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Summary

We propose the use of cover as a quick, low-resolu-
tion proxy for the abundance of microbial species,
which reduces polymerase chain reaction bias. We
showcase this concept in a computation that uses
clone library information from travertine-forming hot
springs in Yellowstone National Park to provide esti-
mates of relative covers at different locations within
the spring system. Samples were used from two
media: the water column and the travertine substrate.
The cover distribution is found to approximate a
power law for samples within the water column. Sig-
nificant commonality of species with the highest
cover is observed in the water column for all loca-
tions, but not for species present in the substrate at
different locations or between media at the same
location.

Introduction

 

Until recently, the study of microbial ecology was narrowly
constrained by the difficulty of identifying microbes outside
of cultures. Modern molecular methods, based upon the
sequencing of small subunit rRNA genes (Olsen 

 

et al

 

.,
1986; Pace 

 

et al

 

., 1986) permit the classification and com-
parison of microbes directly from an environmental sam-
ple. A key step in many, but not all, molecular methods is
the creation of a clone library containing representatives
of the environmental 16S rRNA. Sequencing samples of
the clone library has enabled estimates of diversity to be
obtained in a variety of environments ranging from geo-
thermal hot springs to the oral cavity. Clone libraries are,
by now, numerous and relatively straightforward to assem-
ble. Sequencing, while expensive, is becoming cheaper

and high-throughput methods are available that enable
huge data sets to be created from environmental samples.

However, diversity is not an adequate characterization
of the dynamics, metabolism and community structure of
an ecosystem. For this purpose, some measure of abun-
dance is desirable; even though the most abundant organ-
isms are not necessarily those which dominate the
ecosystem dynamics, any quantitative understanding of
biogeochemical cycles requires information about abun-
dance. A variety of methods are available to measure
abundance: Quantitative polymerase chain reaction
(PCR), Most Probable Number PCR, competition PCR
and dot-blot hybridization among others (Muyzer 

 

et al

 

.,
1993; Amann 

 

et al

 

., 1995; Head 

 

et al

 

., 1998; Ding and
Cantor, 2004; Zoetendal 

 

et al

 

., 2004), each of them with
their own advantages and disadvantages. These tech-
niques are valuable probes of the environment, but are
extremely local, providing information on scales that are
often very much smaller than those characteristic of envi-
ronmental spatio-temporal dynamics. Clone libraries are
generally created from much larger, system wide samples,
and so could provide, in principle, a more global, but still
spatially resolved measure of abundance. Unfortunately,
attempts to estimate abundance using clone libraries are
hampered by inherent biases in PCR amplification and
cloning (Wintzingerode 

 

et al

 

., 1997).
The purpose of this article is to propose a statistical

method for estimating a coarse grained (or low resolution)
measure of abundance based on the concept of cover,
and using clone libraries alone. Our approach is fast,
cheap, capable of high-throughput and only requires the
use of a computer. Most importantly, we will show that our
method is not significantly affected by extraction and PCR
bias, when used with clone libraries of large enough size.
Furthermore, being based upon clone libraries, it gives a
large-scale, system-wide estimate of cover. We believe
that our technique can provide a rapid and convenient first
assay of an ecosystem, providing relative cover of the
microbial population; such an assay would be expected to
be followed up by local probes, using, for example, one of
the techniques mentioned above.

We illustrate this method with data from a travertine-
forming hot spring in Yellowstone National Park, where
earlier studies (Fouke 

 

et al

 

., 2003) report the nominal
presence of 221 operational taxonomical units (OTUs).
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Our technique yields information on which are the most
abundant (in terms of cover) OTUs, and the ones with the
greatest potential impact to drive the ecosystem metabo-
lism. In this way, our analysis focuses attention on the 10
or 15 OTUs with highest cover, distinguishing them from
the several hundred OTUs detected in previous work
(Fouke 

 

et al

 

., 2003). The putative metabolic characteris-
tics of these organisms can provide a clue as to their
environmental role, and the likely dominant biogeochem-
ical pathways that are active in the system.

 

Relative cover estimation through library resampling

 

Relative cover estimation

 

We define the relative abundance 

 

r

 

i

 

 as the fraction of total
individuals in the system belonging to OTU 

 

i

 

: 

 

r

 

i

 

 

 

=

 

 

 

n

 

i

 

/

 

n

 

.
Here 

 

n

 

i

 

 is the number of individuals belonging to OTU 

 

i

 

and 

 

n

 

 is the total number of individuals. The index 

 

i

 

 takes
on values from 1 to 

 

S

 

, 

 

S

 

 being the total number of OTUs
observed in the system. Samples are assumed to have
been collected at each facies (see 

 

Study site

 

) and to have
been processed through the standard procedure of DNA
extraction, 16S rRNA gene PCR amplification, cloning and
clone screening to create a clone library as explained in
(Fouke 

 

et al

 

., 2003).
Ideally, one would count every individual in the system

and assign it to an OTU to calculate 

 

r

 

i

 

. This is unfeasible
first and most obviously because of the impossibility of
sampling the whole system, and secondly because each
sample does not give information on relative abundance.
The reason for the latter is that clone library abundances
are not representative of abundance in the real system,
because of biases present in PCR amplification. A small
preference in primer binding for a certain OTU type is
exponentially amplified and will distort abundances
greatly. Other biases are introduced by the DNA extrac-
tion, ligation and transformation but they lack the expo-
nential growth inherent to PCR DNA amplification. We will
therefore use only information on the presence or
absence of each OTU in each sample. For this procedure
to eliminate the aforementioned biases it is necessary for
the number of clones sequenced per library in each sam-
ple (sample size) to be sufficient to allow the detection of
all relevant OTUs. Appendix S2 in 

 

Supplementary mate-
rial

 

 offers an estimation of the required sample size
depending on the expected biases and the minimum rel-
ative abundance needed for an OTU to be considered
relevant.

Having surrendered the (biased) abundance informa-
tion for OTUs that is reflected in the clone library abun-
dance, we need to find an alternative way to estimate
abundance. The idea that we propose here is that if one
has collected many environmental samples from the same

location, and generated a clone library, the samples will
show variations in which OTUs are present. These varia-
tions reflect in a non-trivial way the spatial abundance
distribution of the organisms, and our task now is to
extract this in the least biased way.

To this end, we use the collected data to obtain esti-
mates of coarse-grained abundances or covers as
explained in Fig. 1. Cover, sometimes known as occur-
rence or range, is a concept from macroscopic ecology,
and is strongly linked to abundance (Kunin, 1998; 2000;
He and Gaston, 2000) although not equivalent. Referring
to Fig. 1, assume that the square represents one of the
facies in the system, properly divided into smaller subcells
of size 

 

l

 

. This length, which we call the correlation length

 

l

 

, is defined to be small enough so that sampling within
the boundaries of a subcell would always yield the same
result. One can define the 

 

cover

 

 of OTU 

 

i

 

 to be the fraction
of subcells in which OTU 

 

i

 

 is present over the total number
of subcells:

(1)

and the time-averaged cover is:

(2)

The relative cover is defined by simply normalizing the
cover:

(3)

Sampling the whole facies to find the true cover 

 

C

 

i

 

 is
out of reach. Random sampling from each facies yields
estimates (denoted by a caret) that should converge
quickly as the number of samples increases:
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Fig. 1.

 

Cover, a concept borrowed from macroscopic ecology (Kunin, 
1998; 2000; He and Gaston, 2000), is a coarse-grained or low-
resolution measure of abundance in the sense that each subcell will 
contribute if the species is present inside it, independent of its abun-
dance in the subcell. The cover is the number of subcells in which a 
given OTU is present divided by the total number of subcells (Eq. 1), 
for each of the possible times 

 

t

 

 (

 

t

 

 

 

=

 

 1.

 

T

 

). For example, for 

 

t

 

 

 

=

 

 1 the 
cover is  

 

=

 

 23/289, and for 

 

t

 

 

 

=

 

 2,  

 

=

 

 29/289. Each of the squares 
is a diagram representing one of the facies in the system.
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(4)

(5)

where 

 

N

 

i

 

 is the number of samples in which OTU 

 

i

 

 is
present and 

 

N

 

 is the total number of samples (see Fig. S1
in 

 

Supplementary material

 

). This last equation then
provides a quick estimate of relative covers and hints at
which OTUs are more likely to influence the microbial
ecosystem.

Our method relies critically on the variability of detected
OTUs from sample to sample. Why does this variation
arise? In general, it is due to two main effects: (i) spatial
and temporal variation, and (ii) detection errors.

As explained in 

 

Analysis of Yellowstone National Park
field data

 

, samples were taken in different spatial location
within the same facies and at different times of the year
and day. Microbial species show preferred ranges of tem-
perature and pH ranges, and have been shown to partition
fairly tightly to given facies (Fouke 

 

et al

 

., 2003). It is there-
fore not surprising that spatial and temporal variations of
pH, temperature and other facies characteristics within a
given facies give rise to distinctive patterns in the location
of OTUs.

Detection errors arise because the processes of extrac-
tion, amplification, ligation, transformation and sequenc-
ing have an intrinsic variability in their success rate, that
can be dependent on the skill and expertise of the exper-
imenter. For example, the large scale of the survey
described below (more than 14 000 clones were
screened) implied assignment of these tasks to persons
of different levels of expertise (Fouke 

 

et al

 

., 2003). With
the amount of available data it is hard to tell apart how
much variance is due to spatial and temporal variation and
how much is due to detection errors. High throughput,
standardized ‘pipelines’ for 16S rRNA analysis reduce
these detection errors to a minimum, and allow for the
large number of samples necessary for this method. So,
to proceed, we will assume here that detection error has
been minimized by careful and reproducible laboratory
practice, and that there are spatial or temporal trends in
the possible causes of detection error. Thus, we take into
account explicitly only the variability arising from intrinsic
spatial and temporal dynamics.

 

The library resampling method

 

Equation 5 offers an estimate for the relative cover but not
its variance, critical to ascertaining the variability of 

 

ρ

 

i

 

across the facies and in time. In this section, we use a
computer-intensive library resampling method to estimate
variability.

Ĉ
N
N

i
i=

ˆ
ˆ

ˆ
ρi

i

ii

C

C
=

∑

 

The library resampling method is an application of the
original bootstrap method introduced by Efron in 1979 to
assess the accuracy of statistical estimates and provide
bias corrections (Efron, 1979). A familiar example of the
bootstrap principle is its application in estimating confi-
dence limits on phylogenies (Felsenstein, 1985), but the
original bootstrap is a data resampling statistical method
of much wider applicability. It is the broader method that
we use here. A basic exposition of the data resampling
bootstrap method can be found in (Efron and Tibshirani,
1993; Shao and Tu, 1995; Chernick, 1999). Here we will
limit ourselves to explaining its use for the case at hand,
but in a self-contained way.

How can the data resampling bootstrap method be used
to obtain a variance for the relative cover estimate in 5?
Traditionally, one would divide the 

 

N

 

 samples in 

 

M

 

 groups
of 

 

N/M

 

 samples and obtained the estimates of 
(

 

s

 

 

 

=

 

 1..

 

N/M

 

)  for  each  of  these  groups  as  per  Eq.  5.
The variance would be obtained as usual:

, where  denotes the average of
. For large enough 

 

N

 

 this would converge to the desired
variance. Nonetheless, this procedure wastes samples for
each estimate  (

 

s

 

 

 

=

 

 1..

 

M

 

) and leads to a poor estimation.
For example, for 

 

N

 

 

 

=

 

 8 (as for data in 

 

Analysis of Yellow-
stone National Park field data

 

) having four groups would
lead to a meager two samples per group.

The data resampling bootstrap explores the variance by
forming groups of samples, whose content is randomly
sampled from the original samples, but which have the
same amount of samples per group as the total initial
number of samples. This is achieved by choosing these
groups through sampling with replacement as explained
in Fig. 2: 

 

R

 

 bootstrap groups are created and a relative
cover estimate  is calculated for each. The data resam-
pling bootstrap theorem states that, for large enough 

 

R

 

,
the behaviour of the  around  mimics the behaviour
of around 

 

ρ

 

i

 

 (see Appendix S1 in 

 

Supplementary mate-

ρ̂i
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i
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Fig. 2.

 

The data resampling bootstrap method applied to estimate 
the bias and variance of . 

 

R

 

 groups of four samples are generated 
by sampling with replacement from the original samples. This means 
that the samples in each group are chosen randomly among the 
original samples and each time a sample is selected for the group it 
is returned to the original set, so it can be chosen again. Therefore, 
each group is not just a permutation of the initial samples. For each 
group,  is generated using Eq. 5 and the estimate of the bias and 
the variance are given by Eqs 6 and 7.

ρ̂i

ρ̂ j
s
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rial

 

 and Chernick, 1999). One can therefore obtain an
improved estimate and its variance by treating the boot-
strap groups as independent measurements:

(6)

(7)

The data resampling bootstrap principle as stated above
is not always applicable [e.g. extremal statistics (Chernick,
1999)] and the convergence to the right distribution must
be proven for each estimator (Shao and Tu, 1995).
Equations 6 and 7 refer to functions of sample means for
which the probability distribution of the bootstrap resam-
pling has been proved to converge to the probability dis-
tribution of the estimates in the limit of large N (see
Appendix S1 in Supplementary material).

Model calculation to illustrate the use of the 
resampling method

In order to give a worked example of the use of the
resampling method, we present in this section a model
calculation on artificial data, and show to what extent the
resampling method is capable of making faithful estimates
from finite data sets. While the theorem in Appendix S1
(Supplementary material) proves the consistency of the
data resampling bootstrap estimator in the asymptotic
limit, the real interest of the bootstrap lies in its fixed
sample properties. The artificial data have been con-
structed so that it mimics some aspects of the field data
we will eventually analyse in the following section. To
begin the discussion, we first explain how the artificial
data were constructed from a model distribution, and the
extent to which these artificial data have realistic proper-
ties. We would like our artificial data to be semi-realistic,
so that the success of the resampling algorithm on the
artificial data has some relevance to the application of the
resampling algorithm on field data. We conclude this sec-
tion by exploring how well resampling converges with
increasing sample size.

For this demonstration calculation, we assume that
each of the S OTUs present in the system are present in
each sample with probability ρ(i ) ∝ i–d, where different
distributions with d = 2, 1.5, 1, 0.65, 0.3 are considered
(i = 1.S). As we will see, this model distribution for d = 0.65
actually mimics the cover distribution of microbes that, in
Analysis of Yellowstone National Park field data, we will
obtain in the water column of the pond facies of the Yel-
lowstone National Park data. The total number of OTUs S
is chosen here to be S = 200 because the number of
OTUs in, for example, the water filters of the Pond is 43

ρ ρi
BS

i
s

s

R

R
=

=
∑1

1

ˆ

var ˆ ˆ ˆρ ρ ρi
BS

i
s

i
BS

s

R

R
( ) = −( )

=
∑1 2

1

and previous results (García Martín, 2004) indicate that
20–25% of the total diversity has been sampled.

The OTUs present in each sample are generated
though a Montecarlo algorithm, as explained in Supple-
mentary material.

Figure 3 shows the results of the data resampling boot-
strap estimates (N) for d = 0.65, sample numbers
N = 10, 100 and R = 10 000 as compared with the original
relative cover ρi. The results are satisfactory, with the
target cover within the variance of the estimate. As
expected, estimates improve with increasing N. For low N
the estimates overshoot slightly because not all S OTUs
have been detected and therefore the detected OTUs are
given a higher relative cover than the real one. R is in
practice chosen large enough so that further increases
don’t change the estimate appreciably.

The choice of different values of d allows us to explore
the robustness of the method and the required number of
samples for accurate cover estimation as a function of the
steepness of the rank-cover distribution. As can be
observed in Fig. S12 in Supplementary material similar
results are found for the different exponents with inaccu-
racies showing for low ρi OTUs, the number of which is
different for each exponent. As a rule of thumb, to obtain
an adequate estimation of relative cover ρi the necessary
number of samples can be calculated to be (see Supple-
mentary material):

(8)

where Cj is the cover as defined before. In practice, for
the studied distributions, N > 1.2/( ) seems sufficient
to obtain an adequate estimate of ρi.

Analysis of Yellowstone National Park field data

Study site

We now turn to an application of the resampling method
on field data from microbial communities at Yellowstone
National Park, collected and published previously (Fouke
et al., 2003; G. Bonheyo et al., submitted) as part of a
large biocomplexity study at the University of Illinois at
Urbana-Champaign. Our purpose here is to illustrate how
we have analysed  the  microbial  communities,  and  not
to  present  a  detailed  description  of  the  ecological
context  or  our conclusions regarding the role of microbes
in biomineralization.

For the data set presented here, up to 50 samples were
taken during an interval of 4 years at Spring AT-1, located
on Angel Terrace, in the upper terrace region of the Mam-
moth Hot Springs complex at Yellowstone National Park.
AT-1 is typical of the travertine-depositing springs at this
site, and has been fully characterized by (Fouke et al.,

ρ̂i

N
Ci jj

>>
∑

1
ρ

ρΣ j jC
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2000): hot waters erupt from the vent and flow downhill
cooling  down,  quickly  degasing  CO2,  increasing  in  pH
and precipitating travertine at extremely high rates
(∼1.5 m year−1) in a characteristic terraced architecture.
The fast deposition rates produce a hostile environment
for present microbial life, which must somehow avoid
entrapment in the travertine substrate (G. Bonheyo et al.,
submitted).

Samples were taken from all the five facies: vent,
apron and channel, pond, proximal slope and distal
slope. A facies is a subenvironment of sedimentary dep-
osition within a system with specific physical, chemical,
geological and biological characteristics. Biological sub-
environments correlate tightly with facies. A broader
explanation of the facies model can be found in (Fouke
et al., 2000). The samples were collected from two differ-
ent media: filtered water from the flowing water column,
and the surface of the deposited travertine substrate,
with depths up to 2 cm deep (see Fouke et al., 2003 for
details of facies definitions and more specific information
on the site).

Bacteria were identified through 16S rRNA gene iden-
tification as explained in (Fouke et al., 2003). For each
sample, clones were screened for unique sequences
through restriction fragment length polymorphism (RFLP).
Three different sets of OTU definitions were used, based
on sequence differences of 0.5%, 1% and 3%, with the
intention of determining to what extent, if any, our conclu-
sions were affected by the OTU definition (G. Bonheyo
et al., submitted).

Data resampling bootstrap estimates

The procedure for obtaining the cover  is the same as
explained above with a total of R = 10 000 bootstrap sam-
ples being used. The results are given in the form of rank–
abundance plots in  Fig. 4 and Figs S8 and S11 in Sup-
plementary material. Rank tables for all facies and medi-
ums are shown in Fig. 5 and Figs S7 and S10 in
Supplementary material, along with the number of sam-
ples for each case. A rank table with phylotype relative
covers is available in Fig. S2 in Supplementary material.

Table 1 presents a comparison of covers obtained

ρk
BS

Fig. 3. Data resampling bootstrap estimate for 
N = 10 samples. In spite of this low number of 
samples it is possible to get a hint of the under-
lying distribution. The estimate overshoots 
because for such low amount of samples not all 
OTUs have been detected and therefore the 
detected OTUs attain a higher relative cover so 
the sum of the relative covers adds up to unity. 
The inset shows how the bootstrap estimate 
improves for N = 100 as expected and approx-
imates satisfactorily the target distribution.

Table 1. Comparisons of covers and clone relative abundances from
fig. 6 in Bonheyo and colleagues (submitted) for the proximal slope
facies.

Phylotype
Clone 
abundance (%)

Cover 
estimate (%)

Beta-proteobacteria 22 10 ± 4
Cyanobacteria 16 18 ± 3
Aquificales 15 4 ± 2
Alpha proteobacteria 11 17 ± 4
Unknown division 9 14 ± 4
Green sulfur bacteria 9 5 ± 2
BCF group 7 9 ± 3
Delta proteobacteria 3 3 ± 1
Candidate division OP-11 2 5 ± 2
Green non-sulfur bacteria 2 5 ± 3
Thermus/deinococcus group 1 2 ± 2
Gamma proteobacteria 1 1 ± 1
Firmicutes Negligible 3 ± 2
Eukaryota, chloroplasts Negligible 1 ± 1
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through the resampling method and nominal clone abun-
dances (fig. 6 in G. Bonheyo et al., submitted) for the
proximal slope facies. The results are not wholly different:
nominal clone library abundances are not completely mis-
leading, although it is evident that library creation biases
seems to have overepresented certain phylogenetic
groups. Aquificales, for example, seem to have been over-
represented by a factor of more than three and beta-
proteobacteria by a factor of two.

As can be seen, only the Pond and Proximal Slope
facies have enough number of samples for the resulting
covers to be statistically meaningful. Therefore, only cover

distributions for these mediums and facies are presented.
In the case of the ranked tables, nonetheless, even for
three or four samples the results offer a qualitative idea
of relative covers: the fact that the reported OTUs, and not
others, are present is suggestive of a higher cover,
although it cannot be quantified as would be the case with
a larger sample size.

In the case of the Pond and Proximal Slope the covers
seem to fit a power law for the water samples, in contrast
with the substrate, where they do not. In the latter case,
the rank–abundance curve is steeper, with the most dom-
inant organisms having relatively more cover than in the
former case.

It can also be noticed that among the highest ranking
OTUs, there is a certain degree of commonality in the
case of the water samples, but not in the substrate. This
is in contrast with the reported biodiversity pattern, which
is different for each facies in both facies and mediums
(Fouke et al., 2003; G. Bonheyo et al., submitted). We
conclude that difference reflects the fact that the fluid
motion provides a downstream flush of cells that is absent
in the substrate. Remarkably, this is only noticeable for
organisms with highest covers; less abundant organisms
are niche dependent. Also, of the top ranking OTUs in the
water very few appear in the top ranks of the sediment. If
encrustment in substrate or adherence to the surface bio-
film were a random process, it would be expected that the
bacteria with highest cover in water would also have the
highest cover in the substrate. As this is not the case, it
can be concluded that encrustment or surface biofilm
adherence is not random: some species are more able to
avoid it (or provoke it) than others.

Table 2 presents the putative metabolic characteristics
of the OTUs with highest cover, deduced from close rela-
tives (in terms of 16S rRNA similarity). Although crude,
lacking any other genomic information this is the only way
to obtain a glimpse of the most abundant metabolisms. In
agreement with Spear (Spear et al., 2005), hydrogen
metabolism seems to be a common feature in this spring.

Finally, we comment briefly on the highest cover organ-
ism identified by our analysis. Operational taxonomical
unit 5 (using the 3% OTU definition) seems to have high-
est cover in all facies in the pond and the water samples
from the apron and channel and proximal slope. This OTU
is an unknown beta-proteobacterium and corresponds to
OTU 8 in the 1% definition, and splits up into several
different OTUs under the 0.5% definition. This seems to
indicate that using too fine a distinction between
sequences in the definition of OTUs is not ecologically
useful. Consistent with this, high variances for cover esti-
mations are noticed in the case of the 0.5% definition,
suggesting that this may be too narrow a distinction for
OTU definitions. Another possible explanation is, of
course, that the sample size is too small.

Fig. 4. Plots of relative cover versus relative rank for the 3% definition 
in normal and log–log axis. Relative covers are covers divided by the 
lowest cover. An OTU with rank i has the ith highest cover. Relative 
rank is rank divided by the total number of OTUs. The filter samples 
from the pond and proximal slope facies seem to be well-described 
by a power law, within the limits imposed by the small amount of 
samples used (i.e. steps in the lower right end). The substrate sample 
plot curves upwards.
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Fig. 5. Operational taxonomical units with highest coverage for the 3% difference definition for different facies and media. V, vent; AC, apron 
channel; P, pond; PS, proximal slope; DS, distal slope (Fouke et al., 2003). Figures are relative covers with their variances. Numbers are 
identification OTU numbers given in Fig. S3 in Supplementary material. Black symbols mark OTUs that are present in another medium in the 
same facies. Blue symbols mark OTUs that are present in another facies in the same medium. Colours indicate phylotypes according to the code 
in Fig. S2 in Supplementary material. For reasons of space only the OTUs with highest covers are shown.
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Conclusion

We have presented a computational method that uses
clone library information to provide a large-scale estimate
of relative coarse grained abundance or cover. Even
though the role of an organism in an environment is not
necessarily proportional to its abundance, this estimate
can be used to generate hypotheses as to which bacterial
OTUs have the potential for significantly influencing the
ecosystem; thus our technique supplies possible candi-
dates for later quantitative work involving (for example)
hybridization probes.

The resampling method has been used with data from
travertine-forming hot springs at Yellowstone National
Park to provide estimations of relative covers for different
facies and mediums. Operational taxonomical units with
highest cover are prime candidates to influence the
degasing of CO2 which, in turn, produces calcium carbon-
ate precipitation and ultimately gives rise to the formation
of the travertine terraces. The data for covers seem to fit
well a power law for the water samples.

We report substantial commonality of species with high-
est cover in the water medium, but not in the substrate or
between media in the same facies. This fact can be attrib-
uted to the water downflush of bacteria. In any case,
commonality would be expected to be limited to bacteria
with highest cover, because there is very little commonal-
ity of OTUs between facies (Fouke et al., 2003). Lack of
commonality between water and substrate samples indi-
cates that substrate encrustment and surface biofilm

adherence is not random, with some OTUs being able to
avoid or provoke it.

The use of three different sets of OTU definitions per-
mits us to explore the issue of the proper definition of
OTUs/species. We conclude that differentiating OTUs by
0.5% may be excessive and advocate the 1% difference
definition.

Acknowledgements

We acknowledge helpful discussions with Bruce Fouke,
Alison Murray and Philip Hugenholtz. This research was
supported by the National Science Foundation through
Grant NSF-EAR-0221743.

References

Alexander, B., Andersen, J.H., Cox, R.P., and Imhoff, J.F.
(2002) Phylogeny of green sulfur bacteria on the basis of
gene sequences of 16S rRNA and of the Fenna-Matthews-
Olson protein. Arch Microbiol 178: 131–140.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.,
Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein data-
base search programs. Nucleic Acids Res 25: 3389–
3402.

Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995) Phylo-
genetic identification and in situ detection of individual
microbial cells without cultivation. FEMS Microbiol Rev 59:
143–169.

Table 2. Putative metabolic characteristics of the OTUs with highest cover.

OUT no. (3%) Putative metabolism Closest BLAST match

25 H and S oxidation AJ320224 (88%) (Eder and Huber, 2002)
AJ320219 (88%) (Eder and Huber, 2002)

7 Fe(III) reduction,
H oxidation,
S reduction

AF335183 (88%) (Lonergan et al., 1996)

8 Anoxygenic photosynthesis, AJ290834 (91%) (Alexander et al., 2002)
Fe(II) oxidation Y18253 (92%) (Heising et al., 1999)

36 Heterotrophic AB062105 (98%) (Hiraishi et al., 2002)
183 Heterotrophic AF137381 (91%) (Chelius and Triplett, 2000)
181 ? No close cultivated rep
64 ? No close cultivated rep
51 H and S oxidation AJ320224 (88%) (Eder and Huber, 2002)

AJ320219 (88%) (Eder and Huber, 2002)
22 ? No close cultivated rep
5 H oxidation AB009829 (94%) (Hayashi et al., 1999)

AJ131694 (93%) (Stohr et al., 2001)
23 H and S oxidation AJ320224 (88%) (Eder and Huber, 2002)

AJ320219 (88%) (Lonergan et al., 1996)
1 ? No close cultivated rep.

55 ? No close cultivated rep.

Each OTU was compared with GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.html) data through BLAST (Altschul et al., 1997) and
assumed to have a similar metabolism to the closest matches. The third column gives the GenBank accession numbers for best matches with
known metabolism along with the percentage similarity in the 16 s rRNA gene and references for each accession number. Although crude, this
method gives a rough idea of the possible environmental role of each OTU.

http://www.ncbi.nlm.nih.gov/Genbank/index.html


Estimation of microbial cover by resampling 1153

© 2006 The Authors
Journal compilation © 2006 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 8, 1145–1154

Chelius, M.K., and Triplett, E.W. (2000) Dyadobacter fermen-
tans gn. nov., sp. nov., a novel Gram-negative bacterium
isolated from surface-sterilized Zea mays stems. Int J Syst
Evol Microbiol 50: 751–758.

Chernick, M.R. (1999) Bootstrap Methods, A Practitioner
Guide. New York, NY, USA: Wiley.

Ding, C., and Cantor, C.R. (2004) Quantitative analysis of
nucleic acids – the last few years of progress. J Biochem
Mol Biol 37: 1.

Eder, W., and Huber, R. (2002) New isolates and physiolog-
ical properties of the aquificales and description of Ther-
mocrinis albus sp. nov. Extremophiles 6: 309–318.

Efron, B. (1979) Bootstrap methods: another look at the
jackknife. Ann Stat 7: 1–26.

Efron, B., and Tibshirani, R.J. (1993) An Introduction to the
Bootstrap. Boca Raton, FL, USA: Chapman & Hall/CRC.

Felsenstein, J. (1985) Confidence limits on phylogenetics: an
approach using the bootstrap. Evolution 39: 783–791.

Fouke, B., Farmer, J., Des Marais, D., Pratt, L., Sturchio, N.,
Burns, P., and Discipulo, M. (2000) Depositional facies and
aqueous-solid geochemistry of travertine depositing hot
springs (Angel Terrace, Mammoth Hot Springs, Yellow-
stone National Park, USA). J Sediment Res 70: 565–585.

Fouke, B., Bonheyo, G., Sanzenbacher, B., and Frias-Lopez,
J. (2003) Partitioning of bacterial communities between
travertine depositional facies at Mammoth Hot Springs,
Yellowstone National Park, USA. Can J Earth Sci 40:
1531–1548.

García Martín, H. (2004) Statistical Analysis of Highly Corre-
lated Systems in Biology and Physics. PhD Thesis, Univer-
sity of Illinois at Urbana-Champaign, Department of Physics.

Hayashi, N.R., Ishida, T., Yokota, A., Kodama, T., and Iga-
rashi, Y. (1999) Hydrogenophilus thermoluteolus gen. nov.,
sp. nov., a termophilic, facultatively chemolithoautotrophic,
hydrogen-oxidizing bacterium. Int J Syst Bacteriol 49: 783–
786.

He, F., and Gaston, K.J. (2000) Estimating species abun-
dance from occurrence. Am Nat 156: 553–559.

Head, I., Saunders, J., and Pickup, R. (1998) Microbial evo-
lution, diversity and ecology: a decade of ribosomal RNA
analysis of uncultivated microorganisms. Microbial Ecol
35: 1–21.

Heising, S., Richter, L., Ludwig, W., and Schink, B. (1999)
Chlorobium ferrooxidans sp. nov., a phototrophic green
sulfur bacterium that oxidizes ferrous iron in coculture with
a ‘Geospirillum’ sp. strain. Arch Microbiol 172: 116–124.

Hiraishi, A., Yonemitsu, Y., Matsushita, M., Shin, Y., Kuraishi,
H., and Kawahara, K. (2002) Characterization of Porphy-
robacter sanguineus sp. nov., an aerobic bacteriochloro-
phyll-containing bacterium capable of degrading biphenyl
and dibenzofuran. Arch Microbiol 178: 45–52.

Kunin, W.E. (1998) Extrapolating species abundance across
spatial scales. Science 281: 1513–1515.

Kunin, W.E. (2000) Scaling down: on the challenge of esti-
mating abundance from occurrence patterns. Am Nat 156:
560–566.

Lonergan, D., Lenter, H., Coates, J., Phillips, J., Schmidt, T.,
and Lovley, D. (1996) Phylogenetic analysis of dissimila-
tory Fe(III)-reducing bacteria. J Bacteriol 178: 2402–2408.

Muyzer, G., de Waal, E.C., and Uitterlinden, G.A. (1993)
Profiling of complex populations by denaturating gradient

gel electrophoresis analysis of polymerase chain reaction-
amplified genes coding for 16S rRNA. Appl Environ Micro-
biol 59: 695–700.

Olsen, G.J., Lane, D.J., Giovannoni, S.J., and Pace, N.
(1986) Microbial ecology and evolution: a ribosomal RNA
approach. Annu Rev Microbiol 40: 337–365.

Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J. (1986)
The analysis of natural microbial populations by ribosomal
RNA sequences. Adv Microb Ecol 9: 1–55.

Shao, J., and Tu, D. (1995) The Jackknife and Bootstrap.
New York, NY, USA: Springer.

Spear, J., Walker, J., McCollom, T., and Pace, N. (2005)
Hydrogen and bioenergetics in the Yellowstone geothermal
ecosystem. Proc Natl Acad Sci USA 102: 2555–2560.

Stohr, R., Waberski, A., Liesack, W., Voelker, H., Wehmeyer,
U., and Thomm, M. (2001) Hydrogenophilus hirschii sp.
nov., a novel thermophilic hydrogen-oxidizing beta-proteo-
bacterium isolated from Yellowstone National Park. Int J
Syst Evol Microbiol 51: 481–488.

Wintzingerode, F.V., Göbel, U.B., and Stackebrandt, E.
(1997) Determination of microbial diversity in environmen-
tal samples: pitfalls of PCR-based rRNA analysis. FEMS
Microbiol Rev 21: 213–229.

Zoetendal, E.G., Collier, C.T., Koike, S., Mackie, R.I., and
Gaskins, H.R. (2004) Molecular ecological analysis of the
gastrointestinal microbiota: a review. J Nutr 134: 465–472.

Supplementary material
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Appendix S1. Bootstrap applicability
Appendix S2. Clone library size and cover estimates
Appendix S3. Montecarlo generation of probability
distributions
Appendix S4. Finite size effects on relative cover estimation

Fig. S1. Example of how to calculate the estimates of the
cover  and relative cover  for a given number of samples
according to Eqs 4 and 5. Only information of presence or
absence of a given OTU is used.
Fig. S2. Phylotype relative covers and variances for each
facies and medium. Each present phylotype is identified by
a colour throughout the whole paper. Numbers change for
each grouping (phylotypes and 3%, 1%, 0.5% differences).
The phylotype relative abudances are the sum of relative
covers of OTUs belonging to a given phylotype. The vari-
ances are the square root of the sum of squared variances.
Fig. S3. OTU numbers with their corresponding defining
sequence and division for 3% difference definition.
Fig. S4. Colour version of Fig. 5.
Fig. S5. Plots of relative cover versus relative rank for the
3% definition in normal (above) and log–log axis (below).
Relative covers are covers divided by the lowest cover. An
OTU with rank i has the ith highest cover. Relative rank is
rank divided by the total number of OTUs. Only the filter
samples from the pond and proximal slope facies seem to be
well-described by a power law, within the limits imposed by
the small amount of samples used (i.e. steps in the lower
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right end). Substrate sample plots from both facies curve
upwards.
Fig. S6. OTU numbers with their corresponding defining
sequence and division for 1% difference definition.
Fig. S7. OTU covers for the 1% difference definition. For
reasons of space only the OTUs with highest cover are
shown.
Fig. S8. Plots of relative covers versus relative rank for the
1% difference definition in normal (above) and log–log axis
(below).
Fig. S9. OTU numbers with their corresponding defining
sequence and division for 0.5% difference definition.

Fig. S10. OTU covers for the 0.5% difference definition. For
reasons of space only the OTUs with highest covers are
shown.
Fig. S11. Plots of relative covers versus relative rank for the
0.5% difference definition in normal (above) and log–log axis
(below).
Fig. S12. Data resampling bootstrap estimates for d = 0.3,
1, 2 (top to bottom). Results are similar as for the d = 0.65
case.
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