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Phylogenetic trees describe both the evolutionary process and
community diversity. Recent work has established that they
exhibit scale-invariant topology, which quantifies the fact that
their branching lies in between the two extreme cases of balanced
binary trees and maximally unbalanced ones. In addition, the
backbones of phylogenetic trees exhibit bursts of diversification
on all timescales. Here, we present a simple, coarse-grained statis-
tical model of niche construction coupled to speciation. Finite-size
scaling analysis of the dynamics shows that the resultant phylo-
genetic tree topology is scale-invariant due to a singularity arising
from large niche construction fluctuations that follow extinction
events. The same model recapitulates the bursty pattern of diver-
sification in time. These results show how dynamical scaling laws
of phylogenetic trees on long timescales can reflect the indeli-
ble imprint of the interplay between ecological and evolutionary
processes.
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hylogenetic trees represent the evolutionary history of a

group of organisms, usually constructed through an appropri-
ate proxy such as the so-called 16STRNA gene. This gene codes
for a part of the translational machinery of the cell and, as such,
is presumed to be an essential part of all cellular life. Canon-
ically, this gene (or the 18S variant in Eukaryotes) is used to
define operational taxonomic units (OTUs) that correspond to
a generalized notion of species. By evaluating the similarity of
DNA sequences, the timeline of speciation and subsequent evo-
lution can be estimated. Nodes on a phylogenetic tree represent
OTUs, with the external or leaf nodes being extant organisms
that are observed and the internal ones being hypothetical organ-
isms that are inferred based on the similarity and the embedded
evolutionary process. When a tree is rooted, the top node, or the
root, represents the inferred common ancestor of all nodes in
the tree. The lengths of the branches of the tree correspond to
nucleotide changes, and the timescale is set by a molecular clock
assumption.

It is by no means mandatory that evolutionary history should
be tree-like in its topology. Prior to the last universal com-
mon ancestor, the translational machinery evolved rapidly, and
today’s canonical genetic code emerged. This code is not only
universal, but also is nearly optimal in minimizing errors, in a
sense that has been quantified precisely (1, 2). Simulations of
the evolution of the genetic code indicate that it would have
been highly unlikely for it to have these properties if the evo-
lution had proceeded in a treelike manner; only with horizontal
gene transfer of core translational machinery, and thus a net-
work topology for the phylogeny, can a unique and optimal
code evolve rapidly (3). Thus, the evidence suggests that there
was a major evolutionary transition that occurred during the
emergence of the translational machinery; prior to this tran-
sition, the concept of species did not exist in the canonical
sense. This transition can be inferred from a topology change
in the phylogeny of the 16STRNA gene. In short, there is much
that can be learned about evolution by studying the topology
of its timeline.

www.pnas.org/cgi/doi/10.1073/pnas.1915088117

In this paper, we ask what can be learned from a detailed
study of the topology of modern phylogenetic trees, constructed
with the benefit of large-scale genomic datasets. In fact, con-
verging lines of evidence strongly suggest the presence of scale
invariance in both topological and metric aspects of trees (4—
9). These works provide a quantitative and data-rich analysis
that is in the same spirit as hypotheses made earlier on the
basis of fossil extinction and taxonomic evidence (10, 11) and
discussed theoretically with reference to critical models of evo-
lution (12, 13) (see, e.g., refs. 14-16 for detailed reviews of
the literature prior to the genomics era). The new element of
the recent analyses (4-9) is that they are based on molecu-
lar phylogeny, and so contain far more information about the
evolutionary process than can be obtained from patterns of
extinction.

Nodes of a phylogenetic tree stand for extant organisms (outer
leaves) and their hypothesized ancestors (inner leaves). They can
be analyzed to quantify the topology of tree branching (4-7).
There are several metrics developed in the literature to charac-
terize the topology of phylogenetic trees (4-8). Here, we shall
focus on the metrics defined in ref. 5, in which the basic idea
is to count the number of subtaxa that diversify from a given
node 7. We call the first quantity A(4) and define it recursively as
the number of nodes of the subtree S; rooted at node ¢, includ-
ing in the counting the node 7 itself. The second quantity, C(),
is the cumulative sum of A(7) over the subtree, including the
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value at the node :. Both C and A depend on the node 4, and,
therefore, we can measure how C' varies with A over a partic-
ular phylogenetic tree. The resulting functional dependence is
a strong indicator of the large-scale topology of the tree. For
example, if the tree is completely symmetric or balanced, with
equal branching into two nodes from every node, as illustrated
in Fig. 14, then it can be shown from the definition of C' and A
that C=1+4 (A+1)([ln(A+1)/In2] —1). On the other hand,
a maximally unbalanced tree, as shown in Fig. 1B, would have
each node branching into two: one node that simply persists to
the edge of the tree without subsequent branching, and a second
node that branches just like the parent, into a nonbranching and
a branching node. In this case, C = A%/4 4+ A — 1/4. These exact
results have very distinct asymptotic scaling behavior for large
A: C'~ Aln A (balanced) and C ~ A? (maximally unbalanced),
showing explicitly that topology can be reflected in a scaling law
for a phylogenetic tree.

How do real data scale? Remarkably, it is found that, over
three orders of magnitude of A, there is a power-law scaling
of C(A)~ A", with the exponent n=1.444+0.01 (5-7). The
question we are concerned with here is the explanation for this
topological scaling law. One possibility is that the result is an
artifact influenced by bias due to such factors as uneven spe-
ciation rates, choice of taxa, and choice of outgroups for the
trees (17). However, these uncertainties do not explain how these
effects could lead to power-law behavior of tree topology, espe-
cially since there has been more than one independent analysis
performed. Moreover, the same metrics have been applied to
other trees and networks where these biases are not present,
ranging from river-drainage basins to protein networks (18-20),
and, once again, a variety of power-law scalings is observed.
We take the perspective below that the power-law scaling is
indeed real.

There have been many theoretical attempts to model the evo-
lution of phylogenetic trees. See refs. 21-24 for comprehensive
reviews. The equal-rates-Markov (ERM) model, first developed
by Yule in 1924 (25) and later expanded in the literature (26-28),
usually serves as a null hypothesis for the evolutionary process of
the tree. The ERM assumes that all extant species on the tree
have the same speciation rate. The resultant tree is less unbal-
anced than the observed ones, and, statistically, it should behave
on large scales as a balanced tree with the asymptotic scaling
C~Aln A. The proportional-to-distinguishable-arrangements
(PDA) model assumes that, for a given tree size, all tree topolo-
gies are equally likely to appear. The tree, then, is a result of
recursively sampling the topology for the subtrees. The original
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PDA model (29-31) did not give any rules of the growth of the
tree, but corresponding evolutionary processes were developed
later (32, 33). Again, in the absence of an explicit symmetry-
breaking bias, the balanced asymptotic scaling is expected in such
models.

Connecting the nodes, edges of a phylogenetic tree represent
the evolution time from a parent node to its daughter(s). They
can be analyzed by measuring the edge-length abundance dis-
tribution (EAD) (9). The EAD is calculated from the number
of tips or leaf nodes & that descend from a given internal node
i. For a given node i with k tips, S;(k) is the length of the
edge to its immediate ancestor. We define S(k) =", Si(k). The
result is that, over about three decades of k, S(k) ~ k£~ with an
exponent in the range 1.3 < a < 1.7 (9).

As reviewed in ref. 9, although the Yule process (25) and the
Kingman coalescent (34) produced power-law EAD, they do not
generate exponents that are measured with actual phylogenetic
trees. Extended Kingman coalescent with time-varying rate (9)
and A-coalescent (35, 36) can produce the observed value with
a tuning parameter. Yet, the specific biological reason of the
parameter choice is not clear.

One way to obtain anomalous power-law scaling for tree topol-
ogy is to directly include power-law aging behavior into the
rules for the generation of trees (4, 37-39). For example, by
requiring that branching probabilities are a particular power-
law function of the branch age (38), it is possible to obtain
both logarithmic and power-law scalings for C'(A). However, this
approach does not provide a mechanistic interpretation for the
scaling laws put into the model, let along those that emerge.
Nevertheless, the result does show that the observed power-
law scaling can, in principle, arise from a long-term memory
introduced into the branching process as an interaction that is
nonlocal in time.

The structure of phylogenetic trees can be interpreted as
arising from the interplay between evolution and ecosystem
dynamics. We view the nodes as revealing information primarily
about ecological processes that result in the fixation of beneficial
mutations, whereas the edges reveal information primarily about
evolutionary processes, because their lengths reflect the numbers
of DNA mutations. The presence of a power-law aging or long-
term memory implies a breakdown of the separation of scales
implicit in the identification of nodes with ecological interactions
and edges with evolutionary dynamics. This standard identifi-
cation would be valid if the ratio R of ecological timescales to
evolutionary timescales could be assumed to be zero. However,
even though R < 1, the limit R — 0 of observables, such as the

Fig. 1. (A) A balanced tree. All nodes have exactly two descendants. The topological relation C(A) ~ AIn A at large A. (B) A maximally unbalanced tree. For
any node, only one of the two children continues branching. C ~ A? at large A. Actual phylogenetic trees have topology and scaling behavior in between

the two extreme cases, as studied in ref. 5.
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structure of a phylogenetic tree, may not exist due to a singu-
larity; for example, C'(A4, R) may vary as RYF(A), where g is a
nonzero exponent. Depending on the sign of g, C'(A) will either
vanish or diverge as the limit is taken, showing that the limit is
singular and the timescale separation does not strictly exist. Such
problems are common in continuum mechanics, fluid dynamics,
and phase transitions (40, 41), and the failure of this limit to
exist is responsible for the anomalous scaling laws in phase tran-
sitions that naively seem to violate dimensional analysis. In fact,
dimensional analysis is not violated, of course, due to the sur-
prising way in which the lattice scale (on the order of angstroms)
influences the correlations, even on the scale of the correlation
length itself, which may be many orders of magnitude greater
than the lattice scale (40). This so-called ”scale-interference” in
space apparently has an analogue in the present problem, but
it is a scale-interference in time, something well-documented in
other dynamical system problems (40, 42). The breakdown of the
timescale separation suggested here implies that there is feed-
back between the ecological and evolutionary processes. This
feedback is sometimes known in broad terms as “niche construc-
tion,” and we will see below that the role of niche construction
in evolution is observable, even at large timescales. In short, the
goal of this paper is to test whether or not such scale-interference
does occur, using as a model the way in which it is detected in
phase-transition phenomena.

Niche construction (43-51) is a term that describes the fact
that organisms modify the environment and, thus, create new
ecological niches; in turn, these niches affect the evolution-
ary trajectory of other organisms that share the environment
(44). The resulting dynamics is a coevolution of the coupled
dynamical variables for the organisms (52-55) or their genomes
(45), as well as the environment itself. This coupled dynam-
ics contains two-way feedbacks between the organisms and the
environment, which are local in time. However, phylogenetic
trees follow only the dynamics of the organisms themselves.
The effective theory for the organismal degrees of freedom
can be obtained conceptually by integrating out the environ-
mental variables (e.g., using functional integration), and the
resulting description would then contain interactions that are
nonlocal in time, leading to an effective long-term memory in the
branching process.

We will see that niche construction indeed introduces long-
lived memory into the evolutionary process, and even a very
simple caricature of niche construction over evolutionary time
can capture the power-law scaling of C'(A), with an exponent
that is close to the one observed empirically. Moreover, the same
model also leads to a power-law EAD, with an exponent within
range of the empirical estimates. The analyses we perform in this
article mirror the physics of anomalous scaling exponents in crit-
ical phenomena, and we establish our main point through the
techniques of cross-over scaling (40).

The niche of a species generally refers to its role or func-
tion in an ecosystem and can be thought of as the “variables
by which species in a given community are adaptively related”
and which control the species population response to each other
and their environment (56). The habitat occupied by a given
species is distinct from the niche, in this definition, and the two
together comprise the ecotope (56). The ecotope involves the
environmental factors that the species relies on, including the
geographic configuration, the climate, etc., and the interactions
with other species in the same ecosystem, represented by the
species’ position in the food web and their dynamical history.
The phenomenon that organisms modify the environment and
thus create new niches is termed “niche construction” (44). In
contrast to natural-selection theory, which treats the environ-
ment as a static stage on which population dynamics and genetics
occur, niche construction theory emphasizes the modification of
the environment by the organisms as an explicit process and a key
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factor in evolution (43-48), although there remain controversies
(49-51). Specifically, organisms can shape the environment they
live in, change the selection pressure, and, as a result, reroute
their own evolutionary path. A similar feedback of organisms on
their environment is often referred to in ecology as ecosystem
engineering (57-60), which is on a shorter timescale than that of
niche construction. Even though it can be argued that niche con-
struction really means ecotype construction, here, we will use the
term niche, as is frequently done.

Ecological models, such as the MacArthur-Levins model (61),
typically treat a niche as an abstract one-dimensional space which
the organisms inhabit (although multidimensional niche models
also exist; see, for example, refs. 56 and 62). We will regard a
niche as the total available growth space or evolutionary degrees
of freedom of the organism. We will call n the available niche
value in the analysis below. When we say an organism has a large
niche value, we mean that it has a large number of possible ways
to adapt to the environment and to eventually survive or to reach
genome-type fixation. On the other hand, an organism with a
small niche value is very discriminating with regard to its environ-
ment, and this will affect its ability to be resilient within a wide
range of environmental fluctuations. Our usage of niche means
that, following a speciation event, the daughter species have a
similar niche value, but with some fluctuation. The niche value
can change either by organismal influence on the environment or
through the evolution of mutations that enable key innovations
to arise.

Our work is, of course, not the first to attempt to model
niche construction, but the ingredient here is the invoking of
critical scaling theory to explain the observed topological scal-
ing laws of the large-scale evolutionary dynamics. Of earlier
work in this area, we specifically draw attention to applied
population-dynamics models (52-55) and population-genetics
models (45) that study the effect of niche construction or
ecosystem engineering on organism populations and evolution.

This article is organized as follows. First, we present a minimal
model of the large-scale effects of niche construction, which we
call the Niche Inheritance Model. In this model, the descendant
species inherit the parent’s niche with fluctuations due to niche
construction and evolution. The model is a caricature of the
most significant ecological interactions that influence a phyloge-
netic tree in our assessment, but, based on a huge body of work
on scaling laws, we anticipate that such a minimal model will
yield nontrivial predictions that can be in agreement with exper-
imental data (40). Next, we show that an apparent power-law
regime develops when strong niche construction (destruction)
leads nodes to be deactivated due to a lack of niche. The scal-
ing laws are revealed through data-collapse scaling. Finally, we
end with some discussion about the use of minimal models in
evolutionary ecology at large timescales.

Results

Niche Inheritance Model. We assign each species node three
attributes: the amount of available niche n, the speciation rate r,
and the extinction probability e. The tree-generation algorithm
is as follows. Let the parent node be represented by its param-
eters (no, 10, €0). We first calculate the time interval until the
first speciation event, assuming a Poisson process with a rate 7.
Then, we forward time to the speciation event. We let the par-
ent diversify into two children (ni, 71, 1) and (n2, r2, e2). We
treat the branching to be binary, because a multifurcation can
be viewed as a coarse-grained bifurcation. The niche sizes n;
and ny are inherited from the parent with fluctuations due to
construction/destruction, as expressed below:

n1=no + Any, [1a]
ng =no + Ang. [1b]
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The fluctuations An;, s =1, 2, are assumed to be generated by
the following distribution:

A n;
no

~ N (pin, 02), [2]

where N (in,02) stands for a normal distribution with mean
in =0 and variance o2. For each child node, we calculate r;
and e; according to certain mathematical rules, such as Eqs. 3
and 4, which will be discussed in the next paragraphs. Then,
we test whether the node goes extinct or remains to bifurcate
later. The test is done by drawing a uniformly distributed random
number in [0,1] and comparing it with the extinction proba-
bility e;. The child goes extinct and is removed from the tree
if the random number is smaller than e;. All inferred nodes
and branches dependent on the extinct child are also pruned
away. The pruning is necessary to make the simulation result
directly comparable to actual phylogenetic trees. In real trees,
only nodes that are on the same lineage as leaf nodes can be
hypothetically inferred, and those who have gone extinct with
no descendants are not visible. Hence, in the simulation, when a
node fails to pass the extinction test, we remove it, together with
its ancestors.

The speciation rate r is treated as an increasing function of
niche to reflect the fact that the more available niche space there
is, the more likely it is for a speciation event to be successful.
Specifically, with the interpretation of available niche n as the
total available growth space or evolutionary degrees of freedom,
when an organism has a large niche value, it has a large number
of possible ways to adapt to the environment and to eventually
survive. In this way, the speciation rate r naturally positively cor-
relates with the niche n. To capture the first-order feature and
to develop a minimal description, we set the relation between r
and n to be linear, as shown below.

r(n)= {:;

Here, r. is the background speciation rate when the available
niche n is negative. With this relation, we also enforce 1o = ng
for the root node.

The extinction probability e implicitly incorporates all eco-
logical interactions that can lead to extinction after a species
emerges. Despite the fact that there are multiple factors driving
species extinction, there is no well-accepted way to quantify the
strength of each factor or to braid them together. In this model,
we assume that the extinction probability e increases with the
speciation rate r, based on the reasoning that a large speciation
rate results in a big group of competitors with similar niche and,
thus, reduces the survival probability of individual species. In our
effort to build a minimal model, we assume a simple functional
form of e(r) to capture the positive correlation between e and
r, as shown below. We also use the following function of e(r) to
effectively limit the bifurcation rate of the tree:

e(r)

n >0,

n<0. 31

o
T r4+Ro’

[4]

The rate r and probability e represent all ecological interac-
tions among species in this very simplified minimal model. Note
that the main purpose of extinction in this model is to limit the
growth of the tree. Without it, the successful speciation rate
would quickly diverge, and the number of nodes would diverge
exponentially in time. Our form of the extinction probability
is effectively a cap on the speciation rate and may be thought
of as representing competition between coexisting organisms.
This form of the extinction probability is broadly consistent with
the finding that longevity is unrelated to order size and is, in

7882 | www.pnas.org/cgi/doi/10.1073/pnas.1915088117

some sense, heritable and, thus, dependent on environmental
factors (63).

In a numerical simulation, we start with a root node and evolve
the tree based on the above rules until it reaches a certain size.
Then, we compute A and C using the following definitions. For
an arbitrary node ¢ on the tree, let S; be the subtree rooted
at node 7. Define A(4) as the size, or number of nodes, of 5;,
and C(i) as the cumulative size of S;, C(i) =3, A(4). We
calculate the (A, C) pair for every node and, thus, obtain the
relation C'(4).

Existence of the Absorbing Boundary. In the above framework,
there exists a boundary case of r. =0, which means that nodes
with negative niche values will never bifurcate. In actual evolu-
tion, we observe species that seem not to be changing pheno-
typically while their relatives actively diversify—for example, the
“living fossil” species coelacanth. Therefore, this boundary case
is biologically meaningful. We use it as the starting point of our
analysis.

Imagine the left node starts by chance with a larger n and,
thus, a higher r than the right one. If r. #0 and all succeed-
ing nodes are able to branch, then the right node, by fluctuation,
will eventually gain a descendant with high r, and the left node
will gain a descendant with low r. The two subtrees, in general,
undergo the same random process and are symmetric. There-
fore, on a long timescale, the entire tree is balanced due to this
“catch-up” effect. However, if 7. =0, once a node gets a neg-
ative niche, it is deactivated and will not be able to contribute
any descendants in the evolutionary process. This eliminates the
possibility of catching up the growth between the left and right
subtrees. Therefore, r. =0 drives the asymmetry of the tree and
leads it to be unbalanced. We will refer to the case of 7. =0 as
the absorbing boundary, since it effectively removes bifurcating
species from the tree.

Effect of Niche Construction Strength. While the absorbing bound-
ary induces imbalance in the tree, the frequency of nodes hitting
the boundary also matters. Based on Eq. 2, we see that o,, tunes
the probability for the child node to have a negative niche value.
Therefore, it determines how often nodes reach the absorbing
boundary. When o, =0, the niche does not fluctuate, and all
nodes have the same value of niche as well as the same speci-
ation rate. The Niche Inheritance Model is thus equivalent to
the Yule process (25). We expect the resultant tree to be bal-
anced. When o, is large, however, the access to the absorbing
boundary is frequent. There will be many nodes turning inac-
tive and many branches being terminated during the evolution.
The effect of imbalance exerted by the absorbing boundary now
becomes visible.

We demonstrate in Fig. 2 C'(A) relations for different niche
construction strengths. We next point out the important issue of
undersampling. If two nodes have subtrees of the same size A
but different topologies, then they will very likely have different
values of C (except if one tree can be transformed to the other
by mirroring the left and right branches). For a given size, there
can be many subtrees of distinct topologies. Therefore, we usu-
ally have multiple C values associated with the same A, especially
when A is not too small. However, if A is large and comparable to
the total size of the tree, then there may only be a few subtrees to
sample from, and, thus, there will be only a few values of C' over
which to sample. In the extreme case, when A is equal to the size
of the phylogenetic tree, there is only one topology present, that
of the tree itself, and C is single valued. The (C, A) pair now
is associated with the root. This means that when we look for
scaling laws of phylogenetic trees, we must generate trees that
are much larger than the range of A where we measure scal-
ing, in order that there are enough subtrees to generate C'(A)
with good statistical accuracy. Correspondingly, at large values
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Fig. 2. (A) Averaged C(A) calculated for a typical tree generated by the Niche Inheritance Model, with o, = 0. The dots scatter along a straight line in the

linear-logarithmic scale, indicating C/A ~ In A. (B) Averaged typical C(A) calculated with o, = 2. The scale is double logarithmic. Fitting the well-averaged
region, A < 200, to a power function C ~ A" gives an exponent of = 1.501, with the 95% Cl being [1.496, 1.505]. The red line stands for the fitted function.
(C) Dependence of averaged C(A) on o, with r. = 0. As o, increases, the apparent power-law region of C(A) also stretches. Since subtrees with A > 10* are
undersampled, those data points are not shown in the main plot. The full data are shown in C, Inset. All of the following C(A) plots are handled in a similar

fashion. Other parameters for all sets of simulations are r. =0, u, =0, Ro = 10, and ny = 1 for the root node.

of A, the C'(A) data will be undersampled and will show large
statistical fluctuations that are artifacts of undersampling.

In Fig. 2, we average the C' values corresponding to the
same A and plot the resulting quantity C' vs. A. At small A,
there are many samples of subtrees, and C reasonably rep-
resents the expected value. This is indicated by the thin and
smooth region in the C-A graph. However, at large A, there
are few subtrees present, and the tree topology is thus heav-
ily undersampled for the reasons explained above. C' then does
not reflect the correct value corresponding to an asymptoti-
cally large tree. This is illustrated as the broad scattered region
in the C-A graph.

For zero niche construction, o, =0, the model reduces to a
Yule process, and we expect the tree to be balanced with a
C(A)~ Aln A asymptotic behavior. This is verified in Fig. 24.
Notice that the scale is linear-logarithmic, and the A In A behav-
ior is illustrated by the dots scattering along a straight line. When
there is a strong niche construction effect or a large o,, we
expect the tree to be unbalanced, with C'(A4) deviating from the
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balanced scaling. This is demonstrated in Fig. 2B. Instead of
Aln A, in the range comparable with the observed data in ref. 5,
A <200, C(A) falls roughly along a straight line in the double-
logarithmic scale, indicating a power-law behavior, C(A)~
A". A fitting to the power-law function gives the exponent
of n~1.50. B

Fig. 2C shows the averaged C'(A) curves at different values of
on. Judging from the smooth regions at small A of C'-A curves,
as oy, increases from 0 to 3, C'(A) transitions from A1n A to an
apparent power-law behavior. The power-law regime grows in
range as o, increases. We do not have a strong conclusion at the
large A end due to the undersampling issue.

So far, we have shown that niche construction together with
the absorbing boundary induces a power-law scaling regime in
the C'(A) relation. In the next sections, we will explore the origin
of the scaling.

Singularity Induced by the Absorbing Boundary. We attempted
to describe the scaling behavior using a simplified mean field
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Fig. 3. (A) Dependence of averaged C(A) on r., with o, =2.5. As r. approaches zero, C(A) expands the power-law range. Other parameters are p, =0,
Ro = 10, and ng = 1 for the root node. (B) The same data as in A plotted in the linear-logarithmic scale. The scaling turns C(A) ~ Aln A, as r. becomes large.

Insets in A and B show the full data range, respectively.

that ignores the fluctuations of the tree topology due to the
random-species birth and death processes (see the nonextinc-
tive mean-field model in SI Appendix). Although the mean-field
calculation explains the exact scalings for the two extrema of bal-
anced and maximally unbalanced trees, it fails to recapitulate
the scaling laws that we observe in the numerical simulations.
However, it is well known from the theory of critical phenomena
that nontrivial power-law scaling arises from singularities in limit
processes (40) that cannot be captured by mean-field theory.
Thus, we now focus on the singularity induced by the absorbing
boundary.

The imbalance induced by a large niche construction effect is
crucially related to the condition r(n) =r. =0 for n <0, which
means that nodes stop branching when n < 0. It can be relaxed
to a positive re, if the tree has a finite growing time 7. When
re is nonzero but still small enough such that 1/r.>> T, then
very few nodes with negative niches will be able to complete the
bifurcation before the termination of the tree growth. So, effec-
tively, a small r. acts as an absorbing boundary as well. As 7.
increases, the deactivation effect due to a finite 7" only acts on
nodes near the tips. The symmetry between the left and right
branches is gradually restored. Therefore, at large re, the tree
becomes balanced.

In the above argument, we have implied that nodes are able to
reach the n < 0 region, so that r. can play a role in the evolution.
This condition applies in the presence of a strong niche con-
struction effect, and, in the calculations reported below, we have
taken o, = 2.5, so that the influence of the absorbing boundary
is clearly visible in the range of A that we can easily simulate with
good statistics. ~

In Fig. 3, we show the dependence of C'(A) on r. for trees
terminated at a finite size A ~ 10°. When r. =0, we observe the
same apparent power-law regime of C'(A) in the well-averaged
range of A as in Fig. 2B. This is demonstrated as the segment of
straight line under the double-logarithmic scale in Fig. 34. As
re increases, the apparent power-law region of C(A) reduces
in range. Eventually, a behavior of Aln A becomes significant
in the entire range of A at a large r., as illustrated by the
straight line with 7. =0.1 under the linear-logarithmic scale in
Fig. 3B.

Critical Scaling at the Absorbing Boundary. Although the behav-
ior of C(A) at large A in Fig. 3 is not well represented due to
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undersampling, we conjecture that, for a nonzero r., C'(A) con-
sists of two distinct asymptotic limits: at small A, C'(A4) ~ A”; and
at large A, C'(A) ~ Aln A. The cross-over happens around the
transition point A = Ar. In fact, in Fig. 3, the curve correspond-
ing to 7. =0.01 has both a significant power-law region and a
smooth A In A region, before the issue of undersampling smears
the data.

With this conjecture, we observe that Ar divides C'(A) into
two regimes and that the transition point A7 increases as 7
approaches 0. We propose that the dependence of Ar on
re is critical. Then, in the terminology of critical phenom-
ena (40), there exists a so-called cross-over scaling function
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=
= 101k i
Q0 . rer = 0.0001
. e = 0.0005
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Fig. 4. Critical scaling of C(A) as r. decreases, indicated by the data col-
lapse. By tuning n and b, we reach a data collapse of the eight C(A)
datasets corresponding to eight values of r. ranging from 0 to 0.1 across
four orders of magnitude. b=0.36 and n=1.53 gives the best result.
The tail matches the expected x'~” Inx behavior, which is indicated by
the straight reference line in the double-logarithmic scale. Other parame-
ters for all datasets are o, =2.5, up =0, Ry =10, and no =1 for the root
node.
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F(z), defined as
z=r.A, (5]
such that
C(A,me)=A"F(z). [6]

The functional form of F'(z) should accommodate the fact that

small A4,

large A. 7l

A",
C(A)N{A InA

Here, we have included the In A correction at large A. Follow-
ing the standard procedure for finite-size scaling at the upper
critical dimension, where there are logarithmic corrections to
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scaling (64), we require that F'(z) has the following asymptotic
behaviors:

F(z)— {const7

z""ng,

small A and z — 0,

large A and z — +oo0. 81
If there is critical scaling, and the function F'(z) exists, then
different datasets corresponding to different r. values should col-
lapse onto the same curve, when plotted as C' /A" vs. z =1l A.
Indeed, in Fig. 4, we show the data collapse obtained by tuning
exponents b and 7. For the presented eight datasets, b = 0.36 and
n=1.53 gives the best data collapse.

The data collapse indicates a critical behavior of C'(A) as r.
approaches 0. Notice that the value of n found from the data
collapse is slightly different from the one obtained via fitting in
Fig. 2B. From the function F'(z), obtained in the data collapse,
we can read off the value z7 at which F(z) crosses over from a
constant to z'7". In Fig. 4, this value is z7 =~ 3.85. Then, for an
arbitrary 7., we can calculate A7 as follows:

Ar=azrr°. [9]

As re — 0, Ap — 400 and the power-law scaling of C'(A) ~ A"
expands to the entire range of A.

In the above two sections, we have considered a soft absorbing
boundary of finite and small r.. By studying the scaling behav-
ior as 7. goes from finite to 0, we show that the boundary effect
induces critical dynamics associated with a phase transition and
predict a measurable transition point.

Power Law in the EAD. In this section, we show that the niche
construction model also reproduces another characteristic of
phylogenetic trees: the power law in the EAD, first discovered
by O’Dwyer et al. (9). For convenience, we briefly revisit the
definition of this distribution. The distribution is denoted by a
function S(k), where k is the clade size, the number of leaf nodes a
subtree has. The edge length of a node is the time interval between
its birth and speciation. S(k) is then the sum of all edge lengths
of nodes whose descendant trees have clade size k. It was found
that the EAD of phylogenetic trees follows a power-law behavior,
S(k) ~ k™, where « is estimated to be between 1.3 and 1.7 (9).
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Fig. 6. (A) Averaged C(A) for the modified model with a constant waiting time. Theoretical predictions from mean field analysis in S/ Appendix for small
niche construction strengths are also plotted. None shows power-law behavior. (B) Averaged C(A) for the modified model with a constant bifurcation
rate. Mean-field analysis no longer applies to this case, and power-law behavior is still not recovered. For both plots, other parameters used are r. =0,
1n =0, Ry = 100, and ng = 1. The reference line is the power-law function C=A"->'. The simulated tree has 10° nodes, and the data are averaged over 10

repetitions. The Insets in A and B show the full data range, respectively.
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In Fig. 5, EADs of the niche construction model are presented.
Each EAD has been scaled differently to reduce overlap in the
plot. In the double-logarithmic scale, S(k) falls roughly along a
straight line for & < 1,000, indicating a power-law behavior. The
scaling range is comparable with the observation of real phylo-
genetic trees (9). The data points on the right side are more
scattered because large clades are sampled insufficiently, as in
the case of C'(A). As shown by the two reference lines, increas-
ing the niche construction strength changes the exponent of the
power law. When o,, =0, the model reduces to the Yule process,
whose EAD follows

Syute ~1/k(k 1), [10]

which corresponds to the o=2 power law for large k. These
results show that the niche construction model exhibits scaling
in the EAD, but the scaling exponent depends on the niche
construction strength.

The Necessity of Eco-Evolutionary Feedback in a Minimal Model. In
this section, we will connect the scaling behavior of C'(A) with
a central element of our model: the coupling between the spe-
ciation rate and the niche. Mathematically formulated in Eq. 3,
this coupling represents perhaps the simplest nontrivial feedback
between the ecological variable, niche values, and the evolu-
tionary variable, edge lengths. To explore what are the essential
ingredients of a minimal model for phylogenetic tree structure,
we will demonstrate the effects of modifying our model. We will
show that, without this feedback, it is not possible to recapit-
ulate scale invariance and the anomalous scaling laws, and so
this is an essential part of a minimal model for phylogenetic
tree structure.

To begin with, we recall that the edge length of a particular
node is determined by its speciation rate r. More specifically,
we required the edge length, or time till speciation, to follow
an exponential distribution with parameter . We could mod-
ify this element of the model by requiring all edge lengths to
be equal to a constant number instead. We will set r. to be
zero, so that nodes with negative niche values will still be turned
inactive. With constant edge lengths, only inactive nodes will
contribute to the imbalance of a tree. Therefore, this modifica-
tion has isolated the node deactivation as the only mechanism
affecting the topological structure. As shown in Fig. 64, none
of the curves have a noticeable range of power-law scaling. It’s
worth noting that the finite and constant edge lengths effectively
satisfy the infinite time assumption in the mean-field calcu-
lation (SI Appendix). As a result, when extinction events are
not frequent, the analytical result in SI Appendix (SI Appendix,
Eq. S11) should apply to this modified model. Indeed, for
small fluctuation strengths, the analytical curves agree well with
the simulation in Fig. 64. This plot demonstrates that node
deactivation alone is not sufficient to produce the power-law
behavior in C'(A).

Eliminating variability of edge lengths might be too drastic a
change. Therefore, in the next modification, we allow the edge
length to follow an exponential distribution with a constant rate.
In contrast to the original model, this modified version does not
retain the coupling between the niche value and the speciation
rate (Eq. 3). Fig. 6B shows that, even with variable edge lengths,
C(A) still loses the power-law behavior. As a direct comparison,
in Fig. 2C, data for o, > 2 clearly display a power-law behavior
over nearly three decades.

The above two modifications illustrate that edge lengths need
to be not only varying, but also coupled to niche values in order
to generate realistic topological structures. We could understand
the effect of edge lengths by considering a node with a very small
niche value and, hence, a very small speciation rate. Such a node
most likely has a very long waiting time before speciation, but
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because the simulation time in real life is finite, the node can-
not speciate. On the other hand, nodes with large niche values
will speciate more often and have more child nodes, thus caus-
ing the imbalance in the tree. This distinction between large
and small niche values is present only because the model cou-
ples niche values with speciation rates. Without this coupling,
an identical distribution of edge lengths is insufficient to induce
enough imbalance in the tree, and C'(A) does not exhibit power-
law behavior, as we saw in Fig. 6B. In conclusion, our specific
mechanism to assign edge lengths not only reproduces realis-
tic statistics of edge lengths, but also is essential for a realistic
topological structure.

All data associated with the manuscript are accessible publicly,
via https://github.com/zhiru-liu/niche-inheritance-trees.

Discussion

We have presented a model to explain the observed universal
scaling of phylogenetic trees. We incorporate niche construc-
tion as an explicit evolutionary process in the tree growth. By
analyzing the Niche Inheritance Model, we make two significant
conclusions. First, a large niche construction effect, together with
the absorbing boundary, leads to an apparent power-law regime
in the tree topology. This is in the same range of A as observed
in actual phylogenetic trees (5). The existence of the power-law
C(A) relation is a critical phenomenon, arising from the scale
interference in time due to the singular dependence in the small
speciation rate and small niche size limit. We demonstrate this by
analyzing the cross-over of C'(A) from A7 at small Ato Aln A
at large A, with a r.-dependent threshold, reflecting a singular
behavior in the Niche Inheritance Model as r. —+ 0. The second
conclusion is that the Niche Inheritance Model is also able to
recapitulate the scaling of the EAD. The EAD is not quite as
sensitive a test of scaling as the topological scaling law for C'(A),
since the Kingman coalescent and Yule processes both exhibit
power-law scale invariance in the EAD. However, quantitatively,
the power-law exponents are different from what one sees in
nature. In our model, the niche construction effect generates a
power-law scaling, and the exponent depends on the construction
strength, which reflects the long memory of niche construction
through the growth of the phylogenetic tree.

Our model has simple rules for the evolution of the tree. The
significance is that there is a local in-time interplay between the
speciation rate and niche availability and that this can generate
a critical behavior in C(A) because of the singularity induced
by the cutoff of r. =0 at negative n. Our model shows that one
must search for singular effects if a power-law C(A) is to be
recovered, just as is the case in the modern theory of critical phe-
nomena. It might come as a surprise that such a simple model is
able to recapitulate the otherwise inexplicable finding of a topo-
logical scaling law in phylogenetic trees. However, in matters of
scaling, it is well established that minimal models suffice to cap-
ture the phenomena precisely, because extra layers of realism
do not introduce new singularities that can change the scaling
predictions (40).

There are several issues that require further investigation.
First, we have predicted a scaling form for the cross-over point
Ar as a function of r, separating the power law and the Aln A
regions. Actual phylogenetic trees, however, have small sizes,
and the cross-over is undetectable. Therefore, we cannot be
sure whether or not actual phylogenetic trees follow the critical
scaling. Second, the exponent of the power-law behavior in our
model is close to, but not exactly equal to, the reported values.
We do not yet know if the scaling laws and scaling functions are
universal, and, if not, what are the relevant or marginal operators
in the branching process that control the scaling laws. The fact
that the exponent for the EAD is sensitive to o, suggests that
the absorbing boundary may actually be a marginal variable and
not a relevant one. In order to understand this point, a technical
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renormalization group analysis is required and would be the next
step. Third, our model does not capture the decreasing cladoge-
nesis rate that has been reported in actual phylogenetic trees (24,
65, 66). It remains to be examined whether incorporating mech-
anisms to model the empirical cladogenesis rate reduction would
change the scaling and how.

Our results show that niche construction is more than a feed-
back between evolutionary and ecological processes arising when
their timescales are not widely separated. Niche construction not
only leads to a perturbation in the evolutionary trajectories of all
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Supporting Information Text
1. Robustness Upon Changes in Parameters

Niche Construction Strength:- As already discussed in the main text, the stronger the niche construction strength o, is, the
more unbalanced the tree will be. Increasing o, drives C(A) to the power-law behavior. However, if o, gets too large, it
becomes possible that all the species cease to bifurcate and the tree can no longer grow to the desired size. Therefore, only a
finite range of o, is available to investigate. We can characterize this range by plotting o, versus the probability of generating
a sufficiently large tree. The probability is estimated by repeating the simulation many times and record the number of runs
that generate a tree of size N = 10000. The result is shown in Fig. S1. We observe that beyond o, = 3, the probability of
generating a large tree is near zero. Those trees with significant niche construction strength, though possible to generate at the
cost of thousands of failures, should not be expected in nature and thus are not considered in our analysis.

As reported in the main text, the power-law exponent in C(A) is robust throughout the physical range of the niche
construction strength. On the other hand, o, does affect the power-law in EADs.

Eaxtinction Strength:- Another adjustable parameter in the model is the extinction strength Ro. The motivation of defining the
extinction rate in the given form is to use Rp to limit the bifurcation rate. Indeed, if r of a node becomes comparable to Ry,
e(r) ~ 0.5 and the node will be most likely removed from the tree. Therefore, we expect the niches and effectively bifurcation
rates to stop growing after reaching close to Ry. However, if Ry is very large, then it might take longer for the niche to reach
Ry, and the stage before stagnation of niche growth could possibly alter the behavior of C'(A) and S(k). We need to study how
niches of nodes change during the simulation in order to understand whether the model is robust upon variation in Ry.

We assign an index to each node according to its birth time, and then collect the niche values of all nodes. In Fig. S2, we
plot the absolute value of niche versus index for three vastly different extinction strengths. We observe two distinct stages in
the simulation. First, for all Ry, the system undergoes a fast growing stage before saturating to the limit posed by Ro. No
matter how large the limit is, the number of nodes in this stage is always around the order of a hundred, which is far fewer
than the total number of nodes. Second, after the fast growing stage ends, the system enters a stage of fluctuation in niches
values. In this stage, at any moment, active nodes possess a range of niche values, which increases with time as well as o,,. In
logarithmic scale, the center of the fluctuation is around Ro, but the range is independent of Rp.

With the distribution of niches in mind, we proceed to present the effect of changing Ry. Since the majority of nodes are in
the second stage, we assert that it is the fluctuation stage that leads to the power-law behavior in both C'(A) and EAD. In
Fig. S2d, we show that even for significantly different Ro, C'(A) is essentially identical to the one in the main text. In Fig. S3a,
we plot the EAD for o, = 2.5 and Ro = 10°. The power-law is preserved, but small and large clades have branch lengths much
larger than the other ones. If we keep only the fluctuation stage by removing the first 100 nodes from the tree, a distribution
identical to Ro = 10 is recovered in Fig. S3b. In the fast growing stage for large Ry, nodes have niches, thus bifurcation rates,
orders of magnitudes smaller than nodes in the fluctuation stage. As a result, the edge lengths of the growing stage are orders
of magnitudes longer than the fluctuation stage. The distribution is broken at both ends, because a node in the first stage can
either be turned inactive, hence a small clade, or bifurcate into the rest of the tree, hence a large clade. Therefore, removing
these nodes eliminates the peculiarity in the EAD, as shown in Fig. S3b.

To sum up, extinction strength brings nothing new to the behavior of the system. As long as we focus only on the fluctuation
stage, both C(A) and EAD are robust for all Ry we tested.

Other Parameters:- The other parameters in the model are ng, re and u,. Since the inheritance of niche is multiplicative, ng
only indirectly sets the length scale of the tree. As discussed in the main text, a nonzero r. reduces the boundary effect and
gradually restores the symmetry. Lastly, a nonzero p,, will adjust the frequency of generating nodes with negative niche, serving
a similar role of o,,. Based on the above argument, we conclude that none of these parameters will change the qualitative
behavior of our model.

2. Mean Field Analysis of the Non-extinctive Niche Inheritance Model at the Infinite Time Limit

The extinction probability in the previous section depends positively on the speciation rate and thus induces a bias toward
small rates in the evolutionary process. Here, we are interested in a mathematically simpler version without such a bias. This
can be done by setting the extinction probability to be constant for all nodes. Furthermore, since any nonzero constant e can
be mapped to e = 0 by effectively offsetting the speciation rates to (1 — e), we only need to look at the simplest situation with

e=0. [S1]

The resulting model has no extinction and so we term it the Non-extinctive Niche Inheritance Model.

It should be pointed out that removing the bound on the values of niche and speciation rate will result in the speciation
rate growing exponentially large in a short time, since the niche of a child changes proportionally to its parent’s niche as in Eq.
(2) in the main text. This is not biologically meaningful. Still, this simplified model can be handled mathematically from a
mean-field point of view, and provides insights to the actual behavior of the non-extinctive model, as will be discussed below.

In the rest of the section, we conduct a mean-field theory calculation for the non-extinctive Niche Inheritance Model to
derive the dependence of C(A) on o,. We again work in the presence of the absorbing boundary r. = 0, so that a certain
number of nodes will turn inactive and not branch during the evolutionary process. We will discuss the regime of validity of
the mean-field assumption at the end of this section.
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Fig. S1. The estimated probability of generating an infinite tree. Each data point is calculated by simulating 1000 times and recording the number of trees larger than
N = 10000. The probability decreases to near zero beyond o,, = 3. Other parameters used are 7« = 0, p,, = 0, Rp = 10and ng = 1.
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Fig. S2. (a) Absolute value of node niche. Node index is labeled according to its birth time. After around a hundred nodes, the simulation enters a fluctuation stage, where
niche values differ greatly among nodes close in birth time. The fluctuation range is seen to be growing steadily as the simulation goes on. (b)(c) Niche-index graphs generated
in the same way as (a), except with Rg = 10° and Ry = 10°, respectively. The stage before fluctuation features a fast growth in niche values, and this stage ends when the
niche values saturate to the limit posed by R. Notice that in logarithmic scale, the fluctuation range is the same regardless of Rg. (d) Averaged C(A) with Ry = 10°. Both
the power-law exponent and the scaling range are identical to Ry = 10 in the main text, demonstrating the robustness of C'(A) under a drastic change in Rg.
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plot in the main text. (b) EAD calculated with nodes in the fluctuation stage only. The number of nodes removed is 100, determined by Fig. S2c. The behavior of EAD is now
identical to Ry = 10. Therefore, the power-law behavior originates from the fluctuation stage, which is robust under changes in R.
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A. Deactivation Probability of Nodes. Comparing trees with different topologies, we observe the following facts. In a completely
balanced binary tree, the leaf nodes are all active and can branch. In a completely unbalanced binary tree, only one child can
branch and the other is inactive. A phylogenetic tree should lie somewhere in between the two extreme cases. If we define the
deactivation probability of a leaf node as ¢, then

{q =0, completely balanced binary tree, 2]

q = 0.5, completely unbalanced binary tree.

B. Dependence of C(A) on the Deactivation Probability. Suppose there are ng leaf nodes, when the tree evolves to depth d.
Then on average, nqq of the leaves will turn inactive, and each of the remaining n4(1 — g) nodes will branch into two leaves at
depth d + 1. Therefore, we have a recursive relation for ng,

ng+1 = 2nq(1 — q). [S3]

The general expression for nqg is then calculated to be

no 1,

ny =2, [S4]
d—1

ng = nia R

with a = 2(1 — q) as the average number of active children of one parent node. The full parameter range is 0 < ¢ < 1 and
correspondingly 0 < a < 2. However, for 1/2 < ¢ < 1 and 0 < a < 1, the tree can not grow to a significant size, We thus
exclude this situation from the consideration.

The subtree size A of a node at depth D is given by

D
A= Z ng. [S5]
d=0
The average depth of nodes in the subtree is
Zf:o dnq
() = Za=0 1S6]

From the definition, C' of node 4 can be written as C'(i) = > A(i), where S; is the subtree rooted at node 4. Let d;; be the
depth of node j in subtree i, or equivalently the number of edges between node i and j. It’s easy to check that the definition
can be rewritten using d;; as

Cli)=> (dig+1) =" di + AlD) 7]
JES; JES;
Dividing both sides by A leads to
C=A(d)+1). [S8]
which allows us to calculate C.
With Eq. (S4), we obtain the following explicit expressions of A and C in terms of D, for 0 < ¢ < 1/2and 1 <a < 2.

aP —1
A71+2a—1’ [S9]
2 D 2a(a® — 1)
C = p— [(D+1)a 1] EE + A. [S10]
The C(A) relation is further given as follows, by eliminating D from the above two equations.
A (A=1(a-1) 2 (A-=1)(a—-1) B a—A
C(A)=(A—-1)log, — +1 Jra_lloga — +1|+(A 1)+a_1. [S11]
For the completely balanced tree with a = 2, C'(A) is reduced to
C(A)=(A+1)logs(A+1)— A, [S12]
which has C' ~ AlnA asymptotic behavior for large A.
As ¢ — 1/2 and a — 1, we can derive the limit form of C(A), given below, using L’Hdpital’s rule.
2
o) - A +2. 13]

Despite the different functional form, it has the same asymptotic scaling C(A) ~ A? at large A. A similar mean-field calculation
has been performed in Ref. (S1). The authors reported the same qualitative result as what we have derived above, but with a
slightly different model.
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C. Dependence of C(A) on the Niche Construction Strength. Now we analyze the relationship between the parameter o, in the
Niche Inheritance Model and the deactivation probability gq.

Based on Eq. (1) and Eq. (2) in the main text, the child node turns inactive if ng + noxz < 0, where z is the random number
drawn from the distribution A (pn, 0721) to characterize the niche construction effect. Therefore, we have the following equation
to link ¢ and o,.

q = Prob(r = 0) = Prob(z < —1) = %erfc (\/51 ) . [S14]
On

So, for a given o,, we can compute g using the above equation, and then, with a = 2(1 — q), calculate C(A) following
Eq. (S11). This calculation allows us to use o, as a proxy for the niche construction strength, and by varying it, we can
estimate its influence on the scaling laws within mean field theory. Figure S4 shows the C(A) relations for different values of
on. When o, is finite, C(A) always approaches Aln A when A is large. This can also be derived from Eq. (S11).

104 —— 0, =0.1, g=0.00 ///
] — o,=1.0,9=0.16 /,
1 — 0,=2.0,9q=0.31 e
103 = 0,=50.0, g=0.49 //
] — = reference A? //’
< 1 = = reference A> R
O 10° A

10t

109

R L | AL | L | L |
10° 101! 102 103 104
A

Fig. S4. Mean-field analytical C(A) at different values of o,,. For finite ,,, C(A) always approaches Aln A. As o,, — +00, ¢ — 1/2 and the asymptotic behavior
approaches C(A) ~ A2,

In the presence of the absorbing boundary r. = 0, the strength of the niche construction effect strongly impacts the
topology of the phylogenetic tree. In the absence of niche construction, species are equivalent taxonomically and have the same
bifurcation rate. The resultant tree is balanced, and C(A) ~ Aln A.

D. Comments on the Mean-field Calculation. The above mean-field calculation succeeds in describing the qualitative behavior
of C(A) in extreme cases of o, = 0 and o, — +00. However, it does not explain the power-law scaling at intermediate o, , as
an effective scaling for an intermediate range of A.

There are two main caveats in the above calculation. First, the calculation does not account for any stochasticity in the
process. It is applicable to an averaged situation, since nq is the expected number of nodes at depth d. Second, the calculation
is only correct with an infinite growth time of the tree. In order to use the recursion relation Eq. (S3), all active nodes at
depth d have to be able to complete the branching process. This premise can always be achieved if the growth is terminated at
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T = 4o00. However, if T is finite, then there will always be some active nodes that will not branch before the termination.
This effectively leads to a larger deactivation probability than the constant q. This effect is significant for nodes with small
speciation rates, which can occur at any depth. Therefore, the effective deactivation probability gz should be dependent on the
distribution of speciation rate at depth d.
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