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The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal

model. In the model, dislocations are naturally created, without any ad hoc creation rules, by applying a

shearing force to the perfectly periodic ground state. These dislocations diffuse, interact and annihilate

with one another, forming avalanche events. By data collapsing the event energy probability density

function for different shearing rates, a connection to interface depinning dynamics is confirmed. The

relevant critical exponents agree with mean field theory predictions.
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Materials yield and deform plastically under large ex-
ternal stress. While the yield surface and the plastic flow
are well described by various continuum theories [1–3],
what happens microscopically during a plastic deformation
is still not fully understood. On atomic scales, external
stress is carried by localized crystal defects, such as dis-
locations and disclinations. They are created under stress
and interact with each other. Although the properties of
individual defects and their interactions are well known
[4,5], their collective behavior under external stress is
complicated. It gives rise to scale-invariant, power-law-
distributed phenomena [6–12], in strong resemblance to
the scaling behavior near a critical point. These phenomena
include dislocation slip avalanches of a broad range of
sizes and acoustic emission with a power-law power
spectrum.

Recently, evidence has accumulated that these scaling
phenomena reflect an underlying nonequilibrium critical
point [6,7], i.e., a point where the nonequilibrium steady
state fluctuations are governed by a diverging correlation
length [13], as appears to be the case in magnetic materials
[14] and even turbulence [15]. Such a critical point would
exist at the boundary between two distinct regimes, one of
which would be a glassy, activated regime, and the other
would be a genuine plastic flow regime. Up to now, experi-
mental and computational data have focused on the glassy
regime: For example, Weiss et al. have measured the
acoustic emission signal from creep deformation experi-
ments on single crystal ice and found that the event size
distribution follows a power law over 4 decades [7,8].
Miguel et al.’s dislocation dynamics simulations in two
dimensions showed event size distributions following a
power law, with a rate-dependent cutoff, over approxi-
mately 2 decades [9]. Zaiser has reported a data collapse
of the event size distribution with different external stresses
[6].

The purpose of this Letter is to approach plastic defor-
mation from the flow side of the nonequilibrium critical
point, manifested in the strain-rate dependence of the
acoustic emission. Importantly, we are able to systemati-

cally vary the strain rate in simulations, and moreover we
relate the critical point underlying plastic flow at finite
strain rates to the scaling of magnetic domain wall depin-
ning [6,16,17]. We find remarkable agreement between
simulations and analytical mean field theory predictions
of exponents and, in addition, are able to show that the
strain-rate data exhibit collapse. Our results strongly sup-
port the critical point picture of plasticity and suggest new
experiments. We study dislocation avalanches during plas-
tic flows by using the phase field crystal (PFC) model
[18,19]. This approach is well-suited to this problem,
because it can be performed at finite temperature, for large
systems, and over long time periods. The PFC model
describes the dynamics of the local crystalline density field
and has been shown to give an excellent account of numer-
ous materials properties including polycrystalline solidifi-
cation, vacancy diffusion, grain growth, grain boundary
energetics, epitaxial growth, fracture [19], grain coarsen-
ing [20], elasticity [21], dislocation annihilation, glides,
and climb [22], as well as vacancy dynamics [23]. The
model can be derived from density-functional theory and
extended to the case of binary alloys [24]. In this paper, we
augment the model to treat external shearing forces by
adding an advective term to the dynamics near the bound-
ary. By adjusting the shearing force and measuring the
resulting avalanche statistics, a data collapse is obtained
that is consistent with proximity to a domain wall depin-
ning point at finite temperature [6,17].
The model.—The PFC model is given by the free energy

density [18,19]

f ¼ �

2
ðr2 þ 1Þ2�þ r

2
�2 þ �4

4
; (1)

where r is the undercooling and �ð ~x; tÞ is the local density.
The dynamics associated with this free energy is conser-
vative, relaxational and diffusive, and systematically de-
rivable from density-functional theory [25]. In order to
study the plastic response of the PFC model under shear,
we add a shearing term to the dynamical equation:
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is the shearing profile and v0 is the magnitude of the
shearing, � is the penetration depth, � and � control the
range and time scale, respectively, of elastic interactions
(phonon excitations) propagating through the medium
[21], F � R

fð ~xÞddx is the total free energy, and � is the
thermal noise satisfying the fluctuation-dissipation theo-
rem h�ð ~x; tÞ�ð ~x0; t0Þi ¼ ��r2�ð ~x� ~x0Þ�ðt� t0Þ. Here � is
the noise amplitude. It is directly proportional to the tem-
perature kBT. The value of v0 controls the magnitude of the
shearing force; the penetration depth � controls how deep
the shearing force extends into the material. In all simula-
tions we set � � Ly, so the actual value of � does not

affect our simulation results. The boundary conditions are
periodic in x and fixed at y ¼ 0; L. The PFCmodel we used
allows propagating sound modes [21] when � ¼ 0:9; as
long as � is nonzero and Oð1Þ, we do not expect that our
scaling results will be sensitive to its precise value. Values
of � that are Oð10Þ would correspond to very overdamped
dynamics and could model viscoelastic behavior [21] that
is outside the scope of our work.

One of the advantages of using the PFC model is that we
do not have to impose any ad hoc assumptions about the
creation and annihilation of dislocations. Recall that in
dislocation dynamics simulations, dislocations are treated
as elementary particles and usually only the far field inter-
action between dislocations is captured. When dislocations
get too close to each other (a few atomic spacings), the
highly nonlinear interaction between them is not captured
and, more importantly, the annihilation of dislocations is
not accounted for. The standard practice is then to impose
some annihilation rules—dislocations of opposite topo-
logical charges annihilate when they get too close to each
other [9]. Similarly, dislocations have to be created by hand
when the local strain is high. Although these rules are
consistent with our physical intuition, particular ways of
implementing them are sometimes difficult to justify.
However, because the PFC model captures the nonlinear
elastic behavior of a crystal, the interaction between dis-
locations is completely captured. In addition, because the
PFC model simulates the atoms in the lattice (the PFC
density is periodic in its ground state with peaks represent-
ing atoms and troughs interatomic space) but not the dis-
locations themselves, creation and annihilation of them are
also naturally captured as collective excitations of the
lattice. No ad hoc rules or assumptions have to be imposed.

We solved Eq. (2) in a 2D rectangular domain. The
crystal under shear is initially perfectly triangular. As the
crystal is sheared, dislocations are created near the fixed
boundaries y ¼ 0; L where the stress is higher. They then
propagate into the bulk. They interact with each other and

form avalanches. To quantify the avalanche activity, we
calculate the total speed of all dislocations in the domain:
~VðtÞ ¼ PNdisðtÞ

i¼1 j ~uij, where NdisðtÞ is the number of disloca-
tions in the system at time t and ~ui is the velocity of the ith
dislocation. This measure is similar to the acoustic emis-
sion signal in Weiss et al.’s single crystal ice experiments.
As dislocations are generated and interact with each other
in the domain, in addition to the fast avalanching dynam-
ics, quasistatic structures, such as grain boundaries, can
form. These slow dynamics should not be measured be-
cause they are really not part of the avalanches. This leads
to the distinction between fast-moving and slowly moving
dislocations introduced by Miguel et al. [9]. In essence,
they introduced a cutoff in dislocation speed and measure
only dislocations with speed higher than the cutoff. In that
way, they tried to retain only the avalanche activities in the
acoustic emission signals.
We employed a different method to tackle this problem.

Instead of simulating a very large system, with all sorts of
dislocation activities, we simulated a moderate size of
system with approximately 10 000 atoms. For this system
size, dislocation avalanches come and go; i.e., not many
dislocations are left in the system after every avalanche. As
a result, no grain boundaries, or slow dynamics, are present
and we obtain clean avalanche data. It is fair to mention
that this method severely limits the system size and thus the
resulting avalanche sizes. The system size we chose con-
tains approximately 100 dislocations in the largest ava-
lanche events. The trade-off, which we exploit, is the
cleanness of the avalanche signal and the speed of the
resulting simulations. Different methods, such as those
we mentioned above, would have to be employed if larger
avalanche sizes are desired.
We count the number of nearest neighbors of each atom,

ni, by using the Delaunay triangulation method in compu-
tational geometry [26,27]. Because we have ni ¼ 6 for
every atom in a perfectly triangular crystal, and because
there are no vacancies introduced in the version of the PFC
model simulated here (vacancies can be introduced into the
PFC model by breaking the up-down symmetry of the PFC
free energy, as detailed in Ref. [23]), any atom having ni �
6 is sitting next to a dislocation. Because the PFC exhibits
emergent rigidity in the region of the phase diagram
studied here, these ‘‘defect atoms’’ essentially track the
locations of dislocations. Instead of measuring the total
sum of dislocation speeds ~VðtÞ, we then measure the total
sum of these defect atoms’ speeds:

VðtÞ ¼ XNðtÞ

i¼1

j ~vij; (4)

where NðtÞ is the number of defect atoms and ~vi is the
velocity of defect atom i. Note that the velocity of a defect
atom is not the velocity of any atom in the system, but the
velocity of the dislocation it is tracking. Because the two
measures ~VðtÞ and VðtÞ are proportional to each other with
the proportionality constant being the mean number of
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defect atoms sitting next to a dislocation, we can use the
latter for convenience. Figure 1 shows the typical time
dependence of NðtÞ from a simulation with parameters
dx ¼ 3�=8, dt ¼ 0:025, Lx ¼ Ly ¼ 512, ð�Þ2 ¼ 255,

� ¼ 0:9, v0 ¼ 1:581, �0 ¼ 0:3, � ¼ 1:5, � ¼ 40:0, and
r ¼ �0:5. NðtÞ changes as dislocations are being created
and annihilated. There are intermittent events of creation of
dislocations, with the number of dislocations involved
ranging from a few to 80. Figure 2 shows the acoustic
emission signal VðtÞ in the same simulation. Similar to
NðtÞ, the signal ranges from 0 to 400, with intermittent
pulses of various sizes. In order to measure the avalanche
event size, we introduce a cutoff to the signal Vcut ¼ 15 for
shear velocity v0 ¼ 0:765. The cutoff is increased propor-

tionally to the shear velocity and is primarily used to define
the avalanche size, rather than to remove slowly moving
dislocations from the analysis. The signal is then parti-
tioned into individual avalanche events. The probability
distribution of the event energy

E ¼
Z tend

tbegin

V2ðtÞdt; (5)

where tbegin and tend are the starting and ending time of the

event, respectively, can be measured. For cutoff values
small compared to the signal (i.e., Vcut ¼ 15, correspond-
ing to the activity of 3–4 dislocations due to thermal creep),
the result is insensitive to the cutoff. For each shearing rate,
at least 10 different realizations are run to obtain a statis-
tically meaningful result. This results in about 8000 ava-
lanche events for each shearing rate. Figure 3 shows the
event size distribution for different shearing rates. We find
that the distribution follows a power law for small event
sizes and cuts off at larger sizes, with the cutoff size
depending on the shearing rate. The data are somewhat
noisier towards the end of large event size because large
events are rare.
Scaling behavior of the avalanches.—Analogous to the

scaling behavior in models of crackling noise [14], we
propose that there is a nonequilibrium critical point v0 ¼
vc in the system, and we expect, as E ! 1, the data around
the critical point to collapse in the form

PðE; �vÞ � E�	fðE �v
Þ; (6)

where PðE; �vÞ is the probability distribution of event en-
ergy E and �v � 1� v0=vc is the reduced shearing rate,
with v0 being the shearing rate and vc being the critical
shearing rate. 	 and 
 are two critical exponents. As �v !
0, PðE; �vÞ tends to a power law PðE; �vÞ � E�	. Figure 4
shows an attempt to collapse the data, by using the equiva-
lent scaling form PðE; �vÞ � �v	
gðE �v
Þ, with 	 ¼ 1:5,

 ¼ 2, and vc ¼ 1:5 and universal scaling function gðxÞ ¼
x�	fðxÞ shown in the collapse. Logarithmic binning is
performed and singletons are ignored to obtain PðE; �vÞ.
We obtain a satisfactory data collapse over 4 decades, with
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FIG. 1. The number of dislocations in a sheared PFC crystal.
Intermittent events with sizes differing in orders of magnitude
are observed. Parameters are ð�Þ2 ¼ 255, � ¼ 0:9, v0 ¼ 1:581,
�0 ¼ 0:3, � ¼ 1:5, � ¼ 40:0, and r ¼ �0:5.
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FIG. 2. The total speed of defect atoms in a sheared PFC
crystal. Intermittent events with sizes differing in orders of
magnitude are observed. Parameters are ð�Þ2 ¼ 255, � ¼ 0:9,
v0 ¼ 1:581, �0 ¼ 0:3, � ¼ 1:5, � ¼ 40:0, and r ¼ �0:5.

FIG. 3 (color online). The probability distribution of the event
energy during dislocation avalanches, for different values of the
shearing rates.
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�v ranging from 0.15 to 0.49. As E ! 0, the collapse

function gðxÞ approaches the power law gðxÞ � x�3=2,
which agrees with fðxÞ ! const in Eq. (6) for x ! 0 and
	 ¼ 3=2. The collapse constrains the numerical exponent
to the range 	 ¼ 1:5� 0:2. This agrees with the experi-
mental result of 	 ¼ 1:5 [28]. Similarly, for adiabatic stress
increase in the pinned regime, Zaiser finds 	 ¼ 1:4 [6].
Dimiduk et al. report 	 ¼ 1:5–1:6 in experiments at fixed
compression stress that leads to shearing [29]. In contrast
to the universal distribution of time-integrated avalanche
signals discussed here [see Eq. (5)], the signal amplitude
statistics likely depend on details of the system: The dis-
tribution of energy amplitudes decays with the exponent
	 ¼ 1:8 [9] in simulations and with 	 ¼ 1:6 in experiments
[9]. The acoustic emission intensity exponent is 	 ¼ 1:8 in
simulations at fixed stress [30].

Studies at adiabatically slow shear rate have suggested
analogies to the depinning transition of magnetic domain
walls [6,17,31], although one exponent that may deviate in
simulations is discussed in Ref. [32]. The exponents found
in our collapse are consistent with the domain wall depin-
ning picture. As argued previously, mean field theory
(MFT) is expected to give exact scaling results in this
case. The MFT values for the exponent 	 is 	 ¼ 1:5
[6,17]. The MFT value for the exponent 
 can be calcu-
lated from the MFTof Refs. [16,17,31] to be
 ¼ 2. These
MFT values for the exponents 	 and 
 lead to a satisfac-
tory collapse of the numerical avalanche size distributions
at different shear rates. At zero temperature the critical
shear rate is vc ¼ 0. Our simulations, however, are per-
formed at finite temperature T. Temperature-induced dis-
location creep causes the critical shear rate to appear to be
nonzero, with the apparent vcðTÞ ! 0 as T ! 0. It also
causes the scaling collapse in Fig. 4 to be less precise than
in zero temperature studies. We hope to report on a theo-
retical investigation of the temperature dependence and a
comparison with experiments at finite shear rate in a future
publication.
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