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We present two different scenarios for a second wave of the COVID-19 epidemic in Illinois and
simulate them using our previously described age-of-infection model, calibrated to real-time hospital
and deaths data. In the first scenario we assume that the parameters of the second wave in Illinois
would be similar to those currently observed in other states such as Arizona, Florida, and Texas. We
estimate doubling times of hospitalizations and test positivity in all states with relevant publicly
available data and calculate the corresponding effective reproduction numbers for Illinois. These
parameters are remarkably consistent in states with rapidly growing epidemics. We conjecture that
the emergence of the second wave of the epidemic in these states can be attributed to superspreading
events at large parties, crowded bars, and indoor dining. In our second, more optimistic scenario we
assume changes in Illinois state policy would result in successful mitigation of superspreading events
and thus would lower the effective reproduction number to the value observed in late June 2020. In
this case our calculations show effective suppression of the second wave in Illinois. Our analysis also
suggests that the logarithmic time derivatives of COVID-19 hospitalizations and case positivity can
serve as a simple but strong early-warning signal of the onset of a second wave.

A number of regions within the United States are
currently experiencing second waves following their re-
openings. We consider whether or not the transition to
Restore Illinois Phase 41 will lead to a second wave, and if
so, how bad will it be. While there is anecdotal evidence
that the second waves are in part caused by people failing
to social distance in bars, at parties, etc., it is not easy
to relate these social distancing failures to parameters in
complicated epidemiological models. It is thus challenging
to construct a reliable and actionable prediction for the
state of Illinois.

To circumvent this difficulty, we use fits to the cur-
rent exponential growth rates of epidemic dynamics in
affected states to estimate the corresponding Phase 4 sce-
narios for Illinois. In lieu of performing computationally
expensive calibration of detailed epidemiological models
for these states (as we perform for Illinois), we carried
out an approximate calculation of the doubling time of
hospitalizations (i.e., the current number of hospital beds
occupied by COVID-19 patients) and test positivity rates
in Texas and Arizona and of the test positivity rate in
Florida. The resulting estimates for Florida, Arizona, and
Texas are remarkably consistent, with the percentage by
which Rt relaxes towards R0 ranging between 22% and
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1 The 5 phases of the Restore Illinois Project are described at [1].
Transition to Phase 4, which took place state-wide on June 26,
2020, is potentially especially dangerous since it involves opening
up indoor seating in bars, restaurants, etc.—a major risk factor
in spreading of COVID-19.

31%. We then model scenarios for Phase 4 in Illinois de-
signed to reproduced the currently-observed growth rates
in these states (which have already relaxed social distanc-
ing strategies in line with those introduced by Illinois’s
Phase 4), using our age-of-infection model of COVID-19
dynamics in Illinois [2]. We contrast the second wave
exhibited by these results with an additional scenario
in which Illinois subsequently reverts the policy changes
enacted by Phase 4.

As a preamble to our estimate, we point out that there is
a suitable “early-warning signal” that the state of Illinois
and other states could use to monitor the second wave:
the rate of change of case positivity, which is arguably a
leading indicator compared to hospitalization, ICU, and
death data. The data in Figure 1 shows positivity rates
for Arizona, Florida and Texas, with Illinois shown for
comparison. Currently, the Illinois Department of Public
Health (IDPH) sets a case positivity of 10% as a threshold
for a warning level on a per-county basis.2 This is not
a good metric to use because it depends on an arbitrary
value for the base level of case positivity. Arizona had a
baseline level of about 8% before the second wave started,
and so it quickly passed the 10% value. Florida and
Texas, however, started at lower baseline levels and so
the momentum of the second wave was clearly visible
a week or so before they breached the 10% threshold.

2 The Illinois Department of Public Health [3] includes positivity
rate below 10% as one of several targets that counties should
strive to achieve. Exceeding this target rate along with at least
one other target would elevate the epidemic risk rate in a county.
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FIG. 1. Daily COVID-19 positivity rate in selected US states:
Illinois (red squares), Texas (black diamonds), Arizona (blue
triangles), and Florida (green circles). To reduce noise, the
data are smoothed by a 7-day moving average.

Thus, action could have been taken earlier to prevent the
situations in these states from getting out of control.

The second wave across the US quantified by growth
rates in hospitalizations and test positivity

In Illinois, the early epidemic exhibited a basic repro-
duction number R0 = 2.32 as estimated using our epidemi-
ological model [2]. This corresponds to an exponential
growth rate g(early in IL) = 0.272, i.e., a doubling time
of ln(2)/0.272 = 2.5 days.

Our age-of-infection model [2] assumes a Gamma-
distributed serial interval with a mean τs = 4 days and a
standard deviation σs = 3.25 days. In this case the effec-
tive reproduction number Rt is related to the exponential
growth (or decay) rate g via

Rt = (1 +
g

β
)α, (1)

where β = τs/σ
2
s = 0.38 1/days and α = τ2s /σ

2
s = 1.5

are the rate and the shape parameters of the Gamma
distribution of serial intervals (see Eq. 2.9 of Ref. [4] for
a derivation).

In our model Rt = R0 ·M(t) · S(t), where M(t) is a
mitigation multiplier accounting for the effects of non-
pharmaceutical intervention like social distancing, and
S(t) is the fraction of susceptible population at time t.
We assume that the transition to Phase 4 results in partial
relaxation of M(t) toward unity (which would correspond
to a completely unmitigated epidemic). Our simulations
predict that by the time of transition to Phase 4 the
susceptible fraction of Illinois’s population was around
S(Phase 3) = 0.91. That is, by the beginning of Phase
4 roughly 9% of the population have been infected by
COVID-19; in our model we assume previously infected
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FIG. 2. The exponential growth in COVID-19 hospitalizations
(purple, left side) and daily case positivity rate (green, right
side) in Texas. Hospitalizations between June 15 and June
28 have daily growth rate of around 6.8%. To reduce noise
7-day moving average has been applied to the test positivity
rate. The ranges of the left and the right sides of the plot were
selected in such a way that equal exponential growth rates of
hospitalizations and test positivity would correspond to equal
slopes.

individuals remain immune for the duration of the simula-
tion. We model the transition from Phase 3 to Phase 4 by
increasing the mitigation factor from Rt(Phase 3) = 0.92
to a higher value Rt(Phase 4). On the other hand, a
complete relaxation of the mitigation factor to 1 would
increase Rt from Rt(Phase 3) = 0.92 all the way up to
R0 ·S(Phase 3). The extent of the relaxation of mitigation
is quantified by the parameter E:

E =
Rt(Phase 4) −Rt(Phase 3)

R0 · S(Phase 3) −Rt(Phase 3)
. (2)

Texas

Figure 2 shows COVID-19 hospitalizations (purple) and
the daily case positivity rate (green) in Texas between
June 1 and June 28 as reported by the COVID Tracking
Project [5]. Over the period from June 15 through June
28 hospitalizations in Texas have increased with an ex-
ponential growth rate g(TX) = 0.068 corresponding to a
ln(2)/0.068 = 10.2 day doubling time.

Applying Eq. 1 with g(TX) = 0.068 ob-
served in the second wave in Texas, one obtains
Rt(Phase 4 in IL matching TX) = 1.28.

For Rt(Phase 4 matching TX) = 1.28, Eq. 2 gives the
relaxation factor E(Phase 4 matching TX) = 31%.
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FIG. 3. The exponential growth in COVID-19 hospitalizations
(purple, left side) and daily case positivity rate (green, right
side) in Arizona. Hospitalizations between June 15 and June
28 have daily growth rate of around 4.5% (red dashed line). To
reduce noise 7-day moving average has been applied to the test
positivity rate. The ranges of the left and the right sides of the
plot were selected in such a way that equal exponential growth
rates of hospitalizations and test positivity would correspond
to equal slopes.

Arizona

Arizona shows somewhat slower exponential growth
in hospitalizations between June 15 and June 28, 2020
(see Figure 3). The daily growth rate is g(AZ) =
0.045 (4.5%) corresponding to a doubling time of
ln(2)/0.45 ≈ 15.4 days. In this case, Eq. 1 gives
Rt(Phase 4 matching AZ) = 1.19 corresponding to the
E(Phase 4 matching AZ) = 22% (see Eq. 2).

The growth rate of the test positivity in Arizona is
similar to that of hospitalizations throughout most of the
time window shown in Figure 3 except at the very end of
the interval shown in Figure 3, where it starts to flatten
out.

Florida

The COVID Tracking Project [5] does not have hos-
pitalization data for Florida. To obtain an alternative
estimate of recent exponential growth in Florida, we in-
stead use its reported test positivity rate, which we find
grows exponentially with daily growth rate g(FL) = 0.057
(5.7% or a doubling time of 12.2 days). between May 30
and June 28. Translating these estimates to Phase 4 in
Illinois via Eq. 1 gives Rt(Phase 4 matching FL) = 1.24
and E(Phase 4 matching FL) = 27%.
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FIG. 4. The exponential growth in COVID-19 test positivity
rate (green) in Florida has average daily growth rate about
5.7% between May 30 and June 28 (red dashed line). To
reduce noise 7-day moving average has been applied to the
test positivity rate.

Other states

In Table I, we summarize the exponential growth (or
decay) rates of hospitalizations (first column) and test
positivity (last column) for all states for which the COVID
Tracking Project [5] has relevant information. We report
the slope of the linear regression to the logarithm of the
corresponding variables (hospitalizations and the 7-day
moving average of test positivity) over a two week period
ending on June 28. The states are ranked in the order of
decreasing hospitalization growth rates.

Simulation of two second wave scenarios in Illinois

We simulate two scenarios of a second wave of the
COVID-19 epidemic in Illinois using the model described
in [2]. We calibrate our model using data through June
28 on hospital and ICU room occupancy by COVID-19
patients, the number of daily deaths of COVID-19 con-
firmed patients in hospitals, and the total number of daily
deaths as publicly reported by the IDPH [6]. The results
are shown in Figure 5. In the first scenario (shown in the
top panel) we assume that the exponential growth during
the second wave in Illinois would match the observed
growth in other states that are currently experiencing
a second wave. More specifically, we choose the relax-
ation factor E = 35% (to roughly match hospitalization
growth rate in Texas). This choice is higher than the
value E(TX) = 31% estimated using Eq. 2 to account for
additional reduction in susceptible population fraction at
the early phase of the second wave before hospitalizations
start growing significantly. In this case, we confirmed that
the exponential growth rate of hospitalizations (measured
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growth rate doubling time Rt E(%) positivity growth
(1/day) or -(half-time) (days) rate (1/days)

Texas 0.0682 10.2 1.28 30.8 0.0423
Oklahoma 0.0587 11.8 1.24 27.2 -0.00637
Montana 0.0555 12.5 1.23 25.9 0.0237
Idaho 0.0495 14 1.2 23.7 0.0457
Arizona 0.0454 15.3 1.19 22.2 0.0172
South Carolina 0.0449 15.4 1.18 22 0.0986
Vermont 0.0366 18.9 1.15 18.9 0.0736
Nevada 0.0317 21.9 1.13 17.1 0.099
Georgia 0.0293 23.6 1.12 16.3 0.0239
Arkansas 0.0268 25.8 1.11 15.4 0.0196
California 0.0252 27.5 1.1 14.8 0.0241
West Virginia 0.0217 31.9 1.09 13.5 0.0557
Washington 0.0185 37.4 1.08 12.4 0.0454
Louisiana 0.0183 38 1.07 12.3 0.0405
Tennessee 0.0179 38.8 1.07 12.1 0.037
Ohio 0.0162 42.8 1.07 11.5 0.0314
Mississippi 0.0115 60.1 1.05 9.86 0.0256
Oregon 0.011 63.1 1.04 9.67 0.173
Utah 0.00824 84.2 1.03 8.69 0.00816
North Carolina 0.00719 96.4 1.03 8.32 0.00299
Puerto Rico 0.00597 116 1.02 7.89 0
Alabama 0.00512 135 1.02 7.59 0.00962
Michigan 0.000543 1280 1 5.98 -0.22
Delaware -0.000391 -1770 0.998 5.65 0.00406
Missouri -0.000843 -822 0.997 5.49 -0.121
Kentucky -0.00238 -292 0.991 4.95 -0.168
Wisconsin -0.00534 -130 0.979 3.92 0.0516
Maine -0.00702 -98.7 0.972 3.33 -0.161
Virginia -0.00708 -97.9 0.972 3.32 -0.0133
Minnesota -0.011 -63.3 0.957 1.97 0.0223
Wyoming -0.0119 -58.1 0.953 1.63 0.125
North Dakota -0.0121 -57.2 0.952 1.57 0.0197
Colorado -0.0154 -45.1 0.939 0.451 0.00867
New Jersey -0.0167 -41.5 0.934 -0.00265 -0.0135
Pennsylvania -0.0171 -40.4 0.932 -0.154 0.0146
New Mexico -0.0192 -36 0.924 -0.875 0.0479
South Dakota -0.0193 -36 0.924 -0.883 0.0213
Illinois -0.0224 -31 0.912 -1.94 0.00259
Nebraska -0.0226 -30.7 0.911 -2.01 -0.00789
Indiana -0.0237 -29.3 0.907 -2.38 0.00234
Massachusetts -0.0243 -28.6 0.905 -2.58 -0.005
District Of Columbia -0.0303 -22.8 0.881 -4.63 -0.0169
Rhode Island -0.0307 -22.6 0.88 -4.76 -0.0226
Iowa -0.0391 -17.7 0.848 -7.54 0.0133
Maryland -0.0393 -17.6 0.847 -7.62 -0.00538
New York -0.0465 -14.9 0.82 -10 0.00648
Alaska -0.052 -13.3 0.8 -11.8 -0.0133
Connecticut -0.0523 -13.2 0.798 -11.9 -0.0584
New Hampshire -0.0549 -12.6 0.789 -12.7 0.0993
American Samoa
Florida 0.0411
Guam -0.0734
Hawaii -0.0135
Kansas 0.046
Northern Mariana Islands
US Virgin Islands -0.21

TABLE I.
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FIG. 5. Top panel: the trajectory of the COVID-19 epidemic
in Illinois following relaxation of mitigation starting July 1,
leading to a second wave with the exponential growth rate as
in Texas. This scenario corresponds to relaxation of mitigation
by E = 35%. Bottom panel: the second wave dynamics in
a scenario where the effective reproduction on July 5, 2020
(E = 0%). Different colors correspond to daily new infections
(green), hospital occupancy (purple), ICU room occupancy
(orange), hospital deaths (grey) and all deaths (cyan) predicted
by our model [2] calibrated on existing data (crosses) up to
June 28, 2020.

between August 1 and August 15) in our forecast is ap-
proximately 6.7%, matching the current observed growth
in Texas.

In the second scenario we assume mitigation steps car-
ried out by the state of Illinois would be successful in
reverting the effective reproduction number to the Phase
3 value of 0.92. We model this reversal as a transition
taking place between July 5 and July 10. While we are
unable to predict what changes in state policies would
be sufficient to make this happen, we conjecture that set-
ting strict limits to large gathering, and closing bars and
indoor dining would bring superspreading under control.
Indeed, a growing consensus has emerged that COVID-19,
like previous coronavirus epidemics, is spread through
large, rare events known as super-spreaders, wherein 80%
of the transmission arises from only 10-20% of the infected

cases [7–10]. These are driven by pre- or asymptomatic
individuals [11], and throughout the world have been as-
sociated with airborne transmission especially in indoor
environments [12] such as bars and restaurants [8, 13, 14].
These environments are crowded and are often marked
by people talking loudly and removing their masks in
close proximity, and the average length of stay at these
events may be an hour or more. As a result, there is
a high probability of infection. Some studies [12] have
shown that closed indoor environments can be around
20 times more conducive to spread of COVID-19 than
open-air settings. Anecdotally, bars, indoor dining, and
even unofficial large parties are occurring within Illinois
and other states [15] and can cause businesses to close
through multiple secondary infections [16].

Conclusions

The amplitude of the second wave in Illinois (triggered
by the transition to Phase 4) that matches the exponen-
tial growth currently observed in Texas (relaxation of
mitigation by E = 35% towards no-mitigation maximum)
would significantly exceed the amplitude of the first wave.
Both hospital and ICU room capacities statewide would
likely be exceeded in the Fall of 2020. Conversely, un-
der a scenario in which State-mandated mitigation of
superspreader events reverts virus dynamics to Phase 3
(E = 0%), the second wave would be successfully pre-
vented, and the hospital and ICU room capacities of the
state would never be breached.
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Our model is implemented in the open source Python
3 [17] package pydemic. The source code for py-
demic is freely available online at https://github.com/

uiuc-covid19-modeling/pydemic. This work made use
of NumPy [18], SciPy [19], pandas [20], emcee [21], cor-
ner.py [22], and Matplotlib [23].
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