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a b s t r a c t

Virtually every interesting natural phenomenon, not least life itself, entails physical
systems being forced to flow thermodynamically up-hill, away from equilibrium rather
than towards it. This requires the action of a mechanism, acting as an ‘‘engine’’, which
lashes the up-hill process to a more powerful one proceeding in its spontaneous, down-
hill direction; in this way converting one disequilibrium into another. All organized and
dynamic elements of creation, from the galactic to the atomic, can be viewed as powered
by, or being the result of, engines of disequilibria conversion; each a link in a great
hierarchical cascade of conversions. There is, however, widespread misunderstanding
about how disequilibria conversions happen – and indeed about what physically causes
them to happen – especially regarding the role of energy and of the physicalmeaning of free
energy. We attempt here to describe and justify what we assert is the correct alternative
view of how phenomena are powered in nature, focusing especially on themolecular-level
conversion processes (often called ‘‘energy conserving’’) that power life and thatmust, then
acting in an entirely abiotic context, have driven it first into being.
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‘‘. . . a nano-Sisyphus would not have to push the boulder, and the boulder would move itself, driven by the molecular storm.
Does this mean Sisyphus does not need energy to move the boulder? No! Sisyphus still needs to move up the slope, step by
step (to block downward movements, thereby kinetically trapping upward ones after they occur by chance). These steps
require energy’’.

[Peter Hoffmann, ‘‘Life’s Ratchets; How Molecular Machines Extract Order from Chaos’’[1, p. 157]; note: ‘‘energy’’ in
this quote is used by the author as a shorthand for ‘‘free energy’’]
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1. Preface

Living systems inherently depend on a host of endergonic, thermodynamically ‘up-hill’, reactions each of which must
therefore be forced, or driven, by being coupled to a thermodynamically larger down-hill (exergonic) reaction [2]. Such
coupling processes effect a conversion of thermodynamic disequilibria, creating one by dissipating another. They require
the mediation of a particular type of ‘‘mechano-molecular’’ device: which does not act merely as an enzyme, whose action
inherently ‘‘transcends’’ chemistry [3], and which does not function by the transfer or ‘‘consumption’’ of energy. The main
purpose of the present work is to explain and justify these assertions and to clarify the universal thermodynamic and
mechanistic principles involved in the devices that power life by carrying out such conversions.

However, our primary motivation is to lay fresh foundations for an experimental assault on the question of how
metabolism first emerged, one grounded in the submarine alkaline vent (‘‘AHV’’) theory for the emergence of life [4–6]. A
central tenet of that theory is that a core subset of life’s endergonic processes, necessarily driven initially by geophysically-
supplied disequilibria and mediated by abiotic conversion devices, were the prerequisite requirement for kickstarting the
evolution ofmetabolism and thus life’s emergence. Therefore, understanding in fundamental terms themechano-molecular
essentials involved in driving endergonic processes, whether biotically or abiotically, is arguably of value in guiding the
‘experimental assault’. The questions that arise in this connection are then: what were the necessary founding endergonic
processes, what naturally-supplied exergonic processes functioned as their drivers, what were the abiotic devices that
mediated the conversion couplings between them, and how did these devices operate. We return to this issue in the paper’s
final section.

The main points advanced here regarding how endergonic reactions are driven, and the role of energy in the process,
reflect an intellectual history that began not later than Boltzmann writing in the 1880s and, for our purposes, largely
culminating in the 1970s with the development of the linear non-equilibrium thermodynamic (‘‘LNET’’) treatment of ‘‘free
energy conversion’’ (or ‘‘transduction’’). This theoretical approach had been initiated in the 1930s by Lars Onsager [7,8] but
acquired its classically mature form through the work in the 1960s and thereafter of Ora Kedem, Terrell Hill, S. Roy Caplan,
William Jencks, and others [9–12].

However, fairly recent progress on two major fronts has both clarified and significantly advanced this earlier theoretical
work while also reifying its insights quite dramatically. First, the immense advances of the last few decades in the genetic,
structural and single-molecule dynamic analysis of proteins and protein complexes hasmade it possible to understand, often
in atomic detail, the operational workings of a substantial and rapidly growing number of the macromolecular complexes
that mediate biological disequilibria conversion.1 Second, these conversion processes involve dynamic systems operating
far-from-equilibrium and at high flux rates, and, in the case of biological conversions, in an inherently stochastic (small
particle number), fluctuation-driven manner. As a result their comprehension has also begun to benefit significantly from
fundamental and relatively recent advances in the statistical physics of thermodynamic processes. These have produced
rigorous formulationswhich countenance awide range of far from equilibrium, fully dynamic, and fully stochastic processes
(see, e.g., Refs. [13–28]).2 In later sections we make a brief introductory foray into some basic aspect of this theory and its
application to disequilibria converting processes.

To set the conceptual stage for our discussion of how endergonic processes are driven, particularly in the biological
context, we note that in general chemical reactions necessarily entail both forward (exergonic) and backward (endergonic)
reaction events with the ratio of the two rates given by kf /kr = exp (−∆G/kBT ) where ∆G is the ‘‘Gibbs free energy of
reaction’’ (see discussion in Section 3.3). Thus in the context of molecular-level conversions processes the central question
is this:How can one process, whose forward reaction events are (by definition) statistically predominating over its backward ones,
act to force the backward events of another process to predominate?We expend considerable effort on justifying the claim that
this is the core conceptual issue in disequilibria (free energy) conversions, in biological conversions in particular, and in
answering the question posed. And we return to this particular question explicitly in Section 3.3.3.

2. Disequilibria enlivened: life’s third rail

Our discussion focuses primarily on the mechanisms that power the activities of living systems, i.e. on ‘‘bioenergetics’’,
though most of the principles that emerge apply to all systems that convert disequilibria—which function, that is, as
engines [30]. And we begin with a review of life’s ‘‘third rail’’, the ATP disequilibrium that essentially all cells generate,
and then immediately consume, to power the bulk of themany processes of life that must be driven away from equilibrium.
And a hot third rail it is.

1 A representative selection of such complexes, shown in animated action, is to be seen in Drew Berry’s ‘‘Animations of unseeable biology’’
(http://www.deliberation.info/drew-berry-animations-of-unseeable-biology/); at least implicitly emphasizing the point that life’s driven processes cannot
be reduced to mass action, quasi-equilibrium chemistry.
2 For the discussion in this paper particular attention is drawn to: Phil Attard’s book ‘‘Non-equilibrium thermodynamics and statistical mechanics:

foundations and applications’’ [25]; the two cited papers by Udo Seifert: ‘‘Stochastic thermodynamics of single enzymes and molecular motors [22], and
‘‘Stochastic thermodynamics, fluctuation theorems, and molecular machines’’ [23]; and to ‘‘The mechanochemistry of molecular motors’’ by David Keller and
Carlos Bustamante [29].

http://www.deliberation.info/drew-berry-animations-of-unseeable-biology/)
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The essential point is that ATP is not simply synthesized (e.g. by ATPsynthase) and then consumed as a chemical reagent.
It is instead, and as a categorical necessity must be, driven out of equilibrium with respect to its hydrolysis products ADP
and Pi (orthophosphate); were that not so it would be useless to the cell as a carrier of free energy no matter what its
concentration, since it is the disequilibrium itself, not the molecule ATP, that ‘‘carries’’ the free energy. In actual fact it is
driven to a quite astronomical disequilibrium. The Gibb’s free energy3 of the ATP disequilibriummaintained in cells typically
stands at between 20 and 24 fold above kBT [32] meaning simply that the ratio of the concentration of ATP to that of its
hydrolysis products: [ATP]/[ADP][Pi], is of the order of 109–1010 higher than it would be at equilibrium. That is (assuming
unit activities) (see e.g. Stucki, 1980 [33]),

−∆G
kBT
= ln


[ATP]/[ADP][Pi]
[ATP]eq/[ADP]eq[Pi]eq


= 20− 24 implying that :

[ATP]/[ADP][Pi]
[ATP]eq/[ADP]eq[Pi]eq

= e20 − e24; ≈5× 108
− 3× 1010.

(1)

These magnitudes and their derivation suggest several general conclusions, all of which we later make some attempt to
justify:

1. In its physical content ‘‘free energy’’ is a somewhat misleadingly named measure of the extent of a disequilibrium
(equivalently, and arguably more revealingly, a (log) measure of the ratio of a reaction’s forward to backward rates (in
Section 12.2 we discuss this point, and seeming exceptions to it).4

2. It is not the bond energy of the terminal phosphoanhydride bond of ATPwhose liberation upon hydrolysis is what powers
(by supplying energy to it, it is commonly, and incorrectly, supposed) the thermodynamically ‘‘up-hill’’ (endergonic)
reactions to which the hydrolysis is coupled (much more on this point later); that bond energy is of course liberated
whether the hydrolysis occurs at equilibrium or not. But more importantly, as we will see, the liberated bond energy
is itself in no sense transferred to the driven reaction. Further, in all adequately explicated cases, (1) the free energy
available in the hydrolysis of ATP is realized only after, and is contingent upon, the completion of the driven reaction, and
(2) is necessarily dissipated, not ‘conserved’, since it is the dissipation itself that ‘drives’ the conversion.

3. The magnitude of the ATP disequilibrium, and the incredible biochemical machinery and metabolic effort involved in its
maintenance, is compelling testimony that life hangs by the thread of, and is in general ‘‘rate limited’’ by, an extreme
state of dynamic disequilibrium – one which it perforcemust strive quite ‘desperately’ to sustain; it is the disequilibrium
itself, particularly its magnitude, that is essential – and that powers life.

4. Specificity is critical. Chemically non-specific states of disequilibria are not simply useless to life, they are implacably
incompatible with it. Living systems interconvert extremely specific pairs of disequilibria, and are at immense pains to
achieve that specificity. Life never employs, nor could it, non-specific means (e.g. temperature or hydration excursions)
of generating the disequilibria it requires.

5. The disequilibria economies of life are inherently dynamic. That we turn over our ATP inventory in the order of a minute,
and consume nearly our body’s weight of ATP per day, speaks forcefully to the point that it is not the static state of
disequilibria that is the essential point, but the dynamics of its generation and dissipation—and that the race is to the
swiftest.

However, implicit in life’s obligate deployment of disequilibria to power its activities lies a linked pair of deeper truths
that are the main point of this piece. The first is that, contrary to general belief, it is never the ‘‘use’’ or ‘‘consumption’’ of
energy that powers life, nor indeed any other powered activity in nature; it is, and in principle can only be, the dissipation of a
disequilibrium. The second reflects the almost paradoxically opposed fact that virtually every relevant instance of something
happening in nature, let alone in life, involves the creation of a disequilibrium, not just the dissipation of one; a feat, which if
it happened by itself, would violate the inviolable 2nd law. The upshot is that the entire drama of the dynamic universe, life
quintessentially, lies in activities that couple thermodynamically opposed processes in order to create one disequilibrium
at the expense of dissipating another. How does this come about?

The short answer to the question of how disequilibria are created, as we have just indicated, is that (recasting, a bit, the
2nd law) ‘‘it takes one tomake one’’; one process creating a disequilibriummust be ‘‘coupled’’ to another that is dissipating a
different disequilibriumwith the rate of the creation being necessarily less than that of the dissipation (a good deal less, if the
job is to be donewith dispatch [23,35]). But as wewill see, the long answer is muchmore interesting, fairly counterintuitive,
and more than a little at odds with widely prevailing views of the matter, not least within the professions and text book
renderings of biology and biochemistry.

3 We note that the still very common practice of using the qualifier ‘‘free’’ in ‘‘free energy’’ was nominally banned as of the 1988 IUPAC conference, to
be replaced simply by ‘‘Gibbs energy’’ or ‘‘Helmholtz energy’’ [31]. However, this nomenclature change does not address the issue raised here about these
quantities not being, in physical fact, ‘‘energies’’.
4 Henceforth we use the term ‘‘free energy’’ with the understanding that it is, in physical meaning, a measure of the magnitude of a disequilibrium; that

in general ∆G/kBT = −ln

Wafter/Wbefore


where Wafter/Wbefore is the multiplicative factor by which the number of microstates to which the systems has

access would change due to a process whose free energy change is∆G [34].
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The short answer is sufficient, however, to support one key point. As life’s barn-burningATP disequilibrium suggestsmust
be the case, in their molecular workings living systems are almost inconceivably complex, one might fairly say ‘frantic’,
circuses of dynamic, interwoven activities of disequilibria generation and dissipation: a myriad of high wire acts, plate
jugglers, labors of assembly and disassembly etc., all of which are, furthermore, held up and enabled by extremely elaborate,
tightly organized, dynamic, meta-stable structures that are themselves states of very high disequilibria. Yet, as we already
noted, every out-of-equilibrium component must be (or have been) driven into that condition by being specifically coupled
to the dissipation of greater – ultimately externally supplied – disequilibria. Seen in this light, the extreme to which life
drives its main internal ‘‘power bus’’ disequilibrium, is less surprising.

It seems clear, moreover, that it could not be otherwise. It is not just that the activities of life are observed to be
everywhere dependent on generating andmaintaining highly specific, dynamic, far-from-equilibrium states, but rather that
no configuration of matter languishing in the margins of quasi-equilibrium could conceivably display any of the essential
properties and activities of life. In consequence, of which much more later, their comprehension requires an explicitly non-
equilibrium thermodynamic (‘‘NET’’) treatment. Relatedly, since mass action chemical reactions, no matter how catalyzed,
can only dissipate disequilibria- and cannot by themselves generate them, a fundamentally differentmechanism is required,
one which technically functions as an engine, and this brings us to the long answer which we discuss in general terms in
the next section.5

3. How disequilibria are created

3.1. The general requirements for disequilibria conversion

If one process, by flowing in its spontaneous downhill direction, is to force a second and potentially unrelated process to
flow uphill against its thermodynamic will, the device mediating their coupling must link together the two processes such
that they are:

1. thermodynamically unified but acting in opposition: as has already been suggested, the processes must be
mechanistically linked in such a manner that they: (a) function as a single thermodynamic process which must be in
the net exergonic, and (b) operate in thermodynamic opposition; i.e. if one is acting to dissipate a disequilibrium (i.e. is
exergonic and is thereby the driving process) the other must simultaneously act to create one (is endergonic = entropy
reducing, and is thereby the driven process) [10,11]. What this means in general mechanistic terms brings us to the next
requirement:

2. coupled via an escapement: the mechanism coupling the processes together must make the progress of the driving
process conditional on, in fact gated by, the progress of the driven process. That is, in ideal ‘lossless’ operation, an instance
of the driving processmust be prevented from completion unless a correspondingly-sized instance of the driven one does
so ‘coincidentally’ (i.e. in the same instance of the conversion process). The couplingmechanismmust, therefore, act as an
escapement.6 And although the aptness of this term is less clear in couplings involving macroscopic processes operating
in a continuous flow manner, such as turbines, tornadoes, ram jets, etc.7 in other contexts, and in the molecular-level
conversions of biology in particular, the escapement action is manifest and is the essential operating principle of the
engine. In particular, it dictates that the physical system mediating the conversion operates in a ‘‘tick-tock’’, step-wise,
fundamentally cyclic, manner, by means of which it quantitatively parses the fluxes of the two linked processes into
single-step amounts and enforces the driven-over-driving conditionality requirement. This is the fundamental design
requirement of all engines and generators, man-made ones included.

How these requirements are met mechanistically, particularly at the molecular level, is the central question we need to
address, and the turning issue of this piece. The essential general idea is that the escapement puts the driving process under

5 As is conventional in NET, we will consider processes taking place within a bounded open system and the effect those processes have on that system’s
entropy; in that context an endergonic (resp. exergonic) process, by definition, decreases (resp. increases) the entropy of the system, and, by the same
amount, the entropy of the universe, since the later is not changed by flows of either energy or matter across the system’s boundary [10,36]. Relatedly, a
system is in a state of equilibrium if its entropy is maximal (cannot be increased by a process respecting all governing conservation laws), and in a state of
disequilibrium otherwise. Finally, the ‘‘work’’ output of a conversion system as here treated is the amount of entropy reduction produced in the driven flux
and therefore its ‘‘power’’ output is the time rate of that entropy reduction (see, e.g., [23,33,37]; we argue briefly below that these same entropy-denoted
definitions ofwork and power are applicable to disequilibria conversions in general, including those ‘‘classical’’ ones, inwhich either the input or the output
processes involve mechanical motion.
6 A number of authors have previously invoked the metaphor of the escapement mechanism in connection with their studies of specific converting

systems (e.g.: [38–42, p. 92]). We are here arguing, however, that Brownian ratchet escapementmechanisms form the enabling heart of all molecular-level
disequilibrium converting systems.
7 In this connection we note the existence of many spontaneous disequilibria conversion phenomena that in a sense self-organize their own conversion

mechanisms. These include conversions between thermal and concentration disequilibria (the Soret and Dufour effects) [25, §4], thermal and electrical
disequilibria (the Peltier and Seebeck effects) [25], coupled diffusive flows [36, §16.3] and ’reaction–diffusion’ networks [36, §19.4]. These direct
physical–chemical conversion processes stand apart, qualitatively and mechanistically, from ‘engine-mediated’ conversions such as those that power
‘bioenergetics’ and which primarily concern us here. On the other hand conversions of this type may well have been critical in enabling the emergence of
life as discussed in Section 14.
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the control of the driven one according to a ‘neither of us gets to finish in a given cycle unless we both do’ requirement. In
all cases of which we are aware wherein the inference can be drawn, this requirement is met in the following somewhat
counterintuitive manner: (1) the driven process fully completes before the driving one is permitted to do so, (2) the state
in which the driven process is fully complete is what triggers, or ‘‘gates’’, the completion of the driving process, and (3) the
state in which both processes are fully complete functions as the necessary pre-condition ‘trigger’ for the engine to return
to its starting configuration. In such engine designs, the rule is, therefore, ‘pay upon completion’, whereby a cycle’s worth of
disequilibrium creation must be completed before a cycle’s worth of the driving disequilibrium is allowed to be dissipated.

We pause here to note by way of illustration a particularly compelling example, that of the nitrogenase enzyme. In each
of its conversion cycles this engine reduces one molecule of molecular nitrogen N2 to two molecules of ammonia NH3;
an eight-electron reduction. It performs this by sequentially executing eight subcycles each one of which performs a one-
electron reduction. Impressively, each of these single-electron subcycles is driven by the quasi-coincident hydrolysis of
two molecules of ATP (providing an ‘irreversibility bias’ of ≈10−20). And, tellingly for our current concerns, these paired
hydrolyzes occur after the individual electron reductions and are triggered by them, a point only recently established. The
relevant paper, by Duval et al. [43], has the title ‘‘Electron transfer precedes the ATP hydrolysis during nitrogenase catalysis’’
where the term ‘‘precedes’’, carries the paper’s primary, highly counter-intuitive, and highly contentious, burden. Tellingly
also, the finding leaves the authors compelled to wonder where the ‘‘energy’’, which, they believe, must be needed to force
the electrons on to the nitrogens, could be coming from. A quest which, the present paper is largely devoted to establishing,
is inherently misdirected.

However, for molecular-scale processes at least, ‘pay before completion’ designs are also possible in principle provided
that cycle re-initiation is still made to be conditional on the joint completion of both driver and driven processes. In
Appendix C we discuss this seemingly more reasonable design possibility, and in Section 7.3 offer some considerations
that may explain why life seems to uniformly employ pay-upon-completion designs.

3.2. The special case of molecular-scale disequilibria conversion

Importantly, the above general operational requirements are differently realized depending on whether the engine is
operating in the macroscopic or molecular realms. In the former case, such as convection cells, man-made heat engines, etc.
the flux increments that make up individual engine cycles comprise immense numbers of particles and can be treated as
continuously varying quantities obeying macroscopic laws; further, as we have noted, the cyclic nature of the process can
be rendered in unapparent, continuous flow manners (as in, e.g. tornadoes or turbines).

In the molecular-scale case, which includes all engines of relevance to biology, three related and profoundly important
new circumstances arise. First because the engines themselves are individual macromolecular complexes (protein or
protein–RNA complexes) operating in an aqueous environment, viscous forces (kinetic ‘‘damping’’) completely overwhelm
inertial ones (the extreme low Reynolds number limit); to the extent that there are no significant inertial effects and
molecules never ‘coast‘. In consequence they are everywhere in mechanical equilibrium [24,44]; although this equilibrium
often entails, as an essential enabling strategy, long-range, visco-elastic conformational changes in the complexes involved,
as we will explore later [45–48]. Second, the systems are inherently buffeted by unimaginably violent Brownian impacts
[32,44,49] which would inescapably defeat any conventional macroscopic-style engine design. Finally, the flux increments
involved in a single engine cycle are individual molecules or very small collections thereof, giving rise to relatively large
stochastic fluctuations in the engine’s operation [23,50].

In this world, in fact, fluctuations are everything, both the thermal fluctuations that define the interaction between the
bath and the molecules involved in the conversion, and the statistical fluctuations that arise in the necessarily stochastic
operation of the molecular engines themselves. And the central conceptual insight here relates to the essential causal role
played, somewhat paradoxically, by fluctuations that ‘violate’, i.e. run counter to, the 2nd law. We address this point next.

3.3. The essential role of fluctuations, especially those that run counter to the 2nd law

The 2nd law of thermodynamics is purely statistical, proscribing only the average course of events while in no way
prohibiting individual particle-level transitions that run contrary to that average [23]. Furthermore, in molecular-scale
systems, individual ‘violating’ transitions (perhaps better called ‘‘contra transitions’’; since their occurrence is not in fact
a ‘violation’) are not just unavoidable in principle and directly observed experimentally, they are at bottom what makes
‘chemistry’ – and therefore life – happen.

And in particular, as we will explore presently, contra transitions are the sine qua non of disequilibria conversion.
However, to clarify the role of fluctuations in disequilibria conversionswe first consider a better known and simpler case,

namely the ‘transition state’ theory of chemical reactions.

3.3.1. The role of counter-entropic fluctuations in chemical reactions
van’t Hoff, writing in the late 1800s [51], is generally credited with being the first to argue in detail that a chemical

reaction, e.g. A → B, is necessarily accompanied by its reverse A ← B, with the net forward reaction flux being just the
difference between the forward and reverse fluxes. Clearly however, if the forward reaction is spontaneous, i.e. exergonic,
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then the individual ‘back reaction’ events ‘violate’ the 2nd law. What makes these happen? The issue becomes a bit clearer
viewed in the light of transition state reaction theory.

This theory was first introduced by S. Arrhenius in 1889 to explain the otherwise inexplicably large effect increasing
temperature has on most reaction rates. In the 1930s the theory was put on more rigorous quantum and statistical
mechanical foundation (see, e.g. the discussion in [36, Sec. 9.2]). In general terms this theory posits that in chemical reactions
there is interposed between its initial and final states a thermodynamic obstacle in the form of a high-free energy ‘‘transition
state’’ through which both forward and backward reaction events are obliged to pass (see e.g. [52, §8]). However, the
transitions to that elevated state, in either direction, necessarily entail positive free energy changes, ∆G > 0. So in both
forward and reverse directions, the reaction participants must first execute a transient 2nd-law ‘violating’ transition by
moving to a (macro) state that is less probable than is that of either the starting or ending states of the reaction. It is
well understood, however, that these contra ‘boost’ transitions are generated by inevitable, if rare, thermal (‘‘Brownian’’)
fluctuations occurring in the molecular system as a result of its interaction with its heat bath. The question then is what
determines the likelihood that such a boost fluctuation will occur, how that depends on the magnitude of the free energy
changes involved, and what in the end determines the ratio of forward to backward events?

Following in spirit the classical approach to this problem (see e.g. [52, §19]) we consider the simple three (macro) state
scheme:

nr 
 nĚ 
 np (2)

which we imagine is being carried out by an enzyme andwhere the three states are: reaction reagents bound to the enzyme
nr , intermediate ‘transition’ state nĚ, and products bound to the enzyme, np.

A core assumption of the Arrhenius theory is that the transitions to the transition state can be considered an equilibrium
reaction (and thus subject to the principle of ‘‘global detailed balance’’; see [22] and Appendix A) and that the rate for
the ‘forward’, reactants-to-products reaction, for example, can be expressed as the concentration of the transition state
complexes times a decay rate, which rate depends only on the properties of the transition state, for the step from transition
state to product state. This has the implication that the equilibrium constant for the transition state is related to the net
forward and reverse rates by K = kf /kr . Arrhenius in addition proposed that the forward and reverse rates obey van’t
Hoff relationships with the consequence that they are each proportional to the exponent of a (dimensionless) ‘‘activation
energy’’: kf ,r ∝ exp(−Ef ,r/kBT ).

It is now understood that it is more correct to interpret these activation energies in free energy terms. That is, assigning
free energies to each of the three macrostates: Greactants, GĚ, and Gproducts where GĚ > Greactants > Gproducts, the activation
energies are Ef = GĚ

− Greactants ≡ ∆Gf and Er = GĚ
− Gproducts ≡ ∆Gr and Er > Ef . We therefore have that

kf
kr
= e−(∆Gf−∆Gr )/kBT = e−(Gproducts−Greactants)/kBT ,

= e−∆Greaction /kBT . (3)

However, it is still widely held that the changes needed to elevate either the reactants or the products to the transition
state, involve increasing the state’s ‘‘energy’’. Therefore, given that the Brownian fluctuations induced by the bath are
Boltzmann distributed, wherein higher energy fluctuations are exponentially less probable, it has intuitive appeal to
conclude that the transitions to the transition state are more likely coming from the reactant state than from the product
state, for the reason that less energy is required.

As we review in Appendix A, however, the transitions from the terminal states to the transition state are not,
fundamentally, changes in the energy of the state, but in the state’s probability. And the reason closeness in probability
implies higher transition probabilities between states is not directly obvious and rests on the statistical physics of
fluctuation transitions occurring betweenmacrostates (or ‘‘mesostates’’, when a singlemacro-molecule is being considered),
as explicated by ‘‘stochastic thermodynamics’’. We therefore briefly note here the principle concepts in stochastic
thermodynamics that are relevant to ‘transition state’ theory, and refer to the discussion in Appendix A and in [22,23].

The main points to note here are the following. First, the observable states of the chemical reaction, here taken to be
three, reactants, transition, and products, each represent true thermodynamic macrostates (i.e. each comprising a large
number of ‘unobservable’microstateswhich are at thermal equilibriumwith respect to the heat bath inwhich themolecules
are suspended). This confers on each macrostates a well-defined Boltzmann distribution function for the macrostate’s
microstates, and from that well-defined thermodynamic properties of entropy, energy (expectation value), and Helmholtz
free energy F (defined as minus kBT times the log of the partition function for the microstate distribution).

Second, the ratio of the ‘conditional probability rates’ (the transition probability per unit time conditional on knowing
the starting state) of an allowed (fluctuation) transition between macrostates, satisfies a ‘‘local detailed balance’’ relation

w+ρ

w−ρ
= e−β∆Fρ (4)

([22, Sec. 5.5] and see Appendix A), where β = 1/kBT , ρ labels the particular transition being considered, the +/−
superscripts indicate the rates for the forward and reverse transitions respectively, and ∆Fρ is the change in the system’s
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Helmholtz free energy during themacrostate transition (wherein, as required,∆Fρ < 0 implies that forward reactions occur
at a rate exponentially greater – in the dimensionless free energy change – than the rate for the reverse reaction).

Finally, since transition state theory demands that transitions between the reactant and product macrostates pass
through the transition state, we must consider two-step transitions in the sequence nr 
 nĚ � np. However, for multi-
step transitions the ratio of the net forward to reverse currents is the product of the constituent one-step forward to reverse
transition rate ratios [23, Sec. 10.2]; in our present case this leads to

kf
kr
=
wnr→nĚ

wnĚ→nr
×
wĚ→np

wnp→Ě

,

= e−β

∆Fnr→nĚ+∆FnĚ→np


,

= e−β

∆Fnr→nĚ−∆Fnp→nĚ


,

= e−β

∆Fnr→np


. (5)

And given that no pV work is done in these transitions, ∆F = ∆G, so we can express the above result in the more
conventional terms we arrived at above based on the Arrhenius model as

kf
kr
= e−∆Greaction/kBT (6)

where, as before, ∆Greaction ≡ Gproducts − Greactants and the reaction proceeds in the net forward direction (kf > kr ) if
Greactants > Gproducts.

Of course, the ‘violation’ of the 2nd law involved in producing the transition state is necessarily transient and the offense
immediately redressed whether or not the excited state relaxes abortively back to whence it came, or on to the alternative
state. In either case, ∆Grelaxation ≤ 0 and the 2nd law is satisfied—as a statistical law constraining only the average run of
events. It is further worth noting that the system in the transition state has no memory of how it got there, and so is not
biased, by history, as to which way the state relaxes, whether to reactants or products.

3.3.2. Free energy redux; entropy, and a system’s macrostate probability
The preceding discussion makes explicit that the free energy change (free energy ‘‘consumed’’) in a reaction has no role

at all in causing the transition state to be occupied and no effect in biasing which way the transition state, once formed,
resolves, whether ‘forward’ to the products or ‘backward’ to the reactants. The reaction’s∆G is, to restate, strictly and only a
‘probability bias factor’ as between forward vs. backward transitions—and is so simply because it captures howmuch more
probable it is that the ‘‘molecular storm’’ will produce the fluctuation that ‘raises’ the reactants, rather than the products, to
the transition configuration; wherein, we again emphasize, the ‘raising’ is not in energy, but in improbability (from a more
to a less probable configuration, a change conventionally expressed in free energy language).

So although the quantity∆G is quite often seen as not only the force that makes reactions happen but also as measuring
a kind of mobile energy phlogiston, it is neither; and in no literal sense does energy flow from the reactants to the products
in a chemical reaction. Nor is∆G, in physical content, an energy difference, of any sort, however discounted in its ‘‘ability to
perform work’’; it is instead, as we hope to make convincing, a surrogate (one might say disguised) measure of an entropy
change (or equivalently, and more revealingly, of a macrostate probability change).

The concept ofmacrostates and their probabilities invoked in the preceding discussion is conceptually fundamental to our
analysis, and an essential element inmodern ‘stochastic’ thermodynamics, but relatively unfamiliar in biochemical contexts.
For that reason we provide an introductory summary of stochastic thermodynamics in Appendix A.

Two points regarding chemical reactions deserve particular emphasis leading into the following discussion of
disequilibria conversion. First, as is well understood, enzymes do not change the free energies, equivalently the chemical
potentials, of either reactants or products—much less could they, in principle, turn an endergonic reaction into an exergonic
one. Second, and to draw out an implication of a point made before, the free energy of a state is physically a measure of
its relative probability and is in no valid physical sense a literal energy, even a discounted one. Much less is it an energy
that can be passed to another reaction to ‘excite’ or ‘drive’ it. The point is, that in the conversion of disequilibria, the driven
endergonic reaction is not made to happen by energy, free or otherwise, donated to it by its driving, exergonic partner. As
we will see, that is just not how disequilibria conversion works.

We note that in light of the discussion to this point, that ‘‘free energy’ is by convention named an energy, given energy
units (via a gratuitous division by temperature), and widely considered to be a form of energy, must be viewed as the
regrettable consequence of an ‘‘inconvenient quirk of history’’ (to lift a remark made by Dill and Bromberg, in a different –
but closely related – context [52, p. 96]). In Section 12 we offer some thoughts about how this came about.

We are now in a position to begin the discussion about how disequilibria conversion actually works.
As we have noted, a chemical reaction’s ongoing back reactions, as individual events, run counter to the 2nd law, and

not just transiently; for them, the free energy of its product is greater than that of its reactants. The 2nd law (noting again
that in general ∆G = −T∆Suniverse—see footnote 5 and also the discussion in Appendix B) merely asserts that in a given
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process those of its transitions that increase the entropy of the universe will (simply as a matter of probability) outnumber
the oppositely directed ones that decrease it, so that in the net, i.e. on average, the state of the universe becomes more
probable (of higher entropy; see Appendix A).

Thus the stochastic, fluctuation-driven nature of chemical reactions reviewed above suggests that to drive a
disequilibrium we need some legal way to reverse the natural statistical bias of forward vs. reverse reactions, so that now
the latter predominate; hopefully dramatically so. How is this to be done?

It is here that we establish the most important connection between the ‘fluctuation’ reality of molecular processes and
the question of how such processes can carry out the conversion of disequilibria. The key point is that molecular-scale
disequilibria conversion relies entirely on the unavoidable existence of ‘violating’, and therefore disequilibrium-creating,
‘back reaction’ events, and works simply by trapping them, albeit by legal means, once they occur—just as in Hoffmann’s
‘‘nano-Sisyphus’’ metaphor with which we began.8 We turn to the details of this point next.

3.3.3. Disequilibria conversions via escapements; trapping fluctuations that run against the 2nd law
A disequilibria converter’s job is specifically to drive a reaction, or process, in its ‘backward’ (i.e. endergonic) direction;

from, that is, a more to a less probable configuration. In principle, how might this be done in a molecular-scale, Brownian-
fluctuation-drivenworld? How can thewell understood requirement that the reaction to be driven up-hill must be ‘coupled’
to a larger process proceeding down-hill bemet in aworld inwhich both reactions are being driven by Brownian fluctuations
from the bath as we have just reviewed in our discussion of reaction rate theory? That is, as we asked in the Preface, how
can one process, whose forward reaction events are predominating over its backward ones, act to force the backward events of
another process to predominate?

Clearly, and as the previous discussion implied, we need a daemon, albeit a thermodynamically righteous one. A device,
that is, that can first set up conditions that makes it possible for the driven reaction to proceed according to the tenets
of reaction rate theory as just discussed, wait until a Brownian impact occurs that produces an instance of that reaction’s
‘backward’ transition, necessarily decreasing the entropy of the universe, and then trap that event irreversibly (more or less),
all in such a way that at the end of the conversion cycle, the universe’s entropy account has increased.

This can in fact be achieved in a variety of ways, some of which, for example, involve time-dependent, externally applied
forces and asymmetrically sculptured potential landscapes [52, §29] [53,54]. But we are here interested in those in which
the daemon operates with ‘chemical’ processes alone, a class that includes all biological examples of which we are aware.

In the abstract, here is how the direct conversion of chemical disequilibria is accomplished.
The daemon is necessarily embodied in a molecular device, in biology universally comprising a protein or protein–RNA

complex, which acts as a dual enzyme mediating both chemical processes in parallel and jointly, but upon which processes
it imposes two rules. First, the two processes under its control are (ideally) never allowed to complete unless both of them
do so ‘coincidentally’ (before the complex is allowed to return to the state inwhich it could take up new reaction substrates).
Second, the two chemical processes are directionally linked in the sense that the engine mediates a specific pairing of
reaction directions for the two processes.

That is, if R 
 P and T 
 S represent the two reactions to be coupled, then the engine complexmight permit, say, R→ P
and T ← S to proceed as a joint reaction under the constraint imposed by the first rule. In this case, if the chemical potentials
of all of the reagents are such that R→ P is an entropy producing (‘‘forward’’) reaction and T ← S is an entropy reducing
(‘‘back’’) reaction, and if more entropy is gained in the first reaction than is lost in the second, the system will operate
spontaneously and, with each instance of the driving first reaction allowed to proceed (downhill) only as it is logically gated
by an instance of the second having made it uphill, generate a disequilibrium in the T 
 S reaction at the expense of
dissipating one in the R 
 P reaction.

The device, in other words, has to operate as a molecular escapement, parsing out instances of the driving reaction
preceding in its forward direction conditional on completed instances of the driven reactionmoving in its backward direction.
Within the escapement the completion of an instance of the back reaction functions mechanistically as a trigger, or
‘‘gate’’ to permit the functionally coincident completion of an instance of the thermodynamically larger forward reaction.
Metaphorically, the device holds the driving process hostage to the accidental, and relatively improbable, Brownian impact-
induced occurrences of the driven process’s back reaction; in this way permitting the former, by being (sufficiently)
irreversible, to have the effect of trapping the latter (preventing their reversal). This operational design amounts to making
the behavior of the engine dependent on the joint probability that two inherently stochastic, thermodynamically opposed
events occur coincidentally: one producing a more probable state, the other producing a less probable one.

Moreover, a general observation is that the control of eachprocess by the other needed to enforce the above ‘‘escapement’’
rules is achieved, asWilliam Jencks has argued [55,56], by having themediating engine divide the twoparticipating reactions
into ‘‘half reactions’’ which are obligatorily interleaved, typically in a standard sequence. His discussion of this important
point is specifically in reference to couplings involving one ‘‘vectorial’’ process. To quote: ‘‘The coupling between the vectorial
reaction, the transport of two Ca2+ ions into the sarcoplasmic reticulum, and the chemical reaction of ATP hydrolysis is brought

8 See the illuminating discussion of this point in the context of molecular motors by George Oster and Hongun Yang: How Protein Motors Convert
Chemical Energy into Mechanical Work [32]. Our contention here, however, is that these same principles apply to all molecular-scale disequilibria
conversions.
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about simply by dividing the vectorial reaction and the chemical reaction into two alternating half-reactions, so that the chemical
reaction can only occur if the vectorial reaction also occurs and the vectorial reaction can only occur if the chemical
reaction also occurs’’. (emphasis added), and ‘‘Movement in biological systems, such as muscle contraction and the active
transport of ions, is generally brought about through a series of alternating chemical and vectorial steps that involve a series
of changes in the specificity for catalysis of the chemical and vectorial reactions. These changes divide the overall reaction into
segments so that neither the chemical nor the vectorial reaction will be completed unless the other is also completed’’., both
from [56], and ‘‘The ordered mechanism divides the chemical reaction and the vectorial reaction into two parts, which are
sandwiched between each other. Therefore, neither reaction can be completed without the other taking place’’. [12].

We emphasize, however, that subsequent studies, covering a large variety of converting system, have made evident a
point that is a fundamental tenet of the present argument; namely that the general principles articulated by Jencks are in no
way limited to conversions involving ‘‘vectorial’’ input or output processes, but characterize all molecular-level disequilibria
conversions (see Section 11 and the discussion of a variety of example conversion processes given in a companion paper
now in preparation [57]).

We also emphasize that, as in the case of simple chemical reactions, molecular-scale disequilibria conversions are
necessarily driven by Brownian impact fluctuations, specifically fluctuations that produce entropy-reducing ‘contra’
transitions to less probable states. However, in conversions, the fluctuations act on two levels: first, as in the case of ordinary
chemical reactions, to produce the necessary ‘transition states’ involved in all of the detailed molecular transitions of the
engine, including, for example, substrate binding and product release (of which more later); second, and most centrally, to
produce the ‘violating’ back reactions of the driven processes which the escapement mechanism then permits to be trapped
by an instance of the driving process (of which a great deal more later). No energy is transferred between the systems so
coupled, nor is any ‘‘consumed’’ in the operation of the conversion.

Therefore, molecular-scale disequilibria converting systems, whether motors or not, all operate as ‘‘Brownian
Ratchets’’ [58], demonstrating not just the aptness but the universality of Hoffmann’s nano-Sisyphus metaphor [1] with
which we began, and likewise that of the equally beguiling metaphorical bicycle, imagined by Oster and Wang [32] which
the rider never needs to pedal.

Further, to our knowledge, all sufficiently characterized biological cases conform to the operational principle noted above
that the completion of the driving process is triggered by the full completion of the driven one (see a representative list of
examples given in Section 11 and the discussion in Section 7.3 for why this might be the case).

On the other hand, the above description leaves unaddressed several essential points, the lead one of which is how,
in molecular-mechanistic terms, molecular escapements actually impose their ‘rules’. These issues take up much of the
remainder of our discussion, in preparation for which we conclude this section with a statement of a few general principles
and a summary of the argument to this point.

3.4. Engineering principles underlying molecular-scale disequilibria conversion

3.4.1. Engines operate in cycles (albeit not always continuously)
The above escapement rules have the implication that themechanismmust alternate between a ‘loading’ phase in which

it takes in the reactants for the driving reaction and, in parallel, the reactants for the driven reaction running in reverse and an
‘unloading’ phase in which it releases the products of the driving reaction and of the driven back reaction. As a precondition
to the unloading step the reactions involved must have been allowed, generally with catalytic assist, to complete. Thus, if a
conversion is ongoing the device mediating it must step through a directed cycle as we now describe.

Consider again the simple example discussed above in which the reactions R 
 P and T 
 S are the two processes to
be coupled with the former operating in its forward direction R → P to drive the latter in its backward direction T ← S.
Further, following convention (see e.g. Hill [11]), let E represent the engine complex in the state where it can take in, and/or
‘‘bind’’ both R and S, and E∗ to be the form of the complex in which it can release, respectively P and T . Then the engine’s
forward operational sequence can be represented in its simplest form as the cycle:

E + R+ S → RES → RE∗S → PE∗T → E∗ + P + T → E + P + T (7)

where it is here presumed that the binding of the two substrates triggers the transition between the complex’s two forms:
RES → RE∗S, that after that the reactions are allowed to complete in situ: RE∗S → PE∗T , a precondition for product release,
itself the precondition for the complex to switch from E∗ back to E. Considering the catalysis and product-release steps
RE∗S → PE∗T → E∗+ P+ T as is more-or-less conventionally done, to comprise a single step, interprets the above scheme
as a four stage cycle.

In Section 4 directly following, we present and analyze a simple statistical model of disequilibrium conversion based
on a simple ‘balls in a partitioned box’ diffusion model which conforms to the above ‘four stage’ cycle. But as we note
the conversion devices of life have invariably been found to embody elaborations on this design. Though these retain its
essential features, in particular of dividing both processes into ‘half-reactions’ on which is imposed the iron rule that the
cycle is prevented from returning to its start state unless the completion half-reaction of both processes has taken place,
through to product release.
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3.4.2. Real converters in biology invariably have more than four steps in the conversion cycle
For biological systems that have been characterized in sufficient detail, it has been invariably observed that the conversion

cycle ismore complexwith, typically, the loading and unloading phases are further separated into individually ordered steps
for the two processes, a point Jencks in particular extensively studied and emphasized as we noted above. To repeat the
central point about this more complex design, the mediating engine intercedes in both of the processes by dividing them
into individual binding and catalysis and release ‘half reactions’ which are, in the conversion cycle, sequenced in a more-or-
less specific ‘interleaved’ (or ‘‘sandwiched’’) and rigidly imposedmanner. Often, however, the cycle has evenmore states and
transitions, such as those that segment the ‘‘completion’’ of a driving process that involves a catalysis and product release,
into two or more separate and specifically ordered steps. However, these refining complexities can be safely left aside for
the moment.

One typical ordering of events (which we will here call the ‘canonical Jencks’ ordering), and assuming again the simple
example in which R 
 P and T 
 S are the two coupled processes with the former driving the latter in reverse) is:

E + S→SE,
SE + R→SER,

SER→SE∗R,
SE∗R→TE∗R,
TE∗R→E∗R+ T ,
E∗R→E∗P,
E∗P→E∗ + P,
E∗→E.

(8)

That is: driven reactants (i.e. that reaction’s products when running in its ‘forward’, spontaneous direction) must load
first, then driving reactants can load, then, with both reaction’s reactants bound, the enzyme typically makes a major
conformational/allosteric transition from E to E∗; at this point the system becomes catalytically active to produce the driven
(i.e. ‘back’ reaction) S → T in situ, after which T is released (into the teeth of a necessarily high probability of that release
being reversed), then (that is after the cycle’s ‘work’ is done) the system becomes catalytically active for the driving reaction,
again taking place in situ, R → P , after which P is released (a transition necessarily having a low probability of being
reversed), which event produces the pre-condition that allows the system to transition back to its starting form E∗ → E.
Such refinements of functional design appear to be exploited in, and critical to, all biological examples known to date.

The critical functional element of this ordering of events is that the completion of the endergonic reaction precedes and
is the gating trigger for the completion of its exergonic partner. An essential point about this structuring is that the free
energy changes involved in the two reactions, both the driving negative change, and the driven positive one, are only,
or predominantly, realized (‘harvested’) in the release of the reaction products, not in the reactions themselves taking
place within a catalytic active sites—these typically take place near equilibrium [12,46]. That is, in general, and crudely,
∆Gdriven

product release > 0 and ∆Gdriver
product release < 0. The consequence is that in general the ratio of the frequencies of product

release vs re-association is greater than one for the driving reaction and less than one for the driven one.
Thus in this architecture the completion of the driving reaction, through to product release, plays a three-fold role. First, to

statistically overwhelm the probability of the reversal of the release of the driven reaction’s products—even though the latter
is necessarily facing a high rate of re-association. It is this probability bias that drives the overall cycle forward productively.
To put this in other words, the relative irreversibility of the driving reaction, due mainly to the irreversibility of its product
release step, is what allows Brownian fluctuation-induced ‘back reactions’ in the driven process to be trapped and, through
multiple engine cycles, accumulated. Second, to kinetically trap the completion of the driven reaction as soon as it occurs,
thereby minimizing wasted time and the risk of futile cycles. For this kinetic effect to predominate, of course, the rate of the
completion of the driven reaction must exceed that of the reversal of the release of the driven reactions products. Third, to
be the event which acts as the prerequisite trigger for the return of the complex to its starting, relaxed, conformation. Such
a systemmight be said to act as a ‘‘crossed-dual’’ enzyme, mediating two reactions each managed as two half reactions and
forced to operate in thermodynamic opposition by the specific order in which the half reactions are sequentially interleaved
(see Section 7).

3.4.3. The protein complex mediating the conversion must step through a cyclic series of alternative ‘‘enzyme’’ forms
Implicit in such cyclic reaction schemes as just summarized, whether simple as in Eq. (7) or more complex as in Eq. (8), is

the fact that the protein complexmediating a conversion passes through a corresponding ordered series of alternate enzyme
forms in each of which it takes on distinct binding and catalytic properties [12]. In operation, the completion of the task of
each of these alternative enzyme forms triggers the transition to the next one in the cycle.Wewill explorewhat thismeans in
more detail in Section 7.1. However, this operational characteristic makes explicit that these devices are not just catalysts,
i.e. entities that passively accelerate a reaction that would take place on its own. Nor even are they just ‘enzymes’ in the
ordinary sense denoting biological catalysts. They are true engines, in spirit and operation; and, as Nick Lane has remarked
in speaking of one of the more dramatic of them, the ATPsynthase converter, they do and must ‘‘transcend chemistry’’ [3].
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A critical question about such devices, however, is what causes and controls the conditional transitions?We address this
in general terms next.

3.4.4. Substrate binding and release reactions play a key, if not dominant, role in triggering transition steps in the conversion cycle
As we have already reflected in the quote from Jencks just above the binding and unbinding of substrates and products

appears to be in general the dominant mechanism responsible for the transitions between steps in a conversion cycle, not
just that of what is typically its single major conformational change (here E � E∗). Beginning in the mid 1960s with
the discoveries of the mechanisms of ‘‘induced fit’’ substrate binding in proteins [59,60], and the ‘‘allosteric’’ control of
a protein’s functional properties [61,62], it had increasingly been realized that proteins, whether functioning as enzymes
or in other roles such as in signal transduction [63–66] typically move through cycles in which they assume alternative
‘‘conformational’’ configurations with distinct properties [67]. This led Jencks and others to argue that similar allosterically-
driven conformation change mechanisms were involved in inducing the functional transitions being perceived in the
operation of the protein complexes mediating free energy conversions [12,55,56,63,68,69].

An important achievement of these proposals, as laid out fully in the literature just cited, was in providing a solid
model of the equilibrium thermodynamics governing the binding events, the interaction between them and associated
conformational changes in the mediating protein complex, and the impact of those conformational changes on the
thermodynamics of the catalysis of the reactions being coupled. That is not to say that these investigators failed to appreciate
the importance of kinetics in these processes. To quote Jencks discussing the ATP hydrolysis-driven vectorial pumping of
calcium by Ca2+-ATPase [12], ‘‘This switch cycle works because it follows an ordered kinetic mechanism; it represents one of the
few instances in biochemistry in which it is essential that a particular kinetic mechanism be followed for the successful functioning
of an enzyme’’. and ‘‘The primary role of binding energy is kinetic. Binding energy is utilized in order to avoid high- or low-energy
intermediates along the reaction path under physiological conditions’’.

These conclusions have received strong support in the last decade or so which has seen an eruption of publications pre-
senting detailedmechanisms for various biological free energy conversion systems. A general theme to which these mecha-
nisms appear to unanimously attest is the central role played by more-or-less large-scale conformational changes, changes
driven, or at least triggered by, substrate binding and unbinding events. Further, it has become clear that the conformational
changes often, perhaps typically, also produce significant free energy-storing elastic ‘‘stress’’ distortions of themacromolec-
ular complex which in some cases are exploited later in the cycle to favorably bias subsequent transitions [46,67].

In addition, recent work by Zocchi and colleagues quantitatively demonstrating the importance of cyclic ‘‘viscoelastic’’
transitions in the operation of even ordinary enzymes [47,48], makes it clear that protein complexes that function as simple,
‘single process’ catalysts and those that are true engines mediating free energy conversions—acting that is, as ‘dual process,
cross-controlled enzymes’, are all ‘‘mechano-chemical’’ machines [46] with much in common mechanistically.

3.4.5. The ‘‘Brownian storm’’ is responsible for every step
To properly acknowledge the role thermal impacts play in howmolecular conversion mechanisms operate, we reiterate

that all of the transitions involved are stochastic and induced to move over transition barriers by thermal fluctuations. And
all can take place in both their ‘forward’ and ‘reverse’ (i.e. ‘endergonic’) direction (with the forward-to-reverse ratio of rates
of every allowed reaction given by a ‘fluctuation relation’, as discussed below in Section 4.1.2 and in Appendix A). In dise-
quilibria conversions, after the substrates for both reactions are loaded and the major conformational change that loading
induces has taken place, the device then makes it possible for the ‘‘storm’’ to induce the completion of an instance of the
‘back reaction’ for the driven process—through to the release of its product, and then ‘waits’ until it does so. Of course, the
probability of this product release is necessarily less, generally very much less, than that of that product’s re-association.
However, this release triggers the system to catalyze the completion of the driving reaction through to the release if its
products—a step whose reversal is improbable (in general highly); and, when the conversion cycle is proceeding forward,
sufficiently improbable that the two sequential release events taken together are jointly probable (i.e. exergonic). Further, if
in the state in which both product binding sites are empty, the complex is free to be induced by Brownian fluctuations to re-
turn to its starting conformation it will, in doing so, have accomplished themore-or-less irreversible trapping of a Brownian
fluctuation-induced anti-2nd law event by a Brownian fluctuation-induced pro-2nd law event- and be ready to do it again.
This causal sequence acts as a stochastic escapementmechanismwhich allows one process to function as a ‘‘ratchet’’ control-
ling another, and thereby makes it possible for Brownian events to power an engine that converts molecular disequilibria.

Themain conceptual points are these: the relatively improbable ‘transition’ states throughwhich reactionsmust pass are
produced by Brownian impact fluctuations. The ‘‘free energies’’ of initial, transition, and final states merely measure (minus
the log of) the probabilities of those states. Statistically, there will be (exponentially) more transitions that increase the sys-
tem’s probability than those that decrease it. In ‘‘free energy transducing’’, aka ‘‘energy conserving’’, reaction couplings, ‘back
reaction’ fluctuations in the driven process are trapped – and accumulated – by forward reaction fluctuations in the driving
process. No energy passes from the driving to the driven reactions and the process is not driven by energy consumption.

3.4.6. It is the full cycle that converts free energy
It is the completed cycle that must (on average) satisfy the 2nd law. And, it is correspondingly the full cycle, all

of whose steps must complete in the correct sequence, which effects the conversion of disequilibria (equivalently the
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‘‘transduction’’ of free energy); it is not any part thereof or step therein (see the discussion of this point in [70] and also in
[12, p. 155]).

3.4.7. Dissipation is necessary to effect conversion
Of course, to function as proposed the cycle cannot be in equilibrium, but must be to some extent irreversible; that is,

the overall forward rate must exceed the overall backward one. For this to be the case the probabilistic forward bias of the
driving reaction (here: R→ P) must overwhelm the probabilistic bias against the driven (‘‘back’’) reaction (here: T ← S);
and for this in turn to be true, the cycle must be ‘‘dissipative’’, transforming the overall (negative) change in free energy into
heat [23,71]. This, of course, does not require that all of the forward transitions involved in the cycle are strongly, or even
at all, exergonic, and in real systems near-equilibrium, and even significantly endergonic (but kinetically driven) transitions
are common [72].

Further; speed, and finite power output, comes at the necessary cost of dissipation. Whereas the 2nd law is satisfied as
long as the difference between the entropy produced by the driving process and that lost in the driven one is, on average, not
negative, if finite power is to be produced the net entropy production of the enginemust be greater than zero; much greater
if the power production is to be maximal; see later discussion of this point and also the discussions by Jeremy England [35]
and Udo Seifert [23, Sec. 10].

3.4.8. Pay-on-completion designs appear to be universally adopted in biology, but are not required in principle
In themodel being presented as to how real biological disequilibria conversions operate mechanistically, as summarized

in the reaction scheme Eq. (8) describing the ‘canonical’ Jenck’s ordering for a simple converting system, the core functional
element is that the completion of the driving reaction occurs after that of the driven reaction, and is triggered by it. To some
this has a disturbing, cart-before-horse, implication. It might seemmuch more intuitive, and indeed is often supposed, that
in such conversion processes the driving reaction must complete before, or at least simultaneously with, the driven one,
thereby allowing, it is usually thought, that reaction’s free energy to be transferred either directly, or indirectly via the
complex, to the driven reaction’s reagents. What is being supposed is that the driving reaction’s liberated free energy acts
in some way to raise the free energy of the bound reagents for the driven reaction to a high enough value such that the
free energy change for completing the driven reaction, including releasing the products into the external medium, is now
negative—and the second half-reaction of the driven reaction thus spontaneous.

Our argument in this paper is largely an attempt to explainwhy the idea that endergonic reactions aremade to happen by
the transfer of energy to them from an exergonic process is fundamentally incorrect. But that is not the same thing as saying
that the system cannot proceed with a different ordering of the key steps such that, for example, the driving reaction does
complete before the driven one and indeed such designs are in principle possible. We defer a discussion of this question to
Appendix C. Butwenotehere that to our knowledge all biological disequilibria converting systems forwhich experimentally-
based mechanisms have been proposed conform to the ‘driven reaction completes first’ principle. In Section 7.3 we discuss
why this might be the case.

3.5. Summary to this point

For molecular-scale converters the question of what physically causes the endergonic transitions in the driven process
to occur has a general, and somewhat counterintuitive answer. This is that, echoing Peter Hoffmann’s discussion of ‘‘nano-
Sisyphus’’ molecular motors [1] from which we took our opening quote, it is not the driving process, much less ‘‘energy’’
taken from it; it is instead Brownian impacts delivered by the ‘‘molecular storm’’ (referring again to the opening quote).
The driving process’s essential role is to kinetically, and quasi-irreversibly, ‘‘trap’’, after the fact, completed instances of
the driven one [32,58]. All molecular-scale disequilibria converters, not just molecular motors, are ‘‘nano-Sisyphuses’’, or,
more conventionally, Brownian ratchets, which block the unwanted effects of the ‘‘storm’’, wait until a favorable event has
allowed the completion of an instance of the work the engine is doing, and then rush back in to again block undoing events.
This they do by initiating, as promptly as possible, a step transition in the engine to a state in which the driven products
cannot reassociate and in which a quasi-irreversible further transition will occur (e.g. ‘firing’’ an instance of the driving
process, such as the hydrolysis of an ATP and release of its products). This irreversibility ‘latches’ the engine into a state that
is then prevented from re-entering the prior state in which the driven reaction’s products could reassociate, and is also the
state fromwhich the engine can return to its conformational starting state. It is this mechanism that, at the molecular scale,
embodies the escapement functionality required of all disequilibria conversions.

However, as Jencks has in particular emphasized [12], substrates typically bind to the complex by induced fitmechanisms.
These in turn produce quasi-elastic, ‘free energy storing’ conformational changes in the complex, changes that are
themselves endergonic (but not significantly dissipative). As these bonds are made and then later broken, the associated
conformational changes trigger the sequential transitions between the alternative ‘‘specificity’’ forms of the complex that
make up the conversion cycle. As a result, part of the chemical potential loss in the driving process is taken up in driving
these conformational changes.

To restate a central point, disequilibria conversion processes do not transfer energy from the driving process to the driven
one, nor in any valid sense do they transfer ‘‘free energy’’, if that term is taken to denote a discounted quantity of energy
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rather than just the probability of amacrostate. Free energy, we noted, is simply ameasure of ‘‘improbability’’—i.e. reflecting
how relatively improbable a particular condition of disequilibrium is. Free energy transduction involves nothing more than
trading one improbability for another.

We note that chemical conversion reactions in which the endergonic and exergonic reaction pairs are coupled by means
of shared reagents plausibly stand as exceptions to the ‘‘escapement mechanism’’ requirements just stated. We consider
this case briefly below (Section 8) and there argue that such coupling processes are not in fact exceptions.

3.6. Turning from generalities to concrete cases, conceptual and real

We now turn from these introductory generalities to an attempt to clarify in more concrete terms how Brownian-
escapement devices actually operate to convert – and thereby create – disequilibria. Many of the points introduced as in
general terms above will be encountered again in the context of specific models and examples.

We begin by analyzing the simplest explicit model of disequilibria conversion we can conceive, namely one based on the
classical statistical thermodynamics paradigm of particles distributed unequally between the sides of a partitioned box. In
this toy system we ask what thermodynamically legal and biologically feasible mechanistic arrangements are required to
cause the dissipation of one such disequilibrium to automatically generate another disequilibrium of the same type. This
maximally simple model system is considered first to display the minimal essential elements of molecular-level conversion
processes. We later consider somewhat more sophisticated and ‘biological’ versions of the model to bring forward some
additional points.

For clarity we analyze the thermodynamics of this system from several perspectives, beginning with a static statistical
analysis based on the conventional ‘particles in a box’ assumption that the system’s microstates are the distinguishably
different possible specifications of particle locations within the partitioned box—and thus occur with equal probability
(see [52, §5&6] [34, Prologue]), and that the macrostates of interest are distinguished by the number of particles in one
side of the partitioned box.

4. Particles diffusing in a partitioned box; the ‘‘coupled diffusion chambers’’ (‘‘CDC’’)model of disequilibria conversion

4.1. A partitioned box; causation and the ‘‘force’’ that powers change: the self-maximization of the count of microstates

Consider first a collection of N identical non-interacting particles of finite size distributed in a volume in which the
particles can occupy any one of M positions. The particles are implicitly assumed to form a ‘gas’ in thermal equilibrium.
All possible ‘‘configurations’’ or ‘‘microstates’’ – i.e. specifications of which positions are occupied by particles within the
volume– are taken to be equally likely (the ‘‘micro-canonical ensemble’’ assumption). Under this assumption, the Boltzmann
multiplicity (equivalently ‘‘configuration’’ or ‘‘microstate’’) count, or in more modern nomenclature, the system’s total
‘‘weight’’, ‘‘W ’’ is given by the standard combinatorial formula:

W (M,N) =
M!

(M − N)!N!
, (9)

where the system’s entropy, in dimensionless units (i.e. taking kB = 1), is therefore S = lnW .
We note here that an appropriate form of Stirling’s approximation for our purposes is n! ≈ (n/e)n [52, Appendix B] in

terms of which, given sufficiently large values for M and N , we may convert the above combinatorial expression for the
system’s microstate count into a more convenient one for its entropy:

W (M,N) =
M!

(M − N)!N!
≈

MM

(M − N)(M−N) NN
, equiv.

S = lnW (M,N) ≈ MlnM − (M − N) ln (M − N)− N lnN.
(10)

Next, and in order to introduce a system of this type capable of supporting a disequilibrium, we consider the classic
diffusion chamber comprised of two such volumes separated by a partition with a portal through which particles can pass
one at a time. We depict this in Fig. 1 in which it is assumed to be in a state of disequilibrium, that is, with more particles on
one side than the other:

Assuming there are N total particles in the two compartments depicted in Fig. 1 the system can exist in N + 1 different
macroscopically specifiable (that is to say, externally observable and controllable) states distinguished by howmany of theN
particles are in one compartment, say the left one: ‘‘NL’’. These states, assuming the total number of particles is held constant,
comprise the system’s ‘macrostates’. Since Boltzmann we understand that a key property of thermodynamic systems is the
probability that the systemwould be found to be in any one of its possiblemacrostates and further that this probability is pro-
portional to the number ofmicrostates of the system towhich it has ‘effective’ accesswhen in thatmacrostate [34, Prologue]:

p (NL) ∝ W (NL) = e−S(NL),

= W (NL) /Zmacrostates (11)
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Fig. 1. Disequilibria relaxation and macrostate probability.
Given a disequilibrated distribution of particles between two connected compartments as depicted in the figure it is obvious that the net flow of particles
through the portal in the partition dividing them will be from the more to the less densely occupied compartment and will proceed until the forward and
reverse single particle transit probabilities are equal—reflecting that then, apart from statistical fluctuations, the particle densities in the two partitions
are the same. During this relaxation the probability of the system’s ‘macrostate’ increases quasi-continuously. This increase, since it inherently implies
a degree of irreversibility, is arguably the physical cause of the relaxation. In the accompanying text we illustrate how macrostates are defined in the
present system and how their probabilities relate to the system’s microstate count W (equivalently its entropy) when in a particular macrostate. And we
also discuss the circumstances, more generally, in which it is legitimate to consider these quantities as well defined, and as increasing quasi-continuously,
during a spontaneous, non-equilibrium, thermodynamics process.

where Zmacrostates =
N

NL=0
W (NL) is the partition function for the macrostate distribution, and S (NL) = ln (W (NL)) is the

entropy of the system when it is in its ‘‘NL’’ macrostate.
Given our assumptions about this ‘‘balls in a box’’ diffusion model, in which microstates are simply alternative choices

as to which of the occupiable locations hold particles, and using that the diffusion chamber’s microstate count is, to a good
approximation, the product of the counts of its individual chambers:

W (N;NL) = Wleft (NL)×Wright (NR) (12)

where N = NL + NR. Clearly the macrostate probability of the diffusion chamber is highest whenW (N;NL) is maximal and
that, as we explicitly show below, if the two compartments are equal in volume this happens when NL = N/2. Clearly also,
the system is in a disequilibrium if the total microstate count is less than this value (equivalently the system’s macrostate
probability is less than itsmaximal possible value), and spontaneously executes a transition from a non-equilibrium starting
state to the equilibrium one in which the number of accessible microstates, and with it the macrostate’s probability and its
entropy, increases (apart from fluctuations) from their starting to theirmaximal values. In thismodel system, the probability
of the macrostate in which NL particles are on in the left hand compartment is the fraction of times in placing N particles
randomly in two boxes each having room for M particles, exactly NL of them end up in one of them. In other words, the
macrostate probability of the distribution shown in Fig. 1 is extremely small since a correspondingly small fraction of all
equally probable microstates have that degree of numerical imbalance. The overwhelming majority – a rapidly increasing
majority as N grows in size – are within ‘fluctuation’ range of those that correspond to the most probable macrostate.

Moreover a highly important result of modern thermodynamics has been the development of a class of relationships
called ‘‘fluctuation theorems’’ (see [13–18,20,23,24,28,73]) which in general (and oversimplified) terms state that the ratio
of the probability of an entropy increasing fluctuation to that of its reverse, entropy decreasing mirror event is equal to the
exponential of the magnitude of the (dimensionless) entropy change. Given the core importance of fluctuation transitions
to disequilibria conversion as was discussed above in Section 3.3, we derive the applicable fluctuation relationship for single
particle transitions in our toy diffusion chamber model in Section 4.1.2.

Further, in recognition of the fact that our treatment of the ’thermodynamics’ of a model based on a (potentially small)
number of particles in a box violates the conceptual tenets of classical thermodynamics, still to be found in most textbook
renderings of the subject (by way of contrast see [52]), we offer a digression on the transition from classical to non-
equilibrium thermodynamics in Appendix B.

We turn next to extending the combinatorial configurations analysis given above for a simple particles-in-a-box model
to the case of a partitioned box as pictured in Fig. 1.
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4.1.1. The configurations analysis of the partitioned box
Since the number of configurations of a system comprised of statistically independent subsystems is the product of the

subsystem numbers, in the partitioned box model, we have:

Wtotal = W (ML,NL;Md,Nd) = W (ML,NL)×W (Md,Nd) , or
lnWtotal = lnW (ML,NL)+ lnW (Md,Nd)

(13)

where L and R denote the left and right partitions respectively and where NL and NR must sum to Ntotal = NL + NR
.
= N .

Net particle flow between the sides of the boxwill necessarily proceed in the direction that increasesWtotal (equivalently
the system’s total entropy Stotal ∼ lnWtotal). We explore what this implies in terms of the system’s macrostate parameters
in twoways. First, by considering the effect onWtotal of single particle transfers; this we take up next. Second by considering
the large N limit and computing the rate of change of the system’s entropy with the number of particles in the left partition
∂ (lnWtotal) /∂NL.
Single particle transfers. We first just calculate how a single box’s microstate count changes when we increment and
decrement the number of particles in the box N by 1; assuming, as we have above, that the box has M possible particle
positions. Given that:

W (M;N) =
M!

(M − N)!N!
. (14)

If increase N by one:

W (M;N + 1) =
M!

(M − N − 1)! (N + 1)!
,

=
M! (M − N)

(M − N)! (N + 1)N!
,

= W (M;N)
(M − N)
(N + 1)

. (15)

And similarly, if decrease N by one:

W (M;N − 1) =
M!

(M − N + 1)! (N − 1)!
,

=
M!N

(M − N)! (M − N + 1)N!
,

= W (M;N)
N

(M − N + 1)
. (16)

Now consider the diffusion box example, in which the particles are divided between the left and right compartments:
N = L+R, and in which the total microstate count isWD = WL×Wd. We ask howWD changes when a single particle moves
from left to right.

WD (L− 1; R+ 1) = WL (M; L− 1) WR (M; R+ 1) ,

= WL (M; L)
L

(M − L+ 1)
WR (M; R)

(M − R)
(R+ 1)

,

= WD (L; R)
L

(M − L+ 1)
(M − R)
(R+ 1)

,

WD (L− 1;N − L+ 1) = WD (L;N − L)
L

(M − L+ 1)
(M − N + L)
(N − L+ 1)

,

(17)

where in the final equation we have used that R = N − L.
From the above we see that there is no change in microstate count upon the exchange of a particle from left to right if

L
M − L+ 1

=
N − L+ 1
M − N + L

,

LM − NL+ L2 = MN − LM +M − LN + L2 − L+ N − L+ 1,
2LM = MN − 2L+ N + 1,

2L = N +
1

M + 1
.

(18)
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So if assume thatM ≫ 1, a particle transfer leaves the microstate number unchanged if

L = N/2. (19)

This unsurprising result serves mainly to emphasize that the physical meaning of the fact that the ‘force’ causing the
dissipation of a disequilibrium. It is simply a quantitative bias in favor of stochastic transfer events which increase, rather
than decrease, the number of microstates, and in so doing move the system quasi-continuously through macrostate space
(here parametrized by L, with M and N being taken as fixed) to macrostates of increased (on average) intrinsic probability;
that probability being maximal when L = N/2 and the particles are distributed equally between the two compartments.

To make this point a bit more concrete, we ask, under the same M ≫ 1 condition, for what values of the system’s
macrostate parameters does the system’s microstate count increase upon a transfer of a single particle from left to right.
The answer clearly is:

WD (L− 1; R+ 1) > WD (L; R) ⇐⇒
L

M − L
>

R
M − R

,

L
M − L

>
N − L

M − (N − L)
.

(20)

Defining ‘fullness’ (full/empty) factors for the two sides of the diffusion chamber: εL = L/ (M − L) and εR = R/ (M − R),
the above result can be economically expressed as:

εL > εR (21)

where again we are assumingM ≫ 1.
In words, such a transfer increases the system’s microstate count if and only if the ratio of full-to-empty locations in the

donating chamber is greater than the same ratio in the receiving chamber. Physically, this just corresponds to the fact that
under those conditions, a transfer from the more full to the less full chamber is more probable than the reverse.
Large N limit. Using the Stirling approximation expression given above in (10),we can, for sufficiently large particle numbers,
write

lnWtotal = ln

MML

L MMR
R


− (ML − NL) ln (ML − NL) ,− (MR − N + NL) ln (MR − N + NL) ,

−NLln (NL)− (N − NL) ln (N − NL) (22)

and can further treat the particle numbers as continuous variables in order to compute the partial derivative of Wtotal with
respect to NL (chosen arbitrarily). This is:

∂ (lnWtotal)

∂NL
= ln


ML − NL

NL


− ln


MR − NR

NR


equiv. ,

= ln

empty
full


L
− ln


empty
full


R
,

= ln (1/εL)− ln (1/εR) so that,

∂ (lnWtotal)

∂NL
= ln


εR

εL


(23)

where, the ‘‘ε’’ quantities, εL and εR are the ‘‘fullness factors’’ defined above; in which, e.g., εL ≡ (full/empty)L = ratio of full
to empty sites of the L chamber. In the dilute limit, where the number of filled sites is very much less than the total number
of sites, N ≪ M , then ε ≈ N/M , i.e. the ’concentration’ of particles in the chamber.

Thus, requiring this derivative to be positive (for the entropy of the system to increase as NL is increased):

∂ (lnWtotal)

∂NL
> 0 if and only if,

ln

εR

εL


> 0 equivalently,

εR > εL.

(24)

That is as we expect, and recapitulating the result obtained above for single-particle transfers, the entropy of the system
increases only when particles move from the more completely filled to the less completely filled side, and equilibrium
is reached when both sides have the same ratio of full to empty locations. We note that the analysis to this point of the
partitioned box diffusion chamber is essentially that given in [34, Prologue].

Our core argument in this paper is erected on the quite trivial conceptual foundation laid out using the diffusion model
in this section. The key next step is to make concrete what is required, as a generality, to have the relaxation of one
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disequilibrium of the above type generate another of the same type. For this we need to consider two such diffusion process
equippedwith linked gatingmechanisms. Howwewill represent the gatingmechanisms necessary to effect a conversion of
disequilibriawill be introducednext, first asmerely passive, thermally-driven ‘do-nothing’ toggles acting in a single diffusion
chamber whose only effect is to break particle movement through the barrier into separate loading and unloading steps.

However, because of its general conceptual importance to our discussionwe insert an analysis of the fluctuation dynamics
of the diffusion model (see Appendix A for a discussion of the non-equilibrium thermodynamic concepts on which this
argument is based).

4.1.2. Macroscopic reversibility and a fluctuation relationship for the diffusion chamber
A fluctuation relationship for the diffusion chamber model can be derived by assuming: (a) that the probability of a

macrostate is proportional to its microstate count (termed its ‘‘weight’’ in the conventions of stochastic thermodynamics
[23,34]): i.e., for macrostate ‘‘A’’, PA

∝ W (A), and (b) that the macrostate weights may be taken as unchanging in time and
thus that the system is operating in steady state. In general, of course, steady state operation in the CDCmodel requires that
the converter is connected to a ‘‘chemostat’’, in this case ‘source’ and ‘load’ circuits, as imagined in Fig. 11, which maintain
constant particle densities in the compartments.

Under these assumptions the principle of ‘‘macroscopic reversibility’’ applies [25, Eq. 1.35] (alternatively that of ‘‘global
detailed balance’’ [22, Sec. 5.4]); see discussion in Appendix A. In the CDCmodel, where states are even under time reversal,
macroscopic reversibility requires that the unconditional probability of a transition between macrostates A and B in time t ,
namely p (B, A | t)must equal that of the reverse transition: p (A, B | t) = p (B, A | t). Given further that the unconditional
probability of theA

t
→ B transition, is equal to the product of its conditional probability: p (B | A, t) (i.e., the probability of that

transition given that the system is inmacrostate A), and the probability PA of the systembeing inmacrostate A: p (B, A | τ) =
p (B | A, t)× PA, and adopting the shorthand notation for the conditional transition probabilities: p (B | A, t) = pA→B, (and
retaining the convention of this section that entropies are dimensionless) we have

PA
× pA→B = PB

× pB→A,

pA→B

pB→A
=

PB

PA
,

=
W (B)
W (A)

,

= e∆S(A→B)

(25)

where the final ‘canonical’ form is simply the result of inserting S = lnW in the 3rd eqn. in the stack. Conceptually, the
key points in this relationship are that the probability of a transition between macrostates is proportional to the probability
of the target macrostate, and that, in consequence, forward transitions are exponentially more probable – in the entropy
increase produced by that transition – than their reverse. Noting finally that the entropy produced in the forward transition
must equal the negative of that produced in the reverse transition, we note that the above result may be written

p(∆S)
p(−∆S)

= e∆S (26)

which is the so-called ‘‘detailed fluctuation theorem’’ [22, Eqn. 70], and since there is no restriction of the magnitude of∆S
nor on the size of the system under study, this may also be regarded as a ‘‘macroscopic’’ fluctuation theorem (see also the
alternative approaches to the derivation of ‘‘macroscopic’’ fluctuation relations by Ambaum [73] and by Bertini et al. [74]).

If in the CDC model we consider only single particle transfers, the ratio of the probabilities for forward and reverse
transfers is equal to the exponential of the entropy produced in the ‘forward’ transfer

pL→L−1

pL−1→L
=

WD (L− 1)
WD (L)

,

=
L

(M − L+ 1)
(M − N + L)
(N − L+ 1)

,

= e∆SD(L→L−1) (27)

where in the first equation we have used Eq. (25), and the middle equation in this stack was as taken from Eq. (17). This is
manifestly an instance of a ‘detailed fluctuation theorem’.

Notice that ifM ≫ N ≫ 1 then the ratio of the conditional transition probabilities becomes:

pL→L−1

pL−1→L
≈

L
N − L

,

=
L/N

1− L/N
. (28)
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Fig. 2. Diffusion through passive, thermally-driven gates.
It is assumed that the passive gating devices shown oscillate in a stochastic, binary manner (i.e. they ‘flip’), driven by thermal fluctuations, between the
two orientations: open right and open left. Their presence divides the transport of particles through the partition into ‘half reactions’ involving the loading
and unloading of the portal chamber; clearly a portal must become loaded from one side before a flip of the gate makes it possible for the particle to leave
the portal to the other side; this action affects the rate of equilibration, not the outcome.

In the next section we introduce a mechanistic modification of the portal in the box’s partition that we will require in
order to achieve disequilibria conversion.

4.2. Adding a passive, ‘Brownian’ gate

Fig. 2 depicts the introduction of thermally driven, directionally unbiased, gatingmechanisms into the transit of particles
through the portal in the diffusion chamber’s partition. These mechanisms have the effect of breaking the transit into
separate, thermodynamically independent, and in principle separately controllable, ‘half-transit’ events of loading and
unloading. Doing so is an essential design element of all free energy converting devices.

With these notions in handwe can address the question of how the dissipation of one such disequilibrium could force the
creation of another of the same type. For this we set up two diffusion chambers each with a gate of the above type, but with
the two gates linked together mechanically so that they are forced to move, i.e. to flip, together, and can thereby function
as the sought-after Brownian escapement. This is shown in Fig. 3.

4.3. The CDC toy model: two diffusion chambers with coupled gates forming a ‘‘Brownian escapement’’

Fig. 3, depicts the situation in which two gated diffusion chambers are coupled by having their gate mechanisms linked
so that they must flip orientation together. If in addition it is assumed that thermal fluctuations are prevented from flipping
the linked gate’s orientation (in either direction) unless both portals are in the same state of being either full or empty, then
the linked gates function as an escapement and the entire system as an engine by which the dissipation of a disequilibrium
in one chamber can drive the formation of a disequilibrium in the other. We discuss later how his kind of ‘flipping’ rule is
achieved in real disequilibrium-converting engines, biological ones in particular.

In any case, the key condition is that the linked gating mechanisms can flip (in either direction) only if both portals are
either loaded or empty (that is, the state of only one portal being empty prevents thermal fluctuations from flipping the
linked gates). This imposes a directionally unbiased coupling of the processes that functions as a stochastic escapement
mechanism that can cause the dissipation of one disequilibrium to create another as is shown in Fig. 4.

It is to be emphasized that this disequilibria convertingmechanism is blind as to direction, and also as towhich chamber’s
process, if either, is driving the other; it is therefore inherently reversible, and ‘‘Maxwell daemon’’ free (that is, it does not
filter events based on their probability in order to permit only improbable ones—in violation of the 2nd law; it merely
enforces that it is the joint probability of events in the two chambers that controls both). To be useful, of course, any device
of this type has to be sustained in a dynamic and approximately steady state by being embedded in a hierarchical cascading
network of such devices, wherein many of the product disequilibria have critical extra-network uses (and are depleted in
those uses). We expand a bit on this point below in Section 10.

Note also that the assumed linked-gates flipping rule makes the escapement mechanism function as a logical ‘‘XNOR’’
gate; emitting a ‘yes’, i.e. a flip, only if both inputs are in the same state, and a ‘no’ otherwise. We return to this point later
in discussing more realistic models of disequilibria conversion.
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Fig. 3. Diffusion chambers coupled by linked gates forming an escapement; an engine that can convert concentration disequilibria.

(a) Initial state. (b) Final steady state.

Fig. 4. Converting diffusion disequilibria.
A pair of gated diffusion chambers coupled via amechanical linkage between their gatingmechanismswhich forces the twogates to flip orientation together
thereby potentially driving the conversion of disequilibria between the top and bottom diffusion chambers; panel (a) depicts a potential starting state for
the system of complete disequilibrium in the top (blue) system, and approximate equilibrium in the bottom one (red). This state would then evolve, purely
by stochastic diffusion, into a steady state represented in panel (b), in which the initial disequilibrium in the blue ‘driving’ chamber is partially dissipated
while a partial disequilibrium is created in the red ‘driven’ chamber; that is, in steady state neither of the two processes are at equilibrium.

In Section 5 we present a dynamic non-equilibrium analysis of this simple model engine in the large particle number
limit. However, we first analyze the steady state properties of the toy engine’s operation based on the simple ‘configuration
count’ analysis begun above in describing the partitioned diffusion chamber.

4.4. Microstate count analysis of the CDC model engine

Thenumber of configurations for the CDC engine is the product of the numbers for its two constituent diffusion chambers:
Wengine = WD

total × W d
total where D and d denote the two coupled diffusion processes. We will examine how the total

microstates count of the engine changes as particle transitions occur under the same two limit conditions we employed
above; single particle transitions, and the large-particle number approximation.

4.4.1. Single particle transits
We can directly express the change in the microstate count in our coupled diffusion chambers model for disequilibrium

conversion by noting that the system’s microstate count is the product of the count for the two coupled diffusion systems:

WC = WD ×Wd (29)
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where,WD andWd are the microstate count for the two coupled diffusion chambers. As was noted in the introduction to the
CDCmodel just above (Section 4.3) we assume that the coupling requires that single particle exchangesmust occur together
in the same direction in both chambers (but in either direction).

Using lower case symbols for the 2nd chamber, and using the result for a single particle transfer from left to right (in
both chambers) given in Eq. (17) and Eq. (21), we can write the above product as

WC (L− 1; l− 1) = WD (L− 1)×Wd (l− 1) ,
= WD (L− 1;N − L+ 1)×Wd (l− 1; n− l+ 1) ,

= WD (L;N − L)
L

(M − L+ 1)
(M − N + L)
(N − L+ 1)

×Wd (l; n− l)
l

(m− l+ 1)
(m− n+ l)
(n− l+ 1)

,

= WC (L; l)
L

(M − L+ 1)
(M − N + L)
(N − L+ 1)

×
l

(m− l+ 1)
(m− n+ l)
(n− l+ 1)

, (30)

from which it is evident that a single dual transfer of a particle from L to R in the two coupled chambers will increase the
system’s total microstate count if and only if

L
(M − L+ 1)

(M − N + L)
(N − L+ 1)

l
(m− l+ 1)

(m− n+ l)
(n− l+ 1)

> 1,

ϵL

ϵR

ϵl

ϵr
> 1.

(31)

Where in the last line we have again imposed the assumptions thatM ≫ 1, andm≫ 1 and used the above ‘fullness factors’
notation.

Consider the case in which ϵl/ϵr = 0.5, implying that the L → R transit of a particle in the 2nd chamber reduces
that chamber’s microstate count; that is, the transit in this chamber increases that chamber’s disequilibrium and is thus a
‘‘driven’’ one. But this then implies that ϵL/ϵR > 2 for the dual transit action required by the coupling rule to be one that
increases the system’s total microstate count (and thus would thus be the statistically predominant transit direction).

This illustrates that a conversion of a disequilibrium in the first (upper case) chamber to one in the second (lower case)
chamber will occur when:

ϵl

ϵr
< 1 and also,

ϵL

ϵR
>
ϵr

ϵl
.

(32)

And in a general sense it also illustrates, at the ‘‘microstate count’’ level, the thermodynamic underpinnings of disequilibria
conversion.

4.4.2. Large-particle-number approximation
Referring to Eq. (23), and denoting the driving and driven processes with, respectively, the superscripts D and d, we

observe that the toy engine’s escapement rules imply that ∆ND
L = ∆Nd

L = −∆ND
R = −∆Nd

R , so that ∂Nd
L /∂N

D
L = 1, it

follows that the partial rate of change of the entropy of the engine with respect to changes in the number of particles in the
(arbitrarily chosen) left chamber of the ‘‘D’’ process is:

∂

ln

Wengine


∂ND

L
=
∂

ln

WD

total


∂ND

L
+
∂

ln

W d

total


∂ND

L
,

=
∂

ln

WD

total


∂ND

L
+
∂Nd

L

∂ND
L

∂

ln

W d

total


∂Nd

L
,

= ln

εDL

εDR


+ ln


εdL

εdR


,

= ln

εDL ε

d
L

εDR ε
d
R


(33)

which says that entropy goes up as particles move (together) from R to L if the product of the two empty/full ratios is greater
on L than on R. And conversely for the opposite direction. So, the system achieves steady state when the product empty/full
ratios for L and R are equal:

εDL ε
d
L

εDR ε
d
R
= 1 equivalently,

εDL ε
d
L = ε

D
R ε

d
R,

(34)
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that is, the product of the ratios of empty to full sites in the two left partitions must equal the same product for the two right
partitions.

Alternatively, if the product of the empty/full ratios is greater on the right than on the left (as in our assumed starting
condition):

εDL ε
d
L

εDR ε
d
R
< 1 equivalently,

εDL ε
d
L < εDR ε

d
R

(35)

then ∂

ln

Wengine


/∂ND

L < 0,which implies that if R is (in the product)more empty than L then a flow from R to L decreases
the engine’s total entropy, and, conversely, that, in this state, the entropy of the system is increased by a flow from L to R.
This corresponds to the assumptions made above for the CDC model, in which d is the driven process and starts out at (or
near) equilibrium’’ namely with εdL = εdR), whereas D is the driving process and starts out compressed into the left hand
compartment so that (εDL < εDR ), thereby satisfying the engine conditions εDL ε

d
L < εDR ε

d
R for creating a disequilibrium in the d

(driven) process.
Kinetically these linking conditions just mean that within the model net particle flow, equal in direction and magnitude

for both processes, proceeds from the side in which the joint probability of both gates being simultaneously loaded exceeds
that for the other side.

This maximally simple model captures, we claim, every essential mechanistic element of disequilibria (free energy)
conversion—save one: how, in the molecular domain, does the escapement mechanism actually impose the essential
requirement that neither process is permitted to complete unless both do. In our model this requirement is embodied
in the rule that the gating device is permitted to flip sides only if both portals are in the same filled or empty state. But
how do molecular machines impose such rules? We take up this topic beginning with Section 7 but in the next section
augment the preceding statistical-thermodynamic, ‘microstate counting’ static analysis of the CDCmodel with an explicitly
dynamical ‘‘equations ofmotion’’ analysis. This involvesmoving to the limit of large particle numbers and treating the system
as comprised of idealized ‘gases’. In this, we adopt a notational change to reflect the fundamental switch in underlying
concept structure; wherein, e.g., ‘static’ particle counts are replaced by explicitly time-dependent particle densities.

5. The large-particle-number dynamic analysis of the CDC model

Our goal in this section is to derive and solve a set of differential equations that describe, in the large particle number limit,
the dynamics of the CDC model as defined in the preceding Section 4. We could approach this in terms of discrete particle
dynamics, i.e via a Markov model/master equation approach [16,75], however this would both take us quite far afield and
leave us with analytically intractable results. On the other hand, as we now show, some useful insights can be obtained by
framing and solving the model in large particle number limit where the continuum approximation can be employed.

5.1. Model definition: the CDC equations

Two gases, whose molecules are labeled respectively X (blue) and Y (red), are distributed among four chambers, two on
the left (L) and two on the right (R). We denoted the molecules of the X species in the left chamber by XL, and similarly the
others. As shown in Fig. 3, the two gases are not in contact, however, the gating mechanism allow a X molecule and a Y
molecule to simultaneously flip from the left chambers to the right chambers, or vice versa. The main insight is that these
processes are formally equivalent to the two chemical reactions:

XL + YL
α
−→ XR + YR, XR + YR

α
−→ XL + YL. (36)

The above processes do not imply that changes occur in chemical structure (although this is certainly what happens in
real engines, as described later on), but rather that the kinetics of the CDC model are tantamount to those of the chemical
reactions (36). In this way, we can resort to the law ofmass action to obtain a set of dynamical equations from reactions (36).
Note that this approach is widely used in statistical physics for modeling population dynamics in varied fields [75].

Reactions (36) conserve the total number of particles of the two gases, and we denote by NX (respectively, NY ) the total
number of X (respectively, Y ) molecules, and their ratio by β = NX/NY . The reaction constant α quantifies the reaction
rate and depends on the volume of the chambers and the kinetic energy of the single particles. To simplify our analysis
we consider α a free parameter. We also indicate the molar concentrations in the chambers using square brackets, e.g. [XL]

denotes the number of X molecules in the corresponding left chamber, divided by NX . To model the system dynamics, we
invoke mass action on reactions (36) (see e.g. [75]) which yields the following system of ordinary differential equations,
which we call the CDC equations:

[ẊL] = α[XR][YR] − α[XL][YL], [ẊR] = α[XL][YL] − α[XR][YR]

[ẎL] = α[XR][YR] − α[XL][YL], [ẎR] = α[XL][YL] − α[XR][YR].
(37)

These four equations possess a high degree of symmetry, in that, [ẊR] = [ẎR] = −[ẊL] = −[ẎL]. System (37) has been
obtained under the approximation (operated implicitly by the law of mass action) that the two gases are macroscopic so
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that the whole system can be thought of two fluids (NX ,NY ≫ 0). In this limit, intrinsic fluctuations, related to the fact that
gases are composed of discrete entities, are neglected although they can be easily accounted for by turning System (37) into
a stochastic process, as commonly done [75].

The purpose of System (37) is to provide us with the simplest model that shows quantitatively how a disequilibrium in
a chemical species (e.g. X) can be used to drive a disequilibrium in another species (Y ), the latter supposed to be initially
at equilibrium. These conditions are realized by choosing proper initial conditions, which complete the definition of the
dynamical CDC model. We assume that at time zero, t = 0, every X molecule is located in the left chamber, whereas the Y
molecules are equally spread among the two chambers. In formulae, this means that

[XL](t = 0) = 1, [XR](t = 0) = 0,

[YL](t = 0) =
1
2
, [YR](t = 0) =

1
2
.

(38)

The notions of equilibrium and disequilibrium are given with respect to the single gases. Each gas, in the absence of
mechanical coupling, reaches equilibrium by uniformly occupying the left and right chambers. However, since the two gases
are coupled, the final state is different and revealed by the analysis of the model which we carry out in the next section.

5.2. Mathematical analysis

System (37) consists of four equations, which can be reduced to one by applying three constraints. Two of them are given
by the conservation laws [XL] + [XR] = 1 and [YL] + [YR] = 1, whereas the third constraint follows from the observation
that to a creation of a XR molecule must correspond a creation of a YR molecule. Together with the initial conditions (38),
this translates into the following equality:

[XR](t) = β[YR](t)− β[YR](0) = β[YR] −
β

2
. (39)

Using the two conservation laws and Eq. (39) in System (37), we can make the (arbitrary) choice of expressing each
concentration as a function of [XL] ≡ x. After some tedious but simple algebraic manipulations, we arrive at the following
equation:

ẋ =
1
2
α (2β − 2(β + 1)x+ 1) , (40)

the initial condition now being simply x(0) = 1 (from Eq. (38)). Eq. (40) is a linear, first-order, ordinary differential equation,
whose solution is given in textbooks [76] and, for our case, reads:

x(t) =
1+ 2β + e−t/τ

2+ 2β
, where the timescale is τ =

1
α(β + 1)

. (41)

As shown in Fig. 5, the concentration of X molecules in the left chamber diminishes progressively, following an
exponential decay with characteristic timescale τ . After a time t ∼ τ , the system reaches its final state where the two
reactions (36) have identical occurrence probability. The concentration of XL in this final state results

x∗ ≡ x(∞) =
1+ 2β
2+ 2β

(42)

meaning, for instance, that if the gases have equal size (i.e. β = 1) then x∗ = 3/4. Thus, only a fourth of the X molecules can
be employed to produce ‘‘useful work’’—moving Y molecules to the right chamber. Eq. (39) further shows [Yd](∞) = 3/4,
and indeed confirms, that the number of Y molecules in the right chamber has incremented by a fourth, with respect to the
initial condition (38). Instead, if the X gas possesses a much larger size than the Y gas, i.e. β = ∞, then x∗ = 1/2 meaning
that the X gas is not hindered by the presence of Y molecules and can thus spread uniformly through the two chambers.

Eq. (42) is shown in the inset of Fig. 5. Finally, note that the time taken by the system to reach the final state depends
on both α, the rate at which both molecules are loaded and transferred to the other chamber, and the system size ratio β . A
larger α makes the system reach equilibrium faster but does not affect the final system state. A larger β speeds up reaching
equilibrium as well, in that a large number of X molecules facilitates driving the Y molecules towards a disequilibrium, and
also affects the final state in a way described by Eq. (42).

5.3. Thermodynamics of the CDC dynamical model based on the above mechanistic analysis

Analyses of coupled chemical reactions do not usually adopt a mechanistic perspective, like the one in the previous
section, but instead rely upon the formalism of thermodynamics which provides general principles of wide applicability.
However, in the past essentially nothing could be said about the out-of-equilibrium behavior of these reactions, as classical
thermodynamics can only analyze equilibrium states or systems at most linearly perturbed from their equilibrium state,
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Fig. 5. Dynamics of the concentration of X molecules in the left chamber, x(t), as predicted by Eq. (41). Dashed lines are obtained for α = 1 for various β
(see figure). Solid lines are obtained for β = 1 for various α (orange, α = 1; purple, α = 2; brown, α = 10). (Inset) Concentration of X molecules in the
left chamber at the steady state, x∗ , (i.e., when the engine stops converting disequilibria), as a function of β [see Eq. (42)].

this latter case being called the Onsager’s regime. However, we here show that once the system dynamics have been fully
obtained, as we did in Eq. (41), the thermodynamics of the model can be inferred without any restriction, and the Onsager’s
regime recovered as a specific limiting regime. The approach described below follows the classic book by Hill [71].

Before initiating the analytical treatment, let us recall that the two gases, in the absence of mechanical coupling, spread
uniformly among the two chambers. Thus, the CDC model without mechanical coupling is equivalent to the chemical
reactions

XL ←→ Xd, YL ←→ Yd. (43)

As we already remarked, in our model these reactions describe molecule displacements between the two chambers, but
we can easily imagine that in real engines they signify processes that also involve chemical change. The crucial points are
that the two reactions are mechanically coupled which makes their kinetics related, and that the first reaction is prepared
in a non-equilibrium state whereas the second reaction is not. Therefore, the second reaction is driven ‘‘up-hill’’ due to
mechanical coupling and the equilibrium relaxation of the first reaction.

To each of the (43), we associate the chemical potentials:

χ1 = −kBT log

[Xd]

[XL]


+ χ

eq
1 , χ2 = −kBT log


[Yd]

[YL]


+ χ

eq
2 , (44)

where kB is the Boltzmann constant, T the absolute temperature and the constants χ∗i (i = 1, 2) are chosen such as when
the (uncoupled) reactions are respectively in equilibrium, their chemical potentials read respectively zero. For our model,
it is convenient to omit the temperature (kBT ≡ 1) and set χ eq

i = 0 (i = 1, 2) which imposes the equilibrium states of the
uncoupled reactions by having the molecules equally spread among the two chambers.

We now consider the system in presence of mechanical coupling. We have seen that in this case the model reduces to a
single-variable model, thus, considering the first chemical potential, we introduce the notation χ ≡ χ1, and express every
concentrations in the first of Eqs. (44) in terms of the variable x. This leads to

χ = − log

1− x
x


(45)

which can be inverted to give a relation between the concentration of X molecules in the left chamber and the chemical
potential of the corresponding reaction, in the absence of mechanical coupling:

x =
eχ

eχ + 1
. (46)

These two relations can be used to obtain the thermodynamics of the model. In presence of mechanical coupling, the
initial disequilibrium in X drives a disequilibrium in Y . The driving occurs until x = x∗, as shown in Eq. (42). Using Eq. (45),
we find that this condition corresponds to a chemical potential difference between the top chambers:

χ∗ = − log

1− x∗

x∗


= log(1+ 2β). (47)

In the absence ofmechanical coupling the systemwould relax to equilibrium, i.e.χ = 0, because the first of reactions (43)
would occur without being affected by the state of the Y gas. Therefore, Eq. (47) measures the displacement from the
equilibrium state, due to the fact the system is coupled.
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Fig. 6. Current vs. chemical potential. Yellow line: the flux of particles J is shown as a function of the driving chemical potential χ , as predicted by Eq. (48).
The blue line corresponds to theOnsager approximation J = Lχ , where L is given by Eq. (49). TheOnsager’s approximation yields an accurate approximation
around the steady state χ∗ (black dot).

The system dynamics can thus be seen as a change in chemical potentials from the initial χ(0) to the final χ∗. The
chemical potential gradient causes a flux of particles, represented by a current J . Since the rate of change of x molecules is
given by its time derivative, ẋ, it is natural to make the identification J = ẋ. The expression of the current in terms of the
chemical potential can be obtained by applying Eq. (46) into Eq. (40):

J(χ) =
1
2
α


−

2(β + 1)eχ

eχ + 1
+ 2β + 1


. (48)

This equation gives the non-linear thermodynamics of the system. Recall that non-equilibrium thermodynamics is
characterized by fluxes of physical quantities, caused by entropy–density gradients called forces [10,11,33]. In our chemical
system, the chemical potentialχ is the force that drives the flux J . The product force time flux, Ṡ ≡ χ J(χ), defines the rate of
change of entropy in the system and thus yields the thermodynamic description of the system’s dynamics. Note moreover
that J(χ∗) = 0, consistent with what we expect. The Onsager’s regime is recovered by considering the system close to
equilibrium, that is, χ − χ∗ ∼ 0. Under that approximation we have:

J(χ) ≈ −L(χ − χ∗), where L =
α

4
2β + 1
β + 1

(49)

is the coupling Onsager coefficient. The comparison between Onsager approximation and non-linear thermodynamics is
shown in Fig. 6.

6. Summary discussion of the CDC toy model

6.1. Key points made by the model

1. Changes take place in nature if and only if the process dissipates a condition of disequilibrium; that is, increases the
configuration/microstate count, equivalently the entropy, of the ‘universe’; which in this model case is the physical
system bounding the process, but in general is that of the system plus its surroundings. That is so merely because in
a system not in equilibrium – that is, whose microstate count is less than it could be – the particle-level events which
lead to that increase are more probable than those which act in reverse. As a result, it is reasonable to say that it is the
increase in the microstate count itself that causes the process to happen.

2. In any such process, however, events at the particle level are inherently stochastic and ‘fluctuating’, with the result that
those which move the system further from, rather than towards, equilibrium, i.e. in its ‘backward’, entropy decreasing,
direction, inherently occur along with the ‘forward’ events moving the system towards equilibrium. In a spontaneous
stand-alone process, of course, the latter events must, on average, outweigh the former.

3. Nature, life most spectacularly, is nonetheless preoccupied with creating states of disequilibrium, necessitating that
specific processes be made to run predominantly in their backward direction. Yet individual backward events cannot
be forced to occur; they can only be selected once they happen – produced by random ‘thermal’ fluctuations – by chance.
Furthermore, the required selection can only take place in the converse; that is by blocking the effects of fluctuations
that would move the system in its more probable, entropy increasing, forward direction thereby reversing the desired
backward events. That is, there is noway to selectively cause the thermal fluctuations youwant; all that can be done is to
block the effects of ones you do not want and trap the one’s you do (though the ‘trap’ only works if the overall probability
of the final state is greater than the starting one).
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4. But the systemmust not just preserve individual backward fluctuations by blocking fluctuations thatwould reverse them,
it must accumulate them; that is, it must follow such events with a (more-or-less) irreversible transition to the state in
which the system can initiate a fresh conversion cycle.

5. The core requirement therefore is for a subsequent transition, after the completion of a ‘‘backward’’ event in the driven
process, to a state: (1) that is itself closed to reversing that completion (in the model, with the portal for the driven
process no longer open to the output side), (2) whose own probability of being reversed – per unit time – is less than the
probability of the reversing reaction in the driven process, and (3) which either is, or permits the system to transition to,
the state in which it can initiate a new conversion cycle.

6. It is here, of course, that the irreversible aspect of the driving process (of, e.g. ATP hydrolysis) plays its essential role.
By having the system’s escapement mechanism require, as in our toy model, that it can only make a ‘flip’ transition
from the ‘catalysis-and-product-release’ configuration back to the ‘load reagents’ configuration, if both driver and driven
reactions are complete (in themodel, if both portals are empty facing in the product release direction), and if, in addition,
the probability of reversing the driving reaction from that side is less than the probability of reversing the driven reaction,
then, on average, the cycle will complete in the direction that converts the driver’s disequilibrium (in part) into a
disequilibrium in the driven process.

7. It is tautological to say that the sequence of events in this engine cycle will, on average, spontaneously proceed in the
direction that has the greater probability of occurring; and likewise that, in doing so, it will perforce satisfy the 2nd
law—creating, in each cycle (on average), a joint ‘macrostate’ that is more probable (equivalently has a larger entropy,
i.e. comprising a larger number of microstates). In this evident fact, however, whether in describing a joint process
carrying out a conversion of disequilibria aswe have just done, or a single,merely dissipative process, is the inference that
the 2nd law is both ‘trivial’ and at the same time the generative cause of all change—including ‘‘creative’’, order-producing
change.

6.2. Main inadequacies of the model

We next note the principle respects in which the CDC model is unsatisfactory as a representative of all disequilibria
converting engines, molecular-level ones especially. The more consequential of these are addressed briefly in subsequent
sections.

1. The model leaves unexplained how the escapement mechanism is actually embodied in real converters. Within the
model’s own frame of reference it is unexplained, in particular, how the ‘flip’ action is made to depend on the loading
status of the portals; in more realistic converters, which have more states in their operational cycle, this issue extends to
the need to understand what causes and controls each of the transitions of the cycle.
Themost important missing aspect of this question is how the escapement enforces the gating requirement whereby the
completion of the driving process is made to be contingent on the completion of the driven one. In the toy, in which the
two completions must never take place separately if the engine is to return to the input side of its biphasic cycle this rule
is simply posited and its mechanistic underpinnings are neglected. In subsequent sections we attempt in various ways
to clarify this question, particularly in the context of somewhat more realistic generalizations of the CDC model.

2. Real converters are both less perfect and more sophisticated – including more articulated – in their operation than
is our toy model, and some of these differences are important even at the abstract level. First, as to ‘imperfections’,
most importantly real engines do not completely suppress all undesirable transitions, and have various kinds of ‘leaks’.
This issue we will not treat further and refer to the classical ‘NET’ analysis of these points [10–12,33]. The issue of
sophistication of design, however, is one we cannot neglect. In the next section we extend the CDC model to a more
biologically realistic version in which, for example, a minimum of six transitions take place within the conversion cycle.
This brings our analysis into closer alignment with the classical linear NET analysis of free energy converters just cited
and allows us to discuss an apparently universal, and evidently highly important feature of biological conversion not
captured in the CDC model; namely the use of ‘‘interleaved’’ half reactions and on that basis of ‘‘kinetic trapping’’ (a
feature invoked in the opening Hoffmann quote). This latter, highly important point, we introduce next.

3. Kinetic trapping: molecular-level free energy converters face the inherent problem that the greater the disequilibrium
created in the driven process, the greater the chemical potential against which they are required to expel the products
of the driven reaction, and therefore the greater the frequency with which those products rebind to the converter before
it has progressed on to a form in which that rebinding is prevented.
In the simple biphasic CDC model, the escapement device simply samples the equilibrium fraction of states in which
both the driven and driving reaction’s product ‘binding’ sites (portals, in our model) happen to be coincidentally empty.
Biology, on the other hand, seems to everywhere improve on this design by using a system that can ‘kinetically trap’ the
completion of the driven reaction thereby reducing the ‘‘rebinding’’ problem. This appears to be generally achieved by
separating the completion half of the two reactions into distinct states or stages in the converter and having one, that of
the driven reaction, precede, and be what triggers, the other.

4. The toy engine is missing the (disequilibria) sources and sinks it would need to keep running and to be useful. As
presented, our model is a stand-alone system which has to be hand-started in a useful disequilibrium state after which



E. Branscomb et al. / Physics Reports 677 (2017) 1–60 27

it merely runs down to its steady state stable point. In contrast, of course, useful engines must be embedded in an
hierarchical cascade of engines in which it stands between a superordinate ‘power source’ engine that maintains the
engine’s driving disequilibrium (as e.g., the electron transport chainmaintains the trans-membrane proton concentration
disequilibrium that can then be used to drive the production of the ATP disequilibrium), and one or more ‘‘loads’’, often
subordinate engines, which are driven by, and thus act to deplete, the driven disequilibrium (e.g. all of the conversions in
metabolism that are driven by the ATP disequilibrium). We consider this issue very briefly, and only diagrammatically,
in Section 10.

5. In the model as so far presented, in which the events involved are merely single particle transits through a barrier,
the effects of reaction kinetics are neglected. If, as mentioned briefly above (Section 3.3.3) however, one or both of the
processes being coupled are chemical reactions, say R 
 P and/or S 
 T , a ‘transit’ eventmay ormay not involve a literal
trans-membrane transit into a chemically distinct environment. But in either case the event probabilities are not just
proportional to ‘reactant’ concentrations, but that probability times the probability that the reactant(s) will be activated
(by thermal fluctuation interactionswith the bath) after they are loaded. In the conversion context, this introduces kinetic
constraints in addition to (equilibrium) thermodynamic ones. Such effects become particularly material if, e.g., some
consumption process is acting to remove the products of the driven reaction yet the concentration of those products is
functionally important.

7. The architecture of real bio-molecular disequilibrium converters; moving beyond the assumptions of the CDC toy
model

The CDC model involves a cycle consisting of four states: two conformations (left or right-facing) each of which can
exist in two states (portals loaded or empty). As we have noted above, real converter engines in biology appear to invari-
ably involve more articulated cycles, comprising transitions between a minimum of six states. This reflects in part that in
such engines the loading of reactants and unloading of products for the individual reactions is in general carried out by
distinct steps in the cycle that are sequenced in a specific order. This modification breaks both the loading and unloading
sides of the cycle as depicted in the CDC model into two separate steps yielding six steps in the cycle rather than four. In
this section we discuss these more complex designs and why they appear to be dictated by considerations of operational
efficiency.

Of course, these more complicated designs, in having more distinct and strictly ordered transitions, greatly increase the
challenge in understanding the mechanisms that enforce the sequential conditionality of these transitions. In other words,
the centrality of ‘transition control’ now becomes much more salient. And transition management is not a simple problem;
neither in molecular disequilibria conversion nor in life in general; complex and important enough, as the classical Greeks
understood, to have its own God, namely Janus.

7.1. Janusian enzymes; Hill diagrams, and the Jencks ‘‘interleaved half-reactions’’ analysis

We invoke Janus here to emphasize a point made before, namely that the macromolecular devices mediating the
conversion of disequilibria are not just ‘enzyme catalysts’, but instead true engines which must step through a specific
ordered cyclic sequence of different enzyme alternatives each having its own distinct binding and catalytic specificities. The
transitions between these alternative forms, and how those transitions are controlled, necessarily fall within the remit of
Janus, and they comprise the beating heart of the conversion process.

To describe the simplest possible six-state conversion cycle, consider (following Hill [77]) that the task is to convert
disequilibria between two simple reactions R 
 P , and S � T where we arbitrarily assume that the second reaction is
the one being driven in its ‘back’ direction S ← T , thereby creating a disequilibrium, whereas the first reaction is the
driving reaction and therefore proceeding in its disequilibrium-dissipating direction, taken to be R→ P . A simplified ‘‘Hill
diagram’’[11] of the six steps in the conversion cycle is presented in Fig. 7 wherein, following convention, we represent the
assumed forward direction as a counter-clockwise transit.

Implicit in the Hill diagram is that step #3, the conformational flip from E to E∗, enables the completion half-reactions
for both processes but only in a particular sequence: first the completion of the driven reaction Tbound → Sbound → Sfree then
that of the driving reaction Rbound → Pbound → Pfree. We note here that even more complex designs, having more separated
steps in the cycle, are commonplace; we briefly discuss two examples in Section 8. However, what appears to be invariant is
that the final product release step for the driving reaction, serving as the transition that introduces the dominant element of
irreversibility in the cycle, is invariably the last step prior to, and acting as the trigger for, the conformational transition back
to the starting state. When, for example, ATP hydrolysis is the driving reaction, the product release step often involves the
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Fig. 7. Hill diagram for a simple, ‘leakless’ conversion.
In this diagram (heremaximally idealized in that all ‘crossing’ reactions connecting the nodes in the diagram are suppressed), the exergonic reaction R→ P
is driving the endergonic ‘back’ reaction S ← T ; the sequence starts in the upper left-hand corner and proceeds counter-clockwise; E and E∗ represent the
complex in its two major ‘‘allosteric’’ conformations: mediating ‘loading/binding’ (E) and ‘catalysis and product release’ (E∗) respectively. The transition
between these forms corresponds to the left–right orientation flip transition in our CDC toy model. As drawn, with the loading phases beginning with the
driven reactant (T ), followed by the driving reactant (R), and with the release of the driven reaction product (S) occurring before the release of the driving
reaction product (P), the process reflects the Jencks interleaved half-reactions cannon mentioned above; both in having the two processes segmented into
interleaved half reactions, and in the particular ordering of the half reactions (the colors of the diagram’s quadrants are meant to reflect the ‘crossing’,
‘interleaved’ flow of the two reactions: steps 1–4 for the driven reaction, 2–5 for the driving reaction). In the toymodel, by way of contrast, in neither of the
two engine phases (open left and open right) was there any distinction made or required as between which process, driver or driver, went first—since they
were on both sides obliged to act together. On the other hand, the ‘‘flipping’’ rules here are exactly what they were in the toy model; that is, the engine can
flip between its E and E∗ conformations only if both processes are either ‘‘loaded’’ (step #3) or ‘‘empty’’ (step #6). It is just that now the cycle has separated
the loading/binding and catalysis and product release steps for the two processes and imposed ordering rules on these separated steps.

‘simultaneous’ release of both ADP and Pi, but not always. The release of the last one of the products to be released appears
to always be the final, and triggering, step before conformational reset, and in that the step in the full driving reaction that
makes the major contribution to the thermodynamic force driving the cycle forward. Note that whereas it is not necessary
that all steps in the cycle be exergonic, and they are in general not, the whole cycle must of course be if it is to proceed
forward (i.e.∆Gcycle/kBT < 0). These points emphasize, we note in passing, that conversion cycles are not, and could not be,
equilibrium chemistry.

Reflecting this fact, if satisfying the 2nd law were the only thermodynamic design criteria effecting the engine it would
be of little interest to life. This for two reasons, both having to do with kinetic aspects of the cycle. First, the cycle’s net
forward speed is proportional to e−∆Gcycle/kT , (the ratio of the cycle’s overall forward to reverse reaction rates) [11,23,35];
that is, the more each cycle increases the entropy of the universe, the faster it goes. Second, and more consequentially so
far as mechanism goes, the release of the products of the driven reaction presents an intrinsic kinetic challenge, since the
systemmust reject the products directly into the wind of a high back reaction rate—over which it has no control (andwhich,
moreover, it is working to worsen). Yet the system must have successfully rid itself of the products of both reactions as
a precondition for the return of the engine to its starting state, and with as little waste of time and driving free energy
as possible. Therefore kinetics matters, and the faster and more decisively the system can respond to having an ‘empty’
binding site for the driven reaction’s products by transitioning ‘irreversibly’ to a state in which it can to ‘flip’ back to its
starting conformation, the better.

How can the above requirements be met in a 2nd-law-consistent manner, and how are they met in real biological
converters? One qualitative aspect of the answer to this question is that the complex is obliged to change its enzymatic
‘‘specificities’’ at each step in the cycle, not just in the alternation between the two major forms that are conventionally
indicated—here E and E∗. Fig. 8 is meant to bring this aspect forward.

These two diagrams provide a useful picture of the sequence of events that make up an operational cycle of a simple
but representative molecular-level disequilibrium conversion engine. But they beg the question of what makes the engine
change its enzymatic properties, its binding and catalytic ‘‘specificities’’ (in Jenck’s terminology), in the specific sequence
required, as it steps through each of the stations of its cycle. We take up this subject next.
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Fig. 8. Specificity transitions in Janusian Enzymes.
In its starting state (upper left) the complex can only bind the substrate for the driven reaction (green sphere); subsequently it can only bind the substrate
for the driving reaction (blue square), both ofwhich reactions can involve ‘induced fit’ mechanisms; these binding reactions, taken together, drive themajor
conformational change in the complex (orange to red body color), completed in the right bottom state. In this state the complex is enzymatically active
to complete the driven reaction (sphere going from green to orange) and to permit the release of that product—whose release is in general taking place
against the back pressure of a high chemical potential. Subsequently, the system becomes enzymatically active to complete the driving reaction through
to product release; these steps, the product release predominantly, constitute the ‘irreversibility’ (free energy change) driver responsible for the forward
motion of the cycle, but also for providing a ‘latch’ acting to kinetically block the reversal of the driven process.

7.2. Substrate binding and the control of the conditional transitions in the conversion cycle

In Section 3.4.4, we summarized in general terms themain points regarding the role played by events of substrate binding
and unbinding in controlling the transitions in a conversion cycle. We here reframe the main points as they apply in the
explicit context of realistic, multi-step conversion cycles.

In the simple six-step conversion engine pictured in Figs. 7 and 8, the complex becomes, in a specific order, six distinct
enzymes. Notably, each of these transitions is preceded by a distinct ‘substrate’ binding or unbinding event. This is the
decisive clue as to how these system’s work. All of these binding-change events involve ‘induced fit’ interactions between
the substrates and the protein to which the substrates are binding; in consequence the conformational and other properties
of the protein change at each step, as we have tried to suggest in Fig. 8. A highly relevant and illustrative example of this
kind of process, namely the binding and unbinding events in the active site of the F1 motor of ATPsynthase, has been quite
thoroughly characterized by Oster and colleagues [46,78]. There, the binding of ATP (alternatively of ADP and Pi), involves
forming a dozen or so weak bonds through a ‘zipper-like’ mechanism which is progressive, ordered, and cooperative.
This binding sequence drives a correspondingly progressive, and ultimately substantial, elastic deformation of the protein
partner, and involves a significant conversion of the free energy of the bond formation to the (more or less) reversibly stored
elastic free energy of conformational ‘distortion’ in the protein (which to say that these ‘induced fit’ binding processes are
conversion engines themselves). On the other hand, while similarly dramatic conformational responses on the complex’s
part have very regularly been observed and shown to be mediating transitions in conversion cycles, drama is not required.
As Koshland has noted in his essay Conformational changes: how small is big enough? [66], very minor changes in a protein’s
conformational state can have very large, and even very distant, effects on its binding and catalytic specificities [65].

What is essential is the point given particular emphasis by Jencks [12,55]. This is that the quasi-reversible inter-
conversions of some part of the intrinsic binding free energies of substrates, as bonds are either formed or broken, to
‘distortion’ free energies stored in changes in the complex’s conformation, both impose the transition rules of the cycle,
and enable the catalytic acceleration of the conversion process [54]. Usefully, molecular level understandings of these
interactions are now emerging at a brisk pace (see examples given in the literature cited in Section 11).
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7.3. Apparent advantages of the Jencks canonical ordering

What explains the apparent preference in biology for the Jencks ordering, especially the apparently obligate preference
for its most counterintuitive element, namely having the driving reaction only take place, or at least only complete, after
the driven process has completed? We first consider the ‘product release’ side of the cycle.

An essential requirement of a conversion cycle, as Jencks argued, is that neither process be allowed to complete within
a cycle unless both do. This means, as our CDC toy model posited, that the ‘flip’ in the system’s conformational state back
to its starting configuration must be conditional on both reaction’s having completed through to product release. In other
words, the state of both product binding sites being emptymust be the gating condition for the ‘return to go’ conformational
resetting. However, the two product release reactions typically face dramatically different reassociation rates (over which
the system itself has no control): very high for the driven process and very low for the driving one. This difference has two
practical implications. First, if the driving reaction’s products are released without the driven reaction’s product binding site
also being empty then with high probability that cycle will have been a futile one, and the precious resource of an instance
of the driving disequilibrium will have been wasted. This by itself argues for making the completion of the driving reaction
only become possible once the driven reaction has completed to the point of having emptied its product binding site. Second,
every instance of product release from the driven reaction that is reversed before the system has moved to a state in which
that reversal is no longer possible wastes time and increases the risk of a wasted cycle. The premium is therefore high
on not allowing that reversal to happen, on having, that is, a way to kinetically trap such a release as soon as it happens.
But that is exactly what the completion of the driving reaction, because of its low probability of being reversed, is able to
do. Moreover, absent this kinetic trapping effect the completion of the driven reaction would be governed by equilibrium
chemistry and thus not able to drive a disequilibrium greater than (in practice even approaching) the Km for the release of
the driven reaction’s products. Therefore, the optimal design on the ‘product release’ side of the cycle is to not allow the
driving reaction to complete until after the driven reaction has done so, and have that final step, when triggered by the
release of the driven reaction’s product, occur as rapidly as possible.

As to the input half-reactions side of the cycle two considerations seem likely to be in play in dictating a preference for
the Jencks ordering. First, having the driven reagents load first as a precondition for the loading of the costly driving reagents
spares them from being removed from the pool and from being placed in ‘harms way’ until there is certifiably something
for them to do. Second the full ‘canonical’ Jencks interleaved half reaction sequencing pattern has the property that it is
functionally invariant to a reversal in the cycle’s direction. That is, upon reversal, whereby the driver and driven processes
exchange roles, it preserves the property just discussed, namely that the completion half reaction of the driving reaction
should directly follow, and be triggered by, the completion half reaction of the driven reaction. This observation suggests
that even in cases in which the sequencing of the input loading/binding steps is not known to be, or is thought not to be,
canonical Jencks (i.e. that the driver loads before the driven is permitted to), that it likely is nevertheless.

We need to emphasize, however, that many biological converting systems have mechanisms that are a good deal more
complex than is reflected in the simple six-step model considered here. Some of these involve multiple driving reactions
and also multiple and separated ‘internal’ steps (e.g. in-situ catalysis and/or moiety ‘‘parking’’ reactions), as well as multi-
step product release reactions in both driven and driving processes, all carried out by distinct ‘‘specificity’’ forms of the
‘Janusian enzyme’ (see the discussion of a variety of different types in [57]). However, what appears to be an invariant is the
interleaving of partial reactions in such a way that none of the processes involved can complete until all do and specifically
that the completion of any of the driven reactions serves as the immediate trigger for the completion of at least one of the
driving reactions. As a result one of the latter is invariably the final step preceding, and triggering, conformational reset, and
the benefits of kinetic trapping are made available to each driven product release step.

8. Disequilibria conversions involving molecular exchange

The toy CDC model, and essentially all of the preceding discussions, have more-or-less implicitly assumed that when
two chemical reactions are partners in a disequilibrium conversion process, they are chemically independent. However,
disequilibrium conversions involving the exchange of a molecular moiety between driving and driven chemical reactions
are ubiquitous in biology and indeed often presented as the only way ‘‘free energy conversions’’ take place (e.g. [79, p. 117]).
How do such processes fit into the present discussion of disequilibria conversion?

Consider again two processes, represented as R → P and S → T , under conditions in which the first is exergonic, the
second endergonic (i.e. T → S is exergonic).

Further, consider that the two processes are chemical reactions sharing a common molecular moiety ‘‘A’’, in particular
that R is P bound to A: R = PA, and T is S bound to A: T = SA, and that the exergonic reaction is the dissociation of A from R
to form P , its endergonic partner the association of Awith S to form T = SA:

R = PA→P + A,
T = SA← S + A,

(50)

where here the right (left) facing arrow indicates an exergonic (endergonic) process direction.
As noted, biology is replete with instances in which two such reactions are ‘‘coupled’’ whereby the first both drives, and

also donates a molecular moiety to, the second. Many of the so-called ‘‘energy conserving’’ reactions of biochemistry are
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of this type. Note, however, that in such conversions the driving reactant R = PA serves two conceptually and physically
independent functions: a ‘chemical’ function in which it merely acts to supply the exchanged moiety A, in which service
only the concentration of PA is relevant, and a ‘thermodynamic driving’ function in which the disequilibrium of PA vs. that
of P , namely the ratio ([PA]/[P]) /


[PA]eq/[P]eq


, is essential in that without it the overall reaction would not go—nomatter

what the ‘standard conditions’ free energies have to say on the matter. That these are physically distinct functions is easily
overlooked, particular when it is incorrectly imagined that what is needed to endergonically produce T = SA is energy, and
that this energy is supplied by the exergonic breakup of PA.

In our present notation, the coupled disequilibrium-converting exchange reaction is:

R+ S = PA+ S → P + SA = P + T , (51)

which, if it is overall exergonic in the indicated direction, would proceed spontaneously.
But how in fact can this happen? By what mechanism does the exergonic occurrence of the dissociation R→ P+A force

the endergonic association reaction S+ A→ T to take place? And why is it that the moiety ‘A’ liberated in the first reaction
does not take what in solution would be the path of highest probability and escape into the bath? We trust it will now be
accepted that this does not take place because ‘‘energy released by’’ the first reaction (nor even the ‘‘free’’ part thereof) is
somehow transferred to the second.

Clearly, if the conversion reaction takes place within an enzyme’s embrace the escaping moiety problem can be avoided.
But to accomplish the thermodynamic conversion more than an enzyme catalyst is required just as in the cases earlier
considered in which the two processes being converted are independent and involve no shared reagents. In particular we
need a conversion engine that will catalyze the dissociation reaction but prevent either of that reaction’s products from
dissociation from the engine until (and unless) the driven ‘‘association’’ reaction, and the release of that reactions product
‘‘T ’’ has completed. Critically, it is the ‘‘irreversible’’ release of P into the medium, triggered by the release of T , that serves
to statistically trap the endergonic ‘‘back-fluctuation’’ event that created the T product of the driven reaction.

The following sequence indicates a ‘Hill/Jencks’ cycle that has the desired properties.

E + R → RE,
RE + S → RES,

RES → RE∗S,
RE∗S → P · AE∗S = PE∗A · S,
PE∗T ← PE∗A · S,
PE∗T → PE∗ + T ,
PE∗ ⇒ E∗ + P,
E∗ → E.

(52)

The fourth reaction is the dissociation of R to P + Awith both parts remaining bound to the enzyme; the fifth is the driven,
‘backward fluctuation’ reaction, drawn right-to-left to indicate that fact. The highly unstable product of that transitionmust
then be quickly trapped by the release of its product T and finally, as triggered by that release, by the ‘irreversible’ release
of the driving reaction’s product P (indicated with the double arrow) and the completion the conversion cycle.

We note that it the above analysis does not require that in any literal sense the coupling reaction proceed through two
physically separable half reactions. In any case the reactionmust pass through a thermal fluctuation-induced transition state
in which A is dissociated from the donor but not yet bound to the acceptor.

RA+ S � (R · A · S)Ě � R+ SA 
 R+ T (53)

where (R · A · S)Ě is the excited state fromwhich the system can relax in either direction, i.e. either back to RA+S or forward
to R+ SA (see the discussion of the specific case of 2-electron redox reactions presented in [72]). The requirement that the
engine mediating this conversion must satisfy is that the inherently much more likely (and unless blocked much more
frequent) dissociation reaction must not be allowed to complete until the up-hill dissociation reaction has completed and
escaped the complex.

We conclude this discussion by considering the explicit example of hexokinase along with a brief mention of a common
mechanism of intermediate type; that in which the hydrolysis of ATP, while complete within the cycle, takes place in two
internal, separated steps involving the transient phosphorylation of the enzyme. For this we use the example by calcium-
pumping ATPases.

8.1. Hexokinase

Perhaps the most intensely studied example of moiety-exchange disequilibrium conversion entails the endergonic
formation of glucose-6-phosphate (G6P) by hexokinase enzymes, in which ATP plays the two functionally separate roles
we noted just above: a chemical role as the phosphate donor in which only the concentration of ATP is important, and the
exergonic driver role in a disequilibrium conversion in which ATP’s (free energy of) disequilibrium is the essential property.
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Fig. 9. Hexokinase conversion cycle.
The ATP-driven formation of G6P appears to conform to a canonical Jencks design in all important respects including that the completion in the driving
reaction, namely the net free-energy-yielding (irreversibility providing) release of ADP, is triggered by, and therefore only allowed to take place subsequent
to, the completion of the driven formation of G6P through the release of that product.
Source: Adapted from [79, p. 117].

The driver, driven, and net reactions, along with their standard conditions∆G values are:

ATP+ H2O→ ADP+ Pi, ∆Go
= −31 kJ/mol,

G+ Pi→ G6P + H2O, ∆Go
= 13.8 kJ/mol,

G+ ATP→ G6P + ADP, ∆Go
= −17.2 kJ/mol,

(54)

where we note that under physiological conditions, the ∆G for the hydrolysis of ATP is much stronger; approximately
−55 kJ/mol. However, since the phosphate is not released in the above kinase reaction the relevant driving disequilibrium
is that reflected simply in the physiological chemical potential difference between free ATP and ADP.

What is known about how the mechanism by which hexokinases mediate the above conversion? It is first of all well
established that in carrying out this conversion the enzyme undergoes a number of specificity transitions, dominated by a
major allosteric conformational transition. This transition is driven by the induced fit free energy of binding of the substrates
and involves a clam shell-like closing of the protein around the bound substrates in which upwards of a hundred waters
dissociate from the protein [80–84]. Further, it now appears to be resolved that the binding of glucose proceeds, and triggers,
the binding of ATP [82]. Finally, and most tellingly for the current discussion, it also seems now resolved that in the reaction
cycle, ADP is released from the complex (only) after the driven product, G6P , is released, and is in turn the trigger for the
conformational relaxation back to its starting/resting state [85]. This is noteworthy because in this case, it is predominantly
through the release of ADP that the driving reaction contributes free energy (in our terms provides a ‘latching’, quasi-
irreversible transition) to drive the conversion cycle forward.

Thus, this mechanism appears to conform to the conceptions advanced here as to how disequilibria are converted, and
more specifically to the ‘canonical Jencks’ ordering of the half reactions for the two processes, as is pictured in Fig. 9. It is not,
in other words, ‘‘just chemistry’’ and would never take place as a solution reaction or if otherwise deprived of the ‘bespoke’
engine functions that hexokinase provides for this specific conversion reaction.

8.2. Plasma membrane calcium-pumping ATPases

In this conversion, two Ca2+ ions are pumped up-hill across the plasma membrane driven by the hydrolysis of one
ATP. However, the cycle involves the transient, and reversible, phosphorylation of the protein – temporarily ‘parking’ the
phosphate – in a step which triggers the protein’s major conformational ‘flip’. Though some uncertainty regarding the
ordering of the binding steps apparently remains, a mechanism published by MacLennan et al. [86] is overall consistent
with most alternatives and posits the following steps (see Figure 1A of that paper): (1) facing ‘inward’ the protein has high
affinity for, and binds, two Ca2+ ions, displacing two protons; it then binds ATP; it then transfers ATP’s terminal phosphate
to a binding site on the protein and releases the ADP into the medium; this induces, and serves to drive, the protein’s
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major conformation flip to be now facing ‘outward’ in which state it has very low affinity for both calcium ions, and in
this state the (endergonic) release of the calciums (replaced by two protons) to the outside ‘‘blowing against the wind’’ of
the high external Ca2+ concentration can take place; when that release has been completed and the Ca sites are empty,
the protein dephosphorylates, releasing the phosphate into the medium in a strongly exergonic step. We note that in its
essential features, this mechanism is orthodox Jencks. Indeed somewhat earlier Jencks presented an analysis of the same
conversion process and propounded essentially the same model [12]. In any case, there appears to a consensus that the
strongly exergonic release of the phosphate occurs after both transported calcium ions have been released and their binding
sites are empty. This fully empty state (of the phosphate and both calciums) is, as in the toy model, what triggers the return
of the protein to its starting conformation. And again we have an instance of the driving reaction not completing, and its
major (free energy) driving irreversibility not being deployed, until after the work is done.

9. A summary of the main qualitative conclusions regarding disequilibria conversion

1. All disequilibria (aka free energy) conversions require the mediation of an ‘‘engine’’ whose essential function is to act
as an escapement mechanism; this mechanism makes the completed ‘‘down hill’’ passage of a metered amount of the
driving flux dependent on (requires it to be gated by) the completion of a metered amount of the driven flux.
The fundamental and essential operation principle of a disequilibria converting device is the contingency rule that the
driving process is only allowed to complete in a given conversion cycle if the driven process has also completed in the
same cycle.

2. In general, conversion engines execute an ordered cyclic sequence of distinct steps, the completion of each triggering
the transition to the next. The protein complex-based engines powering life by interconverting chemical disequilibria
achieve their escapement functions by moving through a corresponding series of enzyme forms, or ‘‘alters’’, each having
its own set of binding and catalytic specificities.

3. An essential operational feature of this contingent series of enzyme alters is that the two coupled processes are each
segmented into ‘‘half reactions’’, with the halves of the two processes generally interleaved in a specific pattern, the
canonical form of which is ‘‘driven first half, driver first half, driven second half, driver second half’’—as first specifically
emphasized by Jencks [12]. This particular sequencing allows the essential contingency rule noted in point 1 above to
be mechanistically enforced in an efficient and economical manner—one which is also functionally invariant under the
reversal of the coupling cycle.

4. Inmolecular-scale conversions the escapement necessarily operates as a Brownian ratchet acting to ‘‘rectify’’ the thermal
fluctuations impacting the driven process. In particular, the ratchet blocks the effect of thermal fluctuations that would
induce an instance of the driven reaction proceeding in its ‘natural’, ‘forward’, exergonic direction, while permitting
those that could induce an instances of the reaction’s ‘back’, endergonic direction to have that effect, while at the same
time ensuring that it is the event of completing the driven half-reaction that triggers the completing half-reaction of
the exergonic driving process—the irreversibility of which half-reaction captures, and entropically ‘pays for’, the driven,
endergonic one. That is, Brownian impacts from the medium produce the 2nd-law ‘‘violating’’, i.e. ‘‘back’’, transitions in
the driven reaction whose preferential accumulation is the work output of the conversion process. The driving process’s
only essential role is to prevent the inherently much more probable ‘‘forward’’ transitions in the driven process that
would undo these desired up-hill transitions, from taking place. And the engine’s escapement mechanism achieves this
bymaking the completion of an instance of the driving reaction contingent on the completion of an instance of the driven
reaction.

5. It is the entire conversion cycle which effects the conversion and which, in consequence, must on average (only on
average) satisfy the 2nd law; the net free energy change in the cycle (as a multiple of kBT ) is merely minus the log of
the ratio of forward to backward (2nd law ‘‘violating’’) transits through the cycle.

6. Steps involving the binding of reactants and unbinding of products modify the properties and behavior of the engine
complex including both its binding and catalytic specificities and what responses to Brownian impacts it suppresses or
permits. These effects appear to typically reflect that many of the binding reactions involve ‘induced fit’ mechanisms
which necessarily entail quasi-reversible, ‘‘elastic’’, stress-inducing conformational changes of the complex; ‘distorting’
changes which have the effect of storing potentially recoverable free energy (i.e. disequilibria).
It is through these effects that binding and unbinding events:
(a) Induce the transitions between the complex’s specificity alters; often including a major ‘flip’ transition between two

‘half-reaction’ phases of the cycle: ‘loading’ and ‘catalysis and product release’.
(b) Accelerate catalysis, increase the rate of product release, and convey mechanical force to neighboring complex

members.
(c) Through product release step(s), deliver, in the case of the driven reaction, the point at which the primary work of

the engine is done, i.e. forcing its product out into the teeth of a more-or-less fierce back-reaction wind, and for the
driven reaction the ‘irreversible’ transition which provides the statistical force that moves the engine forward, and
also, potentially, allows the engine to kinetically trap completions of the driven reaction.
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Fig. 10. CDC model with two driving processes.
Themodel inwhich two diffusion chambers operate in parallel to drive one disequilibriumgeneration. The figure presents a potential starting configuration
in which the two driving chambers are taken to be in complete disequilibrium, and the driven one in approximate equilibrium. The two driving processes
are drawn operating in opposing directions merely to make the point that the choice of direction in the diagram is irrelevant.

10. Functional architecture extensions to the toy CDC model

We here present in diagrammatic form a few elaborations on the functional architecture of the CDC model to illustrate
points that arise in real-world examples. In particular we: (1) indicate how more than one process can be harnessed
in parallel to drive a third, and how requiring multiple coincident events within a process can be used as ‘‘free energy
amplifying’’ devices in conversions, (2) illustrate how steady state conversion is established through attaching the CDC
model to external source and sink circuits, (3) show how engines can be arranged in tandem to amplify the effective power
of a givendriving disequilibrium, and (4) showanotional representation of the coupling of a diffusion chamber tomechanical
work.

Fig. 10 presents a version of the CDC model in which two, potentially unrelated driving disequilibria are used in
(anti-) parallel configuration (the two top compartments with, respectively, green and blue particles) to drive a single
disequilibrium generating process (as before the bottom compartment). In this figure we also introduce the possibility that
portal loading/unloading rules can require coincident individual particle events (here taken to be that 4 green particles, 2
blue particles, and 1 red particle must be loaded, or that all three portals are empty, before the gate can flip orientation.

Fig. 11 extends the simple CDC model to one in which the driving and driven disequilibria are connected respectively
to supply and load circuits—which act to establish a steady state dynamical conversion. For example, in the OxPhos
system, the proton gradient driving the ATPsynthase converter is sustained by the electron transport change while the ATP
disequilibrium produced by the synthase is maintained in steady state by being dissipated through all of the endergonic
loads driven by it.

Fig. 12 shows the situation in which a single externally maintained driving disequilibrium (green particles) is used in
tandem to drive a two-stage serial disequilibrium conversion process, in which the output of the first stage is directly fed as
input to the second.

Fig. 13 pictures a notional representation of the coupling of a diffusion driver to the production of molecular-level
mechanical work. The scheme shown in this figure echoes the concepts invoked in our opening ‘‘nano-sisyphus’’ quote
by Peter Hoffmann [1, p. 157], and illustrates the basic operating principles underlying the manner in which chemical
disequilibria are converted into mechanical work by the ‘‘molecular motors’’ of life—most closely the cargo-hauling ones
such as kinesin, wherein relatively large objects aremoved through amedium inwhich viscous forces completely dominate.

Here, the driving disequilibrium is, as in our earlier examples, a diffusion gradient spanning a gated portal. In this case,
however, the escapement’s gatingmechanism is represented as a gearwhose teethwhendownward-facing engage a toothed
rack and when upward-facing act as the gating mechanism that conducts particles through the partition with at most one
particle – held between adjacent teeth – passing for every single-tooth rotational motion of the gear. The gear rotation is
tied rigidly to linear movement of the rack andwith that themovement of the cargo ‘‘load’’ (the large sphere attached to the
rack’s left end), which movement, when predominantly in one direction (here to the left) is, of course, the work performed
by the engine. It is further assumed that the gear is only allowed to rotate in either direction if in so doing itmoves a diffusion
chamber particle into the portal penetrating the chamber’s barrier (this is fairly closely analogous to the rule imposed on
proton translocation by the F0 motor of ATPsynthase, see [46]).
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Fig. 11. CDC model with supply and load circuits.
Steady state configuration of a CDC model connected to externally maintained supply and load circuits.

Fig. 12. Tandem escapement CDC.
The same externally maintained disequilibrium, embodied in the green particles, is used to drive a two-stage tandem disequilibrium converter (the red
particles), in which the output of the first stage (lower left chamber) forms the input of the second (lower right chamber).

Fig. 13. Molecular-level mechanical work driven by a diffusion gradient.
Particles are conducted into the portal by the teeth in the round gear, with the rule being that the gear can rotate only in single-tooth steps and only, in
either direction, if in so doing it conveys a particle into the portal. Again, all actions are driven by random Brownian impacts, those acting on the gear and
those acting on the load, in both cases doing so without directional bias.
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Of course, the cargo load is moved by Brownian impacts. But only those impacts are allowed to actually move the load if
the motion thereby induced in the rack (in either direction) – together with a matching motion of the gear – are permitted
by the escapement mechanism. However, the escapement rule dictates that only motions of the gear that move a particle
into the portal are permitted—and this can only happen if the inter-tooth space next to the barrier on the side which the
pending motion would move into the barrier is holding a particle.

Therefore if the particle concentration disequilibrium is as shown in the figure, clockwise rotational steps will happen
more often than counter-clockwise ones, so single-step motions of the load leftward will happen more often than those in
the reverse. As a result, the dissipation of the diffusion gradient, being in this manner gated by the occurrence of Brownian
impacts thatmove the load in the desired direction, allows thermal fluctuations to be filtered and performmechanical work.
And once again, the only role of the driving disequilibrium (free energy) is to provide a statistical, after the fact, ‘‘rectification’’
bias favoring desirable fluctuations.

This conversion engine is reversible in two senses. First, if the particle gradient had opposite left–right polarity, then the
dominant motion of the load would be left-to-right. Second, if a sufficiently strong additional force, opposing the motion
which the engine on its own would produce, were applied to the load then the engine would be driven backwards to the
effect of increasing the particle concentration gradient, rather than dissipating it.

It is not immediately obvious, however, that this conversion mechanism is consistent with the view advanced here
that all engines, even those that produce mechanical work, are creating a disequilibrium at the expense of dissipating
a greater one. What disequilibrium is being created by a molecular-scale body being forced to move through a medium
against overdamped viscous forces? While the full answer takes us afield of our present purposes, the essential point
is that each step moving the load particle in a particular specific direction reduces the spatial entropy (equivalently the
positional ‘‘ignorance’’) of the system from what it would be if the load were simply allowed to proceed on the Brownian
motion random walk to which it would otherwise be inescapably subject. Idealizing the motion as taking place on a three-
dimensional discrete lattice for example, inwhich a particle canmove in 6 directions in any one step, the engine, functioning
ideally, limits the motions to a specific one at each step and to a high correlation between the directions taken in successive
steps. This situation is somewhat analogous to so-called ‘‘entropic springs’’ in which stretching the elastic material of the
spring reduces the spatial randomness of the paths traced out by the linear molecules making up the material—rendering
these paths more predictable and correlated; this change is thereby necessarily opposed by an entirely ‘‘entropic’’ force
acting to restore the more random, higher probability, molecular configurations of equilibrium [52, §33].

11. Do real engines conform to the principles advanced in this paper?

Proposed mechanistic models for a large, varied, and rapidly growing array of free energy converting systems are now
available in the literature. To our knowledge, none of these appear to contradict the tenets of disequilibria conversion
advanced here. At the base level, all of the proposed mechanisms envisage devices that are multi-step ‘‘Janusian’’
engines cycling through an ordered series of alternate binding and catalytic ‘‘specificities’’ [12] and in which transitions
conformational changes, driven by, or at least triggered by, substrate and product binding and unbinding events play an
essential role. At the next level, all appear to conform to the Jenck’s dictum that a necessary functional requirement of
the conversion engine is that it not allow either the driver or the driven process to complete within a cycle unless both
do. Furthermore, in instances in which the relevant sequencing question is considered resolved, as is true of many, the
mechanistic strategy for ensuring this dictum is that the completion of the driving reaction (through to full product release)
is made to be mechanistically triggered by, and thus contingent upon, the full (to product release) completion of the driven
reaction, and it therefore occurs subsequent to it. This, ‘pay after completion’ design, as we have noted, serves not merely
to ‘ensure’ the joint completion requirement, and with that the non-wasteful satisfaction of the 2nd law. It also enables
the kinetic trapping of the driven reaction’s product release step by first having that release trigger the initiation of the
corresponding, but in that case quasi-irreversible, completion step in the driving reaction and then further having that event
trigger the conformational reversal that takes the system back to its starting configuration. That is, all proposedmechanisms
of which we are aware conform, at least in its essential elements, to the Jenck’s ‘interleaved half reactions’ model.

Thus, the proposedmechanisms appears to be consistent with the escapement-mediated ‘‘Brownian ratchet’’ conceptual
model of the process of disequilibria conversion here advocated. Of particular note is the general observation that the driving
reaction is not allowed to take place, or at least to complete to full product release, until after (or only coincidental with)
the full completion of the reaction which that hydrolysis is driving. This supports our general claim that the driving process,
e.g. the hydrolysis of ATP, acts as a driver not by supplying energy to the driven process but by supplying irreversibility to
the conversion cycle, and, moreover, by doing so at the one point in the cycle when that ‘expensive’ irreversibility is least
likely be wasted and further can function kinetically to ‘trap’ instances of the driven reaction by blocking the reversal of
completion phase of the driven reaction.

Aswas noted above, a companion paper is in preparation [57]which aims tomake the above claims concrete and credible
by examining in some detail a representative collection of biological free energy conversion processes whose experimental
study has given rise to functional mechanistic models. Of these we focus primarily on models that propose an ordering
of the completion of the driven reaction with respect to that of the driving one. The main questions in each case are
whether that ordering is as predicted here: driven completes first, driver second, and further is there evidence as to how
this sequential conditionality requirement is mechanistically imposed. Of additional interest is whether there is evidence
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for kinetic trapping of the driven reaction and whether the loading half reactions are also ordered in the canonical ‘‘Jencks’’
fashion. We have, of course, sought to consider as diverse a collection of conversion types as possible. Some of the cases we
consider there, along with relevant literature citations, are listed next.

• PPi-ase driven proton pumps [87–90].
• Tryptophan synthase [41,91].
• Nitrogenase [43,92–98].
• Co–Fe Reductases [99].
• Gyrases and recombinases [100,101].
• Flippases [102].
• ABC exporters [103,103–109].
• SNARES [110–112].
• AAA+ ATPases [113–115].
• Antiporters [116–119].
• NiFe Hydrogenases [120–122].
• Kinesin [123].
• ATP-synthase [46].
• Electron bifurcation and Complex III/bc1 [42,124].

However, of course, thesemodels and their supporting data, by themselves at least, cannot be construed as having proved,
much less as universal ‘laws’, everything here claimed about disequilibria conversion, those in particular the role of energy
in disequilibria conversion, and the physical meaning of ‘‘free energy’’.

12. What happened to ‘‘energy’’ (and to ‘‘high energy bonds’’)?

We hope that the preceding discussion has at least made it plausible that:

• Neither life nor anything else is powered by ‘‘energy’’ – neither its ‘‘use’’ nor its ‘‘consumption’’ – but instead, and
necessarily, by disequilibria dissipation.
• This in practice requires a hierarchy of processes that, acting as engines, convert disequilibria. Most often the conversions

of life are between manifest thermodynamic disequilibria (i.e. states with many degrees of freedom), consuming one
to generate another. However, disequilibria conversions between thermodynamic and mechanical (i.e. single degree of
freedom) systems are also common, though these too conform to the general ‘statistical’ analysis outlined here (see
discussion below in Section 12.2).
• Conversion engines, those that power life included, do not ‘‘do work’’ by transferring energy from the driving to driven

process—even energy discounted as nominally required by the 2nd law, but instead operate by means of an escapement
mechanism which makes the progress of the driving dissipative process incrementally conditional on, i.e. gated by, the
progress of the driven, thermodynamically uphill process.9

• Molecular-scale conversions are mediated by ‘‘Brownian escapement’’ mechanisms, according to which, once a
conversion cycle is begun with the loading of both driven and driving reactants, neither of the reactions are allowed
to complete, and the conversion cycle return to its starting state, unless both do. In all known instances this requirement
is met by the engine acting to prevent the predominantly irreversible step in an instance of the driving reaction, and in
fact to be gated by, the completion of an instance of the uphill driven process through to product release.
• Such conversions are only ‘‘trading probabilities’’: producing a reduction in the probability of one body of energy and

matter, at the expense of increasing the probability of another such body, and doing so by locking the two changes
together into fused actions which inescapably proceed in the direction which increases the joint probability of the
two bodies of energy/matter taken together. But since the probability of a system being in one of its macrostates is
proportional to the number of microstates underlying that macrostate, ‘‘trading probabilities’’ is physically just ‘‘trading
numbers of microstates’’.
• Whereas energy is necessarily and absolutely conserved in such conversion processes, changes in themicrostate count of

that energy – in either direction – is typically a large, potentially exclusive, part of the overall change in microstate count
driving the evolution of the system’smacrostate. That is, energy is amedium, often the dominant one, inwhich iswrought
the change in microstate count (equivalently the state’s probability) that is responsible for the system’s dynamics.

9 Note, for example, that if the earth were illuminated by a radiant body at ˜300 K, it could receive the same amount of energy per day, and have
approximately the same surface temperature (namely 300 K), as it now does. But this energy flux could not drive, nor could it possibly have spawned,
photosynthetic life. The utility of the photons provided by our sun is that they come in with an average temperature of ˜6000 K. As a result, our ˜300 K
planet exports approximately 20 photons for every one it receives. It is this disequilibrium, this ˜20x gain in ‘‘W ’’, that makes photosynthetic life possible
and profitable. That is, it is, once again, disequilibria alone, not energy, that can make things happen.
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Admittedly, the points advanced above, specifically those regarding the role of energy and the proper physicalmeaning of
free energy, are atmore-or-less jarring oddswith bothhistory and commonunderstanding.We therefore think itworthwhile
to take a step back and consider this conceptual conflict with a bit more care. First, we attempt to provide some historical
perspective on the ideas underlying the conflict. Second, we undertake to deal more explicitly with some technical issues
that seem pivotal to understanding how the conflict arose. One of these issues relates to the concept of work in free energy
conversion and specifically to the class of free energy conversions in which either the driver or driven process is one of
mechanicalwork. Biology is, of course, rifewith such ‘‘motor’’ conversions (ATPsynthase involving two, fighting in opposition
over which way the shaft connecting them will turn). And, of course, thermodynamics was born in the ‘fire’ of the effort to
understand such processes (heat engines and canon boring). Another is the role of ‘‘high energy bonds’’ in the processes of
chemical free energy conversion.

12.1. History: enter Boltzmann, Schrödinger, Penrose

Interestingly, the quite fundamental point that life is not powered by energy consumption was well understood by
Ludwig Boltzmann himself. In 1886, he wrote (in translation from the original German) [125]:

‘‘The general struggle for existence of animate beings is therefore not a struggle for rawmaterials – these, for organisms, are
air, water and soil, all abundantly available – nor for energy which exists in plenty in any body in the form of heat (albeit
unfortunately not transformable), but a struggle for entropy, which becomes available through the transition of energy from
the hot sun to the cold earth’’.

At least superficially the assertion about not struggling for energy (and by implication not even ‘‘using’’ it) is at fairly
jarring odds with essentially all subsequent teaching and discussions on the relationship between life and energy—and
with nearly all professional writing on bioenergetics. Everyone knows – and has been taught – that living systems need an
unflagging input of energy to keep them running. Conventional biochemistry is everywhere preoccupied with the ‘‘use’’ of
energy: by the particular metabolic processes that are said to ‘‘conserve energy’’, by the energy that can be extracted from
certain so-called ‘‘high energy’’ chemical bonds (most famously and centrally the terminal phosphoanhydride bond in ATP;
Fritz Lippman’s iconic ‘‘squiggle’’), by the energy ‘‘consumed’’ to make certain up-hill reactions go, or to power physical
movement, trans-membrane pumping, structural assembly and disassembly, and the like.

In most contexts, of course, it is more or less implicitly understood that ‘‘energy’’ is often being used as a shorthand for
‘‘free energy’’, albeit almost always with the tacit understanding that the difference between the two is not a categorical
one, but merely one of amount: i.e. the difference between the energy present and the fraction of that which is ‘‘available
to perform work’’ (see e.g., https://en.wikipedia.org/wiki/Gibbs_free_energy and literature cited therein).

In this conceptualworld, that is, ‘‘entropy’’ is just a tax thatmust be paidwhenusing energy, onewhich discounts energy’s
ability to ‘‘perform work’’, leaving only the remainder ‘‘free’’ for that employment; or alternatively, entropy is the peculiar
property of matter whose ineluctable increase over time is what dictates that, left to their own devices, all things active and
organized run down, fall apart, and stop. Entropy, in the conventional view, is certainly not what keeps life running, nor
what it is struggling for. Much less can the ways of entropy be in any way given credit for the existence of organized states
of matter and dynamically persistent processes.

Is it possible that there is really only a ‘‘semantic’’ disagreement here? If not was Boltzmann just wrong? And if he was
right, why has the error he calls out so persisted, and in fact so dominated thinking, including that in many of the scientific
disciplines most closely concerned with the issues involved?

We want to first emphasize that what Boltzmann very clearly meant in his statement is that life struggles to obtain a
source of low entropy – necessarily embodied in some quantity ofmatter and/or energy – lower specifically than the entropy
of the forms intowhich life can convert, and then exhaust, that samematter and energy. In otherwords, how hewould likely
phrase the point today, we propose, is that life struggles to find exploitable thermodynamic gradients, i.e. disequilibria.
And this because, as we have belabored above, it is the entropy increase which the dissipation of these disequilibria would
produce that is ultimately the driving ‘force’ for life (as it is in fact for all macroscopic dynamical processes) [52], and, indeed,
the only one that could in principle exist. Admittedly, energy is usually the dominant (though not the only)medium inwhich
the relevant entropy changes are wrought, but it itself causes nothing and is never used or consumed. So the distinction
between energy and free energy is in fact a categorical one.

In other words, there seems no avoiding the conclusion that either Boltzmann’s remark (and along with it the argument
presented here) is just wrong, or that the prevailing view, at least within the chemistry/biochemistry community, is.

Indeed itwould perhaps be difficult to cite amore conceptually consequential claim than the onewe quote by Boltzmann,
yet even harder to cite a more ignored one. A state of affairs notwithstanding that this was by no means the last to be heard
of Boltzmann’s insight.

Notably, for example, half a century after Boltzmann penned the above remark, the theoretical physicist Erwin
Schrödinger published a small monograph titled: ‘‘What is Life?’’ [126]. This celebrated gem of insight and exposition has
beenwidely noted as one of themost influential such efforts in the history of science. In it, Schrödinger, alongwith discussing
a number of other deep matters, deals at length with the issue alluded to by Boltzmann, and in so doing emphatically
affirms his point. Schrödinger frames his exposition of the same insight by introducing the notion that ‘‘life feeds on negative
entropy’’—a concept meant simply to convey the need for the intake of entropy which is less than, is ‘negative’ with respect

https://en.wikipedia.org/wiki/Gibbs_free_energy
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to, the entropy that must be continuously exhausted by the organism. In his chapter on ‘‘Order, Disorder, and Entropy’’,
in which Schrödinger discusses why it is that living systems can maintain themselves in a very highly organized (i.e. low
entropy) state without violating the 2nd law, he remarks:

‘‘How does the living system avoid decay? The obvious answer is: By eating, drinking and (in the case of plants)
assimilating. The technical term is metabolism. The Greek word µεταβάλλειν means change or exchange. Exchange
of what? Originally, the underlying idea is that, no doubt, exchange of material (e.g. the German for metabolism is
Stoffwechsel). That the exchange of material should be the essential thing is absurd. Any atom of nitrogen, oxygen,
sulfur, etc., is as good as any other of its kind; what could be gained by exchanging them? For a while in the past our
curiosity was silenced by being told that we feed upon energy. . . .Needless to say, taken literally, this is just as absurd. . . .

What then is that precious something contained in our food which keeps us from death? That is easily answered.
Every process, event, happening—call it what you will; in a word, everything that is going on in Nature means an
increase in the entropy of the part of the world where it is going on. Thus a living organism continually increases its
entropy—and thus tends to approach the dangerous state of maximum entropy, which is death. It can only keep aloof
from it, i.e. alive, by continually drawing from its environment negative entropy—which is something very positive as
we will see. What an organisms feeds on is negative entropy. (emphasis added)

In the reprint published in 1967, the theoretical physicist Roger Penrose provides a forward, the closing paragraph of
which reads:

‘‘Like so many works that have had a great impact on human thinking, it makes points that, once they are grasped,
have a ring of almost self-evident truth; yet they are still blindly ignored by a disconcertingly large proportion of
people who should know better. How often do we still hear that quantum effects can have little relevance in the
study of biology, or even that we eat food in order to gain energy? This serves to emphasize the continuing relevance
that Schrödinger’sWhat is Life? has for us today. It is amply worth rereading!’’ (emphasis added)

Nor was that by any means the last. As we earlier noted for example, in 1994 the physical chemist P.W. Atkins published
(the second edition of) a general-audience book titled ‘‘The Second Law; energy, chaos, and form’’ [127] (see particularly
chapters 5, 6, and especially chapter 8, ‘‘Transformations of Chaos’’). This unique and elegant work of conceptual exposition
is arguably the best general discussion available bearing on the basic points advanced here on energy, entropy, disequilibria
and disequilibria conversion, the probability of physical states, and the ‘‘forces’’ of change and creation. And the entire work
is an affirmation of, and expansion on, the insights underlying the quoted remarks of Boltzmann, Schrödinger and Penrose.
Yet it too, perhaps in part because of its nominally ‘introductory’ level, has been, in the main at least, ‘‘ignored’’.

Doubtless many factors account for why these basic insights have so little penetrated conventional thought, especially
in the biological sciences. But the accidents of history through which the science of thermodynamics was born are certainly
much to blame. Thermodynamics’ core and distinguishing concept of entropy emerged just as the concept of energy was
itself crystallizing, and was first glimpsed, i.e. by Clausius, as a property of heat energy—one that reduced howmuch of that
energy could be converted to mechanical work. Thermodynamics thus arose as a drama about energy, but one in which
the utility of certain forms, initially just heat, had to be discounted by an undeniably strange factor of the form Q/T ; and
entropy was thus seen as just an unwelcome, and not a little mysterious, tax on the ‘‘use’’ of energy. And cemented in from
the beginning, in thinking both learned and popular, was the profound misconception that it is ‘‘energy consumption’’ that
makes things happen.

To consider in a bit more detail both how this came to pass and how we can reconcile the counter view advocated here
with the classical one, we briefly discuss the three technical issues noted above which seem central to the development of
this energy-based misreading of thermodynamics: (i) the specific subset of disequilibria conversions in which one of the
coupled processes either begins or terminates in mechanical motion, and relatedly, (ii) the numerical equivalence in such
processes between changes in the system’s Helmholtz free energy and the mechanical work done, and (iii) the role of the
energy stored in ‘‘high energy’’ chemical bonds.

12.2. Converting from and to mechanical work

We have argued that it is a consequential conceptual mistake to regard energy as the physical quantity whose
consumption or use is what drives endergonic processes. The conventional rebuttal, namely that if one everywhere
substitutes ‘‘free energy’’ for ‘‘energy’’ in such discussions they are then not just legal, but conceptually accurate—is also
mistaken. This view is based on the belief that it is still energy consumption, in particular the transfer of energy from driver
to driven process, that makes a driven endergonic process proceed, while acknowledging that onemust, upon each transfer,
pay the 2nd law tax with the consequence that the amount of energy transferred is necessarily less than the amount taken
from the driving process. But this is incorrect, and the root error, as we argued above, is in part that ‘‘free energies’’ are not
physically measuring an energy—history, units, and convention notwithstanding. Physically, they are measuring an entropy
difference—equivalently a ‘‘probability’’ difference. And that therefore disequilibria conversion must be understood, and
analyzed in terms of, the reduction of the entropy of one system as driven by the (greater) increase in the entropy of another.
And indeed, in the classical NET analysis of the conversions in which ‘‘chemical work’’ is being done, work and power are
defined in entropy terms [10,11,33,37].
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However, there is one conversion context in which ‘‘free energy’’ and energy in the strict, unqualified sense appear to be
unambiguously and directly interconverted; justifying, and in historical fact giving rise to, the classical interpretation of free
energy as a discounted form of energy. This arises in the context of conversions from and to mechanical work. And it raises
the possibility that in these cases, the general theory of disequilibria conversionwe have advanced here, in which both input
and output are understood to be entropy changes (as in the discussion of LNET given in B), does not apply to conversions
involving mechanical work.

Indeed, the paradigmatic problems that birthed thermodynamics: heat engines and cannon boring, and did so in the
triumphal flowering of classical mechanics, are of course conversions of this type. That it was concluded that in these
conversions the driving process’s ‘‘free energy’’ was being literally converted to, and is a form of, energy in the strict
mechanical meaning of the term, is not just understandable, it seems virtually inescapable.

However, we here argue that conversions involvingmechanical work are not exceptions to the entropically-basedmodel
advanced here.

The central point is that mechanical-thermodynamic conversions can be viewed as ‘limit-cases’ in the general scheme
presented here. In the case, for example, of the conversion of a physical–chemical disequilibrium having a well defined
thermodynamic characterization, into mechanical work, the driven process is still one of entropy reduction, but one in
which the entropy of the driven flux is not just reduced, but maximally reduced, that is to zero – corresponding to the single
degree of freedom embodied in mechanical motion in one dimension – i.e. the ‘‘work’’ (see the analysis of heat engines
given in Appendix E). And in that limit case there is a numerical equivalence between the product of (minus) the entropy
reduction achieved by the conversion and the temperature at which the conversion takes place, to the maximal amount of
mechanical work done (denoted in literal and correct energy units) by the engine. We discuss this point briefly in the next
sub section which considers the connection between disequilibria conversions involving mechanical work and changes in
the Helmholtz free energy of the process that is either producing, or being driven by, that work.

Furthermore, as we noted briefly in our discussion of the ‘extended CDC model’ in which a diffusion disequilibrium is
converted to, or from, mechanical work, that work (e.g. transporting a load) does in fact entail a reduction in the entropy of
the system being driven (see the discussion of Fig. 13 in Section 10).

12.2.1. Helmholtz free energy and the ‘‘limit cases’’ of conversion to and from mechanical work
Consider a system in thermal contact with a heat bath, or reservoir, large enough to insure that the system’s

temperature is both well-defined and held constant. The 2nd law requirement that any spontaneous change not decrease
the entropy of the universe has the form dStotal = dSsyst + dSbath ≥ 0, and the conservation of energy requires that
dUsyst + dUbath = 0.

For the bath, the fundamental equation for entropy is: dSbath = (1/T )dUbath + (p/T )dVbath − (1/T )


j µjdNj =

(1/T )dUbath = −(1/T )dUsyst given that for the bath dV = 0 and dNj = 0, ∀j and using the conservation of energy as
between bath and system.

Thus the 2nd law requirement becomes is dSsyst − dUsyst/T ≥ 0 or equivalently dUsyst − TdSsyst = d

Usyst − T Ssyst


=

dFsyst ≤ 0 where by definition F ≡ U − T S is the Helmholtz free energy. That is, in a thermostated system in which the
system’s volume is also held constant, the 2nd law’s requirement that the entropy of the system plus bath not decrease is
equivalent to requiring that the system’s Helmholtz free energy not increase.

The first law dictates that in a transition in which work is done on, or by, a system, dUsyst = δw + δq, where δw is
the incremental work done on the system and δq is the increment of heat transferred from the bath to the system during
the transition. The 2nd law of Clausius asserts that for reversible transitions δw is maximal and δqrev = T dSsyst. Therefore
δwmax = dU − δqrev = dUsyst − T dSsyst = dF = δwmax. That is, the maximum mechanical work that an isothermal system
can perform on its surroundings is achieved if the process is carried out ‘reversibly’ (i.e. slowly enough that the system can
stay in effective equilibrium throughout), and in this case the work performed is equal tominus the system’s Helmholtz free
energy change [52, §7].

We note, however, that when mechanical work is done by (on) a thermodynamic system, the process involves a
mechanical force acting in opposition to a thermodynamic one in a ‘contest’ over which way motion will take place along
a spatial dimension. In this contest the thermodynamic force (e.g. pressure) is the rate at which changes in that dimension
change the entropy of the thermodynamic system (e.g. p = T (∂S/∂V )U,N ). That is, the process is fundamentally one inwhich
the system is progressively changingmacrostates bymoving to ones comprising greater (fewer) numbers ofmicrostates. For
the expanding gas the gain is primarily (for an ideal gas, entirely) due to increasing the number of ‘positions’ the molecules
of the gas can occupy (the quantity we called M in the ‘diffusion model’ analysis in Section 4). A detailed discussion of this
point, based on the kind of ‘particles in a box’microstate-counting approach used here, is given in Dill and Bromberg [52, §6];
see in particular page 104.

Further, in such conversions, thework done by the systemmust be exactly balanced by a reduction in the systems internal
energy, with the implication that the entropy of that converted energy has been, by the conversion, reduced to zero (i.e. to
that of a single degree of freedom, namelymovement on the ‘work’ dimension). For this reason, this entropy-reducing energy
flux can be viewed as the ‘driven’ process in a disequilibrium conversion, wherein the necessarily equal or greater increase
in the entropy of the energy that is not converted is the ‘driving’ process. This point is illustrated in our discussion of heat
engines given in Appendix E.
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12.3. High energy bonds; Lipmann’s squiggle

To discuss the role in free energy conversion of making and breaking ‘‘high energy bonds’’ we consider the prototype
example: the terminal phosphoanhydride bond in ATP.

To quote from Oster and Wang ‘‘At physiological conditions, the free energy of hydrolysis of one ATP is∼20–24 kBT , of this,
about 8–9 kBT is enthalpic, the balance being entropic’’. [32]. That is,∆H/kBT ∼ − (8–9)meaning that thehydrolysis of a single
terminal phosphoanhydride bond of ATP in the ATP+H2O 
 ADP+Pi reaction increases the thermal degrees of freedom of
the bath by a factor of about exp (8.5) ∼ 5000. If the hydrolysis takes place under a ‘‘physiological’’ degree of disequilibrium,
the accompanying change in the system’s entropy of ∆S/kB ∼ 13.5 increases the system’s degrees of freedom by an
additional multiplicative factor of ∼exp (13.5) = 7.3 × 106. Taking together, the ‘‘physiological’’ hydrolysis of a single
molecule of ATP increases themicrostate count of the universe by amultiplicative factor of 5×103

×7.3×106
∼ 3.6×1010

which is also then the ratio of forward to reverse reactions.
Thus, in the case of ATP hydrolysis the net conversion of bond energy to heat energy, yielding a one-to-many numerical

ratio in energy quanta of about 8.5, provides an important part of the statistical ‘probability’ force that makes the reaction
irreversible and therebymakes it useful as a driving process in chemical disequilibria conversions. However, it is only that: an
‘‘irreversibility’’ bias that can be used to trap useful Brownian fluctuations. The bond energy thus liberated is not transferred
to the driven process; it is dissipated, and needs to be, to generate the needed statistical irreversibility. It is the same for all
molecular-scale conversion processes.

But the above does bring forward the important role of literal energy in conversion processes: not to be consumed, nor to
be transferred to the driven process tomake that process happen, but simply to be ‘divided’ – into a larger number of quanta
(or coalesced into a smaller number) and to thereby be part – often the dominant or even exclusive part, of the medium in
which is wrought a change in the number of microstates—and with that the probability of the system’s macrostate.

Dynamics, to summarize, is the manifestation of systems moving to macrostates of increased probability (increased
number of microstates); and the greater the increase in probability produced by an instance of the underlying process,
the faster the process runs [127].

We close this discussion of ‘high energy bonds’ by restating a central contention of this piece: It’s not energy, or
energy transfer, or energy consumption that makes things happen, it’s disequilibria; primarily through their ‘interconversion’;
interconversions that operate bymechanistically tying events that dissipate one to events that create another. But since all ‘events’
in this sense are induced by thermal fluctuations what this requires is a molecular escapement that uses the relative improbability
of individual ‘backward’ fluctuation events in a statistically dominant process acting to relax a disequilibrium to probabilistically
capture ‘backward’ fluctuations in another, statistically subordinate, process.

13. What is settled and what isn’t?

We take as established the main general points advanced above regarding disequilibria and how and why they are
created: namely that (i) all ‘organized’ structures and processes, those of lifemost dramatically, are ‘artifacts’ of disequilibria,
(ii) all change is driven by, in fact caused by, the dissipation of a disequilibrium (a process increasing the number of
microstates to which a body of energy/matter has access), never by the ‘‘consumption’’ of energy, (iii) a process can only
create a disequilibrium if it, and a process dissipating a disequilibrium, are mechanistically linked so that they function
as a single thermodynamic process which is in the net dissipative, (iv) the linkage mechanism necessarily functions as
an escapement which parses the two processes into individual increments controlled according the rule that a driving
increment can complete only if in the same cycle thedriven increment has also done so, (v) inmolecular-level conversions, all
events in both the driving and driven processes are caused by thermal (‘‘Brownian’’) ‘impact’ fluctuations from themedium,
inducing both ‘‘forward’’ (2nd law compliant) and reverse (2nd law ‘‘violating’’) transitions, (vi) the only essential role of
the driving process (e.g. ATP hydrolysis) in such a conversion is to provide the statistical irreversibility needed to trap ‘‘2nd
law violating’’ instances of the driven process, (iv) energy is never passed from the driving to the driven process, (v) ‘‘free
energy’’ is a measure of the strength of a disequilibrium (equivalently a measure of relative improbability), specifically that
∆G/kBT = −ln (Wafter/Wbefore) = −ln (pafter/pbefore) where the argument to the log function on the right hand side is the
ratio of the number ofmicrostates towhich the system (plus surroundings) has access after a change in a system’smacrostate
to that before which is in turn equal to the ratio of the probabilities of the two macrostates.

Arguably less established are at least some of the proposed generalities about how molecular disequilibria converting
mechanisms work. Perhaps most importantly, (i) that in a conversion process it is always the completion of an increment of
the driven process that the controlling escapement mechanism uses as the trigger, or the ‘‘gate’’, to allow (an appropriately
sized) increment of the driving process to complete (i.e. to ‘escape’), and also perhaps (ii) that conversions between
mechanical and thermodynamic processes can be validly interpreted as ‘limit case’ instances of the general ‘disequilibrium-
to-disequilibrium’ paradigm advanced here.

14. Connection to the emergence of life; the story within the story

It is our position that the emergence of life and the emergence of ‘‘bioenergetics’’, as here understood, are an indivisible
continuity and that life’s fraught emergence is a story within the story just told. One, that is, in which the essential
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enabling events in the transition from inanimate to animate organizations of matter involved the abiotic conversion of
geophysically and geochemically–supplied disequilibria into the prerequisite founding disequilibria of life. These were
necessarily particular conversions; specific as to the driver and driven process pairs being inter-converted, and specific
as to the chemical, mineralogical, and physical properties of the environment in which the conversions were taking
place. Conversions that were also, and necessarily, ongoing and dynamic—forming an active mechanistic text of constant
dissipation and regeneration uponwhich all the like processes and devices of extant life are, we further contend, overprinted
in a faithful, yet significantly transparent, palimpsest. Furthermore, not only canwe decrypt whatmust have been life’s very
first devices, but we can also descry its first motive. The scene is well documented. As the early Earth cooled, a rapid rain-out
from the carbon dioxide atmosphere produced a carbonic ocean very far from equilibrium from the hydrogen leaking out of
submarine alkaline springs. The thermodynamic imperative was to reduce the CO2 with this hydrothermal H2 in order ‘‘to
produce a small but ever-renewed stock of organic molecules’’ [128, p. 34]. And life’s main task for the planet ever since has
been dedicated to the same process—the hydrogenation of carbon dioxide.

We emphasize that from this perspective, life’s essential launching requirements were not ‘‘building blocks’’, i.e. not
particular molecules, or classes of them, at any concentration or in any mix. Such a ‘‘soup’’ however produced, cycled, or
concentrated; nomatterwhat its constitution, and regardless ofwhat chemically non-specific ‘‘energy’’ inputswere supplied
to it, stably or otherwise—is in no meaningful way ‘lifelike’, nor capable, we assert, of engendering it [129, p. 453]. It would
be as exactly useless to emergent life, and in part for the same fundamental chemical and thermodynamic reasons, as is
ATP for extant life when not dynamically maintained in a high state of disequilibrium, as we argued in our introductory
Section 2.

As a categorical necessity, we maintain, life’s actual transition-enabling requirements were dynamic processes—specific
processes acting to generate andmaintain specific states of physical and chemical disequilibrium, and, necessarily, doing so
in a quite specific type of physical environment. Extant life everywhere has just these ineluctable requirements: specific
types of externally supplied chemical disequilibria to act as ‘drivers’, and correspondingly specific engines to carry out
the particular conversions needed to produce, from those drivers, an essential and universal and specific set of ‘internal’
disequilibria; and all supportedwithin confinementswith specific properties, including those of selective chemical exchange
with the environment [130]. As it is now in this regard, we contend, so it had to have been at the beginning.

Of course, attitudes are changing. Yet the origin-of-life community, even when disengaging from ‘organic soup’ to
embrace the relevance of geochemistry in defining initial conditions and providing the necessary thermodynamic driving
forces, still largely remains wedded to the view that just finding the right chemicals, ‘energy’ sources, and catalysts
will lead us to life’s origins. However, biology is not a kind of speedier chemistry or even geochemistry—it really is, as
we have emphasized, fundamentally different. Recapitulations of the acetyl coenzyme-A pathway, for example, reveal
essential endergonic steps in the ascent from an inorganic and autogenic proto-metabolism through to a ligand-accelerated
autocatalysis [131–134]. Of course, it is these endergonic reactions that must be specifically and selectively driven. Yet,
as we have argued above, how an endergonic reaction is made to happen is complicated and counter-intuitive, requiring
a case-specific ‘bespoke’ engine, whose operation is not just that of an enzyme-catalyst, and indeed, must ‘‘transcend
chemistry’’. Yet wemust understand them and their thermodynamic drivers, both in their generalmodus operandi and in the
specifics that suit each to its conversion task, if we are to attempt to reverse-engineer theirmechanisms towards comparable
operations in the inorganic hydrothermal world. In this way we expect experimental reconstructions of conversion engine
prototypes out of the ‘minéral trouvé’ present at the alkaline vent to show that life, or at least metabolism, probably arose
to relieve these particular tensions (cf. [135]).

Thus the pursuit of the unicorn of life’s emergencemust begin with a hunt for those conversions; what drove them, what
they produced, how the conversion engines could have arisen and functioned abiotically; and how the physical environment
could not only have enabled this to happen, but have kept the tenuous flickerings of first ignition nurtured to the point that
it could capture the wind of autocatalysis and explode into the great organic disequilibria-converting ‘conflagration’ which
now so enlivens, and impacts, the planet.

What must the ‘‘founding disequilibria of life’’ have been? Fixed carbon (e.g. formyl phosphate and thioacetate) held
out of equilibrium with respect to CO2 + H2 ± CH4 is clearly primary, as we have argued [5,130,131]. Also likely is an
early requirement for a primitive analogue of ATP to provide the free energy supply function now largely delegated to ATP.
Pyrophosphate, ‘‘PPi’’, seems a likely candidate, as has long been advocated by the Baltscheffsky and colleagues [136,137],
though acetyl-phosphate has been suggested as a possible alternative—presuming the prior existence of a carbon fixation
path producing thioacetate which could convert to acetyl-phosphate via methyl thioacetate [5]. Again, the requirement is
not for the maintenance of these molecules at sufficiently high concentrations, but instead that they be held sufficiently out
of equilibriumwith respect to their hydrolysis products (and thus be able to ‘carry’ free energy). Concomitantly there would
have been the requirement for a high potential electron acceptor to partially oxidize the hydrogen to protons. Nitrate and/or
nitrite in the ocean could have played such a role while at the same time using the protons to hydrogenate the nitrogen
oxides to produce ammonia, so driving NH3 out of equilibrium with respect to H2 + NO3 [138,139]. In these circumstances
ammonia/ammonium has been shown to exergonically aminate carboxylic acids to amino acids [140].

These choices for the founding, driven disequilibria can plausibly be defended on general, and presumably universal,
biochemical and biophysical grounds [141]. However, addressing the remaining questions about driving disequilibria,
abiotic conversion engines, and physical environment on similar a priori grounds present a different and more daunting
challenge. Fortunately, it is likely not one we will have to take on in that manner.
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While there are a number of ideas as to how life first emerged [142] the ‘serpentinization-driven, alkaline hydrothermal
vent’ hypothesis (‘‘AHV’’) provides in general terms an integrated and testable package of candidate answers to these
questions. The AHV proposal, originally advanced in 1989 by one of us (MR) [143] (see [6,141,143–145] and references
cited therein), began to attract serious attention after 2000 when the first instance of an active AHV, the so-called ‘‘Lost
City’’ formation in the North Atlantic, was discovered and subsequently shown to have the key properties and behaviors
the AHV proposal had predicted [146–150]. Further, the AHV proposal is now attracting increased interest and research
effort [151–162], and dispositive experimental tests of its key predictions seem in prospect [163].

Importantly also, the geophysically-based AHVmodel directly implies a marked and multifactorial congruence between
the devices of protolife and those of extant life. Aswewill lay out, this embraces key structural, chemical and thermodynamic
aspects, the ones responsible for the maintenance of life’s essential disequilibria in particular. To a striking degree, the
vent’s geochemistry appears not merely to set the table, for free, with everything life requires, chemically, structurally and
thermodynamically, but to do so with the most ancient and ‘universal’ of the devices and components that it still uses—
albeit that it now has to struggle to recreate them on its own. The extent and detailed character of this continuity implies
strongly that in strategic and mechanistic terms biochemistry is a direct, and indeed conservative, descendant of – is in
fact merely an elaboration upon – the dynamic, far-from equilibrium geochemistry produced by serpentinization-driven
alkaline hydrothermal springs venting into the primal ocean of the Hadean.

We next summarize the key elements and predictions of the AHV theory and discuss the relevance of understanding
the ‘mechano-thermodynamics’ of disequilibria conversion to the issue of putting the AHV theory to decisive experimental
tests.

14.1. The AHV theory and the abiotic conversion of disequilibria

A distinguishing feature of the alkaline vent theory is the ab-initio manner in which it addresses the defining
thermodynamic distinction between inanimate and animate organizations of matter: that living systems are inherently
maintained in highly specific, dynamic, very far from equilibrium states; without which they would have neither structure
nor coherent activity. The AHV theory argues in particular that not only must this have been also true of proto life but
further that the need to stablymaintain and appropriately confine a specificminimal set of chemical disequilibria constituted
the initial and quintessential barrier to life’s emergence. And it provides a geophysically-based hypothesis as to how this
barrier was surmounted, one based on the upper mantel convective processes that serve to cool the planet. It is these that
in specific ocean floor contexts give rise to the process of serpentinization which in turn generates long-lasting alkaline
‘effluent’ springs.

In the comparable Hadean systems hot, highly reduced and alkaline effluents, rising from sites of active serpentinization
beneath the ocean floor, vent into the acidulous, oxidized and cool ocean. At the mixing interface mineral precipitate
structures develop comprised of complexly patterned, labyrinthine,micro-compartments bounded bymembranousmineral
films, through which the fluids percolate [141,143,146,164–166]. These precipitates develop as a growing edifice with a
permeable core whose ‘walls’ function as nano-porous and nano-permeable membranes acting to selectively separate the
alkaline hydrothermal vent solution from the ocean. In the Hadean, the ocean would have been 4–5 pH units more acidic
than the effluents, and bearing substantially higher CO2 concentrations than do earth’s current oceans [161,167,168].

Across this semi-permeable barrier separating effluent and ocean, the serpentinization engine maintains several highly
‘biological’ disequilibria in the form of proton and redox gradients. Suggestively, if not arrestingly [3,153,161,168], the
proton gradients have the same directional orientation (alkaline inside, acidic outside) and effective strength (≥200 mV)
as gradients produced in the OxPhos/ATPsynthase systems of all extant life10 Similarly, the redox gradients are present at
comparable strengths (˜500mV) and involve the same donors and acceptors (H2+CH4 versus NO−3 , Fe

III, MnIV
+CO2) as can

be found poweringmany extant life forms [167,171,172]. Therefore of course, these disequilibria are attractive candidates to
be the sought-after geochemically-provided drivers. The system looks crudely like an immense ‘mineral mitochondria hive’,
but one spared the trouble and cost of maintaining its own proton gradients (much more importantly, spared the trouble of
figuring out how to do it); or at least seems primed to function as one [173,174]. But that is by no means all the AHV system
has to offer aspirant life.

The vent precipitates also provide selectively permeable ‘cell-sized’ micro-chambers: that are held at appropriate
temperatures and pressures (30–116 °C and ˜600 bars) and at an appropriate pH (˜10.5) for organic chemistry; that supply

10 ‘‘Effective strength’’ here refers to the proton electrochemical potential difference across the membrane: ∆µ′ = ∆µ + e∆ψ , where ∆µ =
kBT ln (cout/cin), ‘‘e’’ is the charge of the proton, and the c terms are concentrations (often a proton gradient’s strength is expressed in units of volts as
∆ψ ′ ≡ ∆µ′/e whether or not there is an electrostatic contribution). In cases where the proton gradient is ‘‘charge compensated’’ as it is, more or less
completely, in chloroplasts [169],∆ψ = 0 and gradient strength is due simply to concentration differences. In that case if∆µ′/e = ∆ψ ′ = 200 mV then
cout/cin ≈ 2 × 104 . However in mitochondria for example, there is little or no charge compensation and the electrostatic contribution is significant. In
that case, typically, cout/cin ≈ 25 (i.e. a ∆pH of about 1.4) equivalent to a voltage difference of ≈80 mV. However, this proton concentration ratio, in the
absence of charge compensation, generates an electric field strength difference of roughly 140 mV, thus the total electrochemical potential difference, in
voltage units, is again≈200 mV [170]. The meaning of this is that the ratio of the probability of a proton entering the F0 motor from the ‘outside’ vs from
the inside is roughly the same in both ‘‘compensated’’ and ‘‘uncompensated’’ cases, namely≈104

:1. In the AHV case, there is also no charge compensation
and a concentration gradient of≈4 pH units and a electrostatic gradient of≥200mV exist together, implying a total electrochemical potential of≥400mV.
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the inorganic trace elements required for life’s functioning (e.g., Fe,Mg,Ni, Zn, Co,MoorWandS, Se, P); that sustain relatively
gentle fluid flows; and that are stable for timesmeasured in tens of thousands of years= ˜1020 nanoseconds (see [6,149,175]
and references therein). No less critically, the particular minerals that comprise the matrix of the precipitates include those,
perhaps most notably ‘‘green rust’’, supported by Fe–Ni sulfides, that on independent grounds appear to be most promising
for incubating life—for providing the needed disequilibria conversion engines in particular [153,155,174,176].

These considerations invite the speculation that in some way ‘‘engines’’ arose within the AHV mineral membranes that,
for example, could couple the relaxation of the proton and redox disequilibria produced in the AHV system to the formation
of a PPi vs Pi disequilibrium, and the endergonic reduction of CO2 to CO or formate, of NO−3 to NH3, the oxidation and
sulfidation of methane to methane thiol, and the formation of thioacetate [148,177,178]. But exactly how might they have
done that?

We recall thatwhat such couplings require is ‘merely’ that the driver-driven processes be functionally lashed together via
an escapement mechanism whose defining behavior is that it frustrates the ‘natural’ down-gradient flow of both processes,
allowing instances of each to take place only if they happen ‘simultaneously’ and, if there is to be a conversion, only if
they happen in thermodynamic opposition: one exergonically (down-gradient) while the other (as the result of a thermal
fluctuation, has been thrust) endergonically (up-gradient) [130].

In a companion paper currently in preparation [179] we discuss our present proposals as to how these critical
disequilibria conversions may have operated in the AHV precipitates of the Hadean and review the status of efforts to test
these and related ideas bearing on the problem. Here we note the main elements of the argument presented in that paper
that relate directly to the present general discussion of disequilibria conversion.

Our focus in that paper is on so-called ‘‘double-layer hydroxides’’ (‘‘DLH’’), particularly those, such as the brucite-like
mineral green rust, a metal hydroxide semiconductor, likely precipitated at early submarine alkaline vents, which display
variable valence [4,146,167,180–183]. There is now quite compelling reason to think that these minerals, their interlayer
galleries in particular, can naturally function as the specific disequilibria converting engines that we claim are needed.

The last decade in particular has seen a growing realization that the galleries between the layers of DLHminerals display
a number of exceptionally promising physical–chemical properties and activities. This was first detailed in a 2003 paper
by Gustaf Arrhenius. Quoting from that paper: ‘‘Surface-active DLH minerals . . . serve as compartmental systems with flexible
membranes and what may be called primitive cellular metabolic function. Like cells, they retain phosphate-charged reactants
against high concentration gradients and exchange matter with the surroundings by controlled diffusion through the ‘pores’
provided by the opening of the interlayers at the crystal edges. Here, the exposed negative charge on the interrupted metal
hydroxide ‘membrane’ leads to sorption of cations as ‘gatekeepers’’’ [184].

In addition, the bilateral internal surfaces of DLH minerals can be redox active [185] and active in a manner that allows
the galleries to function as disequilibria converters. In fact, green rust, driven by redox disequilibria, can rapidly reduce
nitrate to the ammonium ion as well as the redox sensitivemetals such asMoVI toMoIV [186–195]. Note that these are 2, or
2×3 electron reductions that correspond to the preferred redox states of green rust (GR), viz., GR[Fe2+4 Fe3+2 ], GR[Fe2+2 Fe3+4 ],
GR[Fe3+6 ] [196,197].

Also, the interlayer galleries in such minerals have been shown to form localized, particle-like dynamic structures called
‘‘small polarons’’ in response to local redox changes. These phonon-stabilized distortion structures are persistent, can
propagate vectorially under imposed gradients, and can transport molecular species (see [182,198,199] and the discussion
and references cited in [6]).

Finally, in the Hadean, molecular species migrating through these galleries would have encountered trace metal cations
such as Ni, Zn, and Mo, all renowned for their highly critical and conserved ‘catalytic’ activities in bioenergetics [133,171,
173,177].

A central tenet in our effort to address the above questions—as laid out at length in thementioned companion paper [179],
is that the DLH minerals of interest are essentially insulating and impermeable orthogonal to their layered structure while
being, in partial degrees, conducting and permeable in the parallel direction. In particular it is posited that it is through
the interlayer galleries of these minerals that the fluids propagating through the AHV precipitate mounds flow. Critically,
however, and not withstanding the leakage ‘workarounds’, these gallery channels not only impose chemically selective
restrictions on the passage of solute molecules, but are themselves chemically, electronically, and physically active—
e.g. changing redox state and also local structure and geometry, supporting polaron dynamics, and conducting charge.

These facts set the framework in which testable answers to our disequilibria conversion questions can be posed. For
example, given the observation cited above that in single-shot ‘batch mode’ reactions a sample of reduced green rust can
drive the strongly endergonic, 8-electron reduction of nitrate to ammonium, it seems quite possible that in the right setting
green rust might drive this same disequilibrium conversion in steady state. How might that come about? We need to
understand in general how, in the forced multi-step reduction involved, each individual reduction could operate as a gating
mechanism controlling the step-wise relaxation of the driving disequilibria. We need also to see how such a system can
be continuously recharged and the product ammonia continuously removed. And we need to consider the possible effects
of reaction–diffusion mechanisms in this context [200]; how the supporting, chemically active, and confining matrix of
green rust could make for competition between the diffusion distances and reaction rates involving the several reagent-
sharing reactions and potentially thereby optimize the self-organization of disequilibria conversions and the self-assembly
of products.
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Fig. 14. A green rust ramjet reducing nitrate to ammonia?
Steep redox, pH and nitrate gradients imposed across the green rust membranes of the alkaline hydrothermal mound from left (ocean) to right (vent),
along with a continuous supply of hydrothermal hydrogen in the vent effluents, drive nitrate reduction. Hydrogen in the vent effluent is presumed to
be oxidized by a ‘protohydrogenase’ which we might assume to be an iron-nickel sulfide precipitate (on the vent-side margin, not shown) [154]; the
resultant electrons would be conducted ocean-ward along the iron atoms comprising the green rust (brucite-type) layers drawn by the strong (probably
≥400 mV; see footnote 10) voltage gradient while the released protons would be driven into the vent interior by that same gradient. There they are spent
on the abundant hydroxyl molecules of the alkaline vent fluids to form water and carried off as (an imperceptible) waste. Thus it is the Coulomb force
generated by the proton gradient that drives the essential endergonic step of charge separation. Proton flow into the interlayer from the Hadean Ocean
(left), presumably mediated by a Grotthuss-type mechanism [201], is driven by the transmembrane difference in proton chemical potential between the
acidulous exterior and the alkaline interior. Nitrate in the Ocean, entering the margins of the gallery from the ocean side oxidizes the green rust causing
a repulsion of the opposing ferric iron atoms, thereby giving access to the nitrate anion. This nitrate oxidizes adjacent ferrous iron atoms and is thereby
concomitantly reduced to nitrite [188]. Being of the same charge, the nitrite too, is partially immobilized. The negatively charged nitrogen-bearing anions
are charge-trapped at the green rust ‘inlets’. It is onlywhen they are reduced and hydrogenated can the grip of the positively-charged interlayers be relaxed
and the ammonia or ammonium ion may then be driven in the interior by the nitrate gradient. The ammonium ion generated from nitrate is assumed to
reductively aminate pyruvic acid to alanine [140]. The alanines tend to polymerize in this low entropy trap and are forced out of the green rust by the nitrate
and proton gradient. Compare this bilateral green rust model of nitrate reduction to how the dimers constituting the nitrate and nitrite reductases function
as discussed in [190,202,203]. Note that in the proposed mechanism the proton gradient performs three essential functions: providing the Coulomb force
that achieves charge separation once a catalytic site on the vent side has made separate charges available by ‘‘splitting’’ molecular hydrogen, driving the
just-liberated electrons oceanward from iron to iron down the gallery walls in a redox cascade, and driving protons into the gallery from the ocean side to
provide for charge-neutral reductions of nitrate.

In Fig. 14, we present a notional proposal as to how in the AHV mound context a green rust membrane across which is
maintained stable proton, redox, and nitrate gradients would continuously drive the reduction of nitrate to ammonia. In the
proposedmechanism, the interlayer galleries, under the influence of the imposed disequilibria, function in rough analogy to
a ramjet, supporting a linear, progressive, ‘assembly line’ sequence of conversion escapements the cyclic operation of each
of which is local.

What of the other two internal disequilibria we have claimed must also be stably generated: fixed carbon and an ATP
surrogate? We present extended discussions of these questions in [179]. Here we merely note two ‘encouraging’ points:
the stunning mechanistic simplicity of the ‘rocking dimers’ proton-pumping pyrophosphatases discussed in [87–90], and
the experimental demonstration of the electrochemical reduction of HCO−3 to methanol, and to formic, acetic, and pyruvic
acids [155].

We close this discussion with an observation: arguably the key virtue of the AHV model as a scientific hypothesis
regarding the initial steps in the emergence of life is its essentially unique vulnerability to disproof. It places all of its chips
on the claim that certain naturally arising, but experimentally reproducible, geochemical circumstances do produce castles
of mineral ‘cells’ in which three key, undeniably life-like chemical disequilibria are ‘abiotically’ generated and maintained.
If it proves not to be possible to experimentally substantiate these conjectures, then we may expect interest in the theory
to wane.
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Appendix A. Stochastic thermodynamics

Contemporary non-equilibrium thermodynamics departs from its classical precursormost fundamentally in generalizing
the set of all possible ‘microstates’ of a system from time-invariant points in a ‘‘phase space’’ to include also transitions or
trajectories taking place in time between such points. Implicit in this advance is a casting off of the twin chains of classical
thermodynamics. First, and obviously so, that one could only treat systems at equilibrium, or only incrementally displaced
from it. Second, and much less obviously, that thermodynamic concepts could only be applied to systems comprised of
immense numbers of particles. In consequence of this deliverance there has emerged (is still vigorously emerging), a theory
that is truly dynamic, applicable to far-from-equilibrium contexts, and also to fluctuation-dominated systems comprised of
small numbers of particles (including single molecules); see [13–25,28,34,204,205].

Our purpose here is to present a cursory introduction to the conceptual foundations of this theory, particularly as they
relate to the ‘‘stochastic thermodynamic’’ treatment of molecular ‘machines’ operating in an aqueous medium. We will
summarize the basic ideas first—following primarily Phil Attard [25,34]). We then discuss how dynamics – that is, time-
dependent trajectories in the space of macrostates – is represented in the theory and focus on the context most relevant
to our present discussion, namely single macro-molecules being driven through work-performing trajectories by chemical
disequilibria. For this we follow the approach taken by Seifert [22,23].

We note first, however, that this quite recent and profound revolution on the path to a theory of non-equilibrium
thermodynamic phenomena was preceded by an early stage which, while it did not generalize the classical state space
concept, developed thehighly important advance to a theory termed ‘linear non-equilibrium’ thermodynamics. The essential
elements of this approach are summarized in Appendix B.

In this connection we should also note the work of Onsager and Machlup, published in 1953 [206,207], which interprets
transitions between nonequilibrium states as diffusion processes and analyzes trajectories composed of a sequence of
such transitions in terms of a Markov model. On this basis they determine ‘‘The probability of a given succession of
(nonequilibrium) states, of a spontaneously fluctuating thermodynamic system . . . ’’. And from that the ‘‘microscopic
reversibility’’ condition as the ratio of the forward and reverse probabilities of a stochastic trajectory between specified
starting and ending states. At the endof AppendixA.2webriefly note the relevance of their results to the analysis of biological
engines.

A.1. Microstates, macrostates, probabilities, entropy

The present paper’s discussion of disequilibria conversion is developed around the analysis of a maximally simple
‘statistical thermodynamics’ conceptual model (see Section 4), that of particles of finite size distributed in a ‘box’ comprised
of two chambers of finite volume separated by a partition. Models of this type are to be found in a variety introductory
explanations of contemporary thermodynamics [25,34,52,206]. A virtue of such models is that in them the defining
dichotomy of statistical thermodynamics, that between macrostates and microstates, has a simple and intuitively obvious
realization: microstates are specific choices for which of the available positions within the box are occupied by particles;
macrostates are the fraction of the particles that are in one of the box’s two partitions (arbitrarily chosen). In general
macrostates are defined by ‘macroscopic’ parameters that can be measured and/or fixed, andmicrostates are defined by the
particle-level details of the system (e.g. individual particle positions and velocities) which are, typically, ‘‘inaccessible’’ or
‘‘unknowable’’.11

Of course, multiple microstates underlie any of a system’s macrostates. In particular, a system’s macrostates form a
disjoint and exhaustive partitioning of the set of all microstates implying that each microstate is in one and only one
macrostate. In a fair sense, moreover, all of thermodynamics blossoms out of the simple matter of how many of a system’s
microstates lie within any particular macrostate (or, in the more common and physical case in which all microstates do not
have the same probability, what is the total statistical weight of those microstates).

Systems abstracted in this way become ‘thermodynamic’ through the further assumption that transitions between
microstates are incessantly ongoing—some within the same macrostate, some taking the system from one macrostate to
another. This implies that the system is ‘sampling’ all of its possible microstates and, correspondingly, that the probability
that at any instant the system is in any one of these states is well defined.We next sketch briefly how these general concepts
are formulated, and follow thatwith an equally summary sketch of their particular application the thermodynamics of single
macro-molecular engines operation in an aqueous medium.

Following Attard [34, §1] a non-negative numerical ‘‘weight’’ is assigned to each of a system’s microstates (taken here to
form a discrete set) which is proportional to the probability that the system is in thatmicrostate: i.e. ifwi is theweight of the
‘‘ith’’ microstate (by convention given the value ‘‘1’’ if all microstates are equally likely), then pi = wi/W is the probability of

11 For a general and detailed discussion of the matters cursorily summarized here see [25, Prologue].
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the ith microstate whereW ≡


iwi is the sum of the weights of all microstates in the system (i.e. the total ‘weight’ of the
system, and the count of the system’s total number of microstates if all are equally likely). This implies that the ‘weight’ and
the ‘probability’ of each macrostate are inferentially defined by the obvious sums: wα ≡


i∈α wi where wα is the weight

of the αth macrostate and is just the sum of the weights of all of the microstates it contains. Similarly, pα = wα/W where
W =


α wα =


iwi, is the probability that the system will be in macrostate α, and the last expression in the preceding

equation makes it explicit that the sum of all macrostate weights equals the sum of all microstate weights.
It is important here to note that implicit in the above definitions is the simplifying assumption that the weights and

probabilities of both micro- and macrostates are invariant in time, and apply therefore only to systems that are in this
sense in equilibrium. However, for systems embedded in a ‘‘chemostat’’ reservoir which maintains input and output flows
at constant levels, this can include non-equilibrium steady state processes.

In terms of these weights, the (dimensionless) entropy of the system, and of macrostates, andmicrostates within it, have
the forms:

S ≡ lnW = ln


i

wi


= ln


α

wα


,

Sα ≡ lnwα, Si ≡ lnwi

(55)

and the probability of a macrostate in terms of its entropy is therefore pα = eSα/W .
As Attard points out however, the general relationship between the entropy of the system and that of its macrostates (or

microstates) is somewhat subtle [25, pp. 18]. For example, the system’s entropy can be expressed in terms of the following
sum over macrostates:

S =

α

pαSα −

α

pα ln pα. (56)

This qualitatively expresses that if we do not know which macrostate a system is in, the probability of guessing which
microstate it is in at any instant, can be factored into the probability of guessing which macrostate it is in (in entropy terms
the expectation value of the log of the macrostate probabilities:−


α pα ln pα) and the average over all macrostates of the

conditional probability of guessing the microstate given that we know the macrostate: the expression, again in entropy
terms,−


α pαSα .

A.2. Transitions between macrostates in the Attard formulation

Wenext develop the statistical properties of transitions betweenmicrostates, and inferentially betweenmacrostates, but
emphasize again that, for simplicity, the present discussion is confined to systems that are time invariant in two senses. First,
as was assumed in the preceding segment, microstate weights (and inferentially macrostate weights) are constant in time.
Second, we will assume that the probability of a given microstate transition (inferentially a given macrostate transition),
while dependent on the time interval duringwhich the transition is being considered, has no other time dependence; i.e. that
the transition probabilities are homogeneous in time.

The fraction of all microstate transitions (taking place in time τ ) that are between the specific microstates i and j is by
definition the ‘unconditional’ probability of that transition: p(j, i | τ). This probability is in turn associatedwith a ‘‘transition
weight’’ written:w(j, i | τ) for the microstate transition i

τ
→ j: p(j, i | τ) = w(j, i | τ)/W , where, as wewill show presently,

the sumover allmicrostate transitionweights is equal to the sumof allmicrostateweights; that is:


i,jw(j, i | τ) = W ; ∀τ
and is the correct normalizing factor for the transition probabilities.

As noted, in general most microstate transitions are between different macrostates and thus induce macrostate
transitions. These too, reflecting thatmacrostates are disjoint and complete sets ofmicrostates, are associatedwith transition
weights which are the sums of those of their constituent microstate transitions. That is:

w(β, α | τ) =

i∈α


j∈β

w(j, i | τ) (57)

is the weight of the macrostate transition α
τ
→β . Correspondingly, the unconditional probability of this macrostate

transition is:

p(β, α | τ) =
w(β, α | τ)

W
(58)

which follows from the fact that sum of all macrostate weights is equal to the system weightW (see directly below).
The physics of any particular system enters in part via the form of the connection for that system between the weights

of microstates and the weights of the transitions between them. In general however, two ‘reduction rules’ between these
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two classes of weights must be satisfied:
j

w(j, i | τ) = w(i) = wi and,
i

w(j, i | τ) = w(j) = wj

(59)

(for the derivation of these rules see [25, 1.4.4]). The meaning of these conditions is that the total weight of all transitions
from, respectively to, a given microstate is equal to the weight of the microstate that is the source, respectively destination,
of the transitions. That is to say, the collective impact of the set of all transitions conserves microstate weights, and thus
microstate (and macrostate) probabilities. From either of these relations it follows that the sum of all microstate transition
weights and also the sum of all macrostate transition weights is equal to the weight of the system:


i,jw(j, i | τ) =

α,β w(β, α, | τ) = W , which is what we asserted above in order to argue that W is the appropriate normalization factor
to convert bothmicrostate andmacrostate transitionweights to their corresponding (unconditional) transition probabilities.

A central element in the calculus of transitions is that for every microstate i there is a unique ‘‘conjugate’’ state,
conventionally labeled iĎ, here obtained from the former by supposing that time is reversed(see [23, Sec. 4] for a more
general discussion of conjugate states). If the microstate is characterized by properties, such as velocities, which change
under time reversal (e.g. change sign) then the microstate and its conjugate are distinct, whereas in the opposite case they
are identical. Clearly the ‘conjugate’ mapping is 1:1 and the conjugate of a conjugate is the original microstate.

In terms of this notion, and keeping inmind the assumption of equilibrium, the key principle of ‘microscopic reversibility’
can be stated:

w(j, i | τ) = w(iĎ, jĎ | τ) (60)

that is, ‘‘. . . the forward transition between the original states has the same weight as the reverse transition between the
conjugate states’’. (to quote Attard [25, pp. 20]. Further, since there is one and only one conjugate iĎ for each i, we can, for
example, write that


jĎ w(i

Ď, jĎ | τ) =


jw(i
Ď, jĎ | τ). Therefore summing both sides of the microscopic reversibility

equation over j, and invoking the reduction rules given in Eq. (59) yields:
j

w(j, i | τ) =

jĎ
w(iĎ, jĎ | τ),

wi = wiĎ .

(61)

That is, under the assumption noted above that microstate weights are time invariant, a microstate and its conjugate have
the same weight.

The conjugates of all microstates in a macrostate, say ‘‘α’’ form a potentially distinct conjugate macrostate αĎ.
Importantly, the condition of microscopic reversibility implies the analogous reversibility condition for macrostate
transitions:

w(αĎ, βĎ
| τ) = w(β, α | τ) (62)

(see derivation in [25, p. 21]). And, given that microstates and their conjugates have the same weight, so too domacrostates
and their conjugates:

wα = wαĎ , and therefore also their probabilities:
pα = pαĎ .

(63)

The last relations of importance to us here involve the conversion between unconditional and conditional macrostate
transition probabilities. By definition, the fraction of all of the macrostate transitions originating in a specific macrostate,
say α, which terminate in another specific macrostate β is the ‘conditional probability’ of that macrostate transition, here
written: p(β | α, τ). Of course, the ‘unconditional’ probability can be expressed in terms of the corresponding ‘conditional’
probability according to:

p(β, α | τ) = p(β | α, τ) p(α). (64)

In words: the fraction of all macrostate transitions that are frommacrostate α to macrostate β is equal to the fraction of all
macrostate transitions originating in α that terminate in β times the probability of being in the macrostate α. Combining
Eqs. (58) and (62) we have the macroscopic variant of the ‘‘principle of microscopic reversibility.

p(αĎ
| βĎ, τ ) p(βĎ) = p(β | α, τ) p(α), hence

p(β | α, τ)
p(αĎ | βĎ, τ )

=
p(βĎ)

p(α)
=

p(β)
p(α)

,

= eS(β)−S(α) = e∆S(α
τ
→β)

(65)
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where we have here used dimensionless entropies and the fact that a macrostate and its conjugate have the same weight
and therefore the same probability (Eq. (63)). That is, the exponential of the entropy difference betweenmacrostatesβ andα
is equal to the ratio of the conditional transition probability for α

τ
→β to that for its ‘conjugate’ reverse transition βĎ τ

→αĎ.
In the model thermodynamic system considered in this paper, states and their conjugates are identical; in that case the

above equations reduce to:

p(β | α, τ)
p(α | β, τ)

=
pβ
pα
= e∆S(α

τ
→β). (66)

We may regard the above equations as expressing a generalized, ‘macroscopic’ fluctuation relation [73]. They assert that
a transition which increases the entropy of a system by ∆S is more likely than its (time) reverse by the exponent of that
entropy change.

In closing this section, we emphasize that its purpose and that of the preceding Appendix A.1 is to introduce the
general basic concepts of modern stochastic thermodynamics, whereas that of the following Appendix A.3 is to present an
outline sketch of full stochastic thermodynamics theory in a form suitable for the analysis of the kinds of macromolecular
systems that are the subject of this piece, namely those used by life to convert disequilibria. This calls for a significant shift
in conceptual gears and the abandonment of several simplifying assumptions. Now macrostates will have explicit time
dependence and systems are not assumed to be in equilibrium. We must also now explicitly allow interactions: between
and within the molecules in the system, and between those molecules and the aqueous medium in which it embedded.

At the conceptual level, wemust now see individualmacromolecules inwater as true thermodynamic systems— systems
which are, moreover, explicitly dynamic: executing stochastic trajectories in the space of the macromolecule’s macrostates.
Now, trajectories, not states, are the grist of the analytic mill. Where classical thermodynamics is erected on the probability
distribution of equilibrium states, stochastic thermodynamics is erected on the probability distribution defined over the set
of such trajectories. Further, as we mentioned earlier 3.2 these systems are not just inherently stochastic and fluctuation
driven, they operate at the extreme low Reynolds number limit. This latter point is important in part because it defines one
of the major alternatives in how such systems are to be treated theoretically, as we indicate briefly next.

Our discussion below of stochastic thermodynamics is based largely on the approach of Udo Seifert, in particular that
described in his 2011 article ‘‘Stochastic thermodynamics of single enzymes and molecular motors’’ [22]. But before launching
into it we should emphasize that stochastic thermodynamics is far from a settled theory, and several different approaches
are in active contention. That of Attard, for example [25] differs significantly from that of Seifert. But we here take particular
note of the approach advanced by Dean Astumian and his colleagues, in part because its conceptual basis is quite distinct
from that of other contemporary contenders.

This approach springs from two insights. First that all molecular-scale disequilibria conversions work by ‘rectifying’
processes of thermal diffusion (adding a note of aptness to the simple diffusion model with which this paper began);
second that such conversions taking place in aqueous media operate at the low Reynolds number limit (see e.g. [208]).
In that context, Astumian and colleagues have pointed out, such systems are in near perfect mechanical and thermal
equilibriumwith the bath evenwhile potentially being in arbitrarily strong thermodynamic disequilibrium. In consequence,
they argue, diffusive fluctuations of observable thermodynamic variables (such as the extent of a chemical reaction) result
from a Gaussian distributed thermal noise force and that in this and other important respects such systems conform
to the prerequisite assumptions in the work of Onsager and Machlup mentioned above: ‘‘Fluctuations and Irreversible
Processes’’ [206]. See in particular [209–211] but also [53,54,212,213]. TheOnsager–Machluppaper,wenote, analyzes system
trajectories as a Markovian series of sequentially ‘‘gated’’ diffusion processes.

A.3. The dynamics of systems consisting of single macro-molecular machines in a thermostated aqueous solution

As just noted, our discussion herewill largely follow the approach and notation used in a 2011 Seifert article [22] (though
we also refer the reader to Seifert’s 2012 review [23], and in particular to the general introduction to the problem presented
in section 9.1 of that paper). In this approach the macro-molecule (‘‘enzyme’’ for short) is itself a thermodynamic system
which can exist in a discrete set of observable macrostates, in this context termed ‘mesostates’ (and here labeled with n and
m), each of which is comprised of many ‘internal’ microstates. Microstate transitions, both within and between mesostates,
are assumed to be very much faster than transitions between enzyme mesostates each of which may therefore be taken
to be in thermal equilibrium with the bath. Further, mesostate transitions are treated as discontinuous ‘jumps’ occurring
at specific, but probabilistically determined, times (though variants of the theory have been developed in which mesostate
transitions are modeled as continuous ‘diffusive’ processes. See, e.g., [26]).

In this context, the system is the bath plus the enzyme so that an individual system microstate, here labeled ξ , is com-
prised of a bathmicrostate ξ sol togetherwith an enzymemicrostate ξ enz, i.e. {ξ} = {ξ sol, ξ enz}. The system is assumed to have
one distinct macrostate for each of the enzyme’s mesostates, and thus the system’s microstates are partitioned into disjoint
subsets {Cn} one for each enzyme mesostate; that is, each system microstate ξ is in one and only one mesostate subset Cn.

The assumption that themicrostates of the bath togetherwith those of any enzymemesostate are in thermal equilibrium
implies that the total system’s microstates are Boltzmann distributed. This involves, of course, assuming the existence of a
function V tot(ξ)which assigns an energy to each systemmicrostate, although for present purposes only the general form of
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how this energy depends on the separate components of that microstate, i.e. on those microstates of the solution and of the
enzyme, need be specified. This, as given in [22, Eq. 6], and quoting from Seifert’s text, is

V tot(ξ enz, ξ sol) ≡ V sol(ξ sol)+ V (ξ enz, ξ sol) ≡ V tot(ξ). (67)

. . .where V (ξ enz, ξ sol) contains both the interaction within the enzyme and the interaction between enzyme and
solution.

That is, the total energy of the system’s microstate is taken to be the sum of energy of the solution, which depends only
on the solution microstate ξ sol, plus that of the enzyme, which is taken to depend on the microstates of both solution and
enzyme. Note that no assumption is made or needed about the strength of these interactions.

Given the above (and continuing to quote),

For any specific state n, the probability p(ξ |n) of finding an allowed microstate of the combined system consisting of
enzyme and solution then follows from the assumption of fast equilibrium as [22, Eq. 7]

p(ξ |n) = exp

−β


V tot(ξ)− Fn


, (68)

with β ≡ 1/kB T and the constrained free energy in state n

Fn ≡ −kB T

ξ∈Cn

exp

−βV tot(ξ)


, (69)

ensuring proper normalization


ξ∈Cn
p(ξ |n) = 1. The (mean) internal energy in state n is

En ≡

ξ∈Cn

p(ξ | n)V tot(ξ), (70)

and the (intrinsic) entropy becomes as usually

Sn = −kB

ξ∈Cn

p(ξ | n) ln p(ξ | n),

= (En − Fn) /T . (71)

Dynamics enters as the result of transitions occurring stochastically between discrete system macrostates (enzyme
mesostates). An individual mesostate transition is here notationally represented as being from state n−ρ to state n+ρ , where
the symbol ρ labels the pair of mesostates involved and subsumes both forward and reverse transitions between them:
n−ρ → n+ρ and n+ρ → n−ρ ; which direction is intended will be denoted, when required, by a σρ = ± superscript (i.e. ρ

σj
j to

indicate the jth transition in a series making up a trajectory) with the convention that ‘‘+’’ labels the ‘‘forward’’ transition:
n−ρ → n+ρ .

Trajectories in the space of mesostates are treated as being specific sequences of single-step transitions, taking place
at specific times, and produced by a Markov process. This inherently stochastic dynamic generates, from any starting
mesostate, a statistical ensemble of trajectories. Thus the general task is to derive the probability distribution of trajectories
within that ensemble and from that the thermodynamic laws governing them, fluctuation relations in particular.

The key quantity is this analysis is the ratio between the probability of a transition and that of its ‘‘reverse’’—where a few
different definitions of the reverse process can be usefully considered (see [23, Sec. 4]). Here wewill only be concerned with
the literal meaning of the term, namely that the reverse of the transition n→ m is m→ n.

However, the conventional approach to this problem has been based on taking the reverse process to be that generated
by the underlying equations of motion under time reversal. The forward-to-reverse probability ratios are then constrained
by assuming the so-called principle of micro-reversibility’ (for a review see [23]).

The 2011 Seifert paper under consideration, in contrast, presents a novel approach (see [22, Sec. 5.3]) based on noting
that in the stochastic thermodynamics context the average rate of (total system) entropy production taken over all possible
single-stepmacrostate transitionsmust be non-negative in order that themacroscopic behavior of the systemagreewith the
2nd law. The upshot of imposing this condition is that the total entropy production in a single step must equal the log ratio
of the unconditional probability for the forward transition in time t from n−ρ to n+ρ to that for the (literal) reverse transition
(from n+ρ to n−ρ ). That is

∆Stotρ (t)/kB = ln
p(n+ρ , n

−
ρ |t)

p(n−ρ , n+ρ |t)
,

= ln
pn−ρ (t) w

+
ρ

pn+ρ (t) w
−
ρ

,

= ln
pn−ρ (t)

pn+ρ (t)
+ ln

w+ρ

w−ρ
, (72)
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where in the second line the unconditional transition probabilities have been expressed as the product of the conditional
probability of the transition given the transition’s startingmesostate (the termsw+ρ andw−ρ , which are conventionally called
transition ‘‘rates’’) times the (potentially time-dependent) probability of the system being in the starting mesostate.

Seifert then shows that the terms on the right hand side of the above expression for the total entropy change in a single
mesostate transition have the following meanings:

ln
pn−ρ (t)

pn+ρ (t)
=
∆sρ(t)

kB
, and

ln
w+ρ

w−ρ
=

1
kB


∆Smed

ρ +∆Sρ

,

= −β∆Fρ,

(73)

where (i) ∆sρ(t) = sn+ρ (t) − sn−ρ (t), sn−ρ (t)/kB ≡ −ln pn−ρ (t), and sn+ρ (t)/kB ≡ −ln pn+ρ (t), are ‘‘stochastic entropies’’,
(ii) ∆Smed

ρ = qρ/T , where qρ is the heat released into the bath, is the change in the bath’s entropy resulting from the
transition, and (iii)∆Sρ is the change in the system’s intrinsic entropy (71):∆Sρ = Sn+ρ − Sn−ρ , and the final line reflects that

∆Fρ = ∆Eρ − T ∆Sρ = −qρ − T ∆Sρ = −T

∆Smed

ρ +∆Sρ

so that−β∆Fρ =


∆Smed

ρ +∆Sρ

/kB.

The relationships above involving the ratio of the one-step forward and reverse transition rates w+ρ /w
−
ρ ‘‘. . . are well

known under the notion of ‘local detailed balance’ ’’. In contrast, in an ‘‘equilibrium ensemble’’, that is for which for pn(t) = peqn
so-called ‘‘global detailed balance’’ applies: peq

n−ρ
(t) w+ρ = peq

n+ρ
(t) w−ρ . In this situation ‘‘. . . for each jump the contributions to

system entropy and medium entropy exactly compensate each other so that the total entropy remains strictly constant along any
individual trajectory’’. (See also [23, Sec. 6].)

A specific trajectory starting from state n(ti) and taking place in a definite time interval ti → tf consists of a sequence
of single step mesostate transitions ρ

σj
j , in either direction, between neighboring states in a specific sequence of mesostates

{n0 = n(ti), n1, n2, . . . , nj . . . n(tf )}. Note that, due to ‘backward’ transitions, there will in general be more transitions than
there aremesostates in the sequence. The entropy produced in such a sequence is the sum of the entropies produced in each
transition in such a trajectory, which can be written as:

∆Stot/kB =


j

ln
w
σj
ρj

w
−σj
ρj

+ s(tf )− s(ti). (74)

(See [22, Eqn. 67].) Continuing to quote:

This quantity obeys a relation called the integral fluctuation theorem for entropy production [9]
exp


−∆Stot/kB


= 1, (75)

where the average ⟨· · · ⟩ is overmany trajectories taken from anywell-defined initial ensemble characterized by pn(ti)
and running for an arbitrary but fixed time interval tf − ti. From this integral relation one gets easily the second-law
like statement on the mean total entropy production

∆Stot

≥ 0. (76)

(. . . skip . . . )
For a non-equilibrium steady state where pn(t) = pn is independent of time, one has the detailed fluctuation

theorem

p(−∆Stot)/p(∆Stot) = exp

−∆Stot/kB


, (77)

for the probability distribution p(∆Stot) to observe a certain total entropy production valid for any time interval in
this non-equilibrium steady state [9].

Note that averaging ‘‘over many trajectories’’ as called for in the above quote requires that one know the probability
distribution of the set of all trajectories. A discussion of how probabilities are assigned to specific trajectories is given in
[23, Sec. 6.1.3].

A.4. Fluctuations and the dynamics implicit in the 2nd law

As Attard has noted [25, Prologue], history has given us the 2nd law in two significantly distinct forms. That by Clausius
says that systems spontaneously evolve to states of higher entropy, resting only at the state of the highest possible entropy
(‘‘equilibrium’’). That by Boltzmann focuses on the number ofmicrostates underlying any particularmacrostate and says that
the macrostate has a probability proportional to that number and an entropy equal to the log of that number. The former
entropy concept is implicitly dynamic, the latter static. However, these two conceptions unite (and in that union confer a
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theoretical legitimacy on time’s manifest irreversibility) on the fruits of the previous discussion, the ‘detailed fluctuation
relation’ (77) in particular. According to this relation, to repeat, microstate transitions that move a system’s macrostate to
one of higher entropy (larger number of microstates) occur more frequently than the reverse thereof, and in the ratio of the
exponent of the entropy change.

On the qualitative level, the conceptual upshot is that all transformations in nature12 – chemical reactions included – are
simply a manifestation of (and ‘caused’ by) a statistical bias in favor of systems undergoing changes which increase, rather
than decrease, the number ofmicrostates towhich a system plus surroundings has access (equivalently, increases the state’s
probability); while respecting, that is, all conservation laws—the absolute conservation of energy in particular. All change
is therefore an instance of a ‘‘humpty dumpty’’ falling apart, going from fewer to more ‘pieces’, in a transformation of state
that is inherently more probable than having those pieces fall back together again (we here again note the exceptionally
illuminating and detailed discussion in P.W Atkins ‘‘The 2nd law; Energy, Chaos, and Form’’ [127]; and the opening chapters
of Phil Attard’s two books ‘‘Thermodynamics and Statistical Mechanics;Equilibrium by Entropy Maximization’’ [34], and ‘‘Non-
Equilibrium Thermodynamics and Statistical Mechanics’’ [25]).

Appendix B. On the leap from equilibrium to ‘linear’ non-equilibrium thermodynamic concepts ‘‘LNET’’

In classical ‘‘equilibrium’’ thermodynamics, thermodynamic quantities, such as S are only defined for the equilibrium
states (or states incrementally close to them) of true ‘‘thermodynamic’’ systems, i.e. continua or discrete systems having
infinitely many particles. Thus these quantities could not be said to even exist, much less to change in any continuous sense
during a manifestly non-equilibrium transformation; or to be defined in systems comprised of a small number of particles.
This classical point of view puts into question the above arguments which invoke a continuous change in such quantities
during a non-equilibrium relaxation of a diffusion disequilibrium in a small, discrete system—and with that the physical
inference that throughout the transformation it is the increase in W , the ‘effective’ number of microstates, in that is, the
probability of the system’s macrostate, that is physically what ‘drives’ the process.

This would imply that it is not really correct, or not ‘rigorously’ correct, to define, aswe have done, an entropy for states of
the balls-in-a-boxmodel, much less in the small numbers limit and seen implicitly as a ‘dynamic’, time-dependent quantity.
Or it might be taken to imply that the ‘microstate-counting’ analytic approach taken here is in some way valid only in
special model cases like the one considered and cannot be taken to represent non-equilibrium thermodynamic processes
more generally. However, as we have argued rather heavily elsewhere in this piece, thermodynamic theory is not where it
was a half century ago and neither of these possibilities is correct. See, for example, the general textbook discussion by Dill
and Bromberg: ‘‘Molecular Driving Forces; Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience’’ [52]
which we have cited many times; it is founded on the ‘statistical’, microstate-counting, reading of thermodynamics
and makes heavy use of finite-particle models and arguments of the kind we have employed here. And see also [19,21,
23,25,34,219].

These developments, among other things, introduced true time dependence, true dynamics, into the theory. Now, in a
wide variety of relevant systems, including far-from-equilibrium systems, one can think about, and compute S (t) (equiv.
W (t)) during transformations proceeding at finite rates and even in systems comprised of small numbers of particles
(including only one) as we review in Appendix A.

Notably, one of the principle fruits of the first major phase of the development of non-equilibrium thermodynamics,
leading to so-called ‘linear non-equilibrium thermodynamics’ ‘‘LNET’’ was providing a basic understanding of free energy
conversion (see e.g. Hill [11], Caplan [10]). However, this progress rested on some fundamental conceptual shifts which
remain somewhat under-appreciated. For this reason we next summarize briefly the elements of LNET that are relevant to
the points raised in the present discussion. But before doing so note that these earlier LNET efforts have recently been recast
and fundamentally extended using the modern machinery of full non-linear, non-equilibrium, stochastic thermodynamics;
see in particular [23, Sec. 10].

An essential and early step in moving beyond classical equilibrium thermodynamics was the development of a variant
of it in which only ‘‘local equilibrium’’ was required, a condition that could often be realized in practice to an adequate
approximation. This made it formally possible to assign to each point in the domain of interest a temperature and local
energy and entropy densities (see [220]). And critically, this then allowed entropy gradients, and the finite fluxes to which
they give rise, to be embraced within the boundaries of a thermodynamic system. The other key element, closely related
to the first, involved the explicit recognition that entropy gradients, i.e. disequilibria, are the underlying cause and driving
force responsible for thermodynamic transformations; a point the CDCmodel discussed in themain text humbly illustrates.

12 Although gravitational dynamics are a possible exception, there is strong reason to believe it toowill ultimately be understood in such thermodynamics
terms; wherein increased space–time curvature involves increased numbers of gravitational microstates [214–218]. Black holes are the limiting case in
this regard and one of the few circumstances in which the conversion between curvature and entropy can at present be stated with certainty.
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As noted briefly in Section 2, the core relationship of first generation non-equilibrium thermodynamics characterizes the
time rate of change of the entropy of a spatially bounded but open system. In particular it specifies that:

dS
dt
=

deS
dt
+

diS
dt
, where

diS
dt
=


j

JjXj ≥ 0, and further that

Jj = Jj (Xk; ∀k) ,

(78)

where S is the system’s entropy, deS/dt is the rate at which the system’s entropy is changing due to the movement of
mass/energy across the system’s boundary (which has no effect on the entropy of the universe), and diS/dt is the rate at
which that entropy is changing due to the irreversible (i.e. entropy changing) processes operating in the system—and is
necessarily, by the 2nd law, non negative. Also, as the second equation indicates, this latter rate can be expressed as the sum
(indexed by ‘‘j’’) over the individual irreversible processes of the rate at which each is changing the system’s entropy, and
that each of these terms can in turn be expressed as the product of the flux rate of the process Jj times the rate of entropy
change per unit flux of that process Xj—generally called the force for that process. And while the 2nd law requires that
diS/t ≥ 0, individual processes can have negative force terms reflecting that those processes are decreasing the system’s
entropy. Finally, the third equation states the critical point that in general the fluxes depend on the forces, and potentially
all forces present, not just on an individual flux’s cognate force.

These latter two points are in fact the essential elements allowing LNET to develop a principled theoretical treatment of
the inherently non-equilibrium thermodynamic processes involved in the conversion of disequilibria. In the simplest case
for such conversions, the sum term in Eq. (78) has just two terms, in one (the ‘driver’ process) the force factor is positive
while it is negative in the other (the ‘driven’ process). In addition, both fluxes must be functions of both forces to effect
conversion (see [10,11,33]).

Furthermore, taking processes number 1 and 2 to be, respectively, the driver and driven processes in a conversion, the
work output rate (resp. input) is given by J2 (−X2) (resp. J1 X1), that is, as time rates of entropy change. Correspondingly,
the conversion efficiency is naturally, and commonly, defined as the output-over-input ratio of these two rates of entropy
change [33,37]. Of course these rates can be given energy-denoted power units simply by multiplying by temperature. But
what is happening physically, as we saw illustrated in the CDC model, is changing entropies.

In addition, as Onsager was the first to realize [7,8], the principle of microreversibility implies a strong symmetry
constraint on the coupling of driver and driven processes. Staying with the above choice that process 1 is driving process
2 (X1 > 0; X2 < 0), and expanding the dependence of fluxes on forces (the third equation in Eq. (78) to linear order (the
zeroth order term is necessarily zero) we can write

J1 = L1,1X1 − L1,2|X2|,

J2 = L2,1X1 − L2,2|X2|
(79)

where the coefficients are positive and have the units of ‘conductances’. The ‘irreversible’ time rate of the change of the
system’s entropy (the 2nd expression in Eq. (78)) then has the form:

diS
dt
= J1X1 − J2|X2|,

=

L1,1X1 − L1,2|X2|


X1 −


L2,1X1 − L2,2|X2|


|X2|,

= L1,1X2
1 − L1,2|X2|X1 − L2,1X1|X2| + L2,2|X2|

2,

= L1,1X2
1 + L2,2|X2|

2
−

L1,2 + L2,1


X1|X2|. (80)

Onsager’s reciprocal relations are, in this case, that the two ‘cross term’, ‘coupling’ coefficients, must be equal: L1,2 =
L2,1 ≡ Lc .

How should these constraints be interpreted physically? Referring to the 2nd and 3rd expressions in the above Eq. (80)
it is clear that L1,1X2

1 is the rate at which the driving disequilibriumwould be dissipated in the absence of coupling (Lc = 0),
whereas L1,2|X2|X1 is the amount by which that rate is reduced in the presence of coupling; and also that L2,1X1|X2| is the
rate at which the entropy of the driven flux is being reduced—which is the rate at which the disequilibrium in that flux is
being created and work is being done. And it is further clear that the reduction in the rate of entropy production by the
driving flux reflects that the coupling gives rise to a thermodynamic force acting on the driving flux that opposes its cognate
force (the effect long noted, for example, in connection with electromagnetic conversions, called ‘back EMF’ [221]).

Thus the physical implication of the reciprocal relation is this: for every unit of entropy reduction achieved in the driven
process, the driving process must forgo an exactly equal amount of the entropy production it would enjoy were there no
coupling. Equivalently, if r(∆t) is the factor by which the probability of the driven flux is decreased in time∆t and R0(∆t)
is the factor by which the probability of the driving flux would be increased in the same time interval in the absence of
coupling, then Rc(∆t) = R0(∆t)/r(∆t) is the (smaller) factor by which it is increased in the presence of coupling.

We note that this relationship is symmetrical under the reversal of driver and driven roles.
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It was with the development outlined above that thermodynamic theory made its first enabling step to becoming a truly
dynamic theory, able to deal with the strong disequilibria of the real world and the swift flows caused by them. At the core of
that profound step lay the epiphany that the thermodynamic’s central and defining concept is not energy, but entropy: seen
as a dynamic variable: S(t), understood to be a measure of the probability of a physical system being in one of its possible
macrostates, and, through the statistical bias of systems to transition to states of higher rather than lower probability,
the driving force of all change. None too soon we might conclude for the effort to come to grips with ‘bioenergetics’; a
system surely without equal as a complex and specifically structured web of interwoven, far-from-equilibrium, high speed,
disequilibria-manipulating flows.

Appendix C. Putting the horse before the cart

All formalmodels of free energy conversion in biology (see Hill [11] and literature cited therein), have the feature that the
coupling device segments each of the twoprocesses being coupled into ‘half reactions’, where the initiating halves of both are
carried out by one form of the complex and the concluding halves by another, respectively ‘‘E’’ and ‘‘E∗’’ in the Hill diagram
of Fig. 7. Further, as we have noted repeatedly, Jencks argued that this design was not only essential but that it was also
important that the initiating and concluding half reaction’s be themselves sequenced in a particular ‘‘interleaved’’ ‘driven-
before-driver’ pattern. This, he argued, allowedmolecular devices to reliably and efficiently satisfy the essential operational
criteria of converters, namely that neither process be allowed to complete within one cycle unless both do. Nominally,
the most important aspect of this particular ordering is that the driven reaction goes to full completion before the driving
reaction does (and, secondarily, that this operational property be preserved upon the reversal of the conversion). In the
simple case, for example, when ATP hydrolysis is driving an exergonic reduction (as in Nitrogenases [94]), the reduction’s
completion precedes, and triggers, the hydrolysis.

To many if not most, this design has a disturbing, cart-before-horse character, sufficiently counterintuitive to have been
the source of considerable controversy and to cause experimental observations of the fact be called out declaratively in
paper titles [43,94]. And indeed, it is more-or-less flatly inexplicable on the idea that coupling processes work because
(literal) energy is donated to the driven reaction by the driving one.

For these reasons it is important to note that the Jencks ordering is not required in principle. Assuming a simple system
as illustrated in the Hill diagram Fig. 7, in which we take the full hydrolysis of ATP to be the driving reaction (R → P),
then simply exchanging the two ‘catalysis and release’ steps on the E∗ side of the cycle, so that ATP hydrolysis precedes
the completion half of the driven reaction, yields a potentially valid cycle. This of course, does not, and could not, rescue
the fundamentally incorrect idea that energy released in the ATP hydrolysis is passed to, and drives, the driven reaction.
On the other hand, neither does it prevent the driving process from doing more than just providing a forward statistical
bias for the cycle, and in particular from facilitating more or less strongly the driven process. As we discussed in the text, in
general the binding of substrates on the E side of the cycle, and unbinding of products on the E∗ side induces conformational
distortions of the complex inways that can store, or release, ‘free energy’ and also strongly influence the binding and catalytic
specificities of the complex. One such commonly observed influence is raising the effective Km of the driven reaction’s
product release step; potentially to the point that under physiological conditions (of, that is, the chemical potentials of the
products) the release step is itself exergonic.

This raises the interesting question of why Nature and Jencks together seemed committed to the pay-after-completion,
cart-before-horse, scheme.

In Section 7.3, we offered some considerations that may explain why this is the case. We note here, however, that the
horse-before-cart scheme we have just imagined puts the irreversibility step (primarily the release of ADP and Pi into the
medium) just after the flip from E to E∗—which then serves to prevent the reversal of that flip step rather than to prevent the
reversal of the release of the products of the driven reaction. Also, it is now the driven reaction’s highly reversible product
release step which must function as the obligate, ‘must not fail’ trigger for the E∗ → E conformational reset. Therefore,
depriving the driven product’s release step of the advantages of kinetic trapping, potentially leaves that process open to the
wasteful and risky mercies of a quasi-equilibrium battle between the off rates of the driven reaction’s products and their
inevitably high rebinding rates.

Appendix D. Free energy and the entropy of the universe

In bioenergetics, we are invariably dealing with systems embedded in a reservoir, or ‘bath’, of effectively infinite extent,
which acts to hold one or more of the system’s properties constant (e.g. temperature and volume or temperature and
pressure). For such systems, the 2nd law requirement for an isolated system, namely that dSuniverse = dSbath + dSsystem ≥ 0
(with equality at equilibrium—at which point S is maximal), can be more conveniently expressed as a constraint on the
properties of the system itself. This involves the use of so-called thermodynamic potentials. In particular, if a system’s
temperature and volume are held constant the Helmholtz free energy F ≡ U − TS (where U is the system’s energy), is
the useful potential. This is because the 2nd law constraint on how the entropy of the universe changes is equivalent to the
condition dFsystem ≤ 0, implying that F has a minimum value at equilibrium. Corresponding assertions apply for the Gibbs
free energy G ≡ H − TS = U + pV − TS = F + pV (where H ≡ U + pV is the system’s ‘‘enthalpy’’) if both temperature
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and pressure are held constant [52, §8]. In other words, in the Helmholtz case, dF = −dSuniverse/T and in the Gibbs case
dG = −dSuniverse/T ; i.e. the free energies function as useful stand-ins for the entropy of the ‘‘universe’’.

In Appendix B, it is noted that the differential change in a bounded, open system’s entropy can also be expressed as:
dSsystem = deS + diS where the first term is the change in the entropy of the system due to the exchange of energy or
material between the system and its surroundings, i.e. the bath, and the second term is the change in the system’s entropy
due to ‘‘irreversible’’ processes taking placewithin it. And noted further that the ‘exchange’ termhas no effect on the entropy
of the universe so that dSuniverse = diS, and the 2nd law is satisfied if an only if diS ≥ 0.

As a result, we can re-express the two free energy differentials just above, somewhat more revealingly, in terms of the
entropy changes in an open system due to ‘irreversible’ (i.e. entropy changing) processes taking placewithin it. That is, diS/T
is equal to−dF in the Helmholtz condition and to−dG in the Gibbs condition.

Appendix E. The entropy flux analysis and the maximum power efficiency of heat engines

Wewish here to use the case of heat engines to make a few basic conceptual points about disequilibria conversions with
as little in the way in input assumptions and analytic complexity as possible. For a rigorous formal analysis of conversion
efficiency, including in the context of heat engines, and based on the principles of stochastic thermodynamics so that it is
applicable to ‘single molecule’ heat engines, see Seifert’s 2012 paper, Sec. 10.3 [23]. Our discussion here is placed in the
classical, macroscopic domain.

As is very well understood, a heat engine operating between hot and cold reservoirs (Thot, Tcold) produces zero power if
the conversion to mechanical work takes place at Tcold (the choice that would maximize its ‘‘Carnot efficiency’’) and that
temperature is taken to be that of the environment (more on this presently).

Therefore in engineering practice the conversion is arranged to take place at a temperature Tconv intermediate between
Thot and Tcold. Suppose, for example, a heat engine converts an amount of heat energyQconv at temperature Tconv tomechanical
work,Qconv = Emechwork (in energy units, of course). Then the entropy of that amount of heat energy at the point of conversion
will have been reduced to zero (mechanical work having a single degree of freedom: Wmechwork = 1, and ln (1) = 0).
Therefore, the entropy lost from the input stream in the conversion to work is ∆Swork = −Qconv/Tconv < 0. That is to say,
the fraction of the input heat flow that is converted to mechanical work as the engine’s output is equal to minus the product
of the temperature at which the conversion takes place times the amount by which the entropy of that quantity of heat is
reduced in the process of being converted.

The point this makes about classical heat engines is that they too can be regarded as coupling a process acting to increase
the entropy of one system (the fraction of the input heat energy destined to be exhausted) to a process acting to decrease the
entropy of another (the fraction of input heat energy converted tomechanical work). And, we emphasize, these conversions
also operate via escapement mechanisms that make the completion of an increment of the driving process conditional on
the (prior) completion of an increment of the driven one (e.g. only when the steam engine’s piston has reached the end of
its work-producing stroke is a mechanism activated that allows the ‘‘spent heat’’ to exit (driven by the thermal gradient
between Tconv and Tcold) and the engine to recycle.

However, to provide some clarity and closure on this claim, and on the point raised just above that for a heat engine to
produce finite power the conversion must take place at an intermediate temperature, it is of some interest to derive the
maximum conversion efficiency, defined in power terms, of an idealized heat engine. This proceeds as follows.

At the point of conversion, the entropy then remaining in the heat flux that entered the engine but is now destined to be
exhaustedQexh = Qin−Qconv must not be less than the entropy of the total input heat as it entered, i.e.Qin/Thot ≤ Qexh/Tconv,
equivalently Qin/Thot ≤ (Qin − Qconv) /Tconv (which constraint also ensures that the change in the entropy of the universe
due to the engine’s operation is not negative, i.e. Qexh/Tcold ≥ Qin/Thot).

Rewriting this inequality we obtain:

Qin/Thot ≤ (Qin − Qconv) /Tconv,

ηenergy ≡
Qconv

Qin
≤ 1−

Tconv
Thot

,

ηenergy ≤ 1−
Tconv
Thot

(81)

where ηenergy is by definition the efficiency of the conversion defined in energy, not power, terms and is seen to be given
by the Carnot formula in which the conversion temperature Tconv has the role of the Carnot engine’s cold temperature.
Note that at the ηenergy = 1 limit, the entropy lost due to the conversion of Qconv to work is ∆Swork = −Qconv/Tconv =
−Qin (1/Tconv − 1/Thot) = −∆Sin→conv that is, that the entropy lost to work is exactly equal (at the ‘‘Carnot limit’’) to the
entropy gain as the incoming heat falls in temperature from Thot to Tconv.

Clearly, ηenergy is maximal if the conversion takes place at the engine’s exhaust temperature: Tconv = Tcold (and that
is the coldest temperature available, namely that of the environment into which the engine must exhaust its spent heat).
It is of course this ‘exhaust’ step which allows the engine to return to its starting condition and hence recycle. However,
if the conversion temperature is the exhaust (environment) temperature, the exhaust step requires infinite time, or more
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accurately, does not happen – reflecting the fact that there is then no thermodynamic driving force, i.e. no ‘irreversibility’,
to cause the exhaust heat to exit the engine in finite time) – and the power delivered is zero.

James Clerk Maxwell himself gives the game away rather touchingly in his 1871 foundational treatise ‘‘Theory of
Heat’’ [222, p. 141], wherein, in explaining the Carnot cycle, he says ‘‘Fourth Operation—The cylinder is placed on the cold
body B. It has the same temperature as B, so that there is no transfer of heat. But as soon as we begin to press down the piston
heat flows from the working substance into B, so that the temperature remains sensibly equal to T during the operation. The piston
must be forced down till it has reached the point at which it was at the beginning of the first operation . . . ’’ (emphasis added).
And, as Maxwell makes explicit, the forcing we are obliged to do must be done so slowly that everything stays ‘‘sensibly’’
in equilibrium. Quite naughty of the esteemed Doctor, one might be excused for feeling, to be doing all this forcing and
pressing; but commendable that he is both willing to be so patient in doing it, and also content not to require that his
‘‘engine’’ actually deliver finite power, much less do so on its own.

On the other hand it has long been known (at least in engineering circles; see the discussion by Bejan [223]) that, given
standard simplifying assumptions, a heat engine achieves maximum power if the conversion temperature is the geometric
mean of the hot and cold limit temperatures: Tconv =

√
TcoldThot.

This pleasantly surprising result is because (1) when the conversion mechanism is converting the heat entering it at the
Carnot limit, the rate at which entropy must be withdrawn from it in the exhaust flow, that is at Tconv, is exactly equal to
the rate at which entropy entered the gradient at Thot, and (2) the rate at which entropy is drawn into a thermal gradient
having conductance L is L


1− Tcold-temp/Thot-temp


. Therefore, assuming equal thermal conductances, the two half gradients

must have the same cold-to-hot temperature ratios. That is we must have: Thot/Tconv = Tconv/Tcold which implies the above
geometric mean expression for Tconv.

Taking that value of the conversion temperature, the 2nd law constraint on the conversion given above implies an upper
limit on the efficiency of the engine defined in power terms:

Qin/Thot ≤ (Qin − Qconv) /Tconv,

Qin/Thot ≤ (Qin − Qconv) /

TcoldThot,

ηmax-power
=

Qconv

Qin
≤ 1−


Tcold
Thot

.

(82)

That this is not just the upper limit on the efficiency at maximum power, but is the upper limit on the engine’s efficiency
defined in power terms, reflects first that at the extraction point the maximum amount of heat is converted to work that
the 2nd law allows (i.e., that given by the Carnot expression) and second that this conversion point provides a lower
gradient which exactly produces the rate at which exhaust entropy must be withdrawn to allow the upper gradient to
feed amaximally ’efficient’ conversion step. One cannot do better in conversion than Carnot, and cannot move Carnot waste
entropy out of the engine exactly as fast as it is being generated except by splitting the total gradient at its geometric mean
temperature.13

In any case, the above expression for ηmax-power, is necessarily a lower bound than given by the Carnot efficiency between
the same two temperatures (and is the proper upper limit on ‘‘The Motive Power of Fire’’).
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