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We report exact predictions for universal scaling exponents and scaling functions associated with the

distribution of the maximum collective avalanche propagation velocities vm in the mean field theory of the

interface depinning transition. We derive the extreme value distribution PðvmjTÞ for the maximum

velocities in avalanches of fixed duration T and verify the results by numerical simulation near the critical

point. We find that the tail of the distribution of maximum velocity for an arbitrary avalanche duration, vm,

scales as PðvmÞ � v�2
m for large vm. These results account for the observed power-law distribution of the

maximum amplitudes in acoustic emission experiments of crystal plasticity and are also broadly

applicable to other systems in the mean-field interface depinning universality class, ranging from magnets

to earthquakes.
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Avalanche phenomena have been observed in a wide
variety of disordered systems that exhibit crackling noise
near a depinning transition. Examples include Barkhausen
noise in soft magnetic materials [1,2], elastic depinning of
charge density waves [3,4], dynamics of superconductors
[5], seismic activity in earthquakes [6], acoustic emission
in mesoscopic crystal plasticity [7], and fracture propaga-
tion [8]. Although these varying materials or systems have
different microscopic details, on long length scales the
statistical scaling behavior of avalanches appears to be
universal. For example, the distributions of avalanche sizes
in sheared crystals and in slowly magnetized soft magnets
are both captured by the mean field theory of a slowly
driven elastic interface in a disordered medium [4,6,9–12].

Recent experimental studies of slip avalanches in mes-
ocopic crystal plasticity have reported that the distribution
of the maximum amplitude Am of the acoustic emission
(AE) signal from each avalanche follows a power law
PðAmÞ � A

��
m , where the exponent � � 2 [7,13–17].

Since each avalanche contributes with only one maximum
amplitude to the histogram, many events are required to
obtain good statistics for PðAmÞ. Thus, the variations in the
experimental values of � depend on the experimental
statistics. Owing to the proportionality between the AE
amplitude Am and the collective velocity vm of dislocations
[14], the distributions PðAmÞ and PðvmÞ should be charac-
terized by the same scaling exponents and scaling func-
tions. So far, a theoretical prediction for the value of the
exponent � has been lacking.

In this Letter, we present the first theoretical calculation
of the maximum velocity distribution, establishing a con-
nection to the known classes of extreme value statistics
(EVS) of correlated variables. In particular, we derive the
distribution of maximum velocities PðvmÞ from a mean
field interface depinning model. We first show that the

probability distribution function (PDF) of the maximum
velocity for avalanches of fixed duration T follows a uni-

versal scaling form PðvmjTÞ ¼ ð2vmTÞ�1=2Fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vm=T

p Þ,
with a scaling function FðxÞ that can be derived exactly
by a mapping to an equivalent problem of random excur-
sions of Brownian motion in a logarithmic potential.
Although a general theory of extremal statistics for
strongly correlated variables is not known, much progress
has been made already for several classes of power-law
correlated noise with an 1=!� (where ! is the frequency)
power spectrum. Brownian noise corresponds to the par-
ticular case where � ¼ 2 [18,19]. The EVS of power-law
correlated noise typically have a robust scaling form, but
the scaling function depends on boundary conditions, the
value from which the maximum is measured, as well as
other constraints on the time evolution. For example, dif-
ferent scaling functions are obtained for the maximum
heights of periodic Gaussian interfaces: if the maximum
is measured relative to the spatially averaged height, the
corresponding EVS is determined by the so-called Airy
distribution function [18,20–22], whereas measuring the
maximum relative to the boundary value leads to the
Rayleigh distribution [19,23]. Here we demonstrate that
our problem of maximum heights of amplitudes of mean
field avalanches is equivalent to a related problem whose
exact solution obeys the same scaling form with a distinct
function. Finally, we show that the overall distribution
scales like PðvmÞ � v�2

m by integrating PðvmjTÞ against
the duration PDF FðTÞ. The results of this study are ex-
pected to be broadly applicable to plasticity, earthquakes,
Barkhausen noise in soft magnets, and many other systems
in the mean field interface depinning universality class.
Our starting point is a zero-dimensional model of a

slowly driven elastic interface in a disordered medium,
also known as the Alessandro-Beatrice-Bertotti-Montorsi
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(ABBM) model [24], corresponding to the dynamics of a
particle pulled by an elastic spring and an external field
through a random force landscape. The position of the
particle uðtÞ corresponds to the center-of-mass displace-
ment of the interface uðtÞ ¼ L�d

R
ddxuðx; tÞ, given the

local displacement uðx; tÞ at position x along the interface
length L and time t for an interface of dimension d em-
bedded in a ðdþ 1Þ-dimensional space. In the ABBM
model, the evolution of the particle velocity v ¼ du=dt
is obtained by a time-differentiation of the mean field
equation of motion of the interface and given as [10,24,25]

dv

dt
¼ �kvþ cþ ffiffiffi

v
p

�ðtÞ; (1)

where c is the constant rate, k is the elastic coupling
constant, and �ðtÞ is Gaussian white noise with autocorre-
lation h�ðtÞ�ðt0Þi ¼ 2D�ðt� t0Þ where D is a constant
measure of disorder. In numerous studies, this model has
been shown to reproduce well the universal scaling laws
for the size and duration distributions near quasistatic
depinning for systems with long-range interactions
[1,10,24–26]. It is relevant for the calculations below to
recall the power law decay of the distribution of avalanche

durations FTðTÞ � T�ð2�c=DÞfTð TT�Þ, with a rate-dependent

exponent [1,24,25] and such that, for T � T� and c ! 0,
the distribution of durations follows the mean field scaling
law FTðTÞ � T�2. The exponential scaling function
fTðT=T�Þ and the cutoff T�ðkÞ to the scale invariance can
be computed analytically in the limit of c ¼ 0 [25,27].
The probability distribution for the velocity follows the
Fokker-Planck equation

@tPðv; tÞ ¼ @vððkv� cÞPðv; tÞÞþD@2vðvPðv; tÞÞ; (2)

which has a steady state solution given by

PðvÞ ¼ v�1þ~c
~k~c

�ð~cÞ e
�~kv; (3)

where �ðzÞ is the Gamma function, ~c ¼ c=D, and ~k ¼ k=D
[1,24,25,27]. The power-law exponent depends linearly on
the driving rate c, such that in the adiabatic limit c ! 0,
the distribution approaches the well-known v�1 scaling,
which has been verified by experiments on the dynamics of
domain walls in ferromagnets [28].

Maximum velocity distribution for avalanches of fixed
duration.—By a change of variables to x ¼ 2

ffiffiffi
v

p
, Eq. (1)

transforms to an additive-noise Langevin equation
dx=dt ¼ �kx=2þ ð2c�DÞ=xþ �ðtÞ. The additional
1=x term comes from the Ito interpretation of the multi-
plicative noise in Eq. (1). This choice yields the correct
Eq. (2). Thus, in the adiabatic limit, near depinning, where
c ! 0 and k ! 0, the velocity evolution can be mapped
onto a one-dimensional (1D) Brownian motion in a loga-
rithmic potential. An avalanche of duration T corresponds
to an excursion, i.e., a path xðtÞ with xð0Þ ¼ xðTÞ ¼ 0
and xðtÞ> 0 for 0< t < T. The extreme displacement

distribution for Brownian excursions can be derived using
the path integral formalism found in Refs. [21,23]. We
adapt this method to our problem and determine the
cumulative distribution CRWðxmjTÞ of the maximum dis-
placement during excursions for a Brownian motion in
a logarithmic trap. The cumulative distribution can be
defined as CRWðxmjTÞ ¼

lim
�!0

RxðTÞ¼�
xð0Þ¼� Dxe�

R
T

0
dtLE

Q
t
�ðxðtÞÞ�ðxm � xðtÞÞ

RxðTÞ¼�
xð0Þ¼� Dxe�

R
T

0
dtLE

Q
t
�ðxðtÞÞ

; (4)

where the Lagrangian is given by LE ¼ 1
4D ð _xþ 1

xÞ2. The
theta function products in the numerator indicate that only
paths that stay positive-valued between t ¼ 0 and t ¼ T
and have a maximum distance from the origin not greater
than xm are counted. The denominator is a normalization
factor, counting any excursion of duration T without regard
to its maximum value. The Fokker-Planck equation
[Eq. (2)] with c ¼ k ¼ 0 in terms of the variable x is
Bessel’s equation of order 1; thus, the path integrals from
Eq. (4) can be written as the matrix elements

h�j expð�ĤTÞj�i of the Hamiltonian Ĥ ¼ �@2x � @x=xþ
1=x2 with appropriate boundary conditions and then
expanded in terms of Bessel functions (details are pre-
sented in Ref. [29]). From CRWðxmjTÞ, the PDF PðxmjTÞ ¼
@xmCðxmjTÞ is determined. We find that the PðxmjTÞ has the
scaling form

PðxmjTÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2DT

p F

�
xmffiffiffiffiffiffiffiffiffiffi
2DT

p
�
; (5)

with scaling function

FðxÞ ¼ 1

x5

X1
n¼1

�2
n

ðJ2ð�nÞÞ2
�
�2
n

x2
� 4

�
e��2

n=2x
2
; (6)

where �n is the nth zero of the Bessel function J1ðxÞ. From
Eq. (5), it also follows that the average maximum displace-

ment scales with duration as T1=2, like the average maxi-
mum relative heights of fluctuating interfaces [20,21,23].
Returning to the physical variable v, we find that the
maximum velocity distribution in avalanches of fixed
duration T has the scaling form

PðvmjTÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vmDT

p F

0
@ ffiffiffiffiffiffiffiffiffi

2vm

DT

s 1
A: (7)

The average maximum velocity dependence on avalanche
duration T can be obtained as the first moment of the
conditional distribution

hvmjTi ¼
Z 1

0
dvmvmPðvmjTÞ ¼ DT; (8)

where we used the fact that
R
dxx2FðxÞ ¼ 2.
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Using the same method, we also determine that the PDF
of the instantaneous velocity v at time t in an avalanche of
duration T is given by

Pðv; tjTÞ ¼ v

�
T

DtðT � tÞ
�
2
e�vT=ðDtðT�tÞÞ: (9)

The first moment of Pðv; tjTÞ gives hvðtÞjTi ¼
2DtðT � tÞ=T, which is the parabolic average avalanche
shape discussed in Refs. [2,30,31].

We have verified Eqs. (7) and (8) numerically by inte-
grating Eq. (1) (see Fig. 1). Large durations (T � 1000)
must be explored for the scaling function to converge to the
one predicted by our continuum derivation, but the results
are in accord with predictions. We obtained improved
statistical results for data collapse to the same scaling
function using the computationally efficient discrete
velocity shell model [6,31], which obtains its scaling
regime at smaller durations. These results will be reported
elsewhere [29].

Although our analytical calculation was performed
exactly only for k ¼ c ¼ 0, the scaling form in Eq. (7)
gives a good collapse of simulation data away from criti-
cality as well, even when including durations T � T�ðkÞ
[29]. Therefore the dependence of the scaling form on k
is likely to be weak. Since the driving rate parameter ~c is
dimensionless, one might anticipate that nonzero values of
the driving rate c modify the scaling function but not the
scaling form. Indeed, the exact form of the modification
can be calculated analytically with a slight generalization
of the above calculation [29].

Maximum and instantaneous velocity statistics.—We
now investigate the maximum velocity distribution inte-
grated over all durations. This distribution is equivalent to
the PðAmÞ of the maximum AE amplitude, Am, deduced
from the time series in AE experiments on crystal plasticity.
From Eq. (9), we can determine the PDF of the maximum
avalanche velocity PðvmÞ by integrating PðvmjTÞ over
avalanche durations T weighted by their distribution
FTðTÞ � T�2þ~c, for T � T�. Our numerics indicate that
PðvmjTÞ satisfies Eq. (7) at least for durations T < T�. Thus,
the distribution of PðvmÞ is

PðvmÞ �
Z T�

0

dT

T2�~c
PðvmjTÞ; (10)

and near depinning, where T� ! 1, we have

PðvmÞ � v�2þ~c
m : (11)

Similarly, we obtain the PDF PðvÞ for the instantaneous
velocity v at an arbitrary time by integrating Pðv; tjTÞ over
the time spent in an avalanche of duration T and then over
the distribution of durations, giving

PðvÞ ¼
Z T�

0
dT

Z T

0
dtPðv; tjTÞFðTÞ (12)

� v
Z T�

0

dT

T3�~c
Gðv=DTÞ; (13)

where GðxÞ ¼ R
1
0 duðuð1� uÞÞ�2 exp½�xðuð1� uÞÞ�1�.

GðxÞ � x�1 for x � 1 and decays exponentially for x�1,
so in the limit T� ! 1, we recover the PðvÞ � v�1þ~c

scaling predicted by the steady state equation for ~c < 1
[10,24,25,27]. In Fig. 2, we show numerically calculated

FIG. 1 (color online). (a) Data collapse of the PDF PðvmjTÞ
from numerical integration of Eq. (1) in the Ito interpretation
with parameter values k ¼ c ¼ 0 and D ¼ 1=2. Large durations
(T � 1000) are required to obtain the scaling regime where
Eq. (7) holds. The collapse fits very well with the analytically
determined FðxÞ, which is represented by the solid line. The inset
figure shows the PðvmjTÞ’s for different durations before the
rescaling. In panel (b), we show hvmjTi as a function of T, with
the solid line representing the analytical solution from Eq. (8)
with D ¼ 1=2.
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PDFs PðvmÞ and PðvÞ for various values of c. The distribu-
tions agree with the predictions of Eqs. (11) and (3).

In addition to the exponents, it would be interesting to
measure the predicted scaling form of the PðvmjTÞ over
fixed durations from AE experiments, in the corresponding
regime where the distribution of maximum amplitudes
PðAmÞ � A�2

m was observed [7,13–17]. The distribution

PðvmjTÞ was calculated exactly only at the depinning
transition with k ¼ c ¼ 0, but numerical evidence strongly
suggests that an indistinguishable scaling form occurs
away from the transition, whose dependence on the elastic
coupling constant and the driving rate still needs to be
studied in more detail. Finally, what happens beyond
mean field theory remains an open question, despite the
apparently good agreement of our calculations with avail-
able experimental data. For instance, it is unclear to us
whether the exponent � in PðvmÞ ¼ v

��
m is expressible in

terms of the other avalanche exponents (�,�	z, etc.) or if it
is independent.
L. A. is grateful for support from the Center of

Excellence for Physics of Geological Processes. This
work was partially supported by the National Science
Foundation through Grants No. DMR-1005209 and
No. DMS-1069224.

[1] S. Zapperi, P. Cizeau, G. Durin, and H. E. Stanley, Phys.

Rev. B 58, 6353 (1998).
[2] J. Sethna, K. Dahmen, and C. Myers, Nature (London)

410, 242 (2001).
[3] P. A. Lee and T.M. Rice, Phys. Rev. B 19, 3970 (1979).
[4] S. Brazovskii and T. Nattermann, Adv. Phys. 53, 177

(2004).
[5] S. Field, J. Witt, F. Nori, and X. Ling, Phys. Rev. Lett. 74,

1206 (1995).
[6] D. Fisher, Phys. Rep. 301, 113 (1998).
[7] M. Miguel, A. Vespignani, S. Zapperi, J. Weiss, and J.

Grasso, Nature (London) 410, 667 (2001).
[8] S. Zapperi, P. Ray, H. E. Stanley, and A. Vespignani, Phys.

Rev. E 59, 5049 (1999).
[9] M. Miguel, A. Vespignani, M. Zaiser, and S. Zapperi,

Phys. Rev. Lett. 89, 165501 (2002).
[10] P. Le Doussal and K. J. Wiese, Phys. Rev. E 79, 051105

(2009).
[11] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Phys. Rev. Lett.

102, 175501 (2009).
[12] G. Tsekenis, N. Goldenfeld, and K.A. Dahmen, Phys.

Rev. Lett. 106, 105501 (2011).
[13] J. Weiss and J. Grasso, J. Phys. Chem. B 101, 6113 (1997).
[14] J. Weiss, F. Lahaie, and J. Grasso, J. Geophys. Res. 105,

433 (2000).
[15] T. Richeton, J. Weiss, and F. Louchet, Acta Mater. 53,

4463 (2005).
[16] J. Weiss, T. Richeton, F. Louchet, F. Chmelik, P. Dobron,

D. Entemeyer, M. Lebyodkin, T. Lebedkina, C.

Fressengeas, and R. J. McDonald, Phys. Rev. B 76,
224110 (2007).

[17] C. Fressengeas, A. J. Beaudoin, D. Entemeyer, T.

Lebedkina, M. Lebyodkin, and V. Taupin, Phys. Rev. B

79, 014108 (2009).
[18] G. Györgyi, N. R. Moloney, K. Ozogány, and Z. Rácz,
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