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We present an explanation for the widely reported power-law
species—-area relationship (SAR), which relates the area occupied by
a biome to the number of species that it supports. We argue that
power-law SARs are a robust consequence of a skewed species
abundance distribution resembling a lognormal with higher rarity,
together with the observation that individuals of a given species
tend to cluster. We show that the precise form of the SAR
transcends the specific details of organism interactions, enabling
us to characterize its broad trends across taxa.

clustering | lognormal

here are an estimated 5-10 million nonmicrobial species on

earth (1). This estimate is based on the extrapolation of
sampled data rather than on a thorough count. Understanding
the spatial distribution of biodiversity is of practical importance,
providing information regarding the probability of species ex-
tinction due to loss of habitat (2) and the design of reserves that
can protect the greatest amount of biological diversity (3, 4). In
addition, the spatial distribution of species is an important factor
governing a wide range of key biological phenomena, including
competition (5), division of niche space (6), and the effect of
disturbances (7).

One of the main tools for extrapolation is the species—area
relationship (SAR), relating area, 4, to the number of species it
supports, S. Several functional forms have been demonstrated
for the SAR (8-10), but the power-law form, in which the
number of species is a constant power of the area § = cA4%, is most
commonly cited (10, 11). This form is reported (3) for climates
ranging from temperate to tropical and for such different
organisms as plants, birds, insects, mammals, and fish; this
functional dependence also was recently extended to bacteria
(12) and microbial eukaryotes (13). The exponent z has been
reported to depend on habitat, scale, and taxa (3), with values in
the range 0.1-0.4 for plants and birds in island groups [the most
frequent values being in the range 0.2-0.4 (14)], values near
unity for intercontinental scales, and a value as small as 0.05 for
microbes (12). The widely reported occurrence of this functional
form is indicative of a very robust mechanism, transcending the
specific details of organism interactions. Explanations for the
occurrence of this power-law SAR focusing on abundance
distributions (15, 16), the allocation of individuals (17-23), or
population dynamics (24-26) have been proposed. Nonetheless,
there remains no consensus as to the common occurrence of the
power-law SAR itself nor the systematics of the SAR exponents
z. Modern theoretical work assuming self-similarity (27) permits
neither a calculation of the SAR exponent nor its variation across
taxa. Thus, the key questions (11) are (i) why is the power-law
relationship so commonly reported? and (i) what factors ac-
count for the observed distribution of exponent values?

In this paper, we show that the SAR of an ecosystem depends
primarily on the distribution of mean minimum distances be-
tween conspecific individuals and is, therefore, determined by
the statistics of extremes. We then proceed to show that the
power-law SAR is a very good description whenever two con-
ditions are fulfilled: (i) individuals of each species cluster; and
(ii) the abundance distribution for the species is similar to
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Preston’s lognormal (15) [i.e., the fraction of species with n
individuals is a Gaussian function of log(n)] but with a higher
rarity. Clustering or aggregation is reported for most species (28,
29) and lognormal abundance distributions are commonly re-
ported (24, 27), although for many ecosystems other functional
forms provide better fits (16, 30).

Our findings follow purely from statistical geometry and do
not involve ecosystem internal dynamics processes, such as
competition, selection, immigration, speciation, or the effects of
landscape variability, which does not mean that they are imma-
terial but rather that they are relevant only in as much as they
affect the two properties above. A similar separation of ultimate
and immediate causes for the SAR has been suggested by He and
Legendre (31). We find that the appearance of an effective
power-law SAR is robust to small changes in the details of the
clustering and the abundance distribution and give some insight
into the factors that may determine systematic trends in the
variation of the SAR exponent z across taxonomic groups.

Although the importance of clustering and abundance distri-
butions equal or close to lognormals has been discussed in the
past (16, 17,19-23, 27, 32), the present paper links both facts and
extreme statistics to explain the robustness and the prevalence of
the power-law SAR.

Results and Discussion

A Continuum Definition of the Species Area Rule and Its Relation to
Extremal Statistics. The SAR is commonly measured in field
settings by imposing a grid on a given area and averaging the
number of species found throughout all possible groups of
nonoverlapping grid cells. We will refer to the number of species
found in an area 4 averaged in this way as Sg(A). For the purpose
of analysis, it is more convenient to use a continuum version of
this concept, Sc(A), defined to be the number of species found
in a circular area around a given origin averaged over all possible
origins (see Fig. 6, which is published as supporting information
on the PNAS web site). Sc and S are quantitatively equivalent,
with the former automatically ensuring nested sampling within
the biome, which is particularly relevant because it is known that
when the sampling grid is not nested, the SAR is not a power law
but exhibits downward curvature (3).

Assume that there are S species with n, individuals (s = 1, 2,
3...8) in a biome ) with area 4. To obtain the statistic
measured by the SAR, we must count how many species are
within a circular area 4 of radius R centered on a particular point
7 within the biome, and then average over all points 7. The
contribution of a single species to the total number of species in
the area A will only depend on the closest individual of species
s to 7; we denote the distance of this individual by #;,. This
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contribution will be 1 if the closest individual is within a radius
R of ¥ and 0 otherwise. Thus, there is a connection between the
SAR and the statistics of extremes (33, 34), although classic
results (35) are not applicable here because of strong correla-
tions between individuals.

Expressed mathematically, this reasoning leads to a formal
expression for Sc(A4) (see Supporting Text, which is published as
supporting information on the PNAS web site):

Sc(A) = D, F5(R) [1]

1
PR = f dFOR 1), 2]
Q

where ®(x) denotes the Heaviside function, which is unity for
positive values of its argument, and zero for negative or null
values of its argument. We refer to the function F*(R) as the
proximity function; it equals the fraction of the area () for which
the closest individual of species s is within radius R. Alterna-
tively, it can be interpreted as the probability that upon selecting
a random point from (), the closest individual of species s is
within a radius R.

This result is exact and valid for any Sc(R), not only power-law
ones. The functions F¥(R) can be calculated for a given distri-
bution of individuals, and their sum exactly gives Sc(R). This link
between SAR and extremal statistics is valid for any functional
dependence of the SAR, although we will concentrate on the
power-law case, because it is the one most often reported (10).

Note the importance of the extremal character of the SAR.
Bulk changes in the distribution of individuals may be irrelevant
for the SAR, as long as the minimum distance individuals stay
the same. Conversely, changes in a small group of well selected
individuals can change the SAR dramatically. This nonlinear
characteristic will prove to be important when considering the
robustness of the SAR below.

Modeling the Distribution of Individuals. Data from thoroughly
sampled plots of several tropical forests (28, 1) show that
individuals cluster in such a way that their correlation function
ps(r) [equivalent to the relative neighborhood density Q(r)"] is
close to a power law. The correlation function py(r) is defined as
the probability that two individuals of species s are at a distance
r from each other.

To properly mimic individual distributions, we will therefore
use a bisecting tree algorithm that creates individual distribu-
tions whose correlation functions are power laws with exponents
oy (see Fig. 7, which is published as supporting information on
the PNAS web site). The algorithm is depicted in Figs. 8 and 9,
which are published as supporting information on the PNAS web
site, to which the reader is referred. It is a continuous and
randomized version of the one proposed by Harte et al. (27) and
avoids some of the problems pointed out by Maddux (36) (see
Fig. 10, which is published as supporting information on the
PNAS web site).

A pool of 6,000 species (500 for each value of w,) was created.
We will see in the following sections which selections of species
from this pool produce a power-law SAR. The individuals’
distribution for each species s is characterized by its cover c.
Cover, or occurrence or range as it is also known, is defined as
the number of squares that a species is present in if a square grid
was to be superimposed on the area (37). Cover is the relevant
quantity for the SAR: It does not matter how many individuals
there are in the minimum area as long as there is at least one.

T10stling, A. & Harte, J. (2000) Science 290, 671 (technical comment).
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Fig. 1. Data collapse of F*(R) for the case of power-law-correlated individ-
uals. (a) Plot of F(R), the fraction of the area Q for which the closest individual
of speciessis within radius R, without scaling. (b) The same data approximately
collapsed onto a universal curve after the functions have been scaled by the
standard deviation o5 and centered around the mean minimum distance (R)*.
For purposes of clarity, only two species for each value of ws; have been
displayed.

In the end, we will be taking the length of the minimum
displacement in the algorithm explained in Fig. 8 as the size of
the minimum area, so cover and abundance will be the same. We
will use them indistinguishably in the rest of the paper. Abun-
dance distributions and cover distributions will therefore be
equivalent.

We are now in position to calculate the proximity functions
F4(R) from these allocations of individuals. Fy(R) is the distri-
bution of minimum distances from points in ) to individuals of
species s. For the case of uncorrelated, independent, identically
distributed variables, the statistics of extremes (maximum or
minimum values) have been heavily studied. In such a case, the
extremal distribution is a universal function, one of the three
classes of Fisher—Tippett distribution (33-35).

This classical result is not applicable here. The distances from
a point in the area () to each of the individuals are not
independent and identically distributed because they are clus-
tered. If an individual is at a distance R from 7, it is very likely
that other individuals are at a distance similar to R: They are
strongly correlated. In the same way, the set of distances from a
point 7 is correlated with the set of distances from a nearby
point 7.
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Our key result, however, is that it is still possible to reduce the
extremal distributions for highly correlated individuals to a
scaling function of the kind:

R-FR°
>, [3]
o

s

F(R) = F(

where F is a universal scaling function (Fig. 1) that is apparently
only weakly dependent on w,, (R)® is the average of fi(r) =
(dF*(R))/(dR))r=r, and oy is the corresponding standard devia-
tion (see Supporting Text for a formal definition). The symbol =
indicates that the equality is only approximate, as can be
observed in Fig. 1.

The function f*(r) represents the fraction of area for which the
closest individuals are at a distance r. Thus, (R)* is the average
minimum distance to an individual of species s from points in the
averaging area ().

The mean minimum distance (R)* and the standard deviation
o, are not independent but follow a relationship well known for
extremal statistics (35): They are linearly related until the former
is comparable to half the side of the square containing the biome
(see Fig. 6; see also Fig. 11, which is published as supporting
information on the PNAS web site). Therefore, the only piece of
information necessary from each species that is relevant regard-
ing the SAR is (R)*. The distribution of these mean minimum
distances will characterize the SAR.

We have used a specific algorithm to obtain power-law
correlation functions, but we will see in The Importance of
Clustering that the specific shape of the correlation function will
not be significant as long as it reproduces aggregation, which is
a common characteristic of populations (21).

Parametrization of Mean Minimum Distances as a Function of Cover.
Intuitively, it is clear that the average minimum distance to an
individual of species s, (R)*, should depend on its cover, c. For
higher covers, the probability of finding an individual of that
species within a radius R of 7 is greater than for smaller values
of ¢. The degree of conspecific clustering also influences (R)".
For extremely aggregated species, the average minimum dis-
tance from an averaging point will increase for a given cover,
whereas, for a spatially random or regular distribution, the
average minimum distance will tend to be smaller. For the
practical purpose of describing the ensemble of species charac-
terized by power-law correlation functions, the distribution of
(R)* can be represented as the sum of a cover-dependent average
value plus a noise term (see Fig. 2):

1
R 0.070043 + 0.000167¢ + &(c), [4]

where the cover-dependent noise term §(c) represents the stochas-
ticity of the algorithm and has a probability distribution derived
from the density of points with a given (R)* and cover c. Each species
in the pool will thus be characterized exclusively by its cover c.
This analysis does not ignore the importance of the spatial
distribution of individuals (38). The fact that we can parametrize the
mean minimum distances as a function of cover is a consequence
of using a specific type of clustering represented by power-law
correlation functions. Nonetheless, we will show below that for
highly clustered, individual distributions, the actual clustering struc-
ture at constant cover only contributes very weakly to the SAR.

Abundance Distributions Compatible with the Power-Law SAR and
Correlation Functions. Because the proximity functions are deter-
mined by the average minimum distance and the distribution of
these can be written as function of cover, it is possible to write
Eq. 1 in a linear form with respect to the fraction of species p(c)
with cover ¢ (see Supporting Text):

10312 | www.pnas.org/cgi/doi/10.1073/pnas.0510605103
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Fig. 2. The dependence of average minimum distance (R)* with the cover c,
as expected, decreases with ¢. The ensemble of (R) can be described as an
stochastic distribution around a cover-dependent average value. Each species
will therefore be characterized by its cover.

Cmax
SC(R) = j h(R> C)p(c)dca [5]
0

where h(R, ¢) is the contribution to the number of species inside
a radius R by species of cover c¢. Bear in mind that it is only
possible to cast Sc(R) in this form because we have chosen a
particular [but well supported by experimental evidence (28,1)]
type of clustering. We will, nonetheless, show that, regarding the
highly averaged statistic that the SAR is (averaged over species
and over origin points 7), the actual cluster structure is unim-
portant for highly clustered distributions, such as those repre-
sented by power-law correlation functions. Therefore, the func-
tion A(r, ¢) will be approximately the same for all highly clustered
distributions (Fig. 12, which is published as supporting informa-
tion on the PNAS web site).

Eq. 5 is a linear system solvable through standard methods
(39). For any functional dependence of Sc(R), it is possible to
find the abundance/cover distributions p(c) compatible with it.
Because it is an underdetermined system, there is always at least
one solution. Furthermore, this solution is not unique; there
exists a set of cover distributions pi(c) (the kernel) that added
to any solution of Eq. 5 produces the same SAR. This wide range
of solutions is a consequence of standard deviations growing
linearly with (R)* (see Field Data for an example), which, in turn,
is a repercussion of the extremal nature of the SAR and the
dimensionality (see Supporting Text for the mathematical de-
tails). Note that these same considerations and the linear
system-solving algorithm can be applied to non-power-law
SARs. Different SAR patterns would give rise to different
compatible abundance distributions, but the properties of the
solution and the procedure to obtain it would be the same.

Not all solutions to Eq. 5, however, are ecologically acceptable.
Because p(c) represents the fraction of species with cover ¢, we must
demand that it remains positive and that its sum is equal to the total
of species. Additionally, one would expect the fraction of species to
have a smooth dependence of ¢ for a stable ecosystem. These
conditions will limit the range of solutions compatible with power-
law SARs for each exponent z and determine which values of the
exponent are more likely to be observed.

The resulting SARs can be seen in Fig. 3 Left. The corre-
sponding abundance distributions are shown in Fig. 4. Instead of

Garcia Martin and Goldenfeld
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Fig. 3. Number of species as estimated by the continuum counting method described in the text, Sc(A), for self-similar (Left), compact cluster (Center), and
Gaussian cluster distributions (Right) of individuals, plotted as a function of sampling area, A. Insets show examples of the individual distributions for a randomly
chosen species. The same cover distribution p(c) as for the power-law correlation function case was used for the compact and Gaussian case. The total cover for
each species was divided in compact groups and randomly spread over the area. The Gaussian case was identically managed, except thatindividuals in each cluster
were distributed by following a Gaussian distribution (plots shown have a clustering coefficient of w = 1.5 and use the same abundance distributions as the
compact cluster case). In all three cases basically the same SARs are obtained, showing that differences in cluster structure only produce lower-order corrections

to the SAR. All SARs display a linear correlation coefficient r? > 0.99.

a continuous function p(c), the solutions have been calculated for
discrete abundance distributions binned according to a logarith-
mic scale of doubling intervals: [1; 2-3; 4-7; 8-15; 16-31; 32-63;
64-127 ...]. For the current case, cover and abundance are
equivalent, and this binning is roughly equivalent to the octave
classification proposed by Preston (15) and is commonly used in
ecology for abundance distributions. Because populations tend
to increase geometrically, the natural variable to be considered
is the logarithm of the abundance (16).

Note the variation with the SAR exponent z of the mode location
and spread. For small z, large covers are preferred, and the
distribution spreads over all possible covers. Such a large cover
would be expected to be applicable to microorganisms, which are
widely accepted to be homogeneously dispersed, with abundance
distribution reflecting selection by the local environment (40).
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Fig. 4. Abundance distributions corresponding to the SARs shown in Fig. 3
Left. Data are plotted as a function of cover (equivalent to abundance in our
case), following Preston’s octave system (15). Lognormal fits to the cover
distributions that produce power-law SARs are shown by the solid line. The fit
is satisfactory, except at low cover, where the lognormal underestimates the
fraction of species, as is typical of observed abundance distributions (24, 27).
Multiple abundance distributions are compatible with the same power-law
exponent z. (Inset) This fact is portrayed through the average degeneracy (g2
(see main text). The average degeneracy drops with growing values of the
exponent z, indicating that high values of z are less robust to changes in the
abundance distribution.

Garcia Martin and Goldenfeld

Conversely, for high exponents z, the mode is centered around low
cover, and the spread of the distribution is much smaller. The
distributions fit rather well to lognormals, except for the fact that
they exhibit more rarity, which is a well known characteristic of
realistic abundance distributions (24, 27).

The Robustness of Scale-Free SARs. The appearance of an effective
power-law SAR is quite robust and arises from a wide range of
species abundance distributions of the form shown in Fig. 4.
Moreover, as stated before, for each exponent z, there are several
cover distributions for Eq. 5 that added to any solution produce
exactly the same SAR. The range of these equivalent solutions is
shown in the Fig. 4 Inset as plot of the average degeneracy (g?) versus
z. The average degeneracy is found by calculating the standard
deviation for all of the degenerate (same value of z) abundance
distributions with respect to the plotted (i.e., mean) one and
averaging its square over all abundances. Taking into account these
two factors, the occurrence of an effective power-law SAR is not
mandatory but is very likely to arise with the type of abundance
distributions commonly reported. Finally, we found that even the
addition of cover distributions to the solution of Eq. 5 not belonging
to its kernel produces acceptable power laws, given the amount of
noise that these plots usually display (3).

These considerations suggest two reasons for why power laws
with exponentsz = 0.2-0.4 are more commonly reported (14). First,
their corresponding species—abundance distributions are spread
relatively evenly over a wide range of cover, and, secondly, the range
of compatible cover distributions p(c) is higher for lower values of
z, as can be seen in the inset of Fig. 4. The explanation for the latter
consideration is that the addition of cover distributions from the
kernel of Eq. 5 is more likely to violate the positivity condition
(p(c) > 0) for high values of z, because the corresponding abun-
dance distributions are almost null for high cover.

The Importance of Clustering. So far, we have shown that the
appearance of the power-law SAR is quite robust to changes in the
abundance distribution: As far as it resembles a lognormal with
extra rarity, everything seems to be in qualitative and even semi-
quantitative agreement with observations. We have not, however,
checked the robustness with regard to changes in the distribution of
individuals. Which characteristic of the individual distributions is
important for the power-law SAR to appear? We now show that the
key factor is clustering, which does not mean that the individuals
must be inhomogeneously distributed; rather, they must form sets
of compact blocks in which individuals are at minimum cover grid
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distance from each other (so abundance and cover stay equivalent),
as graphically shown in Fig. 3 Center Inset (a quantitative measure
of the level of clustering required is given below). With this
criterion, distributions with a power-law correlation function of
exponent close to zero (see Fig. 7) are still effectively clustered
despite being homogenous: The whole area is covered by a single
cluster. As long as individuals cluster in this fashion and their
species’ relative abundance distribution is consistent with the
behavior reported above, a power-law SAR results.

To justify this assertion, consider what would happen to the
distribution of average minimum distances (R)® if a fraction y of
the individuals for each species were to be randomly relocated in the
area. As emphasized above, only the closest individuals are relevant
when calculating (R)*. When individuals are redistributed randomly,
the effect is that they become more evenly distributed over the area
and for every position 7 (see Fig. 6) the closest individual tends, on
average, to be closer. The minimum distances (R)’, therefore,
decrease for a given cover, as can be seen in Fig. 13, which is
published as supporting information on the PNAS web site. As x
increases, the fraction of large (R)* is depleted, and reasonable
abundance distributions (without an inordinate amount of low
cover species) produce an excess of (R)* in the low and middle end.
From Egs. 1 and 3, it follows that these distributions generate
convex log-log plots (negative second derivative), as reported for
random distributions (14), instead of power-law SARs.

Moreover, the clustering does not need to be self-similar. The
structure of the cluster has little bearing on the final SAR. As
shown in Fig. 3, self-similar clusters, compact clusters, or Gaus-
sian-distributed clusters all give basically the same results. The
reason is that, as stated above, only the minimum distances to the
averaging points 7 matter regarding the contribution to the SAR.
The minimum distance to the points in the cluster depends only
on the closest individual and, as long as the individuals are highly
clustered, will be very weakly dependent on the cluster structure.

This property is better explained by considering how the average
minimum distance (R) changes when a new individual is added. To
define d(R)* /dc unambiguously, let us assume that all individuals of
species s are removed from the considered area and are added back
randomly one by one to their previous positions. R(c) is then
defined as the average minimum distance with cover ¢, and R(C*) =
(Ry, where C* is the cover of species s. The derivative dR/dc, or
change of R when a new individual is added, then determines (R)*
through its integration. In the case of clustered distributions, when
a new individual is added, it will on average lie close to one of the
individuals already present. The distribution of minimum distances
will therefore scarcely change, and the change will be largely
independent of the cluster structure (see Fig. 5). This distribution
of minimum distances will change only greatly when a new cluster,
separated from the rest, is created. Therefore, (R)* is more strongly
dependant on the number of clusters than the cluster structure. In
the case of nonclustered distributions, the new individuals are more
likely to appear in the void spaces between individuals. In this case,
the correlation with the position of present points has a greater
effect on the change of (R)(c).

The considerations above suggest that cluster structure has
little effect on the SAR in the case of highly clustered distribu-
tions. This fact can be demonstrated by showing that the same
SAR can be obtained for the given cover distribution by using the
crudest description of clustered distributions: A randomly placed
set of compact blocks of individuals (see Fig. 3 Center Inset). The
same cover distribution p(c) as for the power-law correlation
function case was chosen. The number of groups ng was ran-
domly chosen between a minimum m, and the maximum pos-
sible amount of groups Mg given the species cover ¢ and the
group minimum size m, (Mg = c¢/m,). The leftover cover units
were clustered in groups of size equal to m, and distributed
randomly. A further test that the cluster structure does not have
a great influence on the SAR is obtained by using Gaussian

10314 | www.pnas.org/cgi/doi/10.1073/pnas.0510605103

Fig. 5. Clustered (Right) versus nonclustered (Left) distributions of individ-
uals. Shown is the change in the distribution of minimum distances when a
new individual is introduced. Black points represent species individuals, and
the gray point represents the new individual. The crosses are a subset of
averaging sites for the minimum distances (average is done over all points in
the averaging area, see Fig. 6). Solid arrows represent minimum distances
after the additional individual is added. Dotted arrows show minimum dis-
tances before the additional individual is added. For clustered distributions,
the cluster structure is less relevant for determining minimum distances than
the actual number of clusters. For nonclustered distributions, the relative
position of the new point with respect to the rest has great influence in
determining the minimum distances.

distributed clusters (21) instead of compact clusters (see Fig. 3
Right). As far as the SAR is concerned (clustering details are
doubtlessly important for other statistics), any of these coarse
approximations of individual clustering suffices, with cluster
structure mattering only for lower-order effects. This property
explains why very different clustering patterns display the power-
law SAR and, in particular, how fractally distributed species with
different fractal exponents can still yield a power-law SAR (41,
42). The average over species with different fractal exponents is
dominant over the average over species with the same exponent.

In any of these cases, the proximity functions exhibit good data
collapse, oy and (R)* are proportional, power-law SARs are ob-
tained, and the species—abundance distributions are essentially
unchanged from the power-law-correlated case (Fig. 3; see also
Figs. 14 and 15, which are published as supporting information on
the PNAS web site). The only difference seems to be that standard
deviations tend to be somewhat smaller for the compact cluster
case. For z = 0.2-0.4, we obtain very good fits to power-law SARs
for the new distributions of mean minimum distances, which is not
the case forz = 0.61,0.76: A curvature remains in log-log plots (see
Fig. 3 and Supporting Text for details).

Thus, we conclude that there is another reason for the
commonness of values of z in the range z = 0.2-0.4. The
power-law SAR for these assemblages of species is more robust
to variations in clustering originating in the species’ intrinsic
dynamics or the effect of landscape heterogeneity.

In the case of the Gaussian distribution, a clustering coeffi-
cient v can be defined (based on the ratio of the Gaussian
distribution variance to its minimum value; see Supporting Text)
and its variation allows us to quantitatively investigate the
minimum level of clustering necessary to obtain a power-law
SAR. For the same abundance distribution, a value of w > 5
destroys the power law (i.e., r7 < 0.99; see Fig. 16, which is
published as supporting information on the PNAS web site).

The considerations above may seem to be in contradiction
with previous studies (43, 44), which indicate that the degree of
conspecific aggregation has large effects on the shape of the
SAR. However, there is no contradiction: Our claim is not that
the degree of clustering is unimportant (it is not, as shown in
Figs. 13 and 16) but that highly clustered distributions with the

Garcia Martin and Goldenfeld
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same cover but different cluster structure (i.e., compact, Gauss-
ian, or self-similar clusters) yield the same SAR.

Field Data. To check the validity of our approach with field data, we
used Californian serpentine grassland data collected and analyzed
by Green et al. (45) at the Donald and Sylvia McLaughlin Reserve
at the University of California, Davis, Natural Reserve System. The
particular site (referred to hereafter as the Blue Ridge site) was 64
m?in area and included 37,182 individuals and 24 plant species. The
plot was divided into a square, 16 X 16 grid, and the sampling was
performed in 1998 from early May to late July. These data were
chosen because they are one of the best-characterized in the
literature: The site was completely sampled, and a good fit to a
power-law SAR was reported (see Fig. 17, which is published as
supporting information on the PNAS web site).

By using the raw field data, we have generated the proximity
functions and have verified that the results exhibit the same
characteristics as for the computer-generated data. The functions
F*(R), scaled by the mean and standard deviation, collapse to a
single function; the standard deviation oy and the mean (R)* are
proportional up to finite-size effects; and both Sc and S yield
power-law SARs with very similar exponents (Fig. 17; see also Fig.
18, which is published as supporting information on the PNAS web
site). Our theory could have been falsified if the proximity functions
did not scale in the necessary way, although a power-law SAR based
on S has been well documented in this case.

The distribution of covers is not particularly close to a
lognormal in this example (Fig. 19, which is published as
supporting information on the PNAS web site), but still an
excellent power law SAR is measured, showing the robustness of
the power-law SAR to changes in the cover distribution. This
example perfectly highlights the importance of large standard
deviations oy to explain the robustness of the power-law SARs,
as shown in Fig. 20, which is published as supporting information
on the PNAS web site. Fig. 20 Left shows the actual distribution
of the average minimum distances (R)* against the distribution
that should be present to obtain a power-law SAR with the
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reported exponent, if all standard deviations o, were zero. Fig.
20 Right shows how the contribution of each species is spread
over two standard deviations, therefore compensating for the
inadequate distribution of (R)".

Conclusion

We have shown that the widely reported scaling of number of
species with area is a consequence of the combination of
statistical geometry, extremal statistics, and the generically
observed form of species—abundance distributions. The expo-
nent z is determined by the shape of the abundance distribution.

Furthermore, we have shown that the appearance of power-
law SARs is somewhat independent (robust) of the specific
details of either the abundance distribution or the clustering
mechanism, especially for exponents z = 0.2-0.4, which may
explain its predominance in gathered data (3, 14, 24). One should
therefore expect to find power-law SARs whenever clustering
and lognormal abundance distribution with extra rarity are
observed. The inevitability of the form of the SAR under these
general conditions underscores the need for more sensitive
measures of individual and species-level correlations to charac-
terize usefully complex ecological systems.

Methods

A detailed explanation for the calculations connecting the SAR
and proximity functions (Eq. 1), the algorithms used to produce
individual distributions for the different cluster structures, and
the mathematical details for the solution of Eq. 5, which provides
the abundance distributions compatible with power-law SARs,
are provided in Supporting Text (see also Figs. 21 and 22, which
are published as supporting information on the PNAS web site).
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