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1.  Introduction

Natural selection acts at the level of the phenotype. 
Unlike genomes, phenotypes can be highly variable 
over the lifetime of a single organism or heterogeneous 
across a genetically identical population. Given the 
central role of the phenotype in selection, phenotypic 
fluctuations are believed to play an important role in 
evolution.

Therefore, understanding the evolutionary origins 
and impacts of phenotypic fluctuations will be central 
to any quantitative theory of evolution. Environmental 
factors provide selection pressure that prefers certain 
phenotypes, through which the mutant genotypes that 
represent similar phenotypes can be selected. Phe-
notypic fluctuations can arise by stochastic variation 
in gene expression [1], which can be associated with 
physiological responses to environmental variation 

(plasticity) [2]. In bacteria, non-genetic phenotypic 
variability in a population is critical for survival in the 
presence of antibiotics [3]. Further, non-genetic varia-
tion is present in bacterial swimming behavior [4] and 
is thought to be adaptive [5].

The role of phenotypic fluctuations in evolution, 
and how genetic variation alters phenotypic fluctua-
tions, has been the subject of theoretical and exper
imental investigations since Baldwin [6]. Waddington 
presented compelling arguments for the role of pheno-
typic plasticity in facilitating evolution through genetic 
assimilation [7], and conceptual models of this effect 
abound [8]. Notably, Sato et al formulated a phenom-
enological model based on the fluctuation-dissipation 
theorem, which postulates that phenotypes exhibiting 
larger fluctuations should evolve more rapidly under 
selection [9]. The theory was tested in a directed evo
lution experiment by constructing a diverse popula-
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Abstract
Phenotypes of individuals in a population of organisms are not fixed. Phenotypic fluctuations, 
which describe temporal variation of the phenotype of an individual or individual-to-individual 
variation across a population, are present in populations from microbes to higher animals. 
Phenotypic fluctuations can provide a basis for adaptation and be the target of selection. Here we 
present a theoretical and experimental investigation of the fate of phenotypic fluctuations in directed 
evolution experiments where phenotypes are subject to constraints. We show that selecting bacterial 
populations for fast migration through a porous environment drives a reduction in cell-to-cell 
variation across the population. Using sequencing and genetic engineering we study the genetic basis 
for this reduction in phenotypic fluctuations. We study the generality of this reduction by developing 
a simple, abstracted, numerical simulation model of the evolution of phenotypic fluctuations subject 
to constraints. Using this model we find that strong and weak selection generally lead respectively to 
increasing or decreasing cell-to-cell variation as a result of a bound on the selected phenotype under 
a wide range of parameters. However, other behaviors are also possible, and we describe the outcome 
of selection simulations for different model parameters and suggest future experiments. We analyze 
the mechanism of the observed reduction of phenotypic fluctuations in our experimental system, 
discuss the relevance of our abstract model to the experiment and explore its broader implications 
for evolution.
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tion of green fluorescent protein (GFP) expressing 
Escherichia coli mutants synthetically and then select-
ing for higher levels of GFP fluorescence. The study 
showed that directed selection for increasing mean 
fluorescence resulted in reduced cell-to-cell variability 
in fluorescence intensity [9]. Conversely, a subsequent 
series of experimental studies showed that strong 
selection on the phenotype led to an increase in phe-
notypic fluctuations [10]. The interpretation of this 
experiment is complicated, however, because there 
were only a few clones in the system, and the popula-
tion seemed to split into two types of mutant distin-
guished by the variance in their phenotype fluctua-
tions [10]. Similarly, in directed evolution experiments 
of cell size in E. coli a decrease of cell-to-cell variation 
in size was reported for weak selection whereas lit-
tle change in cell size fluctuation was observed under 
strong selection [11].

Phenotypes arise from genotypes through the 
processes of transcription and translation. There-
fore, any generic features of the evolution of pheno-
typic fluctuations might be illuminated by consid-
ering universal aspects of gene expression. Protein 
copy number distributions have been measured in 
a variety of microbial species, for example in cul-
tured populations of bacteria [12–14] and yeast [13, 
14] and in single-cells [15–17]. These studies show 
that the probability density of protein copy number 
across a population is consistently non-Gaussian and 
highly skewed, and reportedly well fit by gamma [15], 
extreme value (Fisher–Tippett–Gumbel [14] or Fre-
chet [13]) or log-normal [12, 17] distributions, all of 
which are similar in shape. Regardless of the precise 
form of the distribution reported, one trend is clear: 
the standard deviation σ is a monotonically increas-
ing function of the mean, and the distributions can be 
collapsed onto a single universal curve using reduced 
coordinates (n − 〈n〉)/σ [13, 17]. If a phenotype can 
be associated with a particular dominant protein, then 
as the phenotype and hence the protein copy number 
is increased during a directed evolution experiment, 
one might naively expect the phenotypic variation to 
increase as well, a result that is not generically found 
to be true. In reality, the relationship between protein 
copy number and phenotype is more complex, reflect-
ing regulation, inhibition, and feedback. Therefore, 
the precise relationship between protein copy number 
and phenotype remains unclear, with little likelihood 
of a universal connection, even if the global statistics 
exhibit universal functional forms.

Direct empirical evidence for the relationship 
between phenotypic fluctuations and long-term evo
lution remains limited. Notable exceptions include 
retrospective studies of hemoglobin binding affinity 
across mammals [18], but even this study does not 
make direct measurements of phenotypic fluctuations 
in time or across individuals. While experimental evo
lution has revealed striking examples of phenotypic 
evolution [19–22], quantitative measurements of 

phenotypic fluctuations in many of these experiments 
have not been made. As a result, conceptual or quanti-
tative models of the evolution of phenotypic fluctua-
tions remain untested.

Here we present a joint theoretical and exper
imental investigation of how phenotypic fluctuations 
evolve under selection. We use high-throughput phe-
notyping to show that the phenotypic variation in 
the population declines when bacteria are selected for 
faster migration through a porous environment [22]. 
We then present a simple model of directed evolution 
which allows us to interrogate how selection strength 
and mutations result in the evolution of phenotypic 
fluctuations. We show that, depending on the strength 
of selection, phenotypic fluctuations can decline when 
phenotypes are subjected to constraints even when 
there is no mechanistic link between the mean trait 
value and phenotypic fluctuations. We discuss the rel-
evance of this theoretical result to the experimentally 
observed reduction in phenotypic fluctuations. 
Finally, we discuss the possible biological mechanisms 
underlying the experimentally observed reduction in 
phenotypic fluctuations in the context of our model.

2.  Evolution of faster migration in E. coli

Growing populations of motile, chemotactic bacteria 
migrate outward when inoculated into a soft agar plate 
containing growth medium and a chemoattractant 
[23, 24]. As cells swim and divide in this porous 
environment local depletion of nutrients establishes 
a spatial nutrient gradient which drives chemotaxis 
through the three-dimensional agar matrix and 
subsequent nutrient consumption. Microscopically, 
cells move through the porous environment by 
executing runs, at a speed |vr| ∼ 20 μm s−1 for a 
run duration τr ∼ 1 s, and tumbles which rapidly 
reorient the cell in τt ∼ 0.1 s. Tumbles are essential 
for avoiding obstacles in order to successfully navigate 
the soft agar [23]. The result is a macroscopic colony 
that expands radially through the bulk of the plate 
at a constant speed after an initial growth phase. We 
selected populations of E. coli (MG1655-motile, Coli 
Genetic Stock Center, Yale University #6300) for faster 
migration through soft agar by repeatedly allowing a 
colony to expand for a fixed interval, sampling a small 
population of cells from its outer edge and using a 
portion of this sample to inoculate a new plate while 
preserving the remainder cryogenically (figure 1). In 
rich medium conditions (LB, 0.3% w/v agar, 30 °C), we 
sampled after 12 h of expansion for a total of 15 rounds 
of selection. By performing time-lapse imaging on 
the expanding colonies, we found that the migration 
rate approximately doubled over the first five rounds 
of selection and continued to increase marginally in 
subsequent rounds. We found that this increase was 
reproducible across replicate experiments.

To understand the mechanism by which faster 
migration evolved, we performed single cell tracking 
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on hundreds of individuals from the ancestral strain 
as well as from strains isolated after 5, 10 and 15 
rounds of selection. Individual cells were trapped in 
a circular microfluidic chamber in the same medium 
in which the selection was performed and recorded 
while swimming for 5 min per cell. Swimming cells 
were imaged at 30 Hz, automated tracking routines 
constructed swimming trajectories from these movies 
and runs and tumbles were automatically identified as 
described previously [22]. This measurement permit-
ted us to capture the swimming behavior of hundreds 
of single bacterial cells in the absence of chemical gra-
dients. We found that the average run speed increased 
by approximately 50% during selection, while the 
duration of run and tumble events declined (figure 
2). The maximum growth rate, which was measured 
in a separate experiment by monitoring the optical 
density of a well-stirred liquid culture declined over 
the course of selection. The trade-off between swim-
ming speed and growth rate is the subject of a separate 
study [22] and similar trade-offs have been observed 
elsewhere [25].

3.  Phenotypic fluctuations decline with 
selection

Phenotypic fluctuations have previously been 
characterized in several ways. In some cases, 
fluctuations refer to the time-dependence of a specific 
phenotypic parameter during the lifetime of an 
individual [26]. In other studies, fluctuations refer 
to cell-to-cell variation in time-averaged phenotypic 
measurements over a population [4, 27–29]. Here we 
use the latter approach, which is shown schematically 
in figure 3. Briefly, from run-tumble events performed 
by each individual cell we computed an average 
phenotype (run duration, tumble duration, and run 
speed) for each cell. From these data we computed a 
distribution of average phenotypes across individuals 
in the population, and thus extracted the standard 
deviation over the population of a given phenotype. 
This standard deviation directly measures cell-to-cell 
variation, as sketched in figure 3.

To define phenotypic fluctuations more explicitly 
consider a single E. coli cell which exhibits a series of 

Figure 1.  Selection for faster bacterial migration: (A) shows images of E. coli colonies in low viscosity agar plates after 12 h of 
expansion. After 12 h a sample of the outer band of cells is taken and approximately 6 cells are used to initiate another identical agar 
plate (second panel). This process is repeated for 15 rounds of selection where a round consists of colony expansion in a single plate. 
The color bar to the right applies to all panels, with darker gray indicating higher cell density. The scale bar in the left panel applies 
to all panels in (A). (B) The radius of each colony in (A) as a function of time, lighter shades of gray denote later rounds of selection 
and correspond to labels in (A). Traces are offset vertically for clarity, note scale bar lower left. (C) The rate of the linear portion of 
the colony expansion as a function of the round of selection for the plates shown in (A)–(B). (D) The evolutionary process outlined 
in (A)–(C) was carried out in five independent experiments. Each line corresponds to an independent selection experiment. Round 
8 for replicate 1 is missing due to failure of the imaging device. The data in panels (A)–(C) are from replicate 5. Errors in rate of 
expansion are smaller than the size of markers. Data recapitulated from [22].

Phys. Biol. 15 (2018) 065003
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runs and tumbles. Each run event is described by a 
run duration (τr ) and a run speed (|vr|) and each tum-
ble by a tumble duration (τt) and an angular velocity 
(ωt). Even in an unstimulated environment where no 
gradients are present, τr  will vary between run events, 
and the distribution exhibited by individual i is given 

by P(τ (i)
r ). Each run event for this individual has a 

duration drawn from this distribution. Similar dis-
tributions exist for |vr|, τt, and ωt, but ωt is difficult to 

measure accurately for single cells, and we omit this 
parameter from consideration. We consider the phe-
notype of a single cell to be the mean of these distri-
butions. Thus a complete description of unstimulated 
swimming behavior of a single cell is captured by the 

set of phenotypes χ(i) ∈ {〈τr〉(i), 〈|vr|〉(i), 〈τt〉(i)}, 
where 〈·〉(i) denotes an average over all events exhib-

ited by individual i. In a population, phenotypic traits 
can be described by a distribution Pp(χ) that governs 

Figure 2.  Dynamics of phenotypic evolution: (A) an example 50 s long swimming trajectory for a single cell trapped in a 
microfluidic chamber. The boundary of the chamber is shown by the light black circle. Running events are shown in black and 
tumble events in red. Scale bar is 50 μm. (B) Aggregate complementary cumulative distribution functions of run durations observed 
from cells isolated prior to selection (founder,black) and after 5 (blue), 10 (orange) and 15 (green) rounds of selection. Strains 
tracked were isolated from replicate 1 in figure 1. Distributions are constructed from all run events that were not interrupted by 
collisions with the chamber boundary for 140 (founder), 79 (round 5), 97 (round 10) and 96 (round 15) individuals executing a 
total of 19597, 12217, 18505 and 15928 run events respectively. The mean and standard deviation of run durations are (mean:sd) 
0.66 s:0.78 s, 0.63 s:0.61 s, 0.58 s:0.51 s and 0.64 s:0.57 s respectively. Shaded regions indicate 95% confidence intervals from 
bootstrapping. (C) Distributions of run speeds (|vr|) for the four strains shown in (B), colors from (B) apply. Distributions are 
constructed by computing an average speed for each run event. Means of these distributions are 18.7 μm s−1 (founder), 24.9 μm s−1 
(round 5), 27.6 μm s−1 (round 10), and 28.7 μm s−1 (round 15). The increase in |vr| is statistically significant between each successive 
population (p  <  0.001, rank sum test). (D) shows the tumble duration distributions for the same four strains shown in panels 
(B)–(C). The mean and standard deviation of tumble durations are (mean:sd) 0.18 s:0.20 s, 0.17 s:0.16 s, 0.14 s:0.13 s and 0.14 s:0.12 
s for founder, round 5, 10 and 15 respectively. Data are recapitulated from [22].

Figure 3.  Illustration of phenotype distributions: (A) An example of the complementary cumulative distribution function for run 

duration from statistics of all run events of different individuals. The average run duration of individual i (〈τ〉(i)) is read off by fitting 

the exponential distribution. (B) Distribution of individual run duration 〈τ〉(i) in the population generated from (A). The cell-to-

cell variation is characterized by the standard deviation of Pp(〈τr〉), σ〈τr〉.

Phys. Biol. 15 (2018) 065003
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the probability that an individual has a specific value 
for each trait χ. The distributions Pp(χ) for the found-
ing strain and individuals isolated after 5, 10 and 15 
rounds of selection are shown in figures  4(A)–(C). 
We quantify phenotypic fluctuations, or cell-to-
cell variation, by the standard deviation across the 
population in each trait, for N cells this is computed 

as: σχ =
√

1
N

∑
i(χ

(i) − 〈χ(i)〉)2 . We note that σχ 

describes phenotypic variation driven by both genetic 
and non-genetic variation in the population except in 
cases of clonal populations, where σχ is due to non-
genetic effects alone.

To experimentally quantify phenotypic fluctua-
tions we computed average run durations, tumble 
durations and run speeds on a per cell basis. Explicitly, 
if cell i executes M runs during the 5 minutes of track-

ing we compute 〈τr〉(i) = 1
M

∑M
j=1 τr,j . To quantify 

the cell-to-cell variation we then compute the stand-

ard deviation across individuals σ〈τr〉. We compute 
identical statistics for the tumble duration τt and the 
run speed |vr| for founding populations and popula-
tions isolated after 5, 10 and 15 rounds of selection.  
Figures 4(D)–(F) shows the standard deviations across 
the population (σχ) for χ ∈ {〈τr〉, 〈τt〉, 〈|vr|〉}, indi-
cating a significant decline in the cell-to-cell variation 
during selection. In particular, we observe a significant 
decline between founding population and rounds 10 
and 15 for all phenotypic parameters. We conclude 

that selection for faster migration results in reduced 
phenotypic fluctuations in the population.

The common interpretation for the utility of phe-
notypic variation is that it may increase survival prob-
ability under environmental changes by providing 
variation with every generation as opposed to genetic 
mutations which occurs less frequently [3, 5]. Whether 
populations are shaped more by phenotypic vara-
tion or genotypic variation depends on the degree of 
phenotypic variation and on the strength and types of 
environmental selection. Is this reduction a special fea-
ture of the experiment, or can it be understood from 
general principles? To address this, we describe below 
an abstract computational model which is independ-
ent of the mechanistic details of our particular experi-
ment. We ask how the process of iterated selection, 
whereby cells from the tail of a phenotypic distribution 
are propagated to the next round, alters cell-to-cell 
variation. Our goal with the simulation is to predict 
how the evolution of cell-to-cell variation depends on 
the strength of selection.

4.  Abstract model of directed evolution 
of phenotypic fluctuations

The genotype-phenotype map determines the 
phenotype of an organism with a given genotype. How 
phenotypic selection is coupled to genetic variation 
is an important question whose answer illuminates 

Figure 4.  Cell-to-cell behavioral variation declines with selection: phenotype distributions (Pp(χ)) for (A) τr  (B) τt and (C) |vr| 
from raw data. Individuality for evolved populations for (D) τr  (E) τt and (F) |vr|. We compute 〈τr〉, 〈τt〉 and 〈|vr|〉 for each individual 
tracked and a standard deviation across individuals for each parameter (σχ). σχ was computed for 140 cells (founder), 79 cells 
(round 5), 97 cells (round 10) and 96 cells (round 15). The circles show the sample σχ for each population. 95% confidence intervals 
from bootstrapping for each population are given by the error bars. Colormap shows the probability distribution of σχ from 
bootstrapping. Note distinct colorbars for each panel. All populations exhibit a decline in σχ relative to founder that is significant 
(p  <  0.05, permutation test) except for σ〈τt〉 and σ〈|vr|〉 in round 5. The increase in σχ between rounds 10 and 15 is only statistically 
significant for tumble duration (p = 5 × 10−4).
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fundamental questions such as the evolutionary 
rate and the evolvability of organisms. In general, 
this mapping is a multi-dimensional function that 
is governed by complex biological features such as 
gene regulatory and metabolic networks. As such, in 
laboratory-based directed evolution experiments the 
evolutionary dynamics of a specific phenotype are 
difficult to understand in terms of genetic variation 
alone. Therefore, we seek a framework that does 
not rely on an explicitly modeled mapping from 
genotypes to phenotypes. For simplicity, we present 
a computational model of adaptation of a single 
effective phenotype and its associated genotype, 
representing a projection of a multi-dimensional 
phenotype/genotype evolving under selection. The 
idea is related to previous population genetics models 
[30], but instead of assuming continuous selection due 
to an assumed fitness landscape, we specify selection 
through a population bottleneck that is decoupled 
from the rate of growth. We use this model to calculate 
the evolution of phenotypic variation under selection. 
The model is necessarily stochastic in order to capture 
the dynamics of fluctuations. We do not specify any 
explicit mechanism for genotype-phenotype mapping 
or how its functional form changes during evolution. 
Instead, phenotypes are random numbers generated 
from a Gaussian mapping function whose mean 
is identified with a genotype and whose variance 
reflects phenotypic fluctuations across individuals 
with that genotype. The mean and variance change 
in evolutionary processes such as point mutations. 
Contrary to the conventional population genetics 
argument for directed evolution that predicts decrease 
in the variance of phenotype as a result of avoiding 
deviation from the peak in the fitness landscape, we 
attempt to understand how the various factors can 
affect the evolutionary trajectory in a minimal and 
general model.

4.1.  Main features of the abstract model
Our abstract model captures key features of a fully 
realistic model built on a lower-level description 
such as gene expression. The main experimentally-
relevant factors considered in this abstract model 
include strength of bottleneck selection, mother-
daughter correlation and mutations. The mother-
daughter correlation (or epigenetic inheritance) 
describes the degree of gene expression level that is 
passed on to descendants in the absence of mutations 
and determines how well preserved a phenotype is 
in subsequent generations. Mutations stochastically 
induce changes in the phenotype (χ). We focus on 
the effect of the strength of bottleneck selection 
and the mutation rate. The correlation between 
mother and daughter is effective in accumulating 
phenotype changes during directed evolution if 
the correlation is high. However, measurements 
showed that the mother-daughter correlation is 
around 0.5 (data shown in figure S1 (stacks.iop.org/

PhysBio/15/065003/mmedia)) and is the same for both 
the founder and the evolved strains. Moreover, it was 
shown in the relaxation experiment in [22] that after 
about 140 generations of growth in well-mixed liquid 
conditions no additional mutations occurred and the 
fast migrating phenotype was retained throughout 
this extended growth period. Therefore, we set the 
mother-daughter correlation to not evolve in the 
directed evolution in our model. Finally, the bottleneck 
selection is applied in the trait space instead of the 
real space, and therefore the details of the experiment 
including the consumption of nutrients and the 
process of chemotaxis are not explicitly represented in 
the model in order to reduce complexity.

In addition, traits such as run speed cannot 
physically evolve to infinitely large values and thus 
should be bounded by a threshold χc. The threshold 
on phenotype represents a limitation of the corre
sponding cellular machinery, and therefore it fluctu-
ates between cells in general. Due to the threshold, 
the trait χ converges when the mean of phenotype 
of the population gets closer to the threshold, and 
therefore the effective evolutionary rate decreases. We 
also anticipate that the convergence to the threshold 
can lead to skewness in the phenotype distribution, 
because fluctuations in the phenotype cannot exceed 
the threshold.

4.2.  Naïve prediction for the effects of variation  
in selection strength
We expect that one of the relevant control parameters 
is the strength of the population bottleneck selection. 
We note that in the simulation multiple genotypes 
can coexist in the population at variable frequencies. 
Intuitively, without any physically-determined 
threshold on phenotype χ, individuals who evolve 
higher mean trait value and larger phenotypic 
fluctuations of their genotypes are expected to 
preferentially populate the right-most tail of the 
population trait distribution, and so will have a higher 
probability to be selected. Therefore, after population 
amplification where selection is absent, the overall 
phenotypic variance in the population would be 
expected to increase monotonically. However, once 
the population trait distribution approaches the 
threshold, the mean trait value of the genotypes of the 
selected individuals gets close to the threshold, and 
mutants with similar mean but different phenotypic 
fluctuations can arise. If the selection strength is 
strong, genotypes with both large or small isogenic 
fluctuations can both contribute large phenotype 
values near the threshold and be selected, so that the 
phenotypic variation would be expected to increase. 
On the other hand, genotypes with large isogenic 
fluctuations will have significant weighting at smaller 
χ, and therefore if selection strength is not strong 
enough, genotypes with smaller isogenic fluctuations 
are more likely to be selected, potentially leading to a 
decrease in the overall variance.

Phys. Biol. 15 (2018) 065003
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These naïve and intuitive arguments, however, do 
not account for the effects of individual variations in 
threshold, variations of threshold from generation to 
generation, and the effects of mutations. Our simula-
tion results, described below, reveal a more subtle and 
complex series of outcomes in the evolution of phe-
notypic fluctuations. As a result, accurately predicting 
the dynamics requires stochastic quantitative models, 
and cannot be reliably carried out with naïve argu-
ments.

4.3.  Detailed description of the abstract model
In our abstract model, each individual i is represented 
by a random phenotype value χ(i) which is determined 
by the individual’s genotype g. χ(i) is generated from 
a normal distribution P(χ) whose mean is µχ(g) and 
whose variance is s2

χ(g) in the absence of mother-
daughter correlations. This abstracted phenotype 
is intended to represent any observable phenotypic 
variable. We assume that the phenotype does not 
change within the individual’s lifetime. In our abstract 
model of directed evolution, the phenotypic trait χ is 
not explicitly stipulated. Instead, our abstract model 
is intended to explore the dynamics of phenotypic 
evolution under generic assumptions about how 
traits are passed between generations and respond to 
mutations.

Individuals reproduce and the offspring acquire 
mutations with probability ν, causing the daugh-
ter’s genotype g′ to be distinct from the mother’s (g). 
Therefore, the daughter’s phenotype follows another 
normal distribution with distinct mean µχ(g′) and 
distinct variance s2

χ(g
′).

In the absence of mutations (i.e. within a clonal 
population derived from a single genotype g), the 
phenotypes of each new cell are generated based on 

a bivariate gaussian distribution P(χ(i),χ(i′)) with 
mother-daughter correlation coefficient ρ that cap-
tures the fact that daughter cells have phenotypes χ(i′) 
which is correlated with those of their mother χ(i) [31]. 
Phenotypic correlations between generations in clonal 
populations can arise from protein copy number fluc-
tuations or non-genetic changes in gene expression 
[32, 33]. For an individual i′, which results from fission 
of individual i, its phenotype χ(i′) follows the condi-
tional distribution of the variable χ(i′), given a known 
value of χ(i) [31]:

P(χ(i′)|χ(i)) ∼ N (µχ(g) + ρ(χ(i) − µχ(g)), (1 − ρ2)s2
χ(g)),

� (1)

where N (µ, s2) is a normal distribution with mean μ 
and variance s2.

We calculate these dynamics, along with the pro-
cedure for directed evolution through selection, as fol-
lows:

	(i) � Ns individuals from a single 
genotype g  =  g0 are generated from 

P(χ) = N (µχ(g0), s2
χ(g0)), as illustrated 

in figure 5(A). These Ns clonal individuals 
are defined as the founder strain, which by 
construction is a population with a normal 
distribution of different phenotypes.

	(ii)	� Each individual with phenotype χ(i) creates 
a new individual with phenotype χ(i′). The 
new individual mutates to a new genotype 
g = g1 �= g0 with a rate ν:

			  (a) � If it mutates, χ(i′) is generated from 

P(χ) = N (µχ(g1), s2
χ(g1)), where 

µχ(g1) and sχ(g1) are generated from 

N (µχ(g0), η2
µχ

) and N (sχ(g0), η2
sχ) 

respectively. The variances η2
µχ

 and η2
sχ 

are assumed to be constant for all parent 
genotypes (g0).

			  (b) � If the new individual does not mutate, 
χ(i′) updates based on equation (1).An 
example of the relationship between 
different phenotypes and the 
reproduction process is shown 
in figures 5(B) and (C). During 
reproduction we neglect the degradation 
of individuals, and thus the population 
doubles after one generation. Each 
individual in the doubled population 
generates a new individual in the next 
generation following step (ii)a or (ii)b. 
We assume that the mother-daughter 
correlation (ρ) does not evolve. After m 
generations, selection is applied to the 
whole population with Nf = Ns × 2m 
individuals.

	(iii)	� To apply selection, Nr individuals with 
the largest χ values are chosen from the 
population. The selection fraction Nr/Nf  
is defined to be the selection strength. 
Ns individuals are further randomly 
selected from the Nr individuals to be the 
seed population for the next round. Nr is 
analogous to the outer edge population 
sampled with a pipette in the experiments, 
and Ns represents the individuals that 
are used to inoculate the new plate. In 

experiments, Nf ∼ 1010, Nr ∼ 108 and 
Ns ∼ 106. Thus, in the bacterial chemotaxis 
experiments Nf � Nr � Ns.

	(iv)	� In the new round, step (ii) and (iii) are 
repeated for the Ns individuals from the 
previous round.

	(v)	� The phenotypic variance in Ns individuals 
at the end of each round is measured by 
growing a population to Nl = Ns × 2l 
individuals by repeating step (ii)b without 
mutations. This mimics the experimental 
process of single cell tracking in liquid 
media, where populations are amplified by 
growth in well-mixed liquid conditions and 
presumably mutations can be neglected.
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The parameters in the simulations are: 

Ns = 100, m = 10, l = 10,µχ(g0) = 40, sχ(g0) = 8,  
ηµχ = 3, ηsχ = 1, with ν = 0.2. Simulations were run 
over 120 rounds. The stochastic values of χ, µχ and 
sχ are binned to create finite differences between trait 
values. The bin sizes in the simulations are 1, 3 and 1 
respectively. The selection process is described in fig-
ure 5(D).

These simulations do not directly stipulate how 
the phenotypic fluctuations within a given genotype 
sχ(g) evolve—e.g. these can increase or decrease rela-
tive to the parent genotype g. This is intended to avoid 
any bias on phenotypic fluctuations with respect to 
the evolving mean trait values. For example, we do 
not explicitly stipulate that sχ(g) decreases as µχ(g) 
increases. However, a mechanistic link between the 

mean and variance of a phenotypic trait could occur 
in more realistic situations where traits are constrained 
by trade-offs. For example, there is usually a fitness cost 
for a trait to deviate far from the mean, especially when 
the mean trait values are already optimized for a given 
environment.

In the abstract model, the effect of threshold is 
included by considering an upper bound on χ(i) for 
each individual and on the mean phenotype µχ of 
each genotype, and the threshold values for both are 
set to be random numbers generated for each indi-

vidual from N (µχc , η
2
χc
). Due to the threshold, both 

the distribution of isogenic fluctuations and the dis-
tribution of genotype variations are set to be truncated 
normal distributions. As a result, the range over which 
the mean trait µχ and the trait χ can evolve becomes 

Figure 5.  Scheme of the abstract model. Illustration of selection procedure (see text for definition of notation): (A) phenotype 
distributions for two genotypes (g0, g1). The phenotype of each genotype gi is described by a normal distribution with mean 
µχ(gi) and standard deviation sχ(gi). (B) Initially the founder strain with Ns individuals whose phenotypes χ(i) are drawn from 
N (µχ(g = g0), s2

χ(g = g0)) is generated. The Ns individuals reproduce new individuals in the first round with a mutation rate ν. 
For example, for one of the initial Ns individuals with the founder genotype g0 (circle) and a certain phenotype (χ(1), in blue color) 
which is determined by mother–daughter correlation based on equation (1), its daughter may have the same genotype but different 

phenotype (χ(2), in green color) if it does not mutate. If the daughter mutates, the daughter is assigned a new genotype (triangle) 

with µχ(g1) from N (µχ(g0), η2
µχ

) and sχ(g1) from N (sχ(g0), η2
sχ), and its phenotype χ(3) is drawn from N (µχ(g1), s2

χ(g1)) 

(shown in red). All genotype and phenotype values are truncated by a random upper bound χc chosen from N (µχc , η
2
χc
). (C) 

shows a table of phenotypes (χi) and their corresponding genotypes and phenotype distributions. Note that individuals with the 
same genotype stochastically differ in their phenotypes (first row). After m generations of the process shown in (B), the population 
becomes Nf = Ns × 2m. (D) The top Nr individuals are selected from Nf individuals, and Ns individuals are randomly sampled from 
Nr individuals to start the second round. In the next round, Ns individuals repeat reproduction steps in (A) until the population 
reaches Nf again. How close the average phenotype of Nf in the next round is to the average phenotype of Nr of the previous round 
depends on how small m is and how high the correlation between mother and daughter is. At the end of each round, the selected Ns 
individuals reproduce for l generations without mutations. These Nl = Ns × 2l individuals represent the population of each strain 
grown in liquid media prior to single-cell tracking.
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smaller when µχ gets closer to the threshold, and 
therefore it automatically develops an effective ‘slow-
ing down’ of the rate of evolution. The reason that 
we do not focus on lower thresholds of phenotype is 
because it does not matter for directed evolution that 
evolves in the direction of larger phenotype. If the 
directed evolution is designed to evolve in the opposite 
direction then it is the lower bound of phenotype that 
determines the evolution of phenotypic fluctuations. 
The model can also be extended in principle to the 
case where the selected trait depends on two or more 
phenotypes, and the overall threshold would be deter-
mined by the combination of higher or lower thresh-
olds of each trait. We assumed that the timescale for 
changes in the threshold µχc is very long and set this 
to be a constant in all simulations. Therefore the value 
of the phenotype χ for a particular genotype g is dis-
tributed with a truncated normal distribution with an 
upper bound which is approximately µχc ± η2

χc
. We set 

µχc = 100 and ηµχ = 3.

4.4.  Results of simulations
Figures 6(A) and (B) shows the evolution of the 
distribution of χ in the amplified population of the 
Nl individuals after each selection round, denoted by 
Pp(χ), under strong selection (panel (A)) and weak 
selection (panel (B)). The phenotypic fluctuation 
(or the cell-to-cell variation), given by σχ, is defined 
as the standard deviation of Pp(χ), and the average 
phenotype, represented by χ, is the expectation value 
of this distribution. In the remainder of this section, 
we will walk through the results of the simulations in 
detail, because there are a number of distinct cases that 
need to be presented. In the following section, we will 
interpret the outcome in terms of the behavior of the 
isogenic phenotype distributions of genotypes.

The evolution of σχ and χ  are shown in 
figures  6(C)–(E). Before round 40, the simula-
tion results are broadly consistent with our naïve 
prediction, where strong and weak selection leads 
respectively to increase and decrease in σχ. Specifi-
cally, figure 6(A) shows an example of strong selection, 
where the selection strength is the strongest, defined 
here to be the case that the individuals with the top Ns 
largest phenotypes are selected (Nr = Ns � Nf ). In 
this case Pp(χ) quickly evolves to large χ and becomes 
wider before round 5, and χ  and σχ increase accord-
ingly as shown by the green curves in figures  6(D) 
and (E) which are averaged over 20 realizations. 
After Pp(χ) approaches µχc around round 5, Pp(χ) 
evolves slower and becomes left-skewed and slightly 
narrower, but still remains wider than the founder 
distribution, indicating saturating χ  and a slight 
decrease in σχ which is still larger than the variance 
in the founder strain as shown in figures 6(D) and (E). 
However, the increase in the population variance σχ is 
because of selection of large sχ (reflected by increasing 
sχ in the green and orange curves in figure S3(B)) near 
the threshold, instead of due to the selection of both 

large and small sχ as would be predicted by the naïve  
argument in section 4.2. We note that even though we 
do not assign any specific functional form for the asym-
metry, but only assume truncation to Gaussian isogenic 
fluctuation distributions, the randomness in threshold 
automatically leads to smooth and skewed distribu-
tions like those we observed in the experimental data.

On the other hand, the case under weak selection, 
where Nr/Nf = 0.5 in figure 6(B), shows a different 
evolutionary trend from the case under strong selec-
tion, as would be predicted by the naïve argument.  
Figure 6(B) shows an example where Nr/Nf = 0.5. In 
the simulation, it takes longer (about 15 rounds) for 
Pp(χ) to approach µχc and to increase its width. Simi-
larly, χ  saturates more slowly, and σχ only evolves to 
slightly larger values, as shown by the blue curves in 
figure 6(D) and (E) respectively. The increase in σχ is 
due to a different reason than in the case under strong 
selection as above: here both genotypes with large 
and small sχ can be selected because selection is weak, 
leading to almost unchanged sχ (the blue curve in fig-
ure S3(B)).

In addition, in our numerical simulations we found 
a scenario which is not predicted by the naïve argu-
ment. If the selection strength is neither very strong 
nor weak, but has a model-dependent intermediate 
value, the variance initially increases but decreases 
later due to the accumulation of random mutations. 
This can lead to very different evolutionary trajectories 
from one simulation realization to another (orange 
curves after round 40 in figure  6(C)), and thus the 
population variance σχ can either increase or decrease 
depending in an unpredictable way on the selection 
round (orange curve in figure 6(E)).

The final average σχ evolving after 120 rounds is 
shown in figure 6(F) as a function of selection strength, 
with different sample population (Ns) and generation 
numbers during population amplification (m). The 
weaker the selection strength is, the smaller the final 
σχ becomes, because the probability of mutants with 
small sχ being selected is higher. Similarly, larger sam-
ple population and more generations during popula-
tion amplification allows more mutations with small 
sχ to accumulate in the population and thus leads to 
smaller σχ. Except for the cases under very strong 
selection (e.g. Nr � 2Ns or Nr/Ns � 1/29), the final 
σχ after many selection rounds declines compared 
with the standard deviation in χ of the founder strain 
which is represented by the red dashed line.

We also observed that if the traits are not bounded 
by a threshold, i.e. as µχc → ∞, the traits evolve with-
out bound in the simulations. Accordingly there is no 
saturation and there is no saturation of trait value after 
repeated rounds of selection, and there is no decline in 
the variance in the population. We note that besides 
selection strength the result can also depend on other 
parameters. For instance, if the mother-daughter cor-
relation is high or the mutation range of the isogenic 
fluctuations (ηsχ) is small, sχ does not mutate enough 

Phys. Biol. 15 (2018) 065003



10

H-Y Shih et al

to increase much while µχ still evolves to the thresh-
old, and therefore σχ can remain small even under very 
strong selection in this case.

In conclusion, through the simulations of this 
abstract model for directed evolution we have shown 
that an upper bound of phenotype can lead to finite-time 
saturation of the evolving phenotype, and to the decrease 
of cell-to-cell variation under temperate selection with 
typical parameter values. In the case with strong selec-

tion, the decrease of cell-to-cell variation is not a neces-
sary consequence of the directed evolution procedure. 
Under strong selection, genotypes with large phenotypic 
fluctuations are favored, and the average phenotype 
and genotype values increase faster (figure 6(D)). In 
this sense, strong selection can be regarded as increas-
ing the evolvability. In other words, whether phenotypic 
variation is advantageous or unfavorable depends on the 
selection strength and constraints on the phenotype.

Figure 6.  Simulations of the abstract model : (A) the distribution of χ of Nl individuals at different rounds under the strongest 

selection (e.g. the top Ns individuals are selected and Nr/Nf = 1/210): the distribution Pp(χ) quickly evolves and reaches µχc, and 
its width remains larger than the founder population even after Pp(χ) reaches the threshold around round 5, which implies that the 
genotypes with smaller sχ are not particularly selected under strong selection. µχc and 2ηχc

 are denoted by the vertical and horizontal 
red line. (B) Pp(χ) under very weak selection (e.g. Nr/Nf = 1/2): when Pp(χ) is away from µχc, its width increases when the  
mean of Pp(χ) evolves. The tail of Pp(χ) reaches µχc slower than the case of strong selection (around round 15), and after that Pp(χ) 
becomes tilted and narrower, indicating the overall variance in χ first increases and then declines eventually.  
(C) The evolutionary trajectories in three simulation replicate (differentiated by different marker shapes) under different selection 

strength (blue: Nr/Nf = 1/2; orange: Nr/Nf = 1.5/210; green Nr/Nf = 1/210) show very stochastic dynamics due to random 
mutations. The overall mean and the standard deviation of χ are shown in (D) and (E) respectively, averaged over 20 replicates. 
If the selection strength is not extremely strong or weak, the increasing variance can decrease randomly due to accumulated 
mutations, which can lead to either increase or decrease in the final variance depending on the number of selection rounds (orange 
curve in (E)). (F) The overall variance in χ at round 120 is measured as a function of selection strength. The final variance is 
smaller for larger sample population (Ns) and more generations between selection rounds (m) due to the accumulation of more 
mutations. The red dashed line represents the standard deviation of χ for the founder strain. Parameters in the above simulations: 
µχ(0) = 40, sχ(0) = 8,µχc = 100, ηµχ = 3, ηsχ = 1, ηχc = 3, and the stochastic values of χ, µχ and sχ are binned with bin sizes 
equal to 1, 3 and 1 respectively. In (A)–(E) Ns  =  100 and m  =  l  =  10.
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4.5.  Heuristic interpretation of the simulation 
results
Now that we have described the simulation results, 
we interpret them heuristically in terms of the 
isogenic phenotype distributions of genotypes. We 
emphasize that this is a post hoc rationalization of 
what the simulations revealed, and we cannot simply 
predict a priori these outcomes from naïve arguments. 
To understand the simulation results, we consider 
carefully the interplay between selection, mutation 
and random threshold. Here we refer to the lower 
bound on χ for the selected Nr individuals to be χ∗.

Without any physically-determined threshold on 
phenotype χ, the genotypes with larger isogenic fluc-
tuations sχ and χc can provide phenotypes with larger 
χ at the tail of their distributions P(χ). Therefore, 
under strong selection that acts at the right tail of dis-
tributions, the genotypes with larger isogenic fluctua-
tions are more likely to be selected, and the variance of 
the distribution of phenotypes for the entire popula-
tion Pp(χ) after population amplification will increase. 
On the other hand, if selection is weak, genotypes with 
large sχ or large χc are not particularly favored, but 
mutations in µχ could develop heterogeneity in Pp(χ) 
and this leads to an increasing variance.

When the mean of Pp(χ) approaches µχc, P(χ) 
becomes truncated by the threshold, as illustrated 
in figure  7. Under strong selection, the genotypes 
with large sχ and also large χc contribute the larg-
est χ in Pp(χ), and µχ saturates quickly. When selec-
tion is extremely strong, e.g. Nr ∼ Ns  and Nr/Nf  is 
very small, the selection point χ∗ is very close to the 

right tail of the dominant genotypes (cyan curve in 
figure 7 (A)). Before the next bottleneck selection, µχ 
of the most mutants is constrained by the random 
upper bound with an average value µχc, and therefore 
mutant genotypes with smaller sχ (e.g. purple curve in  
figure 7(A)) have less density above χ∗ compared with 
the dominant genotypes. At the next bottleneck selec-
tion, it is extremely unlikely for such a mutation to 
result in a phenotype in the small interval above χ∗, 
and thus the final variance remains large since strong 
selection favors those genotypes with substantial 
probability density above χ∗.

On the contrary, under weak selection where 
Nr/Nf ∼0.5, when Pp(χ) approaches µχc, the distance 
between the selection point χ∗ and the average truanca-
tion point µχc is large (figure 7(B)). In this case, geno-
types with large sχ (cyan curve in figure 7(B)) no longer 
provide high density above the threshold for selection 
χ∗ and instead have lower probability of exhibiting 
phenotypes above this threshold (shaded cyan area in 
figure 7(B)). Therefore selection favors mutants with 
χ∗ < µχ < µχc and smaller sχ. The result is selection 
for genotypes with smaller sχ, which leads to higher 
average χ and smaller final variance. If the selection is 
not very strong or weak, genotypes with larger sχ can 
be more favored at first, but after Pp(χ) approaches µχc 
the rare mutants with smaller sχ can still be selected and 
have large probability density above the selection point 
even though they are unlikely to contribute phenotypes 
at the right tail of Pp(χ). Whether the final variance 
increases or decreases would depend on how many 
mutants have appeared and fixed. Since mutations are 

Figure 7.  Heuristic prediction of the cell-to-cell variation in the abstract model. Illustration of selection when the phenotype 
distribution Pp(χ) approaches µχc under different strength of population bottleneck selection. (A) Under very strong selection 
where Nr ∼ Ns , the genotypes with larger isogenic fluctuations sχ and χc contribute larger phenotype χ at the tail of their 
distributions P(χ). Once Pp(χ) approaches µχc, P(χ) becomes truncated by the threshold, and the selction point χ∗ is very close 
to the right end of the dominant genotypes (cyan curve). Before the next bottleneck selection, µχ of the most mutants is bounded 
by the random threshold with an average value of µχc, and the mutants with smaller sχ (purple curve) have less density above the 
selection point χ∗ compared with the dominant genotypes. At the next bottleneck selection, it is extremely unlikely for such a 
mutation to result in a phenotype in the small interval above χ∗, and thus the final variance remains large since strong selection 
favors those genotypes with substantial probability density above χ∗. (B) On the other hand, if selection is weak, where Nr/Nf  is 
large (∼0.5), genotypes with large sχ or large χc are not particularly favored. However, mutations in µχ can develop heterogeneity 
in Pp(χ) and thus leads to an increasing variance. When Pp(χ) evolves near µχc, the distance between the selection point χ∗ and the 
average truancation point µχc is large. Genotypes with large sχ (cyan curve) no longer provide high density above the threshold for 
selection χ∗, but instead have less substantial probability of exhibiting phenotypes below this threshold (shaded cyan area). Further 
mutants with χ∗ < µχ < µχc and smaller sχ are favored under selection. The result is selection for genotypes with smaller sχ, which 
leads to higher average χ and smaller final variance. When selection is not very strong or weak, genotypes with larger sχ can be 
more favored at first, but after Pp(χ) approaches µχc the rare mutants with smaller sχ can still be selected and have large probability 
density above the selection point even though they are unlikely to provide phenotypes at the right tail of Pp(χ). Therefore in this 
case, depending on how many mutants have accumulated, the final variance of Pp(χ) can either increase or decrease and should be a 
function of selection strength and the number of selection rounds.
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rare and occur stochastically the final variance of Pp(χ) 
is expected to vary as a function of selection strength 
and the number of selection rounds.

A similar result that phenotypic variation could 
decrease (or increase) under weak (or strong) directed 
selection was found in [34] with a restricted bi-allele 
multi-loci model, for eight rounds, and the overall 
phenotype fluctuation of the population was assumed 
to be described by the mean and variance even after 
selection, and therefore could not capture the skew-
ness effect. Also the effects of threshold and saturation 
of traits were not included [34, 35].

In general, a reduction in phenotypic fluctua-
tions could be interpreted as stabilizing selection 
due to canalization [36], but the mechanism in this 
case is different from ours because there is no explicit 
threshold present. In the case of canalization, specific 
biological buffering mechanisms such as capacitance 
[37] are more likely to be at work. In short, our simula-
tions suggest an alternative mechanism for phenotypic 
variation, arising as a generic consequence of bounded 
phenotypic variation under strong or weak selection.

4.6.  Comparison between the experiment and the 
abstract model
The experimental results show that the variance of 
the run speed decreases with the number of rounds 
of selection, a result that our model predicts to 
occur when selection is weak. How can we estimate 
whether or not our experiment is truly in the weak 
selection regime? A naïve measure of the selection 
strength is the ratio Nr/Nf  which we estimate to be 
order 102 in the experiment. Does this indicate strong 
selection then? It is difficult to draw a clear conclusion 
about this because, in general, selection acts on the 
phenotype space. The selection strength should be 
defined including the weighting of phenotype values, 
and not simply the number fraction that assumes 
equal weighting of each phenotype. In our experiment 
selection was applied in real space on agar plates, and 
thus the real physical phenotype that is being selected 
is a compound trait of multiple variables. Therefore, 
the selection fraction in the abstract model might 
not be simply related to the selection strength in the 
physical system. Thus, in order to test how the trend 
of phenotypic variance evolves with selection strength, 
it would be necessary to perform another set of 
experiments with different selection strengths, either a 
smaller selection fraction or selecting at different part 
of the population profile, to compare with the current 
experimental result shown in figure 4. In addition, the 
abstract model considers selection and evolution of a 
low-level trait of individuals instead of an emergent 
trait at population level. To explicitly compare with the 
experiment, we could extend our model by including 
two or more phenotypes and study the combined 
effect. For example, since the selection on colony is 
applied on the spatial position in our experiment, 
we may regard the selected property as dominance 

of length scale, which could be a function of run 
speed, tumble frequency and growth rate in the case 
of colony expansion. In the experiment, selection is 
applied on migration of the whole population, which 
is the property resulted from combined selection 
of individual chemotaxis and growth between two 
bottleneck selections. To explicitly include these 
features, it will require more variables and parameters, 
such as nutrient concentration and trait-dependent 
uptake rate which mimics the selection due to 
chemotaxis. These are planned for a future publication.

5.  Biological mechanisms

Our abstract simulation makes a clear prediction 
about how phenotypic fluctuations should evolve 
in the presence of constraints on phenotypes under 
selection. Figure  2 shows that over the course of 
selection the swimming speed of the cell saturates 
at approximately 28 μm s−1 and does not change 
between rounds 10 and 15 of selection. This suggests 
the possibility that |vr| is in fact bounded from above 
in a manner similar to our evolutionary simulations. 
We note that the precise mechanism of this constraint 
is not known, but may be hydrodynamic, metabolic or 
genetic in origin. For example, the swimming speed 
increases with flagellar bundle rotation rate [38] which 
depends on the proton motive force and the pH, both 
of which depend on the metabolic state of the cell. 
Swimming speed is also under genetic regulation 
through a braking mechanism acting on the flagellar 
motors [39]. These mechanisms likely impart an upper 
bound on the swimming speed of the cell; indeed such 
a bound must exist given the finite propulsive force 
supplied by the flagella. Since we observe a saturation 
in swimming speed between rounds 10 and 15 of 
selection (figure 2(C)) and a concurrent decline in 
phenotypic fluctuations for |vr| (figure 4) we speculate 
that this reduction has as its basis a dynamic similar to 
our abstract model (figure 6), whereby the swimming 
speed is evolving towards an upper bound.

While swimming speed (|vr|) appears to evolve 
towards an upper bound we observe a decline in run 
durations during selection as well as a decline in the 
phenotypic fluctuations in τr  and τt (figures 2 and 4). It 
is less clear that explicit bounds apply to run and tum-
ble durations. Indeed, mutants which exhibit very long 
or very short run durations have been isolated. Moreo-
ver, phenotypic fluctuations in the temporal statistics 
of runs and tumbles have been studied in E. coli for 
decades, and the molecular origins of these fluctu-
tions are well understood. Since the seminal work of 
Koshland and Spudich [4], we now know that copy 
number fluctuations of the enzyme cheR and cheB 
drive large fluctuations in the run-tumble statistics at 
the single motor and single cell level [5, 26, 40]. Dufour 
et  al [40] measured both gene expression and run-
tumble statistics in single-cells to show a reduction in 
phenotypic fluctuations with increasing [ CheR] and 
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[CheB] concentrations in vivo. Phenotypic fluctua-
tions declined when concentrations of both proteins 
increased while the ratio [ CheR]/[ CheB] remained 
constant [40]. Furthermore, increasing expression of 
both genes resulted in an increase in tumble frequency 
precisely as we observe in our selection experiment 
[40]. In a separate study, Vladimirov et al [41] show 
that the expression levels of both CheR and CheB are 
higher at the periphery of a colony expanding through 
0.27% agar than at the center. Taken together these 
studies suggest that increasing CheR and CheB expres-
sion should reduce phenotypic fluctuations in τr  and 
τt and that this reduction is correlated with distance 
from the center of the colony.

In light of this understanding we examined the 
mutations present in strains after selection. We per-
formed whole genome sequencing on the ancestral 
strain as well as populations isolated after 5, 10 and 15 
rounds of selection for four replicate selection experi-
ments [22]. In every replicate we observe an identi-
cal mutation at  >70% abundance by round 5 and 
fixed by round 10: a single nucleotide polymorphism 
which inserted a stop codon at position 185 in the 424 
residue ClpX protein (clpXE185*). ClpX is the specific-
ity subunit of the ClpX-ClpP serine protease, which 
degrades many target proteins including FlhDC. flhDC 

is the master regulator of a coherent feedforward motif 
which governs the expression of motility and chemot-
axis genes including cheR and cheB enzymes, which are 
determinants of phenotypic fluctuations [42].

To investigate the role of the mutation we observed 
in clpX in phenotypic fluctuations, we reconstructed 
the clpXE185* mutation in the ancestral background 
using scarless recombineering. We confirmed that this 
mutation alone is sufficient to drive faster migration 
through increasing run speed and decreasing growth 
rate [22]. Moreover, this mutation alone causes a 
decrease in the phenotypic fluctuations in run dura-
tion and tumble duration, but not run speed relative to 
the ancestral population (figure 8).

We considered whether the mutation we observe in 
clpX might logically result in increased levels of cheR 
and cheB and therefore the reduced phenotypic fluc-
tuations we observe. Previous studies have shown that 
mutations in ClpX increase levels of FlhDC in the cell 
[43]. Zhao et al [44] show that deleting flhDC results in 
substantial reduction in expression of the downstream 
cheR/B genes. However, inducing FlhDC expression 
above wild-type levels appears not to increase expres-
sion of downstream genes substantially [44]. Despite 
this, single cell measurements show a positive corre-
lation between flhC and cheY expression levels [45]. 

Figure 8.  Cell-to-cell behavioral fluctuations in clpX mutant: individuality for a mutant with the clpXE185* mutation compared 
to the founder. Individuality for each population for (A) τr  (B) τt and (C) |vr|. We compute 〈τr〉, 〈τt〉 and 〈|vr|〉 for each individual 
tracked and a standard deviation across individuals for each parameter (σχ). Data from 140 founder cells is reproduced from 
figure 4 and compared to 82 clpXE185* cells. Panels are identical to figure 4 with circles showing the sample σχ for each population. 
95% confidence intervals from bootstrapping for each population are given by the error bars. Colormap shows the probability 
distribution of σχ from bootstrapping. Note distinct colorbars for each panel. The clpXE185* strain exhibits a statistically significant 
decline in σ〈τr〉 and σ〈τt〉 (p  <  0.01, permutation test), but not σ〈|vr|〉.
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Since cheY is co-transcribed with cheR and cheB we 
speculate that increases in FlhDC levels in the cell may 
drive increases in cheR and cheB expression and that 
could reduce phenotypic fluctuations. Further stud-
ies are needed to directly measure the meche operon 
expression levels in the presence and absence of the 
clpX mutation we observe. Since we cannot stipulate 
whether expression of the relevant genes is subject to a 
bound, we cannot conclude that the mechanism pro-
posed in our abstract model describes the decline in 
fluctuations in run and tumble durations.

The clpXE185* mutation alone drives an increase 
in run speed to 24.2 μm s−1 from 18.2 μm s−1 for the 
founder whereas the average run speed of the round 
15 evolved strain is 28.7 μm s−1 [22]. These results 
suggest that the mutant run speed is, on average, far 
from the apparent upper bound in swimming speed. 
As our abstract model would predict for the mutant, 
we observe no decrease in σ〈|vr|〉 in the mutant relative 
to the founder—potentially because the mutant phe-
notype is not constrained by an upper bound on run 
speed.

6.  Discussion

In our measurements we report that selection drives 
reduction in phenotypic fluctuations associated with 
chemotactic mobility. We also identified the mutations 
that appear to be implicated in this evolution of 
phenotype fluctuations. Are the results surprising, or 
could they have been predicted on general grounds 
related to the fluctuation-dissipation theorem and 
other global properties of stochastic gene expression? 

Our abstract model suggests that such a reduction 
may arise from selection in the presence of a constraint 
on phenotypes. From our numerical simulations, 
we show that the phenotype variation in a minimal 
model of directed evolution evolves as a function of 
the selection strength of population bottleneck and 
the number of selection rounds. Within a broad range 
of parameter, the variance increases under extremely 
strong selection that always chooses the top Ns largest 
phenotypes near the threshold where Ns is the sample 
population at each selection round, while temperate 
selection allows accumulation of mutants with small 
isogenic fluctuations and hence can lead to decrease 
in the variance. Thus our data suggest the possibility 
that swimming speed may be constrained in E. coli 
by biophysical or metabolic means. Since there is no 
direct evidence for a threshold on traits such as run 
and tumble duration, the reduction in phenotypic 
fluctuations in run and tumble durations in our data 
could have a distinct mechanistic basis which may not 
be captured by our simple abstract model. Another 
possible explanation for the reduced variance in run 
and tumble duration is that these traits evolve to lower 
values and are bounded by some lower bound, since 
cells cannot have infinitesimal run and tumble dura-

tion due to physical limitations. This could make 
sense because in the soft agar gel the more frequently 
and the more quickly a cell switches its direction, the 
more efficiently it could find the correct gradient to do 
chemotaxis. This is consistent with the experimental 
results shown in figure 4(A), where Pp(〈τr〉) becomes 
more right-skewed as the mean of Pp(〈τr〉) decreases 
over time, which is similar for 〈τt〉. Nevertheless, in 
figure  4(A) the left tail of Pp(〈τr〉) does not clearly 

evolve towards the left even though 〈τr〉  decreases. 

We suspect that the main phenotype subjected to the 
threshold could be a composite trait such as the run 
length which is the multiplication of run speed and 
run duration, and therefore the evolutionary trajec-
tory of a single trait could become non-monotonous 
over time. Further work is needed to elucidate the role 
of constraints on phenotypic fluctuations in run and 
tumble duration.

In addition, even though experimental data show 
a small increase or no significant decrease in vari-
ance between rounds 10 and 15 (figures 4(D)–(F)), 
the variance at round 15 is always less than variance 
of the founder and the increase is only significant for 
〈τt〉. Therefore, this increase in variance from round 
10–15 is at the limits of detectability and statistical 
significance in our experiments. In our study of the 
abstract model as presented in section 4.4, when the 
mother-daughter correlation is high or the mutation 
range of the isogenic fluctuations (ηsχ) is small, phe-
notype variance can decrease even under very strong 
selection. In these cases, if mutation rate is high 
or the fluctuation range in threshold (ηχc) is large, 
strong selection can still select mutant genotypes 
with large isogenic fluctuations (sχ) once mutants 
accumulate enough when χ  has evolved to near 
χc, which can cause the variance in Pp(χ) to ‘bounce 
back’ and increase again as shown in figure  S3. If 
the model includes an intrinsic tendency to decline 
with increasing phenotype mean and the population 
amplification step (growth for m generations) is not 
long enough to eliminate bias in the phenotype due 
to mother-daughter correlation, the bounce-back 
in variance could also appear due to the selection 
increasing the mean to a point whereby the intrinsic 
phenotype variance is smaller than the population 
phenotype variations. Another logically-allowed 
possibility for the increase in variance is that the 
mutants that begin to dominate in the population at 
later rounds of selection have larger variance than the 
ones at earlier stages. Finally, the specific constraint 
on the distributions due to the upper bound can also 
change the final variance. However, these possibilities 
are parameter-dependent and thus are not necessary 
at the current stage especially since it is uncertain that 
the bounce-back is robust in the experiment.

Our abstract model of directed evolution applies 
to a broad range of potential systems and makes pre-
dictions of possible scenarios as to how the strength 
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of selection can influence phenotypic fluctuations. 
Genetic, biophysical and chemical constraints play an 
important role in the dynamics of biological systems 
from higher organisms such as fungi [46] to limits 
on the speed of protein translation [47] and enzyme 
specificity [48]. Our study highlights the potentially 
important role for these constraints in determining the 
limits of phenotypic fluctuations. Future experimental 
evolution work could exploit known phenotypic con-
straints and directed evolution to directly test the pre-
dictions of our model.

At a lower level of biological organization the 
mechanisms underlying phenotypic fluctuations 
remain hard to uncover in general due to the complex 
relationship between gene expression, protein func-
tion and cell-level phenotypes. Despite the difficulty 
of connecting phenotypes to gene expression recent 
work has shown universal statistical properties in pro-
tein copy number distributions, with monotonically 
increasing scaling of the variance in protein abun-
dances with mean expression levels [13–15, 49]. These 
universal properties of protein abundance fluctua-
tions may provide a basis for understanding the evo
lution of phenotypic fluctuations in situations where 
the relevant regulatory architecture is known [9, 10]. 
However, at present, a molecular accounting for the 
mechanism of the evolution of phenotype fluctuations 
requires detailed knowledge of the signaling pathways 
at work. Our hope is that in studying abstract models 
such as the one presented here, we may uncover a more 
general understanding of when and why phenotypic 
fluctuations evolve.
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1. Correlation between mother and daughter in the bacterial chemotaxis

experiment

The correlation between mother and daughter could be effective to accumulate

phenotypic variation during directed evolution if the correlation is high. The phenotype

variance could decrease or increase less due to high mother-daughter correlation, which

will be discussed in the next section. However, it was shown in the relaxation

experiment in Fig. 1-figure supplement 5 in [1] that after about 140 generations in

liquid environment where selection is absent that no additional mutations occurred

and that the fast migration phenotype was not lost. For these results to be explained

by mother-daughter correlation requires extremely high correlation (> 0.99) between

mother and daughter. However, direct measurements of the correlation between mother

and daughter cells show correlation coefficients around 0.5 (Fig. S1).

2. Comparison of the time scale in the experiment and the abstract model

In general, the time it takes for trait to saturate depends on many parameters such as

mutation rate, selection strength, population size, generation number in each selection

round, threshold value, growth rate and nutrient concentration etc. Since we want

to explore the generic qualitative phenomena in directed evolution, the quantitative

comparison is not the focus in our model. Moreover, to simulate with the same order of

population size in the experiment which is 106 − 109 would be too time-consuming and

not practical for the purpose of the abstract model. For example, in simulation we set

the mutation rate is much higher than the mutation rate in the experiment in order to

observe mutations in a much smaller population within few selection rounds, and we set

the threshold to be far away from the initial condition in order to see the effect of the

threshold on the dynamics. Below we show an example of the simulation of the abstract

model with similar saturation round number as the experiment.

We are aware of the simplification in the abstract model and have considered how

minimal it could be to suffice as a qualitative demonstration for directed evolution. For
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example, In our model we assume that the bottleneck selection only applies at the end

of each round for simplicity, and the probability to replicate is one for all individuals.

In other words, this version of the abstract model effectively assumes that the selection

due to chemotaxis between two bottleneck selections is weak and shows that bottleneck

selection is sufficient to describe evolution of phenotypic fluctuations in a minimal model.

Although the effect of finite nutrients and chemotaxis within each round before

the bottleneck section is not included in the model, we have considered including a

trait-dependent growth rate to differentiate between individuals with different trait

values. If the individual growth rate is only determined by the absolute trait value

(χ), the strength of selection attributed to growth rate could be either weak or strong,

depending on how fast the growth rate saturates due to mutations. Another possibility

is that the growth rate is determined by the relative trait value in the current population,

which is more similar to the chemotaxis experiment. However, in the abstract model,

selection is applied in the trait space instead of the real space, and therefore arbitrary

mutations could lead to sudden jumps to high trait values in the trait space. Moreover,

since mutations might occur to only few individuals, those mutants with overwhelming

trait values will have a saturated growth rate, leaving most individuals with relatively

small trait values in the population to have much smaller growth rate, and thus the

whole population would quickly shrink. To fix the growth problem, it will require more

variables and parameters, such as nutrient concentration and trait-dependent uptake

rate which mimics the selection due to chemotaxis between two bottlenecks. Another

easier but less straightforward modification could be including exclusive competition

between individuals with different trait values. We conclude that including the role of

growth rate in the model is a non-trivial extension of what we have already done.

Nevertheless, the goal of the abstract model is to understand the possible general

causes with minimal factors that would affect the directed evolution of phenotypic

fluctuations. In this sense it is reasonable to test if such a minimal model is sufficient

to show different evolutionary trends. As we have proposed in the discussion section,

further modifications to the model and the experiment could be studied in the future,

which would not be possible without testing the simplest abstract model. In the future

model, each modification still needs to be tested one by one to understand their role in

evolution.

Under these approximations, the time scale in the simulation of our model depends

mainly on replication rate, mutation rate and the effect size of each mutation. We set

the probability of replication in each generation to be constant (which is one) in order

to reduce the number of parameters.

3. Discussion of bounce-back in the variance

The increase in variance at round 15 is not statistically significant at least in run speed

and run duration. Results of statistical tests demonstrating this fact have been added

to the caption to Fig. 4. Also we do not see obvious bimodality in any of the phenotypic
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trait distributions in Fig. 4(A-C). For run speed the increase in variance at round 15

is still inside the error of the variance at round 10. However the variance at round

15 is always less than variance of the founder. In short, we think that the increase in

variance from round 10 to 15 is at the limits of detectability in our experiments, but we

agree with the referee that it is interesting to try and understand if there is a natural

mechanism for such a “bounce-back” effect. There are three possibilities that we had

considered but did not feel confident enough in them to include them in our original

manuscript.

The first possibility for the decrease and the bounce-back in phenotype variance

is high mother-daughter correlation or small mutation range in isogenic fluctuations

(ηsχ) under strong selection (Nr � Ns and Nr/Nf � 1). In these cases sχ does not

mutate enough to increase much, while µχ still evolves to the threshold, and therefore

σχ can remain small even under strong selection. If mutation rate (ν) is high or the

fluctuation range in threshold ((ηχc)) is also large, once the phenotype values has evolved

to near µχ, mutations will accumulate changes in genotype, and genotypes with large

isogenic fluctuations could be favored under strong selection, and therefore the variance

can increases again. However, this requires high enough mother-daughter correlation

to make the variance decrease enough before it increases due to mutations. If the

mother-daughter correlation or selection strength becomes weaker, it requires larger

fluctuations to show the bounce-back in the later rounds, such as higher mutation rate

or larger fluctuation range of threshold. Examples of simulations under such conditions

are shown in Fig. S3 as below.

Moreover, at high mother-daughter correlation, if the generation number within

each selection round, m, is small (e.g. m > 4), once rare mutations occur, there

would not be enough time for them to build up large enough population in the end

of the selection round, and therefore the population profile could develop into a bimodal

shape with time, making the final variance increase further. However, we consider this

effect as an artifact from limited generation number and population size, because in the

experiment we did not observe bimodal distribution in traits, and both the generation

number (which is about 10) and population size are not small.

In the experiment, the mother-daughter correlation is between 0.23 and 0.65, which

is not particularly high. Since in the experiment it is not clear if the bounce-back is a

generic effect and it is not easy to estimate the value of ν, ηsχ and ηχc , we do not tend to

use the above argument to claim that the bounce-back at round 15 in the current data

was due to strong selection. Further measurements of more accurate mother-daughter

correlation and with different strength of selection would be needed to test the model .

The second possibility is that the phenotype variance has an intrinsic tendency to

decline with increasing phenotype mean. When we had included this in simulations, we

could observe a bounce-back for some model parameters. This bounce-back is basically

due to the selection increasing the mean to a point whereby the intrinsic phenotype

variance is smaller than the population phenotype variations. The bounce-back can be

ameliorated if the selected bacteria are allowed to increase their biomass in liquid culture
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for enough generations, but in principle a residual bounce-back could still remain. This

explanation is quite complicated and definitely parameter-dependent. For these reasons,

we did not attempt a detailed characterization and exploration of this effect, in addition

to the fact that the empirical results are at the limit of detectability and statistical

significance.

Finally, another logically-allowed possibility for the increase in variance is that the

mutants that begin to dominate in the population at later rounds of selection have

larger variance than the ones at earlier stages. In the experiment , the clpX mutation

is at or near fixation by round 5 in all replicates of the selection process. Therefore, to

experimentally test this possibility would require that we study the phenotypic effects

of mutations present in the population at later rounds of selection.

Given the high degree of uncertainty as to which, if any, of these possibilities

is correct, we would prefer not to speculate in the manuscript, especially since it is

uncertain that the bounce-back is robust in the experiment.

4. Evolution of genotype in the abstract model

We have checked that µχ always evolves and saturates to a value near reaches µχc ,

and therefore the increasing χ is resulted from mutation but not due to extremely

strong mother-daughter correlation (e.g. ρ > 0.9). The saturation value of µχ and

the saturation speed depend on the selection strength. When χ is away from the

mean threshold µχc , under the strongest selection strength (green curve in Fig. S4(A))

individuals with larger µχ are selected, and thus µχ increases faster than the weak

selection strength case (blue curve in Fig. S4(A)). This is similar as the evolution speed

of χ in Fig. 6(D) in the manuscript.

However, as χ approaches µχc , µχ also depends on the threshold χc which evolves

accordingly with selection strength. Under the strongest selection, before χ approaches

µχc , individuals with large sχ have already been selected, and once µχ evolves near µχc ,

further mutations, either with larger µχ or different sχ are rare and can hardly contribute

enough individuals to the far right tail of the population Pp(χ) to get selected. Therefore

µχ saturates to a value with about an amount of the final σχ below µχc , similar as χ

under extremely strong selection. The evolution of µχ under weak selection is also

similar as the evolution of χ.

On the other hand, if selection is not extremely strong (e.g. Nr > Ns), there is a

finite possibility to select the rare mutants with larger µχ but not necessary with larger

χ. This can allow µχ to evolve above µχc (orange curve in Fig. S4(A)). Nevertheless,

the measurable and selectable observables are phenotypes χ, χ and σχ, and we do

not observe that χ ∼ µχc even though µχ becomes near or above µχc . This could be

understood as following. Since in the abstract model the only selection comes from the

population bottleneck at the end of each selection round, if selection is not extremely

strong and the mother-daughter correlation is not very high, after many generations

before the next selection, χ could relax back to smaller values (orange curve in Fig.
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6(D) in the manuscript) even though µχc is large.
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Figure S1. Mother-daughter correlation in the bacterial chemotaxis

experiment: Mother-daughter correlations at the single-cell level for founding strain

(top row) and round 15 evolved strain (bottom row). These data were obtained using

the single-cell tracking approach described in the main text and in [1]. Single cells

were loaded into microfluidic devices allowed to swim until division. The two resulting

daughter cells were then tracked for the entirety of their lifetime. Average run duration,

speed and tumble durations were computed for each individual. Data are presented for

17 mother-daughter pairs (founder strain) and 18 pairs (round 15 strain). Title of each

panel reports the correlation coefficient and the associated p-value which is computed

assuming the data arise from a bivariate normal distribution
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Figure S2. Abstract model simulation with comparable time scale as the

experimental data: The initial values and the threshold value are set to be similar as

the distribution of run speed in the data. Parameters: Ns = 100, Nr/Nf = 1/23,m =

l = 8, ρ = 0.8, µχ(0) = 20, sχ(0) = 6, µχc = 40, ηµχ = 3, ηsχ = 0.5, ηχc = 3.5, ν = 0.5,

and the bin sizes for χ, µχ and sχ are 1, 1 and 0.5.
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Nr/Nf =1/28, ρ=0. 8, ν=0. 5, ηsχ =3. 5

Nr/Nf =1/25, ρ=0. 8, ν=1, ηsχ =3. 5

Nr/Nf =1/25, ρ=0. 8, ν=0. 5, ηsχ =4. 5

Nr/Nf =1/28, ρ=0. 65, ν=1, ηsχ =1. 5

Figure S3. Abstract model simulation showing “bounce-back” in

phenotypic variance: Abstract model simulations showing possible bounce-back in

variance, with strong selection strength (Nr � Ns and Nr/Nf � 1) and high mother-

daughter correlation (ρ), large fluctuation range in threshold (ηχc) or high mutation

rate (ν). Parameters: Ns = 100,m = l = 8, µχ(0) = 20, sχ(0) = 6, µχc = 40, ηµχ =

3, ηsχ = 0.5, and the bin sizes for χ, µχ and sχ are 1, 3 and 0.5.
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Figure S4. Evolution of genotype in the abstract model: The population

average of (A) µχ and (B) sχ in the abstract model simulations, from the same data

shown in Fig. 6(D) and 6(E) in the manuscript. Before χ reaches the threshold, if

selection is weak, genotypes with large sχ are not particularly favored, and thus sχ
remains similar as the initial value.
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