by one, as illustrated in Fig. 11. An element with connectivity

1–6, 12, 13 contacts two neighbor elements of lower refinement level. Rather than

completing the mesh with special elements as we did in 2D, we instead impose con-

straints on the disconnected nodes. For any degree of freedom ψi, the constraints

are

• Disconnected edge mid-nodes:

ψ2 =
ψ1 + ψ7

2
, ψ5 =

ψ1 + ψ11

2
, ψ6 =

ψ1 + ψ9

2
. (32)

• Disconnected face mid-nodes:

ψ3 =
ψ1 + ψ7 + ψ8 + ψ9

4
, ψ4 =

ψ1 + ψ11 + ψ10 + ψ9

4
. (33)
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Fig. 11. Configurations of disconnected sides and nodes.

After applying the constraints, the original element connectivity is modified to be

modes 1, 7–13, and the element shape functions are changed appropriately. Thus,

nodes 3, 4, and 6 would be compressed out of the final calculations. This facilitates

domain decomposition in the parallel implementation.

We solve Eqs. (25) and (26) via the Semi-Implicit Approximate Projection

algorithm,44 a predictor-corrector method. For a detailed discussion of the algo-

rithm, the reader is referred to the original paper,44 and for a detailed description

of the parallel adaptive finite element implementation, see Jeong et al.24

The flow and energy balance equations are solved in an implicit, segregated

fashion, whereas the phase-field equation is integrated explicitly. Different time

step sizes are used for the various equations. The phase-field and energy balance

equations are solved using the minimum time step, ∆tθφ, and the fluid flow equa-

tions are solved using a larger time step ∆tv . The physical basis for this choice is

that the interface moves very slowly relative to the fluid, and thus the motion of

the interface does not strongly affect the flow field.

4.2.1. Scalability and parallel computing

Both the 2D and 3D adaptive mesh algorithms exploit the scalability attain-

able in physical problems where the ratio of interface area to system volume is

low, such as solidification or other boundary-layer problems (e.g. combustion-front

evolution).45 The structure of our mesh data structure is easily amenable to shared

memory and distributed parallelization. Figure 12 illustrates the scalability of a

portable OpenMP version of our 2D alloy code across multiple processors of a

32-node shared memory Silicon Graphics computer and a DEC-HP Alpha Clus-
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Fig. 12. CPU time versus number of processors for a simulation of a 2D directionally solidified
alloy. Top curve: 32-node SGI machine. Bottom curves: 128 DEC-HP Alpha cluster.
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Fig. 13. Speed-up for Charm++ FEM framework for 3D solidification code.

ter. The simulation is for a directionally solidified system similar to that shown in

Fig. 9.

The 3D code for pure materials was parallelized using Charm++, a message-

passing parallel runtime system for machines from clusters of workstations to

tightly-coupled symmetric multi-processing machines.53 Charm++ provides a

framework for the parallelization of tasks, including domain decomposition, as-

signment of elements to specific processors, and resolving contributions to nodes
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which appear on more than one processor.54 An example of the parallel performance

of the code is shown in Fig. 13, where we used a grid with 296,636 elements and

349,704 nodes computing over 20 time steps. The value SP = 28.8 for 32 processors

is typical for our code, and shows that the code has been effectively parallelized.

5. Microstructure Selection in 2D

5.1. Dendritic growth in pure materials

Understanding dendritic solidification has been the topic of intense investigation

in recent years. Since solidification in metals is difficult to study in situ, much

of the study of dendritic growth has focused on transparent organic analogues of

metals such as alloys of succinonitrile and pivalic acid. These alloys are attractive

because they solidify near room temperature and their properties are such that the

solidification morphologies are similar to metals.

Early research in dendritic solidification modeling examined the properties of

the sharp-interface model, both for pure materials and alloys at low undercooling.

A major triumph of this research is embodied in microscopic solvability theory.

This theory predicted both the steady state tip velocity and the radius of curva-

ture of and isolated dendrite growing into an infinite undercooled melt. Solvability

theory demonstrated that the surface tension is a singular perturbation to the

Ivantsov problem (i.e. the sharp-interface model without surface tension and inter-

face kinetics).55 Anisotropy in the surface tension γ or interface kinetics β gives rise

to an eigenvalue problem, which has solutions only for a discrete set of dendrite tip

velocities and corresponding tip radii. Linear stability analysis of these steady-state

dendritic solutions reveals that only dendrites with the largest allowable velocity

(smallest tip radius) of this set are stable.56–59 With the advent of new asymptotic

analysis that allowed a higher order matching of simple phase-field models with

appropriate sharp interface models, the theory of solvability was independently

confirmed using a phase-field model of solidification.18

At low undercooling the diffusion of heat (pure materials) or impurities (alloy)

occurs over a length scale that increases with decreasing undercooling (or supersat-

uration in the case of solutal dendrites). In this limit the approach to steady state

follows a long-lived transient behavior, during which dendritic growth is controlled

by interactions of dendritic branches with each other or with the boundaries of their

container.30,60 The study of this limit is prohibitive numerically using any fixed-

grid approaches. The disparity of length scales between the diffusion length and the

interface width necessitates the use of dynamical AMR techniques. Figure 14 shows

DAMR simulations of the dimensionless tip speed (V do/D) versus dimensionless

time (t/τo) for thermal dendrites grown in the limit of low undercooling.

Such transient dynamics at low undercooling are characteristic of competitive

interactions that occur in complex solidification problems.24,47,56,57,60–65 In this

regime, the diffusion field can be modeled by solving the heat equation in the

quasi-static limit at each time step in the time evolution of the phase-field. The
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Fig. 14. Steady-state growth speed of 2D thermal dendrites (curves) at different undercooling.
The horizontal lines show the predictions of solvability theory. The scales are logarithmic. ∆T
refers to the dimensionless undercooling. System dimensions are also shown.

dynamics of dendritic growth in the presence of long-range diffusion interactions can

be defined using the concepts of crossover scaling theory. Specifically, by rescaling

the transverse dendritic growth direction as

yN =
y

ymax
(34)

where ymax is maximum width of the dendrite arm from its center line, and the

normalized dendritic arm length by

xN =
x− xroot

xtip − xroot
(35)

where xroot defines the base of the dendrite where it emerges from the seed nucleus,

the dendrite arm morphology has been shown to follow a similarity solution. Fig-

ure 15 shows morphological scaling obtained by collapsing multiple time sequences

of simulated 2D and 3D dendrites onto one dendrite similarity solution.66 The sim-

ulations do not have noise and thus do not exhibit sidebranches. We expect the

scaling of the primary branch shape to remain unchanged in the presence of noise.

Superimposed on the computed results is a scaled time sequence of PVA dendrites

grown in microgravity.66

The transient growth of the dendrite arm along directions parallel and trans-

verse to the tip have been found to obey power-law scaling of the form v ∼ tα,

where α ≈ 0.5 in the transverse direction and α ≈ 0.78 in the growth direction at

early time, crossing over to α ≈ 1 at late times.66 The data in Fig. 15 simulate den-

dritic growth for the case with zero flux diffusional boundary conditions. Changing
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Fig. 15. Dynamic scaling of computed 2D and 3D dendritic crystal morphology using the DAMR
technique. The figure also contains experimental PVA dendrite arms scaled at different times (see
Ref. 66).

the assumptions of the boundary conditions or analyzing only the dendritic tip in

isolation will give different growth exponents33,67 for the same scaling regime. The

remarkable feature of the data in Fig. 15 is that it predicts the universal scaling of

morphology and growth rate of dendrites in the “Laplacian” limit (i.e. at low under

cooling).

5.2. Spacing selection in directional solidification of dilute

binary alloys

The role of inter-dendritic interactions is most important in casting where multiple

dendrites compete to establish the final length scale of solidification microstruc-

tures. In the solidification of a binary alloy the interaction of impurity solute

fields is coupled to the driving force provided by thermal gradients. An impor-

tant experimental tool for studying microstructure development is directional so-

lidification using transparent organic alloys directionally solidified at a constant

velocity through a fixed temperature gradient. The interplay of temperature gra-

dient and alloy composition lead to a complex dependence of the inter-dendritic

spacing on the experimental parameters.68–75 Recent phase-field simulations using

adaptive-mesh refinement have enabled the examination of scaling in spacing selec-

tion in directional solidification of PVA-ACE and SCN-ACE systems at experimen-

tally relevant parameters.37 Quantitative agreement between simulation and exper-

iments is made possible by using the alloy phase-field models described in Sec. 3.2.2

(e.g. a corrective anti-trapping current has be added to eliminate spurious solute

trapping36).
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Fig. 16. (Lleft) Typical solid-liquid interface of a dendritic array directionally cooled at a pulling
speed of Vs = 150 µm/s through a temperature gradient G = 1500 K/mm. (Right) The corre-
sponding power spectrum of the interfaces on the left, showing the rapid establishment of the
primary inter-dendritic spacing, identified by the peak wave vector kmean. Units of length are all
in the phase-field interface width Wo.

In order to address the issues of length scale selection in directional solidifica-

tion, we must first determine a method to describe microstructure quantitatively.

Greenwood et al.37 examined the shape of the solid-liquid interface using power

spectrum analysis. Following Jasnow and Vinals,76 the primary branch spacing λ1

was identified by the mean of the power spectrum Pk = 〈|hk|2〉, where k = 2π/λ

is the wavevector corresponding to length scale λ and h(z) represents the interface

profile (made monotonic by following the contours of the dendritic envelopes). In

all cases the main peak wavevector of Pk (denoted kmean) corresponds to the vi-

sually observed primary spacing λ1. The value kmean was plotted versus 1/t and

extrapolated to infinite time to obtain an estimate of λ1. The time evolution of a

typical dendritic array and its corresponding power spectrum are shown in Fig. 16.

Simulations were carried out for three sets of phase-field parameters (see

Ref. 37): (G, λ, C l
o, k): (0.00191, 20, 0.13 mol%, 0.16), (0.0015, 3, 1.5 mol%, 0.15),

and (0.002, 1.3, 1.5 mol%, 0.15), where G is the dimensionless thermal gradient, λ is

the coupling coefficient, C`
o is the alloy composition and k is the alloy partition coef-

ficient. Setting the liquid diffusivity DL = 6.0×10−10 m2/s and the capillary length

do = 2.12×10−8 m, (appropriate for PVA-ACE), the interface width Wo and inter-

face kinetics time τo are given by Wo = (4.0×10−7 m; 6.05×10−8 m; 3.1×10−8 m),

and τo = (3.3× 10−3 s; 1.14× 10−5 s; 1.3× 10−6 s), respectively. These parameter

inter-relationships are set by the phase-field asymptotics in Ref. 36. As the pulling

velocity Vp was varied we observed cellular structures at low values of Vp, while
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Fig. 17. Dendrite spacings from computations and experiments or Ref. 72 scaled to material
properties, producing a single scaling function for primary spacings λ1.

at high velocities we observed the emergence of dendritic morphologies. For all our

simulation data a maximum occurs in λ1 as Vp approaches the planar-cellular onset.

In particular, we found that this maximum value occurs at V ∗
p where lT ≈ lD, where

lT and lD are the thermal and diffusion lengths, respectively. The presence of such

a maximum has been predicted theoretically77 and observed in experiments.69,72

Figure 17 shows our simulation data collapsed onto a plot of dimensionless

wavelength versus a dimensionless velocity. On the same plot are superimposed

three experimental data sets taken from Ref. 72. The three experiments in Fig. 17

are for SCN-0.25 mol% Salol at 13 K/mm, SCN-0.13 mol% ACE at G = 13 K/mm

and PVA-0.13 mol% Ethanol at G = 18.5 K/mm. The change in the two slopes

corresponds to Vp = V ∗
p , where the raw data exhibit a peak in the wavelength

versus pulling velocity. Figure 17 shows primary branch selection can be described

by a crossover scaling function of the form

λ1

λc

=
lT
lD
f

(

lT
lD

− lT
l∗D

)

(36)

where λc is the onset steady state wavelength at the transition from the planar-

to-cellular instability and l∗D ≡ 2D/Vc, where Vc is the velocity at the onset from

planar to cellular solidification. The data in Fig. 17 are remarkable in that they

show a single scaling function describing the primary spacing (λ1) versus velocity

over a wide range of pulling speeds, thermal gradients and alloy concentrations.

The crossover function in Fig. 17 covers the regime from cellular fingers and crosses

over into the dendritic regime. Figure 17 also includes data from 3D simulations,

described in the next section.
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The critical onset wavelength λc in the scaling collapse can be compared to

theoretical predictions. Specifically, Fig. 18 compares our values of λc to λtheory =
√

λmslTR(Vp = Vc), where λms denotes the usual Mullins–Sekerka wavelength at the

planar-to-cellular onset boundary3 (i.e. where Vp = Vc), and lTR(Vp) is a velocity-

dependent generalization of lT , implicitly determined from

lTR = lT

(

1− exp

(−lTRVp

D

))

. (37)

Physically, lTR(Vp) is proportional to the amplitude of cellular fingers and sat-

isfies lTR ≈ lT (1 − l∗D/(2lT )) at the onset of cellular growth, while in the limit

(Vp � Vc), lTR → lT . This form of λtheory is similar to a previous analytical pre-

diction of λc derived geometrically by approximating the tip shape and calculating

the tip undercooling.77 In the same figure we compare our extracted numerically

λc to a second prediction, λtheory = (dolDlT )
1

3 , which represents the geometric

mean of the three length scales, empirically suggested to be proportional to the

wavelength at the planar-to-cellular onset.70 Figure 18 suggests that for both cases

λc = αλtheory(1 +βdo/λtheory), where α and β are material independent constants.

Our data show that our extracted λc is consistent with both theoretical predictions

within a correction term that depends in a non-trivial way on surface tension.

5.3. Misorientation of crystal anisotropy and thermal gradient:

Seaweed structures

Another class of directionally solidified microstructures is known as

seaweed.15,75,78,79 These structures are formed through successive tip splitting of

the primary branches of a directionally solidified front. Surviving tips grow and
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Fig. 19. Directional solidification with the surface tension anisotropy oriented at 45◦ with respect
to the z-axis. G = 0.8 k/mm and Vp = 32 µm/s. Below a critical thermal gradient (oriented
along the z-axis) the surface tension anisotropy controls the growth and dendritic structures
emerge, oriented very closely the 45◦ axis. The insets show the velocity distribution in the x and
z directions, respectively.

continue to split, while trailing branches become subsumed by neighbor interac-

tions. Seaweeds can emerge when the temperature gradient is misoriented with

respect to the preferred growth direction corresponding to the minimum in surface

tension. It is brought about by a competition between the driving force provided

by the thermal gradient and the lower free energy along the axis of surface tension

anisotropy. Figures 19 and 20 show the morphological transition of a directionally

solidified front that occurs as the thermal gradient G is increased from zero to above

some critical value. In Fig. 19 surface tension anisotropy controls the minimization

of free energy, which results in dendritic crystals oriented in the direction of the

surface tension anisotropy (45◦ with respect to the z-axis). In Fig. 20, the thermal

gradient (i.e. driving force along z-direction) is increased and a competition sets in

between the preferential direction of surface tension anisotropy and the cooling di-

rection. The ensuing competition leads to the characteristic seaweed-like structures

evident in Fig. 20.

The morphological change from dendrites to seaweed can characterizing the

distribution of local interface velocities.15 The inset of Fig. 20 shows a sharp velocity

distribution typical of seaweeds, while a broadening characterizes the distribution

as dendrites emerge (insets of Fig. 19). For the parameters in Figs. 19 and 20, the



December 22, 2005 9:28 WSPC/140-IJMPB S0217979205032917

Phase-Field Methods to Adaptive Mesh Refinement 4557

-0.2 -0.1 0 0.1 0.2
X Velocity

0

1

10

100

1000

fr
e
q
u
e
n
c
y

0 1000 2000 3000 4000 5000
Z (dimensionless)

0

1000

2000

3000

4000

X
 (

d
im

e
n

s
io

n
le

s
s

)

-0.2 -0.1 0 0.1 0.2
Z velocity

0

1

10

100

1000

fr
e
q
u
e
n
c
y

Fig. 20. Directional solidification with the surface tension anisotropy oriented at 45◦ with respect
to the z-axis. Parameters are the same is in Fig. 19. As the thermal gradient increases a competition
between growth in the forward direction and the direction of surface tension anisotropy leads to
multiple dendritic tip splittings, and a subsequent crystal structure that resembles seaweed. The
insets show the velocity distribution in the x and z directions, respectively.

morphological transition from seaweeds to dendrites can be approximated15 by

G∗ ≈ Pf

√

(Vp cos θ)/(Ddo(1 + 15ε4 cos 4θ)) (38)

where Pf = 0.004, Vp is the pulling velocity, θ is the angle of anisotropy, D is the

diffusion constant, do is the capillary length and ε4 is the anisotropy strength. This

selection criterion defines a morphological phase diagram in Vp − G space for a

fixed ε4, predicting a crossover from seaweed to oriented dendrites as Vp increases.

At sufficiently large Vp we still expect the fastest growing unstable wavelength to

occur in the forward direction regardless of the angle of anisotropy. We therefore

only expect Eq. (38) to hold for small Vp.

6. Dendritic Growth in 3D

In this section, we discuss 3D dendritic growth in the presence of fluid flow using a

phase-field model coupled to fluid flow and solved with the 3D DAMR algorithm.

For further details, the reader is referred to the original papers.24,80,81 The exten-

sion to 3D was motivated in part by the desire to study the effect of fluid flow

on the evolution of microstructure. The mechanism by which the flow alters the

solidification process is by transport of heat or solute from the leading edge to the

trailing edge of the growing dendrite.82 The process is illustrated schematically in
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Fig. 21. Comparison of advective transport mechanisms in 2D and 3D for dendritic growth.

Fig. 21, where one can clearly see that the process works fundamentally differently

in 3D, where heat or solute is easily transferred around the growing dendrite arm,

as opposed to 2D, where the flow must go over the arm.

6.1. Solidification of pure materials

We performed a series of computations where we examined the growth of an isolated

dendrite grown from an initial spherical seed. In some cases, a flow (characterized

by a far-field velocity U∞) is directed parallel to the 〈100〉 direction. The results

are presented as data for the dendrite tip radius, growth velocity and the selection
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Fig. 22. Evolution of the tip radius (in units of do), tip velocity (in units of D/do) and selection
constant σ∗ for the upstream dendrite tip for three cases corresponding to succinonitrile solidifica-

tion. The data have been multiplied by arbitrary constants for convenience of having them appear
on one graph. The cases correspond to (a) no flow; (b) U∞ = 0.5 cm/s; and (c) U∞ = 1 cm/s.
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Table 1. Comparison of computed and experimental tip pa-

rameters for succinonitrile.

U∞ (cm/s) Vtip/V 0
tip

ρtip/ρ0
tip

σ∗/σ∗

0

Expt 1.0 2.2 0.6 1.4

Calc 2.6 0.72 0.8

Expt 0.5 1.7 0.71 1.2

Calc 2.1 0.71 0.95

Fig. 23. Interface position and isotherms around the growing dendrite tip for SCN at Dt/d2
o =

4.1 × 109. Isotherms range from −0.036 to −0.008 in increments of 0.004. The flow from infinity
originates from the top of the figure.

constant σ∗. Reported below are calculations corresponding to succinonitrile (SCN),

a material with relatively low surface tension anisotropy (0.5%).

The evolution of ρtip, Vtip and σ∗ for the upstream arm are shown in Fig. 22,

multiplied by arbitrary scales for the convenience of plotting them together on one

graph. The seed was grown without flow up to D̃t/d̃2
o = 2.5 × 109, and then the

flow was started. For this simulation, we have d̃0 = 4.775×10−3, D̃ = 116, Wo = 1,

τo = 1, ∆xmin = 0.9, LB = 29491.2 (= 215∆xmin), ∆t = 0.02, and Pr = 23.1.

When the flow begins, Vtip increases while ρtip decreases. The selection constant

σ∗ decreases, and quickly reaches its steady state value. The simulations were ter-

minated when the mesh size grew to about 450,000 nodes, and while the results

have not quite reached a final steady state, the temporal variation is small at the

end.

Table 1 compares the computed values of ρtip, Vtip and σ∗ with experimental

data of Lee et al.83 The ratios of tip velocities and tip radii are quite similar in

both the simulations and the experiments. However, we find σ∗ to be a weakly

decreasing function of the far-field velocity, while Lee et al., found σ∗ to be an

increasing function of U∞. We attribute this difference to the effect of far field

boundary conditions on the results in both the experiments and the calculations.

See Ref. 80 for details.

The mechanism for the change in tip kinetics due to the flow is illustrated in
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Fig. 23. Because the Péclet number is high, the isotherms are advected by the flow,

effectively increasing the temperature gradient ahead of the dendrite, and this leads

in turn to the increase in tip velocity.

6.2. Solidification of binary alloys in 3D

This section describes simulations of solidification in binary alloys in three dimen-

sions. As discussed earlier, one of the most common experimental methods for

studying microstructure development in alloys is directional solidification, and we

focus on that method here as well. The experiment is normally performed using a

transparent alloy confined between microscope slides. A thin section is desired so

that the microstructure can be observed easily, and so that the temperature field

can be truly 1D. It is observed, however, that under some experimental conditions

the microstructure is 3D, while under others it is 2D. We demonstrate via our

calculations that the reason for this apparent transition is the interaction of the

diffusion field with the boundary imposed by the microscope slides. The results are

also compared with experimental data from Liu et al.84

Simulations of directional solidification were performed in a rectangular domain

with dimensions Lx×Ly = 256×256, and variable thickness δ ∈ [4, 64]. The frozen

temperature approximation was applied with a fixed gradient in the x-direction, in

a frame moving with fixed velocity Vp ≤ 2. The units are explained further below.)

Simulations started from a nominally flat interface, with random perturbations,

and were run until the interface became stationary. A typical computation took

about 90 cpu-hours using a single 3.1 GHz Intel processor and compiler.

A directional solidification experiment is characterized by the two dimensionless

control parameters, M = do/lT and S = Vpdo/DL, where do is the capillary length,

lT is the thermal length and DL is the solute diffusivity in the liquid phase; for a

pulling velocity of Vp = 5 µm/s. To obtain converged results with the phase-field

model we require that the solution be independent of the parameter ε = Wo/do.

After ensuring vanishing interface kinetics, the following relationships involving the

phase-field parameters are realized: Dτo/W
2
o = a1a2ε, Vpτo/Wo = Sa1a2ε

2, and

lT /W0 = 1/(εM). Here, a1 = 0.8839 and a2 = 0.6267, are constants that arise in

the phase-field formulation, described earlier.18

We choose computationally convenient parameters for our study, and then

use our understanding of the proper length scales to compare our results with

experiments. The parameters used in our study are: τo = Wo = 1, D = 20, k = 0.8,

ε4 = 0.05, and lT = |mL|(1 − k)C∞/kG = 50; where mL is the liquidus slope, G

is the imposed thermal gradient, and C∞ is the far field solute concentration. The

condition for negligible interface kinetics gives do = 0.0277 and therefore ε = 36.1,

which is sufficiently small to ensure convergence.26 The size of the smallest ele-

ment in our adaptive mesh is ∆x = 1, when δ ≥ 8, and ∆x = 0.5, when δ = 4,

while ∆t = 0.005 is the size of the time-step. For these parameter choices, the

dimensionless control parameters are M = 5.54× 10−4 and S ∼ 1.385× 10−3.
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(a) δ = 64, Vp = 1.5, 3D cells. (b) δ = 16, Vp = 1.5, 3D cells. (c) δ = 4, Vp = 0.8, 2D cells.

Fig. 24. Interface morphology in a directionally solidified alloy. At steady state, stable arrays of
three-dimensional cells appear. Note that at δ = 4, the array comprises of two-dimensional cells.

Table 2. Physical properties of a SCN-Salol alloy system.

|m| (Liquidus slope) 0.7 K/wt.%

DL (Diffusion coefficient) 8 × 10−10 m2/s

Γ (Gibbs–Thomson coefficient) 0.64 × 10−7 K/m

k (Partition coefficient) 0.2

G (Thermal gradient) 4 K/mm

do (Capillary length) 3.265 × 10−8 m

lT (Thermal length) 4.9 × 10−4 m

Figure 24 shows examples of computed interface morphologies for different val-

ues of δ. For small values of pulling speed (Vp ≤ 2), the steady state consists of

a stationary array shown in Fig. 24. The “peaks” on the interface have sharp and

well defined tips, typical of dendrites. There are no sidebranches because the den-

drites are quite short, and because there is no noise in the calculations. As pulling

velocity increases, the morphology becomes finer, with sharper and more tightly

packed cells, consistent with experimental observations.84–86 Data on tip radius

were extracted from representative cells in the structure, and spacing data were

obtained using a 3D extension of the FFT technique described earlier for the 2D

simulations. For large δ, we find that the tip radii of these cells, measured on the

two principal planes, are almost identical. As δ decreases, the radius in the x-z

plane becomes significantly smaller, and cross sections of the cells look elliptical.

At δ = 4, for small pulling speeds (Vp ≤ 1), there is a transition to two-dimensional

microstructure [Fig. 24(c)].

The data from all of our simulations are shown in Fig. 25, along with experi-

mental data of Liu et al., which corresponds to a SCN-0.7 %wt. Salol system (prop-

erties in Table 2). The axes are scaled to enable comparison of the two datasets.

The abscissa is the pulling speed (i.e. the tip velocity at steady state) Vtip, scaled

by a characteristic velocity D/dok, while the ordinate is the tip radius ρtip, scaled

by the diffusion length D/Vtip. The open symbols correspond to the experimen-

tal data, and the solid symbols correspond to our calculations, showing very good

agreement.
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Fig. 25. Comparison of binary alloy simulations with the phase-field model, and experimental
data of Liu et al.84 Solid symbols correspond to the phase-field model and the open symbols are
experimental data. The line denotes a relationship of the form ρ2

tip
Vtip = C between tip radius

and velocity, where C can be expressed in terms of process parameters.

Liu et al. noted that for 3D microstructures, the tip radius follows a relationship

of the form ρ2
tipVtip = C, where C is a constant dependent on do, k and D, as

postulated by theoretical models of constrained growth.87,88 However, when δ is of

the order of inter-dendritic spacing λ1, this agreement deteriorates. This is evident

in Fig. 25, where the ρ2
tipVtip = C line is shown as a guide to the eye. The open

circles, which are data for δ = 12.5 µm deviate in both slope and intercept from

this line, which passes through the rest of their data, indicating a breakdown in the

relationship. We observe similar trends in our calculations, where the line ρ2
tipVtip =

C fits our data at δ = 32 and 64 reasonably well, but as δ decreases from 16 to 4,

this agreement deteriorates.

Decreasing δ has a pronounced effect on interface morphology. Dendritic arrays

seen in experiments have a certain structure/periodicity to them, that arises from

underlying crystalline symmetries. For example, in our simulations we observe that

the cells constitute a hexagonal array. When δ is large, away from the boundaries

the diffusion field surrounding each cell tip obeys this symmetry, and the optimal

λ1 is selected. As δ decreases however, the diffusion field becomes increasingly

asymmetric due to interaction with the boundaries at x = 0 and x = δ. In particular,

solute rejection decreases in the vertical plane x-z, while increasing in the horizontal

plane x-y. Increased solute accumulation between cells in x-y, contributes to an

increase in λ1. However, since Vtip is fixed by the pulling speed, and a certain rate

of solute rejection needs to be maintained, the tips tend to grow sharper as λ1

increases. It is precisely this effect that causes the operating state to deviate from

theoretical predictions.
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7. Conclusions

The use of phase field models in materials science has seen a great increase in re-

cent years, owing in part to their fundamental connection to phase-transformations.

Nevertheless, phase field models have been difficult to use for quantitative simula-

tions because the inaccuracy brought about by improperly smearing the interface

width, to attain practical simulations times and length scales. We have discussed

some recent and new work that shows how this problem can be partly overcome

through using improved asymptotic analysis of phase field models. These techniques

allow one to smear the interface to a large degree but still recover the same kinetics

described by sharp interface models of solidification. In addition, we reviewed recent

numerical algorithms that use dynamic adaptive mesh refinement to enable a dra-

matic increase in simulation system sizes, as well as a great decrease in computation

times.

We reviewed dendritic growth in 2D and 3D simulations made using phase

field models simulated with the DAMR method. 2D simulations have investigated

the role of inter-dendritic interactions at low undercooling, finding that dendritic

growth and morphology is described through a dynamic crossover scaling formal-

ism. Likewise DAMR simulations of directionally solidified binary alloys predicted

that primary dendrite branch spacing is described through a single universal scaling

function over a range of alloy concentrations and cooling rates and thermal gradi-

ent. We also reviewed recent results that elucidate how the interaction of thermal

gradient and surface tension anisotropy lead to seaweed crystal structure. 3D simu-

lations elucidated the role of fluid flow on the stability parameter σ∗ of microscopic

solvability theory. Simulations of directionally solidified alloys in 3D found that as

3D cells were confined to smaller spaces in the z-direction, there was a transition

from a 3D to a 2D behavior.
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