
Effect of Weak Rotation on Large-Scale Circulation Cessations in Turbulent Convection

Michael Assaf,1 Luiza Angheluta,1,2 and Nigel Goldenfeld1

1Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics,
1110 West Green Street, Urbana, Illinois 61801-3080, USA

2Physics of Geological Processes, Department of Physics, University of Oslo, Norway
(Received 13 May 2012; published 16 August 2012)

We investigate the effect of weak rotation on the large-scale circulation (LSC) of turbulent Rayleigh-

Bénard convection, using the theory for cessations in a low-dimensional stochastic model of the flow

previously studied. We determine the cessation frequency of the LSC as a function of rotation, and

calculate the statistics of the amplitude and azimuthal velocity fluctuations of the LSC as a function of the

rotation rate for different Rayleigh numbers. Furthermore, we show that the tails of the reorientation PDF

remain unchanged for rotating systems, while the distribution of the LSC amplitude and correspondingly

the cessation frequency are strongly affected by rotation. Our results are in close agreement with

experimental observations.
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The complex phenomenon of thermal turbulence, also
known as turbulent Rayleigh-Bénard convection , develops
in a heated fluid layer under gravity by a succession of
instabilities in the thermal transport due to an interplay
between different driving forces such as buoyancy, viscous
drag, and diffusion. This balance between different trans-
port mechanisms is quantified by the Rayleigh number
Ra ¼ �0g�TL

3=�� determining the flow state. Here, �0

is the isobaric thermal expansion coefficient, g is the
acceleration of gravity, �T is the temperature gap between
the bottom and top plates, L is the height of the fluid
container, � is the thermal diffusivity, and � is the kine-
matic viscosity. When Ra is sufficiently large, the flow
becomes turbulent and a large-scale circulation (LSC) is
formed. The latter is maintained by the emission of plumes
from the top and bottom surfaces which, due to buoyancy,
move upwards (hot plumes) or downwards (cold plumes)
[1–3]. This LSC is known to appear in various rotating
natural systems, such as atmospheric [4] and oceanic flows
[5], and the dynamo driving planetary magnetic fields [6].

Such a circulating state does not persist indefinitely,
however, and cessations followed by restarted flows at a
new azimuthal angle occur sporadically [3,7–10]. The
complex dynamics of the LSC is influenced by the heat
and momentum transport mechanisms, as well as by the
geometry and aspect ratio � (diameter over height) of the
fluid container. In experiments using a cylindrical geome-
try with � ¼ 1, the LSC occurs in a nearly vertical plane,
whereas for the aspect ratio � ¼ 0:5, two convection rolls
may coexist [11]. Recent studies also report that the LSC
flow reversals and its tilted orientation are strongly influ-
enced by the corner flows that form in a rectangular ge-
ometry [12]. The dynamics of a nearly vertical, single LSC
can be modeled by a set of nonlinear stochastic differential
equations that describe the amplitude of azimuthal tem-
perature variations, �, and the azimuthal orientation angle,

�0 [13,14]. This model is found to be in excellent agree-
ment with the typical fluctuations of the LSC [13,14]. Yet,
the cessations require an extension of the model since
boundary terms describing the thermal and viscous diffu-
sion become dominant terms when the amplitudes are
small, as they inevitably must be during a cessation.
With this extension, the model is able to provide an ex-
cellent description of the cessation rates, as well as the LSC
amplitude and azimuthal velocity probability distribution
functions (PDFs) including the tails [15].
The purpose of this Letter is to study the effect of weak

rotation on the statistics of the main degrees of freedom,
i.e., amplitude and azimuthal velocity, and the LSC
cessation events in Rayleigh-Bénard convection. Here
the rotation rate � is conveniently represented by the

dimensionless convective Rossby number, Ro ¼
ð2�Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0g�T=L

p
, which measures the buoyancy relative

to the Coriolis force. The total heat transport, measured by
the Nusselt number, N , relative to heat diffusion, has a
nontrivial dependence on Ro, exhibiting three different
regimes [10,16,17]: (i) an LSC-dominant regime at
Ro�1 & Ro�1

c ’ 0:4 where buoyancy dominates over
Coriolis effects; (ii) an Ekman-vortex pumping regime at
Ro�1

c < Ro�1 < Ro�1
max where the Coriolis force dominates

over the buoyancy force for a nonvanishing Ro�1
c ; and

(iii) a regime at Ro�1 > Ro�1
max (typically Ro�1

max ’ 3� 10
depending on Ra [10]) where the velocity gradients,
and thus heat transport by convection, are suppressed via
the Taylor-Proudman effect [10]. Here Ro�1

c scales as 1=�
due to a finite-size effect [18,19], while Ro�1

max is deter-
mined by an interplay between the Ekman enhancement
and the Taylor-Proudman depression.
In this work we focus only on weak rotations, where the

LSC is still present, namely in the regime 0< Ro�1 & 0:6.
Recent experimental studies report a nonmonotonic depen-
dence of the LSC mean amplitude on �� Ro�1 [10]. The
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mean amplitude initially increases with increasing Ro�1

until Ro�1 becomes close to (but below) a critical value,
Ro�1

c . The origin of this increase is not well understood,
but may be associated with centripetal effects [20]; see
below. For higher Ro�1, the detaching plumes from the
thermal boundary layers (BLs) interact with the Ekman-
vortex structure that forms at Ro�1

c , so that these plumes
can no longer feed the LSC [21]. Thus, the mean amplitude
decreases at Ro�1 * Ro�1

c . For Ro�1 * 0:6� 1 (depend-
ing on Ra, Prandtl number, and �), the mean amplitude
becomes comparable to the root-mean-square temperature
fluctuations about the mean, and thus becomes ill defined
[10]. This nonmonotonic behavior of the LSC mean am-
plitude on Ro�1 is accompanied by a nonmonotonic
behavior of the LSC cessation frequency, and this is what
we calculate below. This dependence contrasts with our
result for the tails of the reorientation statistics, namely the
probability for a large angle change in the LSC plane,
which we show is almost independent of the rotation
strength in this weak rotation regime.

Statistics of the LSC dynamics with rotation.—The
evolution of the dimensionless LSC amplitude, �, and
azimuthal angle, �0, in the absence of rotations is governed
by the stochastic differential equations [15]

_� ¼ Aþ ��� ��3=2 þ f�ðtÞ;
€�0 ¼ �

�
�1�þ �1

� _�

��

ffiffiffi
�

p �
_�0 þ f _�ðtÞ:

(1)

Here, A is a constant related to the heat transport or the
inverse of the thermal BL width, � ¼ �=�0 is the dimen-
sionless LSC amplitude, where � is the physical LSC

amplitude, �0 � �T	Re3=2=Ra is the mean LSC ampli-
tude, and	 ¼ �=� is the Prandtl number. Furthermore, the
Reynolds number is defined as Re ¼ ð��=� _�Þ2 � 1, where
�� and � _� are the turnover times in the LSC and azimuthal
planes, respectively, while time in Eq. (1) is measured in
units of the corresponding turnover times �� and � _� [15].
Also, delta-correlated Gaussian stochastic forcing terms
f�ðtÞ and f _�ðtÞ with amplitudes D� and D _� are included
in Eq. (1) to simulate the effect of turbulent fluctuations.
Finally, the coefficients �;�;�1; �1 ¼ Oð1Þ are included
to account for the geometric coefficients from the spatial
volume averaging procedure [13,14]. Note, that in Eq. (1)
all tildes (which appeared in Ref. [15] due to time rescal-
ing) were removed for clarity.

In the presence of rotation, the equation for the LSC
amplitude [the first of Eq. (1)] remains the same, since the
same drag and bouyancy forces drive the motion of the
LSC in the vertical plane. Yet, the coefficients in front of
these terms may depend on Ro, to account for the experi-
mental fact that the mean dimensionless LSC amplitude �0

is a function of Ro�1. To find this Ro dependence, we
notice that the coefficients �ðRoÞ, �ðRoÞ, and AðRoÞ are
related to each other by the constraints that the PDF Pð�Þ is

centered around � ¼ �0 and has a width D� [15].
Employing these constraints, we obtain

�ðRoÞ¼1�3A=�0; �ðRoÞ¼��1=2
0 ð1�2A=�0Þ: (2)

Now we formulate a simple theory that can explain the
dependency of these coefficients as well as that of �0 on�.
We assume that � ¼ �0 is constant (because the geomet-
rical coefficient in the buoyancy should not be affected by
rotation) and expand � ¼ �0ð1þ b1�þ b2�

2Þ (assum-
ing that the thickness of the viscous BL is dependent on�),
where �0¼1�3A0, �0 ¼ 1� 2A0, and A0 ¼ Að� ¼ 0Þ.
In this way, we can find expressions for Að�Þ and �0ð�Þ by
equating these expressions for � and � with Eq. (2), and
keeping terms up to Oð�2Þ. We obtain �0ð�Þ ’
1� 2b1�þ ð3b21 � 2b2Þ�2 and Að�Þ ¼ A0�0ð�Þ. Note
that plugging this into Eq. (2), we obtain �ðRoÞ ¼ �0 and

�ðRoÞ ’ �0�
�1=2
0 . Because �ðRoÞ represents the inverse

Rossby-dependent width of the viscous BL, the latter in-

creases as �1=2
0 for 0< Ro�1 < Ro�1

c , in agreement with

recent experimental observations [20,21]. The origin of the
increase in the viscous BL width in the weak-rotation
regime can be associated with centripetal effects [20] that
tend to increase the BL width according to the Prandtl-
Blasius theory.
In Fig. 1 we plot the experimental mean amplitude �0

and A (normalized by their value at zero rotation) as a
function of Ro�1. According to our theory, provided that
�0 is well approximated by a parabolic expansion in �, in
the weak rotation regime, A=A0 should coincide with
�0=�0ð0Þ, and this is indeed the case. The insets in this
figure confirm the dependencies of � and � on � for two
different Ra numbers. Note that in order to extract A
from the experimental data, we have used the relation
A ¼ BD�=2 [15] where B and D� are specified below.
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FIG. 1 (color online). Shown are the values of �0 (triangles),
and A (squares). The dashed line is a parabolic fit. The upper

inset shows � (triangles) compared with ��1=2
0 (squares), while

the dashed line is a parabolic fit. The lower inset shows � and the
dashed line is a guide for the eye. All quantities are normalized
by their nonrotating values.
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Since the equation for the LSC amplitude [the first of
Eq. (1)] is independent of the azimuthal reorientation angle
�0, we can analyse it separately by writing the correspond-
ing Fokker-Planck equation and finding its stationary
solution [15]. Defining the potential

Vð�Þ ¼ �BD�

2
��

�
1� 3BD�

2�0

�
�2

2

þ 2

5�1=2
0

�
1� BD�

�0

�
�5=2; (3)

the frequency-dependent PDF, Pð�;RoÞ, takes the form
Pð�;RoÞ ¼ Ce�2Vð�Þ=D� : (4)

Here C is a normalization constant, D� ¼ D�ðRoÞ is the

PDF width in the Gaussian regime, Pð� � �0Þ �
e�ð���0Þ2=ð2D�Þ, and B ¼ BðRoÞ is the logarithmic deriva-
tive of the PDF at small �, since Pð� � 1Þ � eB�.

Furthermore, it has been shown that the cessation fre-
quency—the frequency of events that the LSC amplitude
goes below a threshold amplitude �min � 1—is given by

!�1 ¼ 1

�min

Z �min

0
d��Tð��Þ;

Tð��Þ � e�2D�1½Vð��Þ�Vð1Þ�: (5)

Here Tð��Þ is the mean time it takes the amplitude to reach
�� � 1.

In order to compare the results for the PDF [Eq. (4)] and
cessation frequency [Eq. (5)] with experimental results, we
extract the values of BðRoÞ and D�ðRoÞ from the experi-
mental PDFs, just as was done for the nonrotating case
[15]. In Fig. 2, we compare experimental and theoretical
PDFs for different Ro and Ra numbers, in the weakly
rotating regime. The theoretical predictions hold well
for various rotation frequencies, provided that we use the
corresponding frequency-dependent parameters. As
Ro�1 �� is increased, the width of the PDF increases
compared to the nonrotating case while the slope of the left
tail decreases. This functional dependence of the experi-
mental B and D� on Ro�1 is shown in the lower panels of
Fig. 2 for two different Ra numbers.

Finally, in Fig. 3 we compare the theoretical and experi-
mental results for the cessation frequency as functions of
Ro for different Ra values and observe good agreement.
Here, the threshold for cessation was chosen to be 0.15.

Rotation rate of the azimuthal plane:—In this section we
investigate the effect of weak rotation on the PDF for the
angular velocity of the azimuthal plane [the second of
Eq. (1)]. Rotation brings about a Coriolis force which is

proportional to ~�� ~V�, where j ~V�j � � [13]. As a result,
the effect of rotation on the azimuthal dynamics amounts to
the addition of a term of the form ���ð�0Þ to the equation
for _�0, where � ¼ Oð1Þ is some function of the azimuthal
angle [22]. Therefore, the second of Eq. (1) under rotation
becomes

€� 0 ¼ ���ð�0Þ �
�
�1�þ �1

� _�

��

ffiffiffi
�

p �
_�0 þ f _�ðtÞ: (6)

As expected, the addition of the first term on the right-hand
side of Eq. (6) changes the steady state solution for _� at
� ’ 1 from _� ¼ 0 at zero rotation to _��� at�> 0 [since
�ð�0Þ ¼ Oð1Þ and � _�=�� � 1]. This has been experimen-
tally observed by Zhong and Ahlers [10] in the weakly
rotating regime, below Ro�1

c . The reason for this limitation
is that the steady-state solution is valid only as long as the
parameters involved are of order unity, which holds for not
too large�, but breaks down for high rotation frequencies.
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FIG. 2 (color online). Panels (a)–(f) show the PDFs of the LSC
rescaled amplitude � for different Ro and Ra numbers. Each row
represents a different Ra number. The experimental PDFs are
represented by triangles, while the fitting curves (dashed line)
are the analytical PDFs [Eq. (4)] with parameters B and D�

determined experimentally for each Ro number. The width of the
PDFs initially increases with increasing Ro�1 while the slope of
the left tail decreases. This can be seen in panels (g) and (h)
where we plot the experimental B (squares) andD� (triangles) as
functions of Ro�1 for different Ra.
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FIG. 3 (color online). Cessation frequency (normalized by its
nonrotating value) as a function of Ro�1 for different values of
Ra. The triangles are experimental results, while the squares are
the theoretical predictions according to Eq. (5). The cessation
threshold chosen here was 0.15.
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In the latter case, when Ekman vortices start to form, the
model becomes invalid.

Apart from the steady-state solution that represents the
mean angular velocity, here we are mainly interested in
the rare events of large deviations in ��� _�. The tails of
the PDF Pð��Þwere calculated in Ref. [15] for nonrotating
systems. Here, we show that these tails are unchanged by
the rotation. The reason is that the term due to rotation
added to Eq. (6) is proportional to �. As a result, large
deviations in ��, which occur when � � 1, are still gov-
erned by the term proportional to

ffiffiffi
�

p
_�0 in Eq. (6), which is

dominant in the regime of � � 1 [15]. This term does not
depend on the rotation frequency. Therefore, the tails of
Pð��Þ remain unchanged when rotation is introduced, as
shown in Fig. 4.

Indeed, in the nonrotating case the tails have been found
to scale as a power law with exponent �4, while experi-
mental results for nonrotating systems demonstrate a
power-law tail with exponent �� 4:3 [15]. Figure 4(b)
shows experimental PDFs, Pð��Þ, for different Ro num-
bers. In panel (c) we show PDFs averaged over a wide
range of Ro�1 numbers [10] (generally 0< Ro�1 < 0:6),
for different Ra numbers. The dashed lines in panels (b)
and (c) are the theoretical prediction: a power law curve
with exponent �4:3. The excellent agreement between
theory and experiment indicates that the exponent for
rotating systems remains unchanged compared to the

nonrotating case. Note that panels (b) and (c) are shown
on a log-log scale which only allows us to show the positive
_� region. We have checked that the left and right tails of the
PDF scale with the same exponent within 5%.
Angular-dependent asymmetry of the PDF for azimuthal

fluctuations:—We conclude by pointing out an interesting
corollary of our analysis. From Fig. 4(a), it is apparent that
in contrast to the nonrotating case, the PDF Pð��Þ devel-
ops an asymmetric shape as a function of �� that is an
increasing function of the rotation rate, up to the vicinity of
1=Ro� 1=Roc. We speculate that this asymmetry in the
azimuthal velocity fluctuations is related to spiral defects
and their preferred motion. Near the onset of convection,
spiral defects are formed in the presence of rotation and
their azimuthal motion is against the direction of rotation
[23]. With increasing Ra number, the flow becomes more
turbulent and the effect of the individual vortices on the
azimuthal velocity statistics diminishes [24]. However, as
the strength of the LSC decreases when Ro�1 exceeds
Ro�1

c , the flow, hence the velocity statistics, is more influ-
enced by the preferred motion of the spiral defects in the
presence of rotation, which would explain the observed
broadening of the left tail of the PDF Pð��Þ corresponding
to high fluctuations against the direction of rotation. This
effect of the left-tail broadening with increasing � can be
clearly seen in Fig. 4(a). However, the mechanism relating
the asymmetry in Pð��Þ to spiral defects needs further
elaboration, and is beyond the scope of this Letter.
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