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Determination of the universality class of crystal plasticity
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PACS 61.72.Ff – Direct observation of dislocations and other defects (etch pits, decoration,
electron microscopy, X-ray topography, etc.)

PACS 62.20.fq – Plasticity and superplasticity
PACS 64.60.av – Cracks, sandpiles, avalanches, and earthquakes

Abstract – Although scaling phenomena have long been documented in crystalline plasticity, the
universality class has been difficult to identify due to the rarity of avalanche events, which require
large system sizes and long times in order to accurately measure scaling exponents and functions.
Here we present comprehensive simulations of two-dimensional dislocation dynamics under shear,
using finite-size scaling to extract scaling exponents and the avalanche profile scaling function from
time-resolved measurements of slip avalanches. Our results provide compelling evidence that both
the static and dynamic universality classes are consistent with the mean-field interface depinning
model.

Copyright c© EPLA, 2013

Introduction. – Crystalline materials deform in a
plastic, irreversible manner at sufficiently high stresses.
Bulk continuum theories successfully reproduce several
macroscopic features of plastic flow such as the stress-
strain curve and work-hardening [1]. This success is mainly
due to the fluctuations averaging out at macroscopic scales
and therefore deformation appears to be smooth in time
and homogeneous in space.
At microscopic scales crystal deformation is both

spatially inhomogeneous and intermittent in time. Topo-
logical defects such as dislocations move intermittently,
causing the material to slip in discrete steps. Those
defects interact with each other via long-range elastic
interactions, mediated through the material and respond
collectively to external stresses, giving slip avalanches.
These slip avalanches are characterized by long-range
correlations in space and time giving avalanche sizes
distributed according to power laws for several orders of
magnitude [2–11].
Despite intense computational efforts to predict a

complete set of universal (i.e., detail-independent)
power-law exponents, there is an ongoing debate about
their values and the corresponding universality class of
systems that share the same exponents. Several previous
discrete dislocation dynamics simulations have reported
contradictory results for static and dynamic power-law
exponents [11–13]. (We call properties “dynamic” if
they resolve the dynamics during the propagation of an

individual avalanche, and “static” if they do not.) Here
we present a consistent picture that strongly supports
the claim that both the statics and the dynamics of
crystal plasticity simulations agree with mean-field theory
predictions [11,14], and therefore they both belong to
the mean-field interface depinning universality class of
all systems that share the same exponents. Knowing the
values of these exponents is important for applications.
For example the dynamical depinning exponent β [13]
describes how quickly a crystal deforms as a function
of stress, and the power spectra [12] can be used to
obtain information about the deformation mechanism
and material failure from nondestructive acoustic emis-
sion experiments. Also, the power-law exponents do not
depend on material details, so they are an ideal quantity
for testing the predictions of the simple coarse-grained
models against experiments.
A simple analytic mean-field theory (MFT) [11,14] for

plasticity suggests that the observed power-law scaling
of the slip-avalanche size distributions is the reflection of
an underlying non-equilibrium critical point [15], which is
located at the critical flow stress. The critical flow stress
τc separates a low stress phase where the material can
sustain loads on the time scales of typical experiments,
from a high stress phase where the material “flows”, or
“gives way” by deforming continually under loads that
are higher than the critical flow stress. Below the critical
flow stress τc, at fixed stress τ < τc, the average strain
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Table 1: Table of exponents. Our results from 2D DDD are in the second column. The exponents we extracted directly
from our simulations are under “extracted” while the exponents we derived through exponent relations (indirectly) are
under “derived”. Results from literature from full 3D DDD are indicated with * and from 2D DDD with creation and
annihilation in the steady state with +. In the numerical work of refs. [11,16], the total slip of the dislocation system
Laval =

∫
T
dt
∑N

i=1 bivi(t) =
∑N

i=1 biΔxi,T was used to measure the size of the avalanche. Our simulations calculate the collective

slip produced by the dislocation system S =
∫
T
dt
∑N

i=1 |vi(t)|=
∑N

i=1 |Δxi,T | during an avalanche. For large avalanches, the
total slip and collective slip have the same scaling behavior.

Exponent Extracted MFT Simulations Experiments

κ 1.5± 0.1 3
2 1.4 [16], 1.6 [17], 1.5 [18]* 1.5–1.6 [10], 1.5 [23]

1
σ 2± 0.2 2 2 [16], 2 [18]* 2 [16]

1+ κ−1
2−σνz 1.3± 0.1 4

3 1.8± 0.2 [2]+ 1.5± 0.1 [5],1.6± 0.05 [2]

2−σνz
σ 3± 0.3 3

〈S〉 ∼ T
1
σνz 2± 0.2 2 1.5 [12]+

〈T 〉 ∼ Sσνz 0.5± 0.1 1
2

1
σνz (fig. 1) 2± 0.1 2 1.5 [12]+

1
σνz (fig. 2) 1.9± 0.1 2 1.5 [12]+

ν (fig. 3) 1± 0.2 1

β (fig. 3) 1.17± 0.02 1 1.8± 0.1 [13]+

derived

1+ κ−1σνz 2± 0.2 2

νz 1± 0.1 1

z 1± 0.2 1

β 1± 0.25 1 1.8± 0.1 [13]+

rate is zero and dislocations are stuck on average, while
above the critical flow stress they move continually, and
the average strain rate is nonzero. For stresses τ > τc the
strain rate dγ/dt scales as dγ/dt∼ (τ − τc)

β where β is
the depinning exponent [13]. In mean-field theory β = 1.
Below the critical flow stress, when the stress is increased
by a small step, the system responds with a dislocation
slip avalanche, at the end of which all dislocations are re-
pinned again and remain stuck until the stress is increased
again. As the stress slowly approaches the critical flow
stress from below, the average slip-avalanche size 〈s〉 grows
bigger and it diverges at the critical point as 〈s〉 ∼ (τc−
τ)(κ−2)/σ, where κ= 1.5, and σ= 1/2 in mean-field theory.
The average avalanche size at a fixed stress can thus be
used as a measure of the proximity to the critical flow
stress.
The purpose of this letter is to provide the first compre-

hensive calculation of the time-resolved behavior of slip
avalanches. We use finite-size scaling to compute accu-
rately a full suite of critical exponents and the associ-
ated scaling function, in order to determine the static
and dynamic universality class. There are many addi-
tional critical exponents that are predicted by MFT [14]
(see table 1) and they all belong to the mean-field inter-
face depinning universality class [11,14]. Analyses using
renormalization group techniques suggest that the interac-
tion range of dislocations is sufficiently long range so that

mean-field theory, which uses infinite-range interactions,
predicts the correct exponents for 2- and 3-dimensional
crystals [11,14]. The theoretical expectations have in the
past not been confirmed by simulations, and it is this
inconsistency that we address here.
Discrete dislocation dynamics models [2,12,16–20],

continuum models [16], phase field models [21] and
phase field crystal models [22] indicate a nonequilibrium
critical point, but no consensus has been reached on its
universality class. Zaiser [16] achieved a scaling collapse
of static properties, such as the simulated slip-avalanche
size distribution at different external stresses below the
critical flow stress, with critical exponents that are consis-
tent with mean-field theory. Other discrete dislocation
dynamics simulations obtained dynamic quantities that
did not agree with mean-field theory: Laurson et al. [12]
reported that the power spectra of the slip-velocity
time series above the flow stress are characterized by a
critical exponent that differs from the mean-field theory
predictions. Miguel et al. [13] found an independent
depinning exponent β that also differs from mean-field
theory predictions.
Part of the difficulty in resolving the differences between

the static and the dynamic results is that the long-range
interactions lead to unusually prominent finite-size effects
that can skew numerical scaling results. To circumvent
these finite-size effects we perform a finite-size scaling
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analysis of the avalanche statistics obtained from our
discrete dislocation dynamics simulations. We calculate
both universal scaling exponents and universal scaling
functions associated with the temporal profiles of the slip
speed during avalanches. We find that the power spec-
tra of the slip speed time series (below and above the
critical flow stress) exhibit power-law behavior and that
the avalanche shapes collapse with matching exponents.
More importantly, we find that both the collapse func-
tion and a comprehensive set of 13 exponents obtained
from our simulations (table 1) for both static and dynamic
properties, are in excellent agreement with the simple
model [14] in the mean-field interface depinning universal-
ity class, including the finite-size scaling exponent ν and
the depinning exponent β. Our work thus demonstrates
that even though there is no apparent quenched disorder
in these systems, the time-resolved and finite-size scaling
properties of the dislocation system behave according to
the mean-field interface depinning model which does have
quenched disorder.
Our work makes quantitative predictions for the scal-

ing behavior of dislocation systems at sufficiently large
length- and long time-scales where the microscopic details
should not be important. Therefore our scaling results are
relevant to the deformation of micro- [2,10] and nano-
pillars [23,24] alike, for pillars that are large enough to
display collective dislocation dynamics. Recent experimen-
tal studies on nanopillars confirm these predictions [25].

Discrete dislocation dynamics model. – In order
to study the avalanches of plasticity we employ discrete
dislocation dynamics (DDD) simulations in two dimen-
sions (2D). The details of our model can be found in [20].
They are similar to other 2D DDD models in the liter-
ature [2,12,16,19]. In brief, in a square box of side L,
we place N straight edge dislocations parallel to the z-
axis. The dislocations are allowed to move continuously
along the x-axis, the shear direction, while their y posi-
tion is fixed. Each dislocation is assigned a Burgers vector
�bi =±x̂ such that

∑N
i=1 bi = 0. Every pair at a distance

�r= (x, y) interacts via the interaction stress τint,

τint(�r ) =
bμ

2π(1− ν)

x(x2− y2)

(x2+ y2)2
, (1)

where μ is the shear modulus and ν is the Poisson ratio of
the host medium. Each dislocation moves in response to
τint, and the external shear stress τext(≡ τ). Their stick-
slip motion can be described by overdamped equations of
motion:

η
dxi
dt
= bi

⎛

⎝

N
∑

j �=i

τint(�rj −�ri)+ τext

⎞

⎠ (2)

for i, j = 1, . . . , N where xi is the x coordinate of the
i-th dislocation at point �ri with Burgers vector bi,
t is time and η is the effective viscosity in the host
medium [2,12,16]. (

∑N
j �=i τint(�rj −�ri) is a dynamically

changing inhomogeneous stress field which pins the
dislocations for τ < τc.) In our computer simulations
we set the temperature to zero, the distance scale to
b= 1 and the time scale to t0 = η/(μ/(2π(1− ν)) = 1. We
impose periodic boundary conditions in both x and y
directions and use the Lekner summation method [26]
of image cells to treat the long-range character of the
dislocation interaction. The choice of the boundary condi-
tions does not affect the scaling behavior on long length
scales [15,23,25]. Neither does creation and annihilation
affect the power-law exponents and the scaling functions
presented here [11,14].
We solve the equations of motion with the adaptive-

step fifth-order Runge-Kutta method [27]. We keep the
dislocation number constant, since we do not want to
consider dislocation creation or annihilation. We define
the dislocation collective speed (also called activity) as

V (t) =
N
∑

i=1

|vi(t)|, (3)

where vi =dxi/dt. The acoustic emission signal is propor-

tional to V (t). Another choice is V ′(t) =
∑N
i=1 bivi(t),

which is proportional to the strain rate [11]. The
avalanches produced from either of these two measures
converge to the same scaling behavior for large avalanches.

Below the critical flow stress. – We start by
randomly seeding the N dislocations in the simulation box
and letting the system relax to the nearest (metastable)
equilibrium state at zero external stress. The dislocation
activity approaches zero as the system approaches the
nearest local energy minimum. A simple eigenmode analy-
sis shows that the time needed for the system to reach
zero activity diverges. When the dislocation activity has
fallen below a threshold the system is sufficiently close to
the energy minimum. We increase the external stress adia-
batically (or quasi-statically) slowly whenever and for as
long as the system’s activity is below the specified thresh-
old, V (t)<Vth. Eventually the increased external stress
pushes the system’s activity above the threshold (this is
the starting time of an avalanche tstart). During the time
that V (t)>Vth the system produces an avalanche and we
keep the external stress constant until the avalanche has
completed and the activity falls below threshold (this is
the ending time of an avalanche tend); the avalanches do
not overlap in time.
For relatively low values of the external stress the

system responds with small avalanches. As the stress τ
approaches the critical flow stress τc, it responds with
larger and larger avalanches until at τc it finally flows
steadily with an infinite avalanche. When the applied
stress exceeds the critical value, i.e., τ > τc, we observe
the dislocations moving continually, exiting from one side
of the simulation cell and reemerging at the other due
to the periodic boundary conditions, without ever getting
stuck again. This is the point when the sample flows in
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Fig. 1: (Color online) The power spectrum of the activity due
to an adiabatic increase in the external stress gives a power
law of 1

σνz
≈ 2 (top 3 lines). The power-law regime corresponds

approximately to the inverse of theDT (T ) power-law region. At
low frequencies (left of shown power-law fit) finite-size effects
truncate the power law. Extracted from 288 runs of the system
with N = 64 dislocations in a box of L= 100 and from 96 runs
for the systems with N = 128 and L= 141, and N = 256 and
L= 200. The bottom 7 lines show the power spectra above
τc from 96 runs of a system with N = 64 and L= 100. They
exhibit the same power law of 1

σνz
≈ 2 (shifted horizontally

lower by 100 only to appear separate; all power-spectra curves
exhibit similar amount of power).

a deformation experiment. In summary, for τ < τc the
system is pinned. For τ > τc the system is flowing.
We calculated the power spectra of the time series

of the activity V (t) for all stresses, i.e. 0< τ < τc
(integrated-over-stress), using the Lomb periodogram
technique [27]. The stress integrated avalanche size
distribution exponent is κ+σ= 2. As shown by Kuntz
and Sethna [28] for a size distribution exponent less than
or equal to 2 the power spectrum scales as

PSint(ω) =

∣

∣

∣

∣

∫

V (t)eiωtdt

∣

∣

∣

∣

2

∼ ω−
1
σνz . (4)

Our results are shown in fig. 1 where we find 1
σνz ≈ 2.

The duration of an avalanche is T = tend− tstart. From
our simulations we extract the avalanche shapes in the
pinned phase. We collect all the avalanches within ±5%
of a given duration and average their temporal profiles.
For sufficiently small durations the avalanches are taken
from the power-law regime of the duration distribution.
We collapse them using [15,28]

V (t) = T
1
σνz
−1fshape(t/T ). (5)

We obtain a good collapse, which indicates that the
scaling exponent has the MF value of 1

σνz ≈ 2 and the
scaling function fshape is a parabola, same as in MFT
(fig. 2). In addition the power-spectra exponent and
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Fig. 2: (Color online) Scaling collapse of the avalanche shapes
(uncollapsed shapes shown in inset). It gives 1

σνz
≈ 1.9 in

agreement with the power spectra. Inset: averaged avalanche
profiles (shapes) for 3 different durations from the power-
law regime of DT (T ). Extracted from 96 runs with N = 64
dislocations in a box of L= 100. (Note that Vth = 0.1 was
subtracted from the signal V (t).)

the exponent that collapses the avalanche shapes are in
excellent agreement with each other. In [12] the avalanche
shapes were first rescaled with an assumed exponent of
1/σνz ≈ 1.5 and then averaged. This is not the same
as the Widom scaling collapse presented here. We first
average shapes of avalanches of the same duration. Then
we tune the exponents until the average shapes of different
durations collapse. In our case the exponent 1

σνz ≈ 2 is
a result of the scaling collapse and does not need to be
assumed up front. Also in [12] a power-spectra exponent of
1/σνz ≈ 1.5 was fitted for the activity fluctuations above
the critical flow stress while the system was in a steady
state. In contrast, our power spectra above the critical flow
stress give the same power-spectra exponent of 1

σνz ≈ 2 as
our power spectra below the critical flow stress indicating
that the critical region extends at least up to τ = 2.0τc (see
fig. 1).
We also extract the probability distribution of the

avalanche sizes, durations and energies. We define
the size of an avalanche as S =

∫

T
V (t)dt and the

energy as E =
∫

T
V 2(t)dt. The distribution of ener-

gies at different stresses can be shown to scale as

DE(E,∆)∼E
−1− κ−1

2−σνz fE(E∆
2−σνz

σ ) and the distrib-

ution of durations as DT (T,∆)∼ T
−1−κ−1

σνz fT (T∆
νz)

assuming that the distribution of sizes scales as
DS(S,∆)∼ S

−κfS(S∆
1
σ ) [16], the correlation length

scales as ξ ∼∆−ν and the dynamic exponent z is defined
via T ∼ ξz. ∆= 1− τ/τc. All distributions have a power-
law region (e.g., DS(S,∆)∼ S

−κ) up to a cut-off or

maximum avalanche (e.g., Smax ∼∆
− 1
σ ) which increases

as the system approaches the critical flow stress from
below. We calculated all the power-law and cut-off expo-
nents above from our simulations and they are consistent
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Fig. 3: (Color online) Mean collective speed V (t) and mean
strain rate V ′(t) plotted against the reduced stress above the
flow stress. The power-law fits yield: 〈V 〉 ∼ (τ/τc− 1)

1.14(±0.02)

and 〈V ′〉 ∼ (τ/τc− 1)
1.19(±0.02). Each of the 7 points (τ/τc =

1.01, 1.02, 1.05, 1.1, 1.2, 1.5, 2.0) is extracted from 96 runs with
N = 64 dislocations and L= 100. The τ/τc points used exhibit
power-law power spectra (fig. 1) and therefore are part of the
critical region. We expect the systematic error that comes
from determining τc to be larger than the statistical error
above. Using exponent relations we get β = 1.0± 0.2, consistent
with MF. Inset: finite-size scaling analysis for the N = 64
dislocation system excluding spanning avalanches (a spanning
avalanche has at least one dislocation travel by L). The
linear fits on the moment ratios (dashed lines) yield ν using
log10(〈S

m+1〉/〈Sm〉)∼ 1
νσ
· log10(L). See table 1 for results and

text for details.

with MFT. Only DT (T ) could not be extracted due to
finite-size effects. Also, much larger system sizes than
our maximum of L= 200 and N = 256 are needed to
collect enough statistics for the largest avalanches where
the power-law scaling region of the distributions cuts off
and measure the correct stress-integrated (0< τ < τc)
power-law exponents (e.g., DS,int(S)∼ S

−κ−σ).
As the system approaches the critical flow stress

from below, τ → τc, (i.e. the critical point of the
depinning transition) the correlation length diverges,
ξ ∼ (1− τ/τc)

−ν . Up to ξ < L the maximum avalanche is

given by Smax ∼∆
− 1
σ ∼ ξ

1
σν . However when the correla-

tion length outgrows the system size, ξ > L, the
maximum avalanche is dictated by the system size,
Smax ∼L

1
σν . We can quantify the finite-size effects

through the exponent ν (fig. 3). The integrated size
distribution can be modified to account for finite-
size effects, DS,int(S,L)∼ S

−(κ+σ)fS,int(SL
− 1
σν ). We

were able to qualitatively observe the increase of
the maximum avalanche of DS,int(S,L) with L.
We quantify that dependence through the moments,

〈Sm〉=
∫ Smax
0

SmDS,int(S,L)dS. For m>κ+σ the inte-
gral does not diverge at the lower limit and we get

〈Sm〉 ∼L
1+m−κ−σ

νσ . By plotting log10(〈S
m+1〉/〈Sm〉)∼

1
νσ · log10(L) we obtain consistent values for ν, inde-
pendent of m (see inset of fig. 3). Same when using

〈Em〉 ∼L(m−
κ−2

2−σνz
) 2−σνz

νσ . Unfortunately applying

〈Tm〉 ∼L(m−
κ+σ−1

σνz
)z to the data does not yield reli-

able results because the durations are plagued by large
finite-size effects and large errorbars. We present all
exponents in table 1.

Above the critical flow stress. – The critical flow
stress τc for each system is the stress reached at the end
of the adiabatic run. At that stress we observe the last
infinite avalanche with the dislocations moving out of the
basic cell at one side and in at the other for periodic
boundary conditions. The critical flow stress τc is not a
universal quantity and every system with the same number
of dislocations and box size has a different τc. Knowing
the critical stresses from the adiabatic run allows us to
simulate at a fixed fraction above each realization’s own
critical flow stress. We obtain a sharp transition from the
pinned to the depinned phase and a linear relationship
between mean dislocation activity, 〈V 〉, and distance from
the critical point:

〈V 〉 ∼ (τ/τc− 1)
β with β ≈ 1, (6)

(fig. 3). This result agrees with MFT predictions [14,
29,30], but differs from ref. [13] where the critical flow
stress was determined in a collective manner for the
entire ensemble. Our treatment properly accounts for the
ensemble stress fluctuations [20] on β, but we expect that
the two approaches should yield the same exponent in the
thermodynamic limit.
We also calculated the power spectra at fixed stress

above the critical flow stress. The stress-binned avalanche
size distribution exponent is κ< 2. This means that the
power spectra at fixed stress scale in the same way as
PSint(ω) [28],

PS(w) =

∣

∣

∣

∣

∫

V (t)eiωtdt

∣

∣

∣

∣

2

∼w−
1
σνz . (7)

In fig. 1 we show that the power spectra at fixed stress
in the depinned phase (τ > τc) exhibit identical scaling as
the power spectra integrated over all stresses in the pinned
phase (0< τ < τc).

Discussion. – We demonstrated that not just the
static but also the dynamic characteristics of crystalline
deformation, (i.e., critical exponents and scaling func-
tions), in the absence of hardening, belong to the univer-
sality class of the mean-field (MF) interface depinning
transition. (“Absence of hardening” refers to systems
without dislocation creation and annihilation, and with
a zero slope of the stress-strain curve in the vicinity of
the critical flow stress.) Specifically, we showed that the
temporal profiles of the avalanche shapes collapse on to
a parabolic MF scaling function with a MF scaling expo-
nent, 1

σνz = 2. This value agrees, as predicted, with the
scaling exponent of the power spectrum of the acoustic
emission signal during plastic deformation. We provided
a finite-size scaling analysis of dislocation systems that
shows the value of the finite-size scaling exponent ν is
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also consistent with MFT predictions. We extracted the
depinning exponent β which characterizes the dynamic
interface depinning phase transition by taking proper care
of the ensemble fluctuations and found it in accordance
with MFT. Our work thus resolves the differences between
prior results on static and dynamic plasticity exponents,
and shows that both static and dynamic exponents and
scaling functions belong to the MF interface depinning
universality class [14].
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