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Abstract

Important phenomena in materials processing, such as dendritic growth during so-

lidification, involve a wide range of length scales from the atomic level up to product

dimensions. The phase-field approach, enhanced by optimal asymptotic methods and

adaptive mesh refinement, copes with a part of this range of scales, from few tens of mi-

crons to millimeters, and provides an effective continuum modeling technique for moving

boundary problems. A serious limitation of the usual representation of the phase-field

model however, is that it fails to keep track of the underlying crystallographic anisotropy,

and thus is unable to capture lattice defects and model polycrystalline microstructure

without non-trivial modifications. The phase-field crystal (PFC) model on the other

hand, is a phase field equation with periodic solutions that represent the atomic den-

sity. It natively incorporates elasticity, and can model formation of polycrystalline films,

dislocation motion and plasticity, and nonequilibrium dynamics of phase transitions in

real materials. Because it describes matter at the atomic length scale however, it is un-

suitable for coping with the range of length scales in problems of serious interest. This

thesis takes a first step towards developing a unified multiscale approach spanning all

relevant lengths, from the nanoscale up, by combining elements from the phase-field and

phase-field crystal modeling approaches, perturbative renormalization group theory, and

adaptive mesh refinement.

A chapter of this thesis also examines the effect of confinement on dendritic growth,

during equiaxed solidification in a pure material and the directional solidification of a

dilute binary alloy, using phase-field models.
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The sciences do not try to explain, they hardly even try to interpret, they mainly make

models. By a model is meant a mathematical construct which, with the addition of

certain verbal interpretations, describes observed phenomena. The justification of such

a mathematical construct is solely and precisely that it is expected to work.
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Chapter 1

Introduction

1.1 Problem definition

A fundamental theoretical and computational challenge in materials modeling is that

of simultaneously capturing dynamics occurring over a wide range of length and time

scales, under processing conditions. The challenge stems from the fact that unlike simple

crystalline solids, real materials, which are produced under a wide range of processing

conditions, are polycrystalline, and contain lattice imperfections, dislocations and grain

boundaries that have a strong bearing on mechanical response. Accurate prediction of

emergent material properties requires resolution of phenomena from the nanoscale up. A

classic example of such a multiscale problem is dendritic growth, a phenomenon seen in

the solidification of undercooled melts, which involves the capillary length ∼ 10−9m, the

scale of the pattern ∼ 10−6m, and the diffusion length ∼ 10−4m, which together span

length scales over five orders of magnitude, and heat/solute transport through diffusion

which occurs on time scales of ∼ 10−3s. Dislocation modeling is another multiscale

problem where atomic resolution is needed at the level of the dislocation core (order

of angstroms), while long range elastic field interactions are typically treated with a

continuum description. Fig. 1.1 depicts broadly, some of the key problems of interest to

materials scientists at their relevant length and time scales.
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Figure 1.1: Materials phenomena and modeling approaches at various length and time
scales.

Thus, progress in rational material design requires a fundamental understanding of the

way in which important properties, such as hardness, yield strength, fracture toughness,

and ductility, emerge as the mesoscale is approached, which is intricately connected to

the physics at smaller length scales. The question we wish to address in this dissertation

is, how can the properties at nano-, meso- and intermediate scales simultaneously be

captured quantitatively and predictively?

1.2 Approach

A number of computational approaches to handle the range of length scales have been

proposed recently [1], including quasi-continuum methods [2–5], the heterogeneous mul-

tiscale method [6, 7], multi-scale molecular dynamics [8–11], multigrid variants [12] and

phase field models [13–16]. Some of these use a combination of two or more of the fol-

lowing schemes (atomistic and continuum models), as appropriate, for different levels of

2



resolution: density functional methods that provide a quantum mechanical description,

which is necessary when there is significant departure from equilibrium conditions, for ex-

ample, at the tip of a crack or in a chemical reaction; molecular dynamics or Monte Carlo

methods when deviations from equilibrium are smaller, and a coarse-grained description

with continuum fields at the mesoscale where equilibrium conditions are anticipated. A

notable example is the quasi-continuum method [2–5] which combines molecular dynam-

ics on the fine scale with finite element analysis at a coarser level and has had some

measure of success in simulating fracture and predicting interactions between a few iso-

lated dislocations. A handicap that diminishes the effectiveness, and hence limits the

application of several of these methods, is the process of merging descriptions at differ-

ent levels. Lack of a continuous transition between scales can induce artifacts, such as

spurious reflections in a transition region between two levels, and is a major theoretical

challenge [7, 17].

One continuum approach that has had plenty of success of late in the multiscale

modeling of solidification problems, is the phase-field model, which through effective use

of adaptive mesh refinement [18, 19], now spans 3 − 4 orders of magnitude in length

scales from micron up (see Fig.1.1). However, it suffers from being unable to model poly-

crystalline systems (a worthy exception being an extension developed by Kobayashi and

co-workers [20,21], and Warren [16]), and elastic and plastic effects without complicated

augmentation [22–26], and is therefore limited in its application.

Keeping as our principal objective, the ability to model polycrystalline microstructure

while resolving nanoscale defects, we propose a novel continuum approach to these diffi-

culties in this dissertation, by combining the phase field crystal (PFC) formalism [27,28]

with renormalization group (RG) [29, 30] and related methods (see, e.g. [31]), devel-

oped for the analysis of hydrodynamic instabilities in spatially-extended dynamical sys-

tems [32–39]. We present coarse-grained equations, from which the atomic density can

readily be reconstructed, and show that this approach is capable of generating high fi-

delity representations of materials processing dynamics. Moreover, we demonstrate that

these equations—analogues of rotationally-covariant amplitude and phase equations in
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fluid convection [40]—are computationally tractable and amenable to adaptive grid tech-

niques, which allows modeling across scales.

Our approach is based on a form of the RG which unifies singular perturbation the-

ory [32], and is a fully systematic way to extract universal or large scale structures from

spatially-extended dynamical systems. The basic idea is to start, not with a molecular

dynamics model at the nanoscale, but with a density functional description (in this con-

text, the phase field crystal model [27,28], see Fig. 1.1), whose equilibrium solutions are

periodic density modulations. A system that is periodic at the nanoscale can be parame-

terized in terms of a uniform phase vector and an amplitude: the amplitude describes the

maximum variations in the density of the system through the unit cell, while the phase

vector describes spatial rotations. A system with underlying periodicity, but which also

contains defects or other nanostructure, can be represented by a density wave whose am-

plitude is practically constant everywhere except near a defect, and a phase vector that

is essentially uniform inside crystals, varying near grain boundaries and defects. This

observation suggests that the amplitude/phase of the density are appropriate dynamical

variables to use for describing spatially-modulated nanoscale structure in a mesoscopic

system. Once these quantities are determined, the actual structure at the nanoscale (and

above) can be reconstructed. Because the field variables themselves (not the density) are

spatially mostly uniform, adaptive mesh refinement can be used effectively to extend the

nanoscale modeling capability of the PFC model to micro- length scales, as shown by the

dashed box in Fig. 1.1.

1.3 Dissertation outline

We start off in Chapter 2 by studying a simple problem pertaining to the solidification

of pure materials and dilute binary alloys in confinement, where we investigate the effect

of finite boundaries on interface morphology and dendrite tip selection using a standard

three dimensional phase-field model. Our results highlight the power of this modeling

technique. We discuss some of its limitations in Chapter 3 while laying the foundation for
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another type of phase-field model, the PFC model [27,28]. We describe the mathematics

of this model in detail and then present a gallery of results which illustrates its versatility

as well as its limitations. We devote Chapter 4 entirely to the derivation of coarse-

grained amplitude and phase equations from the PFC model using: (a) different variants

of the RG and (b) the method of multiple scales, in the process discovering an operating

order ambiguity in the current implementation of the RG methods which leads to a

discrepancy between results obtained from (a) and (b). We propose a resolution to

this ambiguity, which leads to the convergence of all methods at a certain order in

the perturbation expansion. We numerically validate these equations in Chapter 5, via

quantitative comparisons with solutions to the PFC equation, and demonstrate their

computational advantage over the PFC equation. In Chapter 6, we develop a hybrid

adaptive grid implementation of the amplitude/phase equations which allows us to extend

the modeling capability of the PFC equation to micro- length scales. We conclude in

Chapter 7 with some future directions for our work.

1.4 Publications

Parts of this thesis have already been published in peer-reviewed journals and conference

proceedings. Chapter 2 in its entirety will appear in the September issue of Philosophical

Magazine [41] (2006), while parts of it have already appeared in TMS Proceedings [42]

(2004) and the International Journal of Modern Physics [43] (2005). Chapter 4 has

been published in Physical Review E [44] (2006). Parts of Chapter 5 have appeared in

Physical Review E [45] (2005) and the Journal of Statistical Physics [46] (2006). Chapter

6 is pending submission to Physical Review E.
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Chapter 2

Solidification in Confinement

2.1 Background

Dendrites are one of the basic microstructural patterns seen in solidified metals. The

mechanical behavior of the solidified product is often decided by the length scales set

by these patterns. Study of dendritic growth is therefore motivated by the need to

predict these length scales. The fundamental quantities that completely describe the

growth of a dendrite at steady state under a given set of external conditions are its

tip velocity and radius, which together define the so called “operating state”. Despite

considerable advances in the understanding of solidification science, discrepancies still

arise when one attempts to compare theoretical predictions of dendrite operating states

with experimental observations. We find that some of these discrepancies derive from

differences between the ideal conditions assumed in theoretical treatments, and those

experienced by materials under actual experimental situations.

The first theoretical treatment of the “free” dendrite growth problem was presented by

Ivantsov [47]. He considered a pure dendrite, modeled as a paraboloid of revolution with

tip curvature ρtip, growing into an infinite undercooled melt with temperature T → T∞

far from the advancing tip. The dendrite was assumed to be isothermal at the melting

temperature Tm, and to be growing along its axis at constant velocity Vtip in a shape-

preserving way. Ivantsov found a solution to the thermal transport problem, in which the
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dimensionless undercooling ∆ = (Tm − T∞)/(Lf/cp) = I(Pe) where Pe = ρtipVtip/2D

is the Péclet number, D is the thermal diffusivity, and I is the Ivantsov function. The

temperature has been scaled by the characteristic temperature Lf/cp, with Lf being the

latent heat of fusion and cp the specific heat.

This solution presented a conundrum, because it showed that the transport prob-

lem alone did not uniquely specify the operating state of the dendrite, i.e., the single

combination of ρtip and Vtip observed in experiments. Additional considerations, such

as the effect of curvature on the melting point [48], stability [49, 50] and eventually the

anisotropy of the surface tension [51–53], led to a second condition σ∗ = 2d0D/ρ
2
tipVtip

where σ∗ is called the selection constant, and d0 is the capillary length. The combination

of Ivantsov’s solution (modified for surface tension and its anisotropy) and the condition

σ∗ is constant gives a unique operating state. Numerical simulations using the phase-field

method [14] at large values of ∆, have found agreement with the predictions of this body

of work, known as microscopic solvability theory.

Glicksman and co-workers developed experimental techniques for studying the solid-

ification of pure materials, with the objective of observing the operating state. They

performed experiments with phosphorous [54], and transparent analog alloys like succi-

nonitrile (SCN) [55] and pivalic acid (PVA) [56]. The results of these careful experiments

found some areas of agreement with microscopic solvability theory, in particular, the

value of σ∗ was found to be constant, but the operating combination of ρtip and Vtip did

not agree. Provatas, et al. were able to explain this discrepancy by showing that for the

low undercooling conditions found in the experiments, interaction between neighboring

dendrite branches [57,58] affected the operating state.

Experiments have also been performed to examine the role of superimposed fluid flow

on dendritic growth. Gill and coworkers [59,60] used SCN in a special cylindrical cham-

ber with a bellows to effect fluid flow. Bouissou and Pelcé [61] performed experiments

with a flowing alloy of PVA and a seed confined between microscope slides. Saville and

Beaghton [62] presented a theoretical analysis which extended Ivantsov’s solution to con-

sider the superimposed flow. Jeong et al. [19] performed phase-field simulations of these
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experiments, and once again found discrepancies with theory. They conjectured that the

differences arose because of the effect of finite containers in the experiments, leading to

boundary conditions which differed from the assumptions of infinite media used in the

theory.

Dendrite tip theories for constrained growth, such as directional solidification of dilute

binary alloys between microscope slides, have been developed by Trivedi [63] and, Kurz

and Fisher [64]. They have shown that a relationship of the form ρ2
tipVtip = constant,

should hold for constrained growth just as in free dendrite growth. Early experiments

by Somboonsuk et al. [65] in samples with slide separation greater than 150 µm have

shown excellent agreement with this theory. However, in recent studies Liu et al. [66]

have demonstrated that experimental results start to deviate significantly from theory

when the slide separation approaches the scale of the primary dendrite spacing.

In this chapter, the role of confinement on dendritic growth will be studied system-

atically. Since every experiment is performed in a finite container, this finite size effect

cannot be ignored. Our numerical experiments are conducted using phase-field models

for both pure materials as well as binary alloys. For the binary alloy, recent experimental

data from Liu et al. [66], provides us with a nice benchmark against which to test our

numerical predictions.

2.2 Phase-field modeling

2.2.1 Phase-field model, adaptive grids and numerical methods

The objective in a general solidification problem is to solve the equations governing

thermal and solute transport, subject to boundary conditions on the solid-liquid interface

(moving boundary) and elsewhere. If melt convection is to be modeled, one needs to

solve the momentum equations for fluid flow simultaneously with the above transport

equations. Imposing the interface boundary conditions upon discretizing the governing

equations poses a difficulty however, since the interface, as it evolves, will not in general

align itself with a fixed set of mesh points.
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The phase-field method eliminates the sharp liquid-solid boundary by introducing

evolution equations for a continuous order parameter φ ∈ [−1, 1], where φ = −1,+1, 0

corresponds to liquid, solid and interface respectively. Thus, the arduous task of solving

the transport equations separately in liquid and solid domains while simultaneously satis-

fying boundary conditions on arbitrarily shaped interfaces, is replaced by that of solving

a system of coupled differential equations; one for the evolution of φ and one for each of

the transport variables (temperature, concentration and velocity). Phase-field modeling

has been an active area of research in the past decade, and we refer the interested reader

to original work by Langer [13], Karma and Rappel [14], and Beckermann et al. [15] for

derivations of the phase-field equations and selection of phase-field parameters ensuring

convergence to the original sharp interface problem.

The phase-field model introduces a parameter W0 that connotes the finite width of

the now ‘smeared’ interface. Karma and Rappel [14] showed that the model converges

to the sharp interface equations when p = W0Vtip/D � 1, where D is the thermal or

concentration diffusion coefficient, and Vtip is the nominal tip velocity of the dendrite.

Resolving the interface on a discrete mesh requires that the mesh spacing ∆x ∼ W0,

while demanding that the diffusion field not interact with the boundaries leads to the

domain size LB � D/Vtip. Satisfying these requirements causes calculations on regular

meshes to quickly reach the limit of available computing resources. For example, if we

choose p = 0.01, fix LBVtip/D = 10, and enforce ∆x = W0, then we find that the number

of grid points per dimension on a regular mesh should be at least LB/W0 = 1000. This

makes computations challenging on regular meshes even in 2-D, while 3-D computations

may not be practical at all, depending on available computing power.

We have mitigated this problem successfully by solving the equations on an adaptive

finite element mesh [19, 58]. In three dimensions, we use eight-noded trilinear brick ele-

ments stored using an octree data structure. A local error estimator indicates refinement

or coarsening of the mesh, and this permits tracking of the interface as well as resolution

of gradients in the other fields. There are six degrees of freedom at each node (three ve-

locities, pressure, temperature/concentration and φ), and a typical computation reaches
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well over one million unknowns. The finest elements (∆xmin), which are distributed near

the interface, now need to be order of W0.

For our studies on pure materials, we have used a finite element discretization of

the 3-D phase-field model developed by Karma and Rappel [14]. In order to account

for the effects of melt convection we adopt the formulation presented by Beckermann et

al. [15], who use an averaging method for the flow equations coupled to the phase-field.

By appropriate choice of phase-field parameters we have ensured zero interface kinetics,

which is a valid assumption for the range of undercooling we are concerned with.

For our alloy simulations, we have used Karma’s one sided (vanishing solid diffusivity)

phase-field model [67, 68], with a frozen temperature approximation. In a directional

solidification arrangement, for certain values of the problem parameters (particularly

when simulating real materials), a considerable amount of time can elapse before the

transients vanish and the solid-liquid interface reaches steady state. In that time, the

interface can encounter the end of the simulation box if the equations are solved in a

reference frame that is fixed globally, and if the box is not large enough to contain the

diffusion field. To alleviate this difficulty, we have solved the phase-field equations in

a coordinate frame translating with the pulling speed. This saves some computational

expense by allowing us the use of smaller boxes. We have not investigated the effect of

melt convection in our numerical experiments with alloys.

In a recent article, Echebarria et al. [68] have emphasized that the same choice of

phase-field parameters that produced zero interface kinetics in the pure material cannot

also ensure this condition in the alloy model. This is due to the presence of certain addi-

tional terms in the kinetic parameter β, that arise out of accounting for the discontinuity

in the concentration field at the interface in a model with vanishing solid diffusivity. To

ensure that the kinetic coefficient is negligible at the interface, the phase-field relaxation

time τ needs to be made temperature dependent in this region by setting

τ = τ0

[
1− (1− k)

z − Vpt

lT

]
. (2.1)
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Here τ0 is the usual relaxation time, k is the partition coefficient, z is the distance from

the interface, Vp is the pulling velocity, t is time and lT is the thermal length [67].

We evolve the nonlinear order parameter equation using a Forward-Euler time step-

ping scheme, while the linear thermal/solute transport equations are solved using the

Crank-Nicholson scheme with a diagonally preconditioned conjugate gradient solver. The

transport equations typically converge in fewer than five iterations per time step. The

3-D flow equations for the pure material are solved using the semi-implicit approximate

projection method (SIAPM) [69]. Details of the above numerical methods and the finite

element formulation are omitted here, as they have been presented elsewhere [19].

2.2.2 Geometry, initial and boundary conditions

Our three dimensional simulation domain is the rectangular parallelepiped illustrated in

Fig. 2.1, with edge lengths along the x, y and z axes; Lx, Ly and δ respectively. The

edges of the box are oriented along 〈100〉 cubic crystallographic directions.

For the pure material, the initial condition is a spherical solid seed with a radius

greater than the critical nucleation radius, centered at the origin depicted in Fig. 2.1.

Because of the inherent symmetry in the growth of the seed, it is usually sufficient to

model one octant in three dimensional space. However, if forced fluid convection is

incorporated along a particular direction, then the solidification rates into and counter

to this direction become unequal. For example, if there is a flow parallel to the x axis,

x = 0 is no longer a plane of symmetry. To account for this break in symmetry, we have

to model at least a quadrant of space, with z = 0 and y = 0 as planes of symmetry.

In the simulations with the pure material, the dimensionless thermal field u is sub-

jected to zero flux (∇u · n = 0) boundary conditions on all surfaces. Fluid flow, when it

is included in our study, is imposed as an inlet boundary condition U∞, normal to the

face x = −Lx/2. The velocity field is subjected to symmetry boundary conditions on the

domain walls, and is forced to vanish in the solid (φ = 1) by an appropriate formulation

of the momentum equations (see [15]). We fix the lateral dimensions of the simulation

box (Lx = 512 and Ly = 256 are typical values), and study the interface evolution as a
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Figure 2.1: Simulation Domain. All surfaces are modeled as symmetry planes in pure
material simulations, whereas the surfaces y = 0 and y = Ly are periodic boundaries in
the alloy simulations.
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function of δ, which is varied from 128 to 4. For very small δ (≤ 8), steady growth con-

ditions are reached relatively quickly for large undercooling. To save on computational

cost in these runs (where ∆xmin = 0.5), we sometimes use shorter lengths for Lx and Ly,

chosen to ensure that the diffusion field does not interact with the ends (in the x and y

directions) of the box. For smaller ∆ however, it typically takes much longer to reach

steady conditions, and when melt convection is included, it can take impractically long

CPU times to get converged results. For these cases, we terminate our runs when the tip

radius/velocity versus time curves start to even out. Fortunately, it turns out that the

behavior we are interested in appears for combinations of δ and ∆ where steady state

conditions are always achieved.

In the alloy simulations, the initial condition is a planar interface at x = X0, perturbed

by randomly spaced finite amplitude fluctuations. The box in these simulations is taken to

represent the shallow channel between microscope slides where directional solidification

conditions are imposed, viz. a fixed thermal gradient moving at a constant speed Vp.

Once again, in this arrangement we study the influence of the depth of the channel

δ (or equivalently the sample film thickness), on interface morphology. To minimize

the diffusion field’s interaction with the lateral boundaries, Lx and Ly are chosen to be

relatively large (∼ 256). We enforce zero flux boundary conditions on the concentration

field, on the surfaces x = Lx/2 = −Lx/2 and z = 0 = δ, while periodic boundary

conditions are imposed on the boundaries y = 0 and y = Ly. The rationale behind

periodic boundary conditions is to be able to simulate an infinite domain in y.

Unless otherwise stated, on each boundary, we employ the same type of boundary

condition on the phase-field variable φ, as we do on the transport variable. Where

∇φ · n = 0, the material “wets” the boundaries, and the corresponding contact angle

is 90o. Sémoroz et al. have previously used this technique to capture wetting of solid

surfaces, with a two-dimensional phase-field model for binary alloys [70]. We also show

a calculation with φ = −1 on the boundaries, which is equivalent to making the material

“non-wetting” (contact angle = 0o). The real contact condition probably lies somewhere

in between these two extremes.
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2.3 Effect of small δ in a pure material

In this section, we report the effect of changing δ on the tip of a pure material dendrite,

evolving along the negative x axis (upstream direction when flow is present). We simu-

lated the cases shown in Table 2.1. We used a fixed value for the four-fold anisotropy in

all our simulations (ε4 = 0.05). We have not corrected for grid anisotropy [14] in these

calculations, but work at a grid spacing where its effect is known to be small [58].

Table 2.1: Pure material simulations.

Case ∆ U∞ δ

1(a)-(f) 0.55 0 128,64,32,16,8,4

2(a)-(f) 0.55 5 128,64,32,16,8,4

3(a)-(e) 0.25 0 128,64,32,16,8

4(a)-(f) 0.25 5 128,64,32,16,8,4

5(a)-(d) 0.15 0 128,64,32,16

6(a)-(e) 0.15 5 128,64,32,16,8

We use the following values for parameters in our calculations: thermal diffusivity

D = 4, nominal interface width W0 = 1, time scale for interface kinetics τ0 = 1, coupling

parameter λ = 6.383, capillary length d0 = 0.1385 (which leads to zero interface kinetics),

kinematic viscosity ν = 92.4, and Prandtl number Pr = 23.1.

2.3.1 “Wetting” boundary conditions, ∇φ · n = 0

To make ideas more concrete, we choose cases 3 and 4 as a representative subset of our

computations and present detailed analyses on those runs. Figures 2.2 and 2.3 show the

upstream dendrite’s tip velocity and radius respectively, as functions of the box height δ.

In these plots, δ and ρtip were made dimensionless by scaling them with d0, and Vtip

is scaled by D/d0. We compute the tip radii ρxz and ρxy along two principal planes using
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Figure 2.2: Tip velocity vs. δ, corresponding to cases 3 and 4 in Table 2.1.
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Figure 2.3: Tip radius vs. δ, corresponding to cases 3 and 4 in Table 2.1.
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the method of Jeong et al. [19], and estimate the mean tip radius by the formula

ρtip = 2

(
1

ρxy

+
1

ρxz

)−1

. (2.2)

We can see from Fig. 2.2 that for large values of δ, the tip velocity remains relatively

unaffected by the box height. However, as we go to very small heights Vtip decreases

quite dramatically. As δ is decreased, there is also a gradual decrease in the tip radius

ρtip. Clearly enough, box height has a pronounced effect on tip dynamics. Fluid flow

induces a parallel shift in these curves. The dendrite tip velocity increases uniformly in

the presence of flow [19]. On the other hand, the tip radius is lower than the case with

pure diffusion.
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(a) δ = 64 corresponding to Case 4(b). u ranges from A ≡ -0.24 to L ≡ 0.008
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(b) δ = 8, corresponding to Case 4(e). u ranges from A ≡ -0.24 to L ≡ 0.008

Figure 2.4: Temperature contours for two different box heights when ∆ = 0.25 and
U∞ = 5.0. In each case, the letter X symbolizes the dendrite outline (bold contour),
under steady growth conditions. Notice that the contours near the dendrite tip are more
spread out when δ is smaller.

The observed trends can be explained as follows. As long as δ is sufficiently large, the

thermal field enveloping the dendrite will interact with the upper boundary at a distance

that is relatively far behind the tip. In particular, the thickness of the thermal boundary

layer near the tip remains unaffected by this interaction. However, as δ is decreased, this
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thickness can grow quite rapidly. We illustrate this effect by examining the temperature

profile in the x-z plane, as shown in Fig. 2.4. It is evident that the temperature contours

are more spread out in Fig. 2.4(b) where δ = 8, compared to those in 2.4(a), where

δ = 64. The increased boundary layer thickness, decreases the thermal gradient into

the liquid at the liquid-solid interface, which in turn retards the growth rate as a direct

consequence of the Stefan condition. Due to the zero flux boundary condition on the

plane z = δ, further reduction in δ makes heat transfer in the vertical direction almost

completely ineffective. Tip curvature in the x−z plane vanishes and the dendrite switches

morphology from 3-D to 2-D. We note that once the dendrite goes 2-D, ρtip = ρxy.

(a) δ = 16, 3-D dendrite (b) δ = 4, 2-D dendrite

Figure 2.5: 3-D to 2-D dendritic transition at small δ. The shaded surface is the dendrite
(φ = 0). For these runs ∆ = 0.55 and U∞ = 0.

An interesting result here is the 3-D to 2-D transition. We have performed tests with

finer meshes (more elements in the vertical direction) to ensure that it is not simply an

artifact of poor grid resolution. We believe this phenomenon to be a consequence of the

∇φ ·n = 0 boundary condition on the upper boundary. The only way for the solid-liquid

interface to match this boundary condition at small δ is for the curvature in the x-z plane

to vanish. This is illustrated in Fig. 2.5.

It is also interesting to observe the effect that melt flow has on the interaction between

the tip and the boundary. We find that melt convection reduces the value of δ where

the tip velocity deviates from its nominal value. A straightforward explanation for this
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effect is that advection increases the rate of heat transport from the upstream dendrite

arm. This increases the growth rate (hence Vtip), while compressing the boundary layer,

whose thickness scales as D/Vtip. Thus the dendrite remains three dimensional for a

smaller value of δ than was previously possible, with convection absent. A more negative

value of the undercooling also has qualitatively the same effect on the strength of the tip-

boundary interaction, since Vtip again increases in this case. Fig. 2.6 summarizes these

observations succinctly. Both melt convection and larger undercooling, cause points on

respective curves whereupon interaction effects become important, to shift to the left.
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Figure 2.6: Tip velocity as a function of δ for different undercooling and flow conditions.
A weak power law relationship emerges between the δ below which interaction effects are
strong, and diffusion length D/Vtip.

Using a graph such as Fig. 2.6, one can derive a semi-quantitative estimate as to

when the operating state becomes affected by the finite height of the container. If one

assumes that the tip velocity at δ = 128 for each case is approximately the tip velocity

of a dendrite growing under identical conditions in an infinite domain, it is possible to
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quantify the influence on the operating state in terms of a percentage deviation in the

true tip velocity from this nominal value. If, for example, we consider deviations of the

order of 3% to constitute a change in the operating state, a least squares fit to these

cut-off points on the respective curves in Fig. 2.6 yields the criterion

δ ≥ 0.7912

(
D

Vtip

)0.9242

. (2.3)

If this condition is not satisfied, then it is likely that the operating state is being influenced

by the boundary. A simple condition such as the one in Eqn. (2.3) may be used as a rule

of thumb in determining if experimental studies on free dendrite growth, in geometries

similar to ours, are free from contamination. In fact, one may have intuitively guessed

a condition of the type δ ≥ α (D/Vtip) (where α is some constant) to apply based on

physical arguments alone, and Eqn. (2.3) supports this conjecture.

2.3.2 Non-wetting boundary conditions

To underscore the importance of phase-field boundary conditions in selecting a particular

growth state, we present results from another simulation with ∆ = 0.55, U∞ = 0 and

δ = 4. This time we impose φ = −1 on the upper boundary, which corresponds to a

physical situation where the solidifying material is not allowed to wet the surface. A

three dimensional surface plot of a steadily growing dendrite is shown for this case in

Fig. 2.7.

As expected, the dendrite does not adhere to the top surface at all. We conclude that

this will be the case for any δ if Dirichlet conditions of this nature are imposed. It is

evident then, that the 3D-2D transition that we saw previously is a strong function of

the boundary conditions imposed on the phase-field. It would be interesting to conduct

a detailed investigation of the effect of different boundary conditions on the tip in 3-D.

The interested reader is referred to the article by Sémoroz et al. [70], which discusses the

influence of different contact angles on a dendrite’s tip velocity, in two-dimensional thin

film solidification.
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Figure 2.7: Three dimensional dendritic growth for ∆ = 0.55, U∞ = 0 and δ = 4, with
φ = −1 on the upper boundary. Note that the dendrite does not wet this surface.

2.4 Effect of small δ in a directionally solidified alloy

In this section, we describe results from our simulations on a directionally solidified alloy,

and make comparisons with the experimental data of Liu et al. [66]. These simulations

were conducted for the range of pulling speeds and channel depths shown in 2.2. The

depth δ was varied from 64 to 4, and in each case, the simulation was continued until the

interface became stationary in the moving frame. From the stable array of cells formed,

a few were chosen as representative of the array, their tip radii were extracted in the

two principal planes using a least squares quadratic polynomial fit, and the mean tip

radius of each cell was computed using Eqn. (2.2). An average over these values was

taken to be the mean tip radius of the interface. We note that this process required some

approximation, especially in cases where we found steadily growing cells of disparate sizes

that would have made such averaging inappropriate. In such cases, our usual approach

was to choose cells farthest from the boundaries, and where even this failed to provide

clear-cut choices, smaller cells were chosen because of their lesser likelihood to split. In

a majority of our runs however, the choices were unambiguous. For certain values of δ

we found interface evolution to occur in a way that cells would creep on either the top

or bottom surfaces. In those cases, the phase-field boundary conditions on the respective
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surfaces allowed us to treat them as symmetry planes for the purpose of calculating tip

curvature.

Table 2.2: Alloy simulations.

Case Vp δ

1 0.8 64,32,16,8,4

2 1.0 64,32,16,8,4

3 1.5 64,32,16,8,4

4 2.0 64,32,16,8,4

2.4.1 Selection of simulation parameters

The following values for the lateral dimensions were seen to yield satisfactory results.

Lx = Ly = 256 when δ ≤ 16, and Lx = 256, Ly = 128, otherwise. We chose our

simulation parameters to keep computations tractable. It took about 90 hours of CPU

time on a 3.1 GHz processor to simulate a typical directional solidification experiment for

a chosen set of phase-field parameters on a mesh with about 170 000 elements (δ = 64).

The interface required about 250 dimensionless time units to reach steady state in this

case. As noted earlier, the use of a moving reference frame allowed us to cut substantial

costs associated with the need for larger domains to prevent the diffusion field from

running out of the domain.

We did not attempt to model a real material in this study as this caused our simu-

lations to become considerably more expensive. To illustrate this, consider a SCN-Salol

system having the properties listed in Table 2.3. The conditions in a directional solidi-

fication experiment are completely described by the following two dimensionless control

parameters, M = d0/lT = 6.66×10−5 and S = Vpd0/D = 2.04×10−4, where d0 is the cap-

illary length, lT is the thermal length and D is the solute diffusivity in the liquid phase;

for a pulling velocity of Vp = 5µm/s. To get converged results with the phase-field model

we require that the solution become independent of the parameter ε = W0/d0. After
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ensuring vanishing interface kinetics, the following relationships involving the phase-field

parameters are realized: Dτ0/W
2
0 = a1a2ε, Vpτ0/W0 = Sa1a2ε

2, and lT/W0 = 1/(εM).

Here, a1 = 0.8839 and a2 = 0.6267, are constants that arise in the phase-field formula-

tion. [68]

Table 2.3: Physical properties of a SCN-Salol alloy system.

|m| (Liquidus slope) 0.7 K/wt. %

D (Diffusion coefficient) 8× 10−10 m2/s

Γ (Gibbs-Thomson coefficient) 0.64× 10−7 K m

k (Partition coefficient) 0.2

G (Thermal gradient) 4 K/mm

d0 (Capillary length) 3.265× 10−8 m

lT (Thermal length) 4.9× 10−4 m

Echebarria et al. [68] have shown that mesh converged results can be obtained with

ε as large as 50. Setting ε = 50, gives us an under-determined system of three equations

with the five unknowns D, Vp, lT , τ0 and W0. Making arbitrary choices for two of

these parameters by setting W0 = τ0 = 1, we obtain D = 27.7, Vp = 0.2825, and

lT = 300. A large value of lT implies Lx needs to be very large at steady state, even in a

moving reference frame, to contain the diffusion field. To avoid this, if we choose a more

tractable value for lT (say 100), and fix τ0 = 1, we now get W0 = 0.3333, D = 3.077

and Vp = 0.094. Thus, the smallest element in our mesh needs to be at the very least

∆x = 0.3333. Stability considerations now place a severe restriction on the size of the

time step (∆t) needed for solving the phase-field equations by the Forward-Euler method,

as ∆t ∼ ∆x2 . Since it is clearly impossible to choose both lT and W0 independently,

calculations involving real materials are typically more expensive.

We choose instead a more computationally favorable set of dimensionless parameters

M and S for our study. To achieve our primary objective, which is to study the effect of

δ on interface morphology, we anticipate, and in the following paragraphs demonstrate,

that this hypothetical treatment will not obscure any physics. The parameters used in
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our study are: τ0 = W0 = 1, D = 20, k = 0.8, ε4 = 0.05, and lT = |m|(1−k)C∞/kG = 50;

where m is the liquidus slope, G is the imposed thermal gradient, and C∞ is the far field

solute concentration. The condition for negligible interface kinetics gives d0 = 0.0277 and

therefore ε = 36.1, which should is sufficiently small to ensure convergence. The size of

the smallest element in our adaptive mesh is ∆x = 1, when δ ≥ 8, and ∆x = 0.5, when

δ = 4, while ∆t = 0.005 is the size of the time-step. For these parameter choices, the

dimensionless control parameters work out to be M = 5.54× 10−4 and S ∼ 1.385× 10−3.

2.4.2 Interface morphology and comparison with experiments

In order to test the model, we initially performed a set of runs to verify the Mullins

and Sekerka stability limit of a planar interface [71], perturbed by small sinusoidal per-

turbations. We found that the model captures the stability spectrum correctly. Having

convinced ourselves that this fundamental requirement was met, we proceeded with our

study. Comparisons with the experimental data in this section offer a better validation

of the model.

Fig. 2.8 shows the computed interface morphology at different values of δ. For

small values of pulling speed (Vp ≤ 2), the steady state consists of a stationary array

of cells as in Fig. 2.8. However, unlike the cells observed in experiments, that are

usually characterized by blunt tips, these appear to have sharper and better defined

tips, giving the impression of dendrites. It is conceivable that ignoring thermal noise in

our calculations is responsible for the absence of side-branches on these structures, that

are typical of dendrites. At large values of δ, we find that the tip radii of these cells,

measured on the two principal planes, are almost identical. However, as δ decreases,

the in plane radii diverge from one another. In particular, the radius in the x-z plane

becomes significantly smaller, and cross sections of the cells look elliptic. At δ = 4, for

small pulling speeds (Vp ≤ 1), we get a two-dimensional interface (Fig. 2.8(c)). The

inter-cellular spacing also increases as δ is decreased.

As pulling velocity is increased, the morphology becomes finer, with sharper and

more tightly packed cells. This behavior is consistent with that seen of both cellular and
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dendritic arrays in directional solidification experiments [65, 66, 72], where the primary

spacing decreases with Vp.

For the set of phase-field parameters we have chosen, if Vp ≥ 2.5, the interface does

not reach steady state in a reasonable amount of CPU time, due to repeated tip-splitting

of the cells. Splitting is initiated by oscillations that appear at the tip and propagate

downward along the trunk of the cell. Cell spacing and shapes change very rapidly in this

regime. We did not continue these runs any further to check if steady state is reached

eventually. Instead, we set Vp = 2.0 as an upper bound on the pulling velocity, below

which a stationary state was always the outcome. Fortunately, this still left us with

sufficient sample space to conduct our study and make effective comparisons.

To enable plotting of our results on the same graph with the experimental data of Liu

et al., which corresponds to a SCN - 0.7 % wt. Salol system (properties in Table 2.3), we

non-dimensionalized the axes as follows. The abscissa is the pulling speed (i.e. the tip

velocity at steady state) Vtip, scaled by a characteristic velocity D/d0k, while the ordinate

is the tip radius ρtip, scaled by the diffusion length D/Vtip. One may appreciate the fact

that the abscissa is in fact the dimensionless parameter that we had earlier denoted

by S, multiplied by k. Fig. 2.9 shows a comparison of the data. The open symbols

correspond to the experimental data of Liu et al., while the solid symbols correspond to

our calculations. A comparison between our data and theirs holds up surprisingly well.

Of special significance are the following two observations: 1) Although we conducted

our simulations at values of S and M that were each about an order of magnitude

off theirs, the two sets of data correlate very well, i.e. appear to collapse on parallel

curves that are not significantly different by way of intercept. This tells us that our

choices of parameters for scaling the axes are appropriate. 2) Since their experimental

data correspond to dendritic arrays, the cell-like structures we have computed are likely

branchless dendrites.

In their experiments, Liu et al. note that tip radius data for dendritic arrays agree

quite nicely with a relationship of the form ρ2
tipVtip = C, where C is a constant dependent

on d0, k and D, as postulated by theoretical models of constrained growth [63, 64].
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(a) δ = 64, Vp = 1.5, three-dimensional cells

(b) δ = 16, Vp = 1.5, three-dimensional cells

(c) δ = 4, Vp = 0.8, two-dimensional cells

Figure 2.8: Interface morphology in a directionally solidified alloy. At steady state,
stable arrays of three-dimensional cells appear. Note that at δ = 4, the array comprises
of two-dimensional cells.
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Figure 2.9: Comparison of binary alloy simulations with the phase-field model, and
experimental data of Liu et al. [66]. Solid symbols correspond to the phase-field model
and the open symbols are experimental data. The line denotes a relationship of the
form ρ2

tipVtip = C between tip radius and velocity, where C can be expressed in terms of
process parameters.
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However, when δ is of the order of inter-dendritic spacing λ1, this agreement deteriorates.

This is evident in Fig. 2.9, where the ρ2
tipVtip = C line is shown as a guide to the eye.

The open circles, which are data for δ = 12.5 µm deviate in both slope and intercept

from this line, which passes through the rest of their data, indicating a breakdown in the

relationship. We observe similar trends in our data, viz., the line ρ2
tipVtip = C fits our

data at δ = 32 and 64 reasonably well, but as δ decreases from 16 to 4, this agreement

deteriorates.

As in the numerical experiments with the pure material, we find that decreasing δ has

a pronounced effect on interface morphology. Dendritic arrays seen in experiments have a

certain structure/periodicity to them, that arises from underlying crystalline symmetries.

For example, in our simulations we observe that the cells constitute a hexagonal array.

When δ is large, away from the boundaries the diffusion field surrounding each cell

tip obeys this symmetry, and the optimal λ1 is selected. As δ decreases however, the

diffusion field becomes increasingly asymmetric due to interaction with the boundaries at

x = 0 and x = δ. In particular, solute rejection decreases in the vertical plane x-z, while

increasing in the horizontal plane x-y. Increased solute accumulation between cells in x-y,

contributes to an increase in λ1. However, since Vtip is fixed by the pulling speed, and

a certain rate of solute rejection needs to be maintained, the tips tend to grow sharper

as λ1 increases. It is precisely this effect that causes the operating state to deviate from

theoretical predictions.

To check for what value of δ our results deviate from theory, let us assume the

steadily growing array at δ = 64, Vp = 1.5 (Fig. 2.8(a)) to be one in which cells close

to the plane z = 32 are “free” from boundary effects. We estimate the cell spacing in

that plane to be λf
1 ≈ 18, where the superscript ‘f’ denotes “free”. When δ = 16 and

Vp = 1.5 (Fig. 2.8(b)), we notice that our data points start departing from the theoretical

prediction, viz. we see a relationship of the type ρa
tipVtip = C, where a > 2. This suggests

that agreement with theory deteriorates as δ ∼ λf
1 , which is what Liu et al. concluded

from their experiments. A more precise form of the above criterion can be obtained my

making a careful study of λ1 as a function of δ, for different Vp, and obtaining a criterion
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based on a least squares fit to the deviation points (as we did with the pure material).

Increasing pulling velocity suppresses tip-boundary interaction by reducing the thickness

of the diffusion boundary layer D/Vtip, similar to the effect of melt convection in pure

materials, and should induce a leftward shift in the curves.

2.5 Concluding remarks

We have investigated the role of confinement on solidification in both pure materials and

binary alloys. Our simulations show that, for equi-axed growth in a pure material, the

dendrite’s operating state is affected when the container dimension δ, approaches the

scale of the diffusion field D/Vtip near the tip. For directionally solidified binary alloys,

confinement effects become important when δ is of the order of the primary dendrite

spacing λ1. Where applicable, one needs to consider the influence of these interactions

when comparing experimental data with theoretical models that do not account for con-

finement effects.

It is notable that we were able to make meaningful comparisons with real experimental

results using the phase-field model for the alloy. In particular, the agreement obtained in

the trends shown by the dendrite tips for different δ and Vp is very encouraging, and is a

testament to the power of phase-field modeling. Some ambiguity remains in classifying

the computed microstructure as cells or dendrites. Since our results correlated well with

dendrite data, we would like to think of them as dendrites. Perhaps, incorporating

random fluctuations in the phase-field model will resolve this issue. We also found tip-

splitting inducing oscillations above certain values of the pulling speed. We are unsure

as to whether this instability has a physical meaning. In experiments, it is seen that

increasing Vp causes a decrease in λ1 and ρtip for a steadily growing interface, and our

simulations capture this effect, viz. as Vp increases the cells split in a manner that

produces a more stable configuration with a smaller λ1 and ρtip. However, when Vp ≥

2.5, it appears that an optimal configuration is not possible in our system, given the

constraints on its size and boundary conditions. We speculate that larger domains should
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allow for more stable cell configurations at higher pulling speeds. This issue too needs

further investigation.

We observed a change in dimensionality of the liquid-solid interface for certain values

of δ and Vtip, when zero flux boundary conditions were imposed on the phase-field variable.

There is some experimental evidence of this phenomenon in the literature. Liu and

Kirkaldy [72] reported a 2-D to 3-D transition in their experiments on a SCN-Salol

mixture. In their directional solidification experiments in a cell of fixed height (δ =

28µm), they found this transition to occur at a driving velocity of 10.8 µm/sec. At

a lower driving velocity of 7.6 µm/sec, the dendrites looked two dimensional. In our

analysis of directional solidification, we found at δ = 4, the cells underwent a 2-D to 3-D

transition as the pulling velocity was changed from 1 to 1.5. The significance of this result

is that through an appropriate selection of δ and Vp in experiments, it should be possible

to obtain almost two dimensional dendritic arrays in materials that favor wetting. Such

experiments will permit more favorable comparisons with 2-D dendrite growth theories,

since finite boundary effects along the z axis cease to impact the growth.
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Chapter 3

Modeling Polycrystals with

Phase-Fields

3.1 Limitations of present day phase-field models

It is well established that phase-field modeling can be used to provide an accurate contin-

uum description of processing phenomena involving multiple material phases, and along

with adaptive mesh refinement, constitutes a key component of the materials modeling

toolbox. The approach has been successfully extended beyond solidification to study a

host of other phenomena, including crack propagation and fracture mechanics in single

crystals [26, 73, 74], wave propagation in biological membranes [75], and single crystal

dislocation dynamics [76, 77]. The reader is referred to the topical review by Chen [78]

for a more comprehensive list of the applications of phase-field modeling.

There is a clear limitation, however. Realistic scenarios in metals processing—such

as equi-axed dendrites with different orientations evolving and interacting with one an-

other via their thermal and solute diffusion fields during a casting process, or a sheet of

aluminum undergoing plastic deformation during hot rolling, typically involve polycrys-

talline systems, which are considerably more difficult to model. There are three principal

concerns. (a) How does one handle multiple grain orientations? (b) What happens at
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an inter-granular interface? (c) How can elastic and plastic effects be incorporated when

modeling deformation processing?

Even in the relatively simple case of solidification, where elastic/plastic interactions

are usually neglected, modeling of polycrystalline systems has met with limited success.

The first serious attempt was made by Gandin and Rappaz [79], who developed a cellular

automaton model for polycrystalline dendritic growth. In their method, the orientation

and evolution of the shape of the growing grains was tracked numerically, allowing for a

prediction of the final grain structure in the solid. However, the dendrite growth veloc-

ities were calculated based on some local average of the supercooling, without actually

resolving the thermal/concentration field at the solid/liquid interface. Consequently, the

cellular automaton model did not permit a detailed study of grain interactions.

Steinbach et al. [80] later proposed a model for multi-dendritic equiaxed growth based

on the phase-field method, in which dendrites were approximated by envelopes evolved

according to a Hamilton-Jacobi equation. The growth velocity of the envelope was com-

puted by combining the analytical solution obtained by Cantor and Vogel [81] based on

a stagnant thermal boundary layer approximation around paraboloid tips, and a selec-

tion criterion [64]. In this manner, they were able to model the evolution of up to 14

interacting dendrite grains in 3-D. This approach is far from general however, in that it

depends on the availability of an analytical solution, and that its accuracy is sensitively

bound to ad hoc model parameters, such as, the thickness of the thermal boundary layer.

Further, it requires one to keep track of individual crystal orientations and coordinates,

which to an extent limits the number of dendrites that can be simulated. In particular,

neither of these approaches satisfactorily address issues (b) and (c).

Only recently have satisfactory phase-field models of polycrystalline solidification

[16, 20, 21] emerged. In these models, for example the 2-D model proposed by War-

ren et al. [16], the free energy is a function of two spatially varying fields, one describing

the state of crystalline order (the usual phase-field), and the other describing the orienta-

tion of a crystal with respect to a laboratory reference frame. Thus evolution equations

for each of these fields can be obtained, by requiring that the free energy of the system
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decrease in time. This model can correctly predict equi-axed dendritic growth, subse-

quent impingement and coalescence of dendrites, the formation of grain boundaries, and

coarsening behavior. In fact, the results are very much reminiscent of microstructures

observed in real materials. Notwithstanding some of the numerical subtleties in the im-

plementation of this model, and complications in its extension to three dimensions, one

can claim that this is by far the most complete model of solidification. Unfortunately, it

still does not naturally incorporate elastic and plastic effects. For example, one cannot

envision subjecting a polycrystalline system of grains evolved by this model to any kind

of external loading, as there is no concept of stiffness.

Clearly, the answer is to inject elastic behavior into the phase-fields. Some groups

have attempted to do this explicitly [22–26], by augmenting the free energy with a term

for the elastic strain energy, and coupling displacement fields with phase-fields. While the

latter models are more appealing for mesoscopic environments because of the uniformity

of the phase-fields, and the explicit access provided to the stresses and strains, they lead

to very complicated continuum models [24, 82]. Yet, a coupling between these kinds of

models, and a model for polycrystalline materials, such as the one by Warren [16], could

be the only answer if we insist on uniform phase-fields!

One realizes however, that if the goal is to develop a universal model that can capture

everything from polycrystal evolution to dislocation dynamics, present day phase-field

models are much too coarse-grained to be useful. The preservation of length scales and

structures, even smaller than those captured by these models is essential! We will now

present detailed description of a continuum model, recently proposed by Elder et al.

[27,28], which can describe elastic and plastic deformation of polycrystalline systems, as

well as the formation of such systems by non-equilibrium processes such as solidification,

using a single phase-field.
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3.2 The phase-field crystal (PFC) model

The phase-field crystal (PFC) model [27,28] is founded on the critical observation that a

free energy functional that is minimized by a periodic field natively includes elastic energy,

anisotropy and symmetry properties of that field. We will provide adequate support for

this claim in the following paragraphs. Thus the model incorporates all properties of a

crystal that are determined by symmetry, for example, the relationship between elastic

constants, location and number of dislocations, etc. Hence, it is quite different from

other models based on uniform phase fields [22–26], where such periodic features need

to be introduced explicitly. Further, unlike these other models, the PFC model yields

(at least structurally) a relatively simple and well-behaved PDE for the evolution of the

time-averaged1 density of the system, giving it access to phenomena occurring on an

atomic length scale, thereby enabling it to capture formation and interaction of a large

number of topological defects, events which are typically obscured in classical continuum

mechanics based models; but on diffusive time scales, an unimaginable situation even

with state-of-the-art molecular dynamics simulations.

For pure materials, a simple free energy functional G{ρ( ~X)} that yields a triangular

lattice in equilibrium, in two dimensions, is:

G{ρ( ~X)} =

∫
Ω

d ~X

[{
λ
ρ

2

(
q2
o +∇2

)2
ρ
}

+

{
α∆T

ρ2

2
+ u

ρ4

4

}]
, (3.1)

where ρ( ~X) is the time-averaged density of atoms, ∆T (< 0) denotes the temperature

difference from some reference temperature (say the melting point), the subscript Ω

denotes an area integral, and α, λ, qo and u can be related to material properties [27,28].

The operator λ (q2
o +∇2) is obtained by fitting an algebraic equation to the first peak

in the (inverse) structure factor S(q)−1 for liquid Argon. The free energy in Eq. (3.1) is

the sum of a double-well potential term (in second curly brackets), which guarantees two

1By time-averaged, we mean an average of the field variable over a time scale that is much larger
than the vibrational period of atoms, typically of the order of 10−15s, but much smaller compared to the
time scale for diffusive processes in the system, such as the viscous glide of dislocations, which occurs
over a time scale of the order of 10−6s.
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phases (liquid and solid), and a gradient terms (in first curly brackets), which penalizes

deviations from periodicity.

To demonstrate how elasticity is a natural consequence of a free energy of the form

G, let us suppose a 1-D case where ρ(x) ≈ A sin(qx) + ρ0. Here A is the amplitude of

the periodic density variations, q = 2π/a is the wave-number, a is the wave-length, and

ρ0 is some constant. Substituting in Eq. (3.1) and integrating over one wave-length, we

obtain the free energy density as

F(A, q) =
G{ρ(x)}

2π/q
=

3uA4

32
+

1

4
ρ2

0

(
uρ2

0 + 2α∆T + 2λq4
0

)
+

1

4
A2
(
3uρ2

0 + α∆T + λ(q2 − q2
0)

2
)
. (3.2)

The equilibrium values of A and q, which minimize the above free energy density are

qeq = q0

Aeq = ±2

√
−ρ2

0 −
α∆T + λ (q2 − q2

0)
2

3u

= ±2

√
−ρ2

0 −
α∆T

3u
. (3.3)

Expanding Eq. (3.2) in a Taylor’s series about Aeq and qeq (q0) we get

F(A, q) = F(Aeq, q0) + λ(Aeqq0)
2(q − q0)

2 + . . .

= F(Aeq, q0) + λ(Aeqq0q)
2

(
a− a0

a0

)2

+ . . . (3.4)

which for small values of the strain, ε = (a − a0)/a0, reduces to the energy density of a

stretched spring

∆F ≈ 1

2
K(ε)ε2 +O(ε3), (3.5)

where the non-linear spring constant K(ε) = 2λ (4π2Aeq/a
2
0(1 + ε))

2
, also shows a tem-

perature dependence via Aeq. Linearizing K about ε = 0, we recover the linear elastic
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stress response for small strains

σ =
∂∆F
∂ε

= K0ε, (3.6)

whereK0 = 2λ (4π2Aeq/a
2
0)

2
. The same result can be demonstrated in 2-D for a triangular

lattice that minimizes the free energy in Eq. (3.1). For details of this calculation, we refer

the reader to the original paper by Elder and Grant [28], who have also worked out the

elastic constants for this 2-D model in terms of material parameters.

Scaling the variables in Eq. (3.1) as ~x ≡ ~Xqo, ψ ≡ ρ
√
u/λq4

o , r ≡ a∆T/λq4
o , t ≡ Γλq6

oτ

and F ≡ Fu/λ2q6
o , the dimensionless free energy becomes

F{ψ(~x)} =

∫
Ω

[
ψ

2

{
r + (1 +∇2)2

}
ψ +

ψ4

4

]
dS. (3.7)

Under the constraint of constant area, the dynamics of the density field (phase-field)

ψ [83] are described by the following sixth order equation of motion, derived by observing

continuity.

∂ψ

∂t
= ∇2 δF

δψ
(3.8)

⇒ ∂ψ

∂t
= ∇2

[{
r + (1 +∇2)2

}
ψ + ψ3

]
. (3.9)

Eq. (3.9) is the PFC equation. Additionally, if the effect of thermal fluctuations needs

to be modeled, a conserved Langevin noise term ζ having a Gaussian distribution with

zero mean and required by the fluctuation-dissipation theorem [84] to have a variance

〈ζ(~r1, τ1)ζ(~r2, τ2)〉 = −D~∇2δ (~r1 − ~r2) δ (τ1 − τ2), with D = ukBTq
−2
0 /λ2, can be added

to the right hand side of Eq. (3.9).

We will now show that the dynamics of Eq. (3.8) work to diminish F in time. Because

the mass of the system needs to be conserved, we must have

∫
Ω

ψ dS = constant. (3.10)
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Differentiating both sides of the above equation with respect to time, we have

∫
Ω

∂ψ

∂t
dS = 0. (3.11)

Using Eq. (3.8) we then get, ∫
Ω

∇2 δF
δψ

dS = 0, (3.12)

which upon applying the divergence theorem yields the following line integral,

∫
∂Ω

∇δF
δψ

· n dl = 0. (3.13)

Eq. (3.13) needs to be satisfied by suitably constraining ψ along the boundary ∂Ω, for

example via the Neumann condition

∇δF
δψ

· n
∣∣∣∣
∂Ω

= 0. (3.14)

Let us now differentiate both sides of Eq. (3.7) with respect to t. Then,

dF
dt

=

∫
Ω

δF
δψ

∂ψ

∂t
dS

⇒ dF
dt

=

∫
Ω

δF
δψ
∇2 δF

δψ
dS (3.15)

where we have again made use of Eq. (3.8). Integrating Eq. (3.15) by parts, we get

dF
dt

=

∫
∂Ω

δF
δψ
∇δF
δψ

· n dl −
∫

Ω

∣∣∣∣∇δFδψ
∣∣∣∣2 dS. (3.16)

Using Eq. (3.14) we then have

dF
dt

= −
∫

Ω

∣∣∣∣∇δFδψ
∣∣∣∣2 dS < 0. (3.17)

Therefore F must decrease in time, and Eq. (3.9) is purely dissipative.

37



An interesting feature of Eq. (3.9) is that it also permits constant solutions. In fact, in

2-D the free energy in Eq. (3.7) is minimized by three distinct solutions in a phase space

which is parameterized by a mean field density ψ̄, and the dimensionless undercooling r.

(a) A constant liquid phase

ψc = ψ̄, (3.18)

(b) a striped solid phase, approximated by

ψs = Aeik·x + A∗e−ik·x + ψ̄, (3.19)

where A and A∗ are the complex amplitude of the stripe and its conjugate respectively,

k = k1
~i + k2

~j is a wave-vector with magnitude k0 =
√
k2

1 + k2
2 = 1, x = x~i + y~j is the

position vector, and~i, ~j are unit vectors along the x and y axes, and

(c) a triangular solid phase, approximated by

ψt =
3∑

j=1

Aje
ikj ·x +

3∑
j=1

A∗
je
−ikj ·x + ψ̄, (3.20)

where

k1 = k0(−~i
√

3/2−~j/2)

k2 = k0
~j

k3 = k0(~i
√

3/2−~j/2) (3.21)

are the reciprocal lattice vectors, and k0 = 1.

Based on these solutions, which assume only one dominant frequency mode (as op-

posed to a full Fourier series), and the corresponding value of the free energy, a phase

diagram in r− ψ̄ space can be approximated analytically, using the Maxwell construction

theorem [28,85] to identify regions with coexisting phases. This phase diagram is shown

in Fig. 3.1. A part of it is also mapped to the equilibrium phase diagram of pure Argon

(see inset), which shows that the model features can make contact with a real material.
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Figure 3.1: Phase diagram for the PFC model.
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In this thesis, we will be primarily concerned with problems involving the emergence of

the triangular phase from the constant phase.

Before concluding this section, it is appropriate to reiterate that Eq. (3.9) states

that the density field ψ relaxes by diffusion alone, and while this is sufficient to study

a variety of interesting phenomena such as solidification, grain growth, liquid phase

epitaxial growth, and reconstructive phase transitions [28], and also viscous dynamics

of dislocations under uniform stress distributions [86], it precludes the study of phase

transformation phenomena in the presence of complex mechanical deformations, which

require a suitable separation of time scales between phase transformation kinetics and the

much more rapid (instantaneous) elastic relaxation. Stefanovic et al. [87] have recently

proposed a modified phase-field crystal (MPFC) model that possesses such a separation

of scales,
∂2ψ

∂t2
+ β

∂ψ

∂t
= γ∇2 δF

δψ
, (3.22)

where β and γ are phenomenological constants. The first term in this damped wave

equation is responsible for the fast dynamics2 that follow the application of a load, say,

but which are still much slower than the time scale in molecular dynamics. Therefore

the MPFC model is still sufficiently coarse-grained in time. At longer times from the

point of load application however, Eq. (3.22) reduces to Eq. (3.9), and the dynamics are

mainly diffusive.

All the methods and simulations presented in the subsequent chapters of this thesis

are built only on the PFC model in Eq. (3.9), but can be readily extended to the MPFC

model.

3.3 Applications and limitations

In this section we will present a gallery of results obtained from the PFC model, and also

address its main limitation.

2This term captures sound wave propagation, i.e. phonon modes, essential for modeling brittle fracture
in materials.
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A variety of interesting materials processing phenomena can be simulated by evolving

Eq. (3.9) for different values of the control parameters r and ψ̄. For example, Fig. 3.2

shows heterogeneous nucleation, crystal growth, impingement, and the formation of grain

boundaries, in a 2-D film evolved from three randomly nucleated seeds (finite amplitude

random noise) with model parameters r = −0.25 and ψ̄ = 0.285. The centers of the black

“dots” are the time averaged positions of atoms, and each “dot” can be loosely regarded

as an atom3. The imperfections characterizing the grain boundaries are dislocations.

Fig. 3.3, taken from [28], shows grain growth in a 2-D polycrystalline film evolved over

a very long time with model parameters identical to those in the previous simulation. The

field plotted is the local free energy. The simulation starts with 50 initial seeds. Figs. 3.3b

and 3.3c show a wide distribution of large and small angle grain boundaries, each with

a different density of dislocations, appearing as black dots in the figure. Comparison of

Fig. 3.3c with later configurations appears to suggest that small angle grain boundaries

eventually disappear by dislocation annihilation and grain rotation.

Fig. 3.4, taken from [28], shows crack propagation by ductile fracture in a single

crystal. The model parameters were, r = −1 and ψ̄ = 0.49. The initial condition was a

defect-free crystal in equilibrium, with no strain in the x direction, but a 10% strain in

the y direction. A small piece of material was cut out of this configuration and replaced

with coexisting liquid, ψ̄ = 0.79. This region serves as the nucleus for a crack, which

under the applied strain, propagates through the crystal.

Finally, Fig. 3.5, also taken from [28], shows liquid phase epitaxial growth. This is

a technologically important process that is used to grow thin films on substrates. The

lattice mismatch between the material of the film and the substrate on which it grows

induces a stress, which the film relieves by emitting misfit dislocations at a certain height

above the substrate. These dislocations then climb downwards to the film/substrate

interface causing delamination. All these dynamics are nicely captured by the PFC

model, and can be seen in Fig. 3.5. We will re-visit this problem in a later chapter.

3Because of the time-averaging, these dots are not instantaneous atomic positions. Instead, they
represent an extremely high probability of finding an atom at that location.
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(a) t = 300 (b) t = 450

(c) t = 750

Figure 3.2: Heterogeneous nucleation, crystal growth, and formation of grain bound-
aries in a 2-D film from three randomly oriented seeds, as simulated by the PFC model.
The field plotted is the density variable ψ(x, t), and t indicates the time into the simu-
lation. Note that the pattern is periodic inside each grain, with each of the black dots
representing an “atom”.

42



Figure 3.3: Grain growth with the PFC model [28]. The field plotted is the local free
energy of the system. (a), (b), (c), (d), (e), and (f) correspond to times 50, 200, 1000,
3000, 15 000, and 50 000, respectively.
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Figure 3.4: Ductile fracture with the PFC model [28]. The notch is a coexisting liquid
phase in a perfect crystal which has reached equilibrium, while subjected to a uniaxial
10% strain in the y direction. The field plotted is the local free energy of the system.
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Figure 3.5: Epitaxial thin film growth with the PFC model [28]. The field plotted is
the local free energy of the system. The black dots are misfit dislocations.
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All these examples clearly illustrate the capabilities of the PFC model. However, there

is one obvious limitation that prevents it from having true multiscale capability. The

PFC equation is basically a nanoscopic order parameter equation (OPE) that describes

phenomena at atomic length scales, and hence cannot be expected to adequately bridge

the disparate nano- and micro- or meso- length scales, without parallel processing. For

example, for the choice of simulation parameters that produced Fig. 3.2, the lattice

spacing of the periodic triangular phase is at ≈ 7.3. This implies that the grid spacing

∆x required for numerical solution of Eq.(3.9) has to satisfy ∆x < at. The particular

choice of ∆x = at/8 provides adequate resolution, ensuring a minimum of 9 × 9 grid

points per “atom”. In a physical system, the periodicity (interatomic distance) is of the

order of angstroms. If one were to simulate a system a few 100 microns in size, such as

the problem of interaction between a few equiaxed dendrites, it would require about a

million degrees of freedom per dimension on a uniform computational mesh! Thus, despite

being able to resolve phenomena over diffusive time scales the PFC model loses some of

its effectiveness due to the super fine resolution that is required, making practical length

scales in 2-D intractable without parallel computing. More importantly, even microscopic

systems in 3-D are impossible to simulate. The stymying factor is that the periodic lattice

precludes the use of effective adaptive mesh refinement algorithms, at least in real space.

Some groups are presently investigating the possibility of implementing such algorithms

in Fourier space, given the periodic nature of the solution.

In any case, there is the need for a computationally efficient formulation that will

allow us to simulate larger systems, without compromising the fundamental properties

that make the PFC model so powerful, viz. its ability to handle multiply oriented grains,

its ability to predict correctly the formation and interaction of defects, and the elasticity

that is naturally embedded in the model. We propose an idea for such a formulation in

the following section.
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(a) ψ contours in a polycrystal

 

 

ψ
|A|
φ

x

(b) Defect structure

Figure 3.6: The typical structure of ψ near a defect. (b) is representative of the 1-D
variation in the fields along the black line in (a), which cuts across a grain boundary.
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3.4 Spatial coarse-graining of the PFC model

The nature of the spatial patterns generated by the PFC equation suggests a natural ap-

proach towards developing a more computationally efficient formulation. Upon inspecting

a typical polycrystalline system obtained from the PFC equation, such as Fig. 3.2, we

immediately realize that the structure of the solution remains more or less periodic inside

each grain, changing only in the vicinity of a solid/liquid interface, or a defect, or a grain

boundary, which is essentially a collection of defects. Is there some way in which this

feature of the solution can be exploited to save on computational cost?

Fig. 3.6(b) shows what the solution ψ typically looks like near a defect. Also plotted

in the figure are, the amplitude modulus |A|, and the gradient of the phase of the pattern,

φx. ψ is essentially a periodic function with a uniform amplitude, but different frequency

or phase φ, inside each grain, as a result of the difference in grain orientations. The

amplitude and phase (and phase gradient), while relatively uniform inside each grain,

show steep gradients at the defect. This suggests that if the complex amplitude A =

|A|eiφ can be made the dynamic variable instead of ψ, adaptive mesh refinement should

be possible, with the mesh in the interior of the grains, where |A| and φ are slowly

varying, comprising of coarse elements, but adequately refined near defects and grain

boundaries.

Making A the dynamic variable entails two things. Since we only have an evolution

equation for ψ, we must find a way to reliably derive an evolution equations for A. In

order to do this however, we also need to define a suitable relationship between ψ and

|A|, which on the one hand will allow us to derive these evolution equations, and on

the other hand will permit us to reconstruct ψ from solutions for the amplitude. We

will assume a simple one-mode Fourier series approximation for ψ, Eq. (3.20). The

frequency mode we will choose (k0 = 1) will be the fastest growing mode predicted by

a linear stability analysis. Combining this approximation with a renormalization group

analysis [32,88], we will derive evolution equations for A. As we will show in subsequent

chapters via quantitative comparisons, this approach works surprisingly well, and the

amplitude equation we derive faithfully mimics the PFC equation while providing much
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needed coarse-graining that improves computational efficiency even on uniform grids.

Further, we will also show how amplitude/phase equations can be used to give the PFC

model access to larger length scales, by effectively coupling them with an adaptive mesh

refinement module.

3.5 An example: Coarse-graining the Swift-Hohenberg

equation

Before moving on to the renormalization group analysis, we will provide some qualitative

evidence to support our idea that amplitude equations when derived correctly, can indeed

correctly reproduce the dynamics of the underlying OPE using the well studied example

of the Swift-Hohenberg (S-H) equation [89]. The S-H model, which has been used in the

past as a theoretical tool for studying periodic Rayleigh-Bénard convection patterns in

2-D systems (see Fig. 3.7) is given by:

∂χ

∂t
=
[
ε−

(
1 +∇2

)2]
χ− χ3, (3.23)

where χ can be related to the depth averaged velocity field, and ε is the control parameter

(reduced Rayleigh number) that produces bifurcation from the static conducting state for

values greater than a critical value εc
4. The big advantage of this model is that it has the

same stability spectrum as the Bousinessq approximation to the Navier-Stokes equations

that describes the natural convection problem, but is far easier to implement numerically,

being a 2-D model of 3-D convection. Also note that if we replace ε by −r in Eq. (3.23),

and operate on the right hand side by −∇2, we get the PFC equation. Thus the PFC

equation is a conserved form of the S-H equation, a feature that produces interesting

results when we attempt the renormalization group analysis in the next chapter.

4Note that for an infinite domain εc = 0. For finite domains, the presence of domain walls exerts a
damping influence on instabilities [90] which grow when ε ≥ εc > 0.
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Figure 3.7: Schematic diagram of Rayleigh-Bénard convection rolls (stripes) between
rectangular plates separated by a distance d, showing fluid streamlines in an ideal roll
state (taken from [40]). The temperature gradient is ∆T/d.

Gunaratne, Ouyang and Swinney [91] have derived a rotationally covariant amplitude

equation from Eq. (3.23). They assumed the one-mode approximation

χ(x, t) = A(x, t)eik·x + A(x, t)∗e−ik·x

= 2 |A(x, t)| cos (k · x + φ(x, t)) (3.24)

and obtained the amplitude equation as

∂A

∂t
= 4

(
k · ∇ − i

2
∇2

)2

A+ (ε− 3|A|2)A, (3.25)

where k = k1
~i+k2

~j is a wave-vector with magnitude k0 =
√
k2

1 + k2
2 = 1 (fastest growing

wave-number), x = x~i + y~j is the position vector, and ~i, ~j are unit vectors along the x

and y axes. This equation is valid only for small values of ε, an assumption that features

in its derivation from Eq. (3.23).

We discretize Eqs. (3.24) and (3.25) with a second order finite-difference scheme,

and evolve them using a forward Euler time discretization from the same random initial
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(a) χ, computed from Eq. (3.23). (b) χ, reconstructed from Eq. (3.24) after solving
Eq. (3.25).

Figure 3.8: Comparison of solutions obtained by solving the S-H equation (3.23) and
the amplitude equation (3.25). The overall structure of the solution, including all bends
and curves of the rolls, and defects, appear to be correctly captured by Eq. (3.25). The
agreement deteriorates near the boundaries because of the presence of an additional
length scale in the form of a boundary layer, over which rolls re-align.
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condition. The boundary conditions on φ are,

φ|∂Ω = ∂nφ|∂Ω = 0, (3.26)

where ∂n refers to the normal derivative, which, upon using Eq. (3.24) translate to the

following equivalent boundary conditions on A,

A|∂Ω = ∂nA+ iA|∂Ω = ∂nA|∂Ω = 0. (3.27)

Solving Eqs. (3.24) and (3.25), subject to Eqs. (3.26) and (3.27), yields long time solutions

for χ, which are plotted in Fig. 3.8. Fig. 3.8(b) was generated by solving for the complex

amplitude A(x, t) and recovering χ using Eq. (3.24).

The comparison holds up remarkably well in the bulk. Except for a few defects that are

annihilated by the amplitude equation, the positions of all other defects are captured quite

accurately, and the general structure and curvature of the rolls are faithfully reproduced.

The amplitude solution does deteriorate somewhat near the boundaries. As postulated by

Cross [92], and demonstrated through numerical simulations by Greenside and Coughran

[90], in addition to the basic length scale 2π/k0 = 2π of the pattern in the bulk, there is

a second competing length scale of order (ε− εc)
−1/2, known as the healing length, over

which the amplitude gradually decays to the boundary value. Over this boundary layer,

straight rolls transition to align perpendicular to the walls by mediating defects. It is

clear that a one-mode approximation cannot capture this behavior accurately5.

5We have also implemented these equations with periodic boundary conditions on both χ and A
where the respective solutions are practically indistinguishable from one another. However, periodic
conditions in the S-H model lead to defect free systems of straight parallel rolls which do not make
for very interesting comparisons. This is not the case in the PFC equation however, where periodic
conditions do not have a dissipative effect on defects.
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Chapter 4

Amplitude Equations and the

Renormalization Group

In this chapter, we derive rotationally covariant amplitude equations from the two di-

mensional PFC model by a variety of renormalization group (RG) methods. We show

that the presence of a conservation law introduces an ambiguity in operator ordering in

the RG procedure, which we show how to resolve. We also compare our analysis with

standard multiple scales techniques, where identical results can be obtained with greater

labor, by going to sixth order in perturbation theory, and by assuming the correct scaling

of space and time.

4.1 Amplitude equations in pattern formation

4.1.1 A brief history

It is now relatively standard in non-linear pattern formation problems to use amplitude

equations to uncover universal features of periodic pattern forming systems. The formal-

ism, first introduced by Newell, Whitehead, and Segel (NWS) [93,94] to describe periodic

patterns in Rayleigh-Bénard convection, offers a way to extract the spatio-temporal en-

velope of these patterns, which then allows one to predict the dynamics qualitatively

with very little information about microscopic details.
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Unfortunately however, the NWS equation, as originally constructed, can only de-

scribe the dynamics of patterns oriented along the same fixed direction, everywhere in

space, whereas physical systems often produce complex mosaics of patterns with no par-

ticular orientational preference. Such mosaics arise in real systems which are invariant

under rotations, and hence any equation which is used to study them must also have the

crucial property of rotational covariance, something that is lacking in the NWS equation.

Equations with an orientational bias can be very difficult to implement numerically, es-

pecially on systems with arbitrarily oriented patterns. Nevertheless, the NWS equation

embodies the important notion of coarse-graining, which has played a significant role in

shaping the modern day theory of pattern formation [40], and also forms the basis of our

approach to multiscale modeling with the PFC equation.

Gunaratne et al. [91] first derived a rotationally covariant form of the NWS equation

using the method of multiple scales [95–98], where they assumed isotropic scaling of the

spatial variables. They showed that the spatial operator in the NWS equation could

be symmetrized, by systematically extending the calculation to higher orders in the per-

turbation parameter ε, the reduced Rayleigh number. They explained that the finite

truncation of the perturbation series destroyed the rotational symmetry of the operator,

which could however be recovered at a higher order. Another important conclusion of

their work was that the qualitative behavior of pattern formation remained unchanged

if one ignored higher order corrections, provided the equation itself was rotationally co-

variant. A drawback of their calculation, however, was (as with any application of the

method of multiple scales), the need to guess a priori , the correct scaling of space-time

variables. In addition, their calculation required gradual accumulation of operators and

terms up to O(ε4), before a rotationally covariant equation emerged.

A more systematic approach emerged shortly after: Chen et al. showed how to

perform reductive perturbation theory using RG methods [32], and obtained the NWS

equation for the Swift-Hohenberg equation [89] by renormalizing the leading secular di-

vergences at each order. Graham [33] subsequently showed that, in fact, this method

gave the fully rotational covariant equations, if all secular terms are renormalized and
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a careful choice of operator splitting is used. Calculations involving the RG typically

produce elegant and accurate uniformly valid approximations for ordinary differential

equations (ODEs), starting from simple perturbation series where no knowledge of the

scaling present in the system is exercised [32]. For partial differential equations (PDEs),

the same approach is successful, but generates a tedious number of perturbation terms

at higher orders. This difficulty arises from the need to explicitly construct secular solu-

tions of the highest possible order, at every order in ε, and from a practical standpoint

equals (if not outweighs) the advantage of requiring no prior insight into the problem.

For this reason, calculations employing this method for PDEs have rarely gone beyond

O(ε). The key advantage of the RG method, however, is that when carefully performed,

the calculation yields a rotationally covariant amplitude equation at a much lower order

in ε compared to the method of multiple scales, as was shown by Graham [33].

Nozaki et al. [34,88], have developed a more abstract version of the perturbative RG

for weakly non-linear PDEs, called the “proto-RG” scheme. They argue that if one is

willing to sacrifice some of the purely mechanical aspects of the conventional RG by

taking cognizance of the system’s properties, such as those exhibited by the governing

differential equation, one can obtain a rotationally covariant amplitude equation to O(ε)

without having to construct any secular solutions. By computing minimal particular

solutions, usually obtained by a straight-forward inspection, one can even obtain O(ε2)

corrections with only a little more algebra. They illustrated the relative simplicity of this

method by deriving the rotationally covariant form of the NWS equation to O(ε2), as

previously derived by Gunaratne et al. [91]. Shiwa [36] further demonstrated the efficacy

of this scheme by obtaining the well-known Cross-Newell phase equation [37, 38], which

describes phase dynamics of patterns generated by the Swift-Hohenberg equation. A

drawback of this approach is in the selection of the so called “proto-RG” operator, which

turns out to be non-unique in general. Nozaki et al. show, however, that the operator is

uniquely specified, provided we insist on the lowest order differential operator possible.
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4.1.2 Our findings

As the reader will have no doubt realized from this synopsis, several methods and vari-

ants exist for deriving envelope equations from order parameter equations (OPEs) that

produce predominantly periodic patterns. Although one may argue that some of these

methods are essentially variants of perturbative RG theory for PDEs, they are struc-

turally very different. It is thus a very instructive exercise to compare the defining

properties of each of these methods in the context of a single microscopic OPE, such as

the PFC equation, and to this we devote the rest of this chapter.

A rather surprising finding of our work was that when we followed naively the “cook-

book recipe” for each method, our results were not identical, with the RG methods

yielding a form of the amplitude equation, slightly different from that derived by the

classical method of multiple scales. The PFC equation obeys a local conservation law,

and while this by itself can lead to a variety of interesting features [99,100], it also brings

to the fore an ambiguity with the usual implementation of the renormalization proce-

dure, something that is not unique to conservation laws. This ambiguity is essentially

an operator ordering one, and can be remedied in a straightforward way. Once done, all

methods yield the same amplitude equation, even though the technical details are quite

distinct in the different methods. As a pedagogical exercise, we present the analysis for

the Van der Pol oscillator in the Appendix, once again obtaining consistent results from

all methods when using the approach described herein. Our main conclusion is that the

renormalization group method is still considerably easier to implement than competing

approaches, and in particular requires no knowledge of the scaling relationship between

space and time while achieving full rotational covariance at lowest order in perturbation

theory.

The chapter is organized as follows. In section 4.2.1 we present a detailed derivation

of an amplitude equation from the PFC model using a heuristic approach. In section

4.2.2, we use the proto-RG method to derive the amplitude equation more systematically.

We attempt to verify these calculations independently in section 4.2.3 using the method

of multiple scales. A 1-D derivation via the conventional RG method is presented for
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completeness in section 4.2.4. We find that while the proto-RG and RG results are

consistent, they do not agree with the other calculations, due to an operator ordering

ambiguity not previously noticed. We remedy this in section 4.3, and conclude the

chapter with some remarks in section 4.4.

4.2 Amplitude equations from the PFC equation

4.2.1 Heuristic RG calculation

We now present a derivation of the amplitude equation from Eq. (3.9) using linear sta-

bility analysis and a shortcut motivated by experience. An idea along these lines was

previously implemented by Bestehorn and Haken [101] to derive an OPE (similar to the

Swift-Hohenberg equation) for modeling traveling waves and pulses in two-dimensional

systems, but not for deriving amplitude equations.

4.2.1.1 Verification with the S-H model

As a test of our method, we first derive the rotationally co-variant form of the Newell-

Whitehead-Segel (NWS) equation [91] (Eq. (3.25)) starting with S-H equation (Eq. (3.23)).

We first conduct a linear stability analysis by considering a perturbation χ̃ about the

static conducting state χ0 = 0. Linearizing Eq. (3.23) about χ0 we obtain

∂χ̃

∂t
=
[
ε−

(
1 +∇2

)2]
χ̃. (4.1)

Substituting harmonics of the type χ̃ = A(t)eik·x in Eq. (4.1); where A(t) = A0eωt, A0 is

some constant, k = k1
~i+ k2

~j, and ω is the constant determining growth (or decay) rate

of the perturbation, we get the discrete dispersion relation

ω = ε−
(
1− |k|2

)2
. (4.2)

The fastest growing mode has the locus |k| = 1.
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If we want to study the effect of applying small spatial modulations to the amplitude

about this mode, i.e. A(t) 7−→ A(x, y, t) = A0eω(Q)t+iQ·x, where Q = Q1
~i + Q2

~j is the

perturbation vector, Eq. (4.2) gets modified to

ω(Q) = ε−
(
1− |Q + k|2

)2
. (4.3)

Replacing Fourier space variables by their real space equivalents we get

|Q + k|2 ≡ −∇2 − 2ik · ∇+ 1. (4.4)

From Eqns. (4.3) and (4.4) we conclude that space-time amplitude variations are gov-

erned by

∂A

∂t
=
[
ε−

(
∇2 + 2ik · ∇

)2]
A =

[
ε+ 4

(
k · ∇ − i

2
∇2

)2
]
A. (4.5)

The non-linear terms are obtained perturbatively as follows, by treating ε as a small

parameter. Scaling χ in Eq. (3.23) by
√
ε, and calling the new variable χ̂ we get the S-H

equation in the form
∂χ̂

∂t
= −

(
1 +∇2

)2
χ̂− ε

(
χ̂− χ̂3

)
. (4.6)

Now putting χ̂ = χ̂0 + εχ̂1 + ε2χ̂2 +O(ε3) in Eq. (4.6), where χ̂0 is given by Eq. (3.24)

which has also been scaled by
√
ε, we obtain the equation for χ̂1, by matching like powers

of ε, as
∂χ̂1

∂t
= −

(
1 +∇2

)2
χ̂1 + Â(1− 3|Â|2)eik·x − Â3e3ik·x + c.c. (4.7)

Here c.c. denotes the complex conjugate. The term Â(1−3|Â|2) is responsible for secular

divergences in space and time, and therefore needs to be renormalized. It is also hence,

the non-linear component at O(ε) in the amplitude equation (alternatively recovered

by considering the normal form equations [102], as shown by Gunaratne, Ouyang and

Swinney [91]). Scaling back to original variables (χ, A) and combining the non-linear

term with Eq. (4.5), the well known, rotationally co-variant form of the NWS equation
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[33–36,91]

∂A

∂t
= 4

(
k · ∇ − i

2
∇2

)2

A+ (ε− 3|A|2)A (4.8)

is obtained to O(ε), which is identical to Eq. (3.25).

4.2.1.2 Derivation from the PFC equation

Moving over to the PFC equation, we now pose Eq. (3.9) in a more convenient form by

scaling ψ by
√
ε, and calling this new variable ψ. To remain consistent with the previous

derivation we have replaced r by −ε. In this manner, Eq. (3.9) becomes

∂tψ = ∇2(1 +∇2)2ψ + ε∇2(ψ3 − ψ). (4.9)

Let us now consider the stability of the uniform phase solution ψ̄ to the formation of the

hexagonal pattern by adding to it a small perturbation ψ̃, so that ψ = ψ̄+ψ̃. Substituting

in Eq. (4.9) and linearizing about ψ̄ we obtain

∂tψ̃ = ∇2
[
ε(3ψ̄2 − 1) + (1 +∇2)2

]
ψ̃ (4.10)

If ψ̃ is a hexagonal instability in the form given by the spatially dependent part of

Eq. (3.20), then using Aj(t) = A0j exp(ωjt), where A0j are complex constants, and sub-

stituting in Eq. (4.10), we obtain the discrete dispersion relation

ωj = −|kj|2
[
ε(3ψ̄2 − 1) +

(
1− |kj|2

)2]
, (4.11)

after applying orthogonality conditions. Here ωj predicts the growth or decay rate of a

hexagonal instability in the spatially uniform system. Note that for real values of ψ̄, ωj

is always real. Thus, a necessary condition for the instability to grow, i. e. for ωj to take

on positive values, is 3ψ̄2 − 1 < 0, or equivalently 3ψ̄2 − ε < 0 in original variables. The

most dangerous wave-number is the locus |kj| = k0 = 1.
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We now consider spatial modulations in the amplitude about this preferred wave-

number, i. e.

Aj(t) 7−→ ARj(x, t) = A0je
ωj(Q)teiQ·x, (4.12)

where Q = Qx
~i +Qy

~j is a perturbation vector, and ARj is the renormalized amplitude,

whose implication will be clarified in a following paragraph. Consistent with Eq. (4.11),

we can now write the exponent controlling growth rate along each lattice vector as

ωj(Q) = |Q + kj|2
[
ε(1− 3ψ̄2)−

(
1− |Q + kj|2

)2]
. (4.13)

We now replace the Fourier space variables in the above equation by their real space

counterparts so that,

ωj ≡ ∂t , Qx ≡ −i∂x , Qy ≡ −i∂y , (4.14)

thus obtaining,

|Q + kj|2 ≡ 1−∇2 − 2ikj · ∇ = 1− Lkj
. (4.15)

Combining Eqs. (4.13) and (4.15), the space-time amplitude variations along each lattice

vector is given by the sixth order linear partial differential equation

∂tARj + (1− Lkj
)L2

kj
ARj + ε(1− 3ψ̄2)Lkj

ARj = ε(1− 3ψ̄2)ARj. (4.16)

We also need nonlinear terms, which play a vital role in pattern dynamics near onset

of the instability, to complement the above set of equations. There are a couple of

different ways to obtain these terms. One can directly look for the nonlinear part in the

normal form equations [103] for the dynamics of Aj in a hexagonal basis [91, 104, 105].

These equations have been widely used to study the dynamics and stability of exactly

periodic rolls and hexagonal patterns originating from the static conducting state in

Rayleigh-Bénard convection. Alternatively, one can derive these terms to a particular

order in ε through a renormalization group (or multiple scales) analysis of the governing
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differential equation, as was done previously for the S-H equation. Here, we choose the

latter approach once again, starting from Eq. (4.9), but only going far enough in the RG

analysis to identify the correct form of the terms.

We start with a perturbation series in ε

ψ = ψ0 + εψ1 + ε2ψ2 + ε3ψ3 + . . . (4.17)

where ψ0 is a steady state solution and ψj( 6=0) are the higher order corrections. As we are

interested in amplitude variations in the hexagonal pattern, we pick ψ0 to be the steady

hexagonal solution, i. e. Eq. (3.20). Substituting in Eq. (4.9), we obtain the following

equation at O(ε):

[
∂t −∇2(1 +∇2)2

]
ψ1 = (∂t − LP)ψ1 = ∇2(ψ3

0 − ψ0), (4.18)

where

∇2(ψ3
0 − ψ0) = (1− 3ψ̄2)

3∑
j=1

Aje
ikj ·x

−3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
eik1·x − 6A∗

2A
∗
3ψ̄e

ik1·x

−3A2

(
2|A1|2 + |A2|2 + 2|A3|2

)
eik2·x − 6A∗

1A
∗
3ψ̄e

ik2·x

−3A3

(
2|A1|2 + 2|A2|2 + |A3|2

)
eik3·x − 6A∗

1A
∗
2ψ̄e

ik3·x

+other terms + c.c. (4.19)

The superscript ‘*’ denotes complex conjugation. To this order, the “other terms” are

functions of complex exponentials that do not lie in the null space of the linear differ-

ential operator in Eq. (4.18), i. e. they are non-resonant terms. Therefore, they do not

contribute to unbounded growth in ψ1. The terms listed in Eq. (4.19) are, however, res-

onant with the operator, and their coefficients need to be renormalized in order to bound

the solution obtained by truncating the perturbation series at O(ε). The renormaliza-

tion procedure allows the amplitude Aj, previously constant, to now have space-time
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variations that absorb secular divergences. We assert that the nonlinear terms in the

amplitude equation to O(ε) must be the renormalized coefficients of the exponential

terms in resonance with the differential operator. For example, the terms complementing

the space-time operator along basis vector k1 must be

ε(1− 3ψ̄2)AR1 − 3εAR1

(
|AR1|2 + 2|AR2|2 + 2|AR3|2

)
− 6εA∗

R2A
∗
R3ψ̄, (4.20)

where the ARj are the renormalized amplitude functions (no longer constants). Note

that these terms are completely identical to those predicted by normal form theory for

a hexagonal basis [91, 105]. Combining Eqs. (4.16) and (4.20) we write the amplitude

equation as

∂tA1 = −(1− Lk1)L2
k1
A1 − ε(1− 3ψ̄2)Lk1A1 + ε(1− 3ψ̄2)A1

−3εA1(|A1|2 + 2|A2|2 + 2|A3|2)− 6εA∗
2A

∗
3ψ̄, (4.21)

for lattice vector k1, and permutations thereof for k2 and k3, where we have replaced the

variables ARj by Aj.

We observe that the leading term in Eq. (4.20) is consistent with the right hand side

of Eq. (4.16), thereby providing a natural overlapping link about which to match the

linear stability and perturbation results. In a more abstract sense, we draw a parallel

between this method and the technique of matched asymptotic expansions in singular

perturbation theory, where inner and outer asymptotic solutions are matched over a

common region of validity in the solution space, to obtain a globally valid solution. This

completes our derivation of the amplitude equation via a heuristic or “quick and dirty”

approach. For future reference, we will call Eq. (4.21), the QDRG (quick and dirty RG)

equation, and the method used to obtain it as the QDRG (or heuristic) method.

To summarize the procedure, we first conducted a linear stability analysis of the scaled

PFC equation about the uniform state to obtain a linear differential operator controlling

the space-time evolution of the complex amplitude Aj of the hexagonal pattern. We

superimposed on this dispersion relation periodic modulations of the amplitude, and
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from the dispersion relation in terms of these latter modulations, identified the gradient

terms in the amplitude equation. We then carried out the first step in a conventional RG

analysis to obtain the form of the nonlinear terms that should accompany this differential

operator, and combining the two results, we wrote down the amplitude equation for the

hexagonal pattern. In this respect, our approach lacks the full mathematical rigor of a

conventional RG reduction or a multiple scales derivation, which gives it a somewhat

“dirty” appearance. However, we made no assumptions about the scaling of the space-

time variables in the system, nor did we have to construct any secular solutions so far.

We will comment on extending this method systematically to higher orders in ε in the

following section.

4.2.2 Proto-Renormalization group derivation

With the proto-RG method, our starting point is Eq. (4.9) with the perturbation series

Eq. (4.17). Thus, to O(ε) we obtain Eq. (4.18), whereas to O(ε2) we get

(∂t − LP)ψ2 = ∇2(3ψ2
0ψ1 − ψ1). (4.22)

The structure of Eq. (4.18) allows us to infer that its simplest particular solution will

take the form

ψ1 =
3∑

j=1

P1j(x, t)e
ikj ·x +

3∑
j=1

Q1je
2ikj ·x +

3∑
j=1

R1je
3ikj ·x +

3∑
j=1

S1je
isj ·x

+
2∑

j=1

T1je
itj ·x +

2∑
j=1

U1je
iuj ·x +

2∑
j=1

V1je
ivj ·x + c. c., (4.23)

where

s1 = −~i
√

3

2
−~j 3

2
, s2 =~i

√
3

2
−~j 3

2
, s3 = s2 − s1

t1 = −~i 3
√

3

2
−~j 1

2
, t2 =~i

3
√

3

2
−~j 1

2

u1 = −~i
√

3

2
−~j 5

2
,u2 =~i

√
3

2
−~j 5

2
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v1 = −~i
√

3−~j 2,v2 =~i
√

3−~j 2, (4.24)

are non-resonant modes generated by the cubic term. Note that we have explicitly

denoted the space-time dependence of the secular coefficients P1j(x, t), which are poly-

nomials in x, y and t, whereas by inspection, the other coefficients Q1j, R1j, S1j, T1j, U1j

and V1j can be complex constants. Specifically, P11 satisfies

(∂t − LP)P11e
ik1·x = (1−3ψ̄2)A1e

ik1·x−3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
eik1·x−6A∗

2A
∗
3ψ̄e

ik1·x

(4.25)

⇒
(
∂t + (1− Lk1)L2

k1

)
P11 = (1− 3ψ̄2)A1 − 3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
− 6A∗

2A
∗
3ψ̄

≡ Lk1P11, (4.26)

where Lkj
is the “proto-RG” operator for lattice vector kj. From the above equation it

is quite obvious that P11 cannot be constant for any non-trivial solutions, and likewise

for P12 and P13.

As P1j are secular, we now renormalize [32] ψ about arbitrary regularization points

X and T , as in the conventional RG method, to get

ψ = ψ̄ +
3∑

j=1

ARj(X, T )eikj ·x + ε
3∑

j=1

(P1j(x, t)− P1j(X, T )) eikj ·x + . . .+ c.c. (4.27)

where ARj is now the renormalized amplitude that absorbs secular divergences. Since ψ

must be independent of these regularization points, we have

LX,T
k1

ψ = 0

⇒ LX,T
k1

AR1(X, T ) = εLX,T
k1

P11(X, T ) + ε2LX,T
k1

P21(X, T ) + ε3LX,T
k1

P31(X, T )

+ . . . (4.28)

after applying orthogonality conditions. This is the general form of the proto-RG equa-

tion for weakly nonlinear oscillators [88]. LX,T
k1

is the proto-RG operator Lk1 in Eq. (4.26),
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with variables x and t replaced by X and T respectively. Changing back from (X, T ) →

(x, t) and ARj → Aj, and using Eqs. (4.26) and (4.28), we can write the amplitude

equation along lattice vector k1 to O(ε) explicitly as

∂tA1 = −(1−Lk1)L2
k1
A1+ε(1−3ψ̄2)A1−3εA1(|A1|2+2|A2|2+2|A3|2)−6εA∗

2A
∗
3ψ̄, (4.29)

with appropriate permutations for A2 and A3. Note that in using Eq. (4.26), we have

replaced Aj by their renormalized counterparts ARj as is consistent with the proto-RG

procedure, before reverting to the former notation for amplitude. Upon comparing the

two amplitude equations obtained so far, Eqs. (4.21) and (4.29), we note that the QDRG

derived equation carries the extra term ε(1 − 3ψ̄2)Lk1A1. Evidently, the QDRG and

the proto-RG methods produce different amplitude equations when applied to the PFC

equation, the extent of this difference controlled by the parameter ε(1 − 3ψ̄2). It is

interesting to note that for the Swift-Hohenberg equation, both the QDRG method and

the proto-RG method yield identical amplitude equations. The extra term in the QDRG

equation for the PFC model is clearly a consequence of the conservation law, with its

attendant extra Laplacian.

As mentioned earlier, the principal advantage of using the proto-RG method is the

relative ease with which one can progress to higher order calculations. Let us now extend

this calculation toO(ε2). We need ψ1 in order to evaluate the right hand side of Eq. (4.22),

which means that we additionally need to evaluate Q1j, R1j, S1j, T1j, U1j and V1j. The

constant values of these terms can be determined by inspection. For example, by analogy

with P11, we see that Q11 must satisfy

(∂t − LP)Q11e
2ik1·x = −12

(
A2

1ψ̄ + 2A1A
∗
2A

∗
3

)
e2ik1·x

⇒
(
∂t + (4− L2k1)(L2k1 − 3)2

)
Q11 = −12

(
A2

1ψ̄ + 2A1A
∗
2A

∗
3

)
. (4.30)
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Unlike Eq. (4.26) however, we see that Eq. (4.30) permits a constant solution for Q11,

which in turn is determined to be

Q11 = −1

3

(
A2

1ψ̄ + 2A1A
∗
2A

∗
3

)
. (4.31)

Similarly, constant solutions for the other coefficients are

Q12 = −1

3

(
A2

2ψ̄ + 2A∗
1A2A

∗
3

)
Q13 = −1

3

(
A2

3ψ̄ + 2A∗
1A

∗
2A3

)

R1j = −
A3

j

64

S11 = −3

4

(
A2

1A3 + 2A1ψ̄A
∗
2 + A∗

2
2A∗

3

)
S12 = −3

4

(
A1A

2
3 + 2A∗

2ψ̄A3 + A∗
2
2A∗

1

)
S13 = −3

4

(
A2A

2
3 + 2A∗

1ψ̄A3 + A∗
1
2A∗

2

)
T11 = −A

2
1A

∗
3

12

T12 = −A
2
3A

∗
1

12

U11 = −A1A
∗
2
2

12

U12 = −A3A
∗
2
2

12

V11 = −A
2
1A

∗
2

12

V12 = −A
2
3A

∗
2

12
. (4.32)

We know that the particular solution to Eq. (4.22) has the form

ψ2 =
3∑

j=1

P2j(x, t)e
ikj ·x + . . .+ c. c. (4.33)
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where we have shown only the resonant part of the solution. The terms on the right hand

side of Eq. (4.22), resonant with lattice vector k1, evaluate to

Φ = [
(
1− 3ψ̄2 − 6(|A1|2 + |A2|2 + |A3|2)

)
(1− Lk1)P11 − 3A2

1 (1− Lk1)P
∗
11

−6A1A2 (1− Lk1)P
∗
12 − 6A1A3 (1− Lk1)P

∗
13 − 6ψ̄A∗

3 (1− Lk1)P
∗
12

−6ψ̄A∗
2 (1− Lk1)P

∗
13 − 6A1A

∗
2 (1− Lk1)P12 − 6A1A

∗
3 (1− Lk1)P13

−6A2ψ̄S11 − 3A2
2U11 − 6A3A

∗
1T11 − 6A2A

∗
1V11 − 6A∗

1A
∗
3S11 − 3A∗

3
2S12 − 3A∗

2
2S∗12

−6A3ψ̄S
∗
13 − 6A∗

1A
∗
2S

∗
13 − 3A2

3T
∗
12 − 6A2A

∗
3Q

∗
12 − 6A3A

∗
2Q

∗
13 − 3A∗

1
2R11

−6A2A3Q11 − 6ψ̄A∗
1Q11]e

ik1·x. (4.34)

Thus P21 satisfies

Lk1P21 = Φ. (4.35)

The non-constant terms in Φ (terms containing P1j) are now ignored [34, 88] while the

remaining terms are determined from their constant solutions, Eqs. (4.31) and (4.32).

Thus, using Eq. (4.28) we can write the amplitude equation along lattice vector k1 to

O(ε2) as

∂tA1 = −(1− Lk1)L2
k1
A1 + ε[(1− 3ψ̄2)A1 − 3A1(|A1|2 + 2|A2|2 + 2|A3|2)− 6A∗

2A
∗
3ψ̄]

+ε2[ψ̄2A1(2|A1|2 + 9|A2|2 + 9|A3|2) + 11ψ̄(2|A1|2 + |A2|2 + |A3|2)A∗
2A

∗
3

+11ψ̄A2
1A2A3 +

27

2
A∗

1A
∗
2
2A∗

3
2 + 5A1|A1|2

(
|A2|2 + |A3|2

)
+ 12A1|A2|2|A3|2

+
3

64
A1|A1|4 +

5

2
A1|A2|4 +

5

2
A1|A3|4], (4.36)

with cyclic permutations for lattice vectors k2 and k3.

We can in principle extend the QDRG method also to higher orders by performing

the same steps above, until the point where we identify the resonant terms on the right

hand side of Eq. (4.22), i.e. Φ. Combining this result with Eqs. (4.16) and (4.20) we can

then obtain the amplitude equation Eq.(4.36), but with an extra term ε(1− 3ψ̄2)Lk1A1.
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In summary, both the proto-RG and the QDRG can be calculated including terms

of O(ε2), and the results differ by a small but non-zero term. Which, if any, of these

calculations is correct? And what is the origin of the discrepancy between the two meth-

ods? Is the QDRG result not to be trusted, being derived heuristically? Faced with

two seemingly incompatible, although very similar results, it is natural to attempt an

independent test of the analysis, which we did using the standard method of multiple

scales. This calculation is presented below, but owing to technical complications arising

from the interference of modes and the need to go to sixth order of perturbation theory,

we found it only feasible to perform the calculation for the case of one dimension. Never-

theless, we will see that, in fact, the QDRG result, Eq. (4.21), is more correct. The small

discrepancy between this result and the proto-RG result is finally resolved in Section 4.3.

4.2.3 Multiple scales derivation

We now re-derive the amplitude equation using the traditional method of multiple scales.

As the primary purpose of this derivation is to verify the previous calculations via an

independent method, we stick to a one dimensional analysis here that considerably sim-

plifies the algebra. For convenience we use δ2 = ε, and write Eq. (4.9) in 1-D as

[
∂t − ∂2

x

(
1 + ∂2

x

)2]
ψ = δ2∂2

x(ψ
3 − ψ). (4.37)

The basic premise of the multiple scales analysis is that while the pattern itself varies on

the scale of its wavelength (2π/k0), its amplitude varies on much larger length and time

scales. It is then appropriate to introduce slowly varying arguments

X = δx , T = δ2t (4.38)

for the envelope function A(X,T ). This scaling was previously applied by Gunaratne et

al. [91] to the Swift-Hohenberg equation with success (based on the form of the discrete

dispersion relation), and as the PFC equation is essentially a conserved analog of the

Swift-Hohenberg equation we anticipate that the same scaling holds here.
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Derivatives scale as follows

∂x → ∂x + δ∂X

∂2
x → ∂2

x + 2δ∂X∂x + δ2∂2
X

∂t → δ2∂T , (4.39)

whereas the operator

∂2
x

(
1 + ∂2

x

)2 →
6∑

j=0

δjLj (4.40)

such that

L0 = ∂2
x

(
1 + ∂2

x

)2
L1 = 4∂X∂

3
x

(
1 + ∂2

x

)
+ 2∂X∂x

(
1 + ∂2

x

)2
L2 = 4∂2

X∂
4
x + 10∂2

X∂
2
x

(
1 + ∂2

x

)
+ ∂2

X

(
1 + ∂2

x

)2
L3 = 12∂3

X∂
3
x + 8∂3

X∂x

(
1 + ∂2

x

)
L4 = 13∂4

X∂
2
x + 2∂4

X

(
1 + ∂2

x

)
L5 = 6∂5

X∂x

L6 = ∂6
X . (4.41)

We now expand ψ in a perturbation series in δ to get

ψ = ψ0 + δψ1 + δ2ψ2 + δ3ψ3 + . . . . (4.42)
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Using Eq. (4.39) and the above series, the δ expansion of the nonlinear term in Eq. (4.37)

can be written as

∂2
x(ψ

3 − ψ) = ∂2
x(ψ

3
0 − ψ0)

+δ[∂2
x(3ψ

2
0ψ1 − ψ1) + 2∂X∂x(ψ

3
0 − ψ0)]

+δ2[∂2
x(3ψ0ψ

2
1 + 3ψ2

0ψ2 − ψ2) + 2∂X∂x(3ψ
2
0ψ1 − ψ1) + ∂2

X(ψ3
0 − ψ0)]

+δ3[∂2
x(ψ

2
1 + 6ψ0ψ1ψ2 + 3ψ2

0ψ3 − ψ3) + 2∂X∂x(3ψ0ψ
2
1 + 3ψ2

0ψ2 − ψ2)

+∂2
X(3ψ2

0ψ1 − ψ1)]

+δ4[∂2
x(3ψ

2
1ψ2 + 3ψ0ψ

2
2 + 6ψ0ψ1ψ3 + 3ψ2

0ψ4 − ψ4)

+2∂X∂x(ψ
2
1 + 6ψ0ψ1ψ2 + 3ψ2

0ψ3 − ψ3) + ∂2
X(3ψ0ψ

2
1 + 3ψ2

0ψ2 − ψ2)]

+O(δ5). (4.43)

Substituting Eq. (4.42) in Eq. (4.37), and using the scaled operators in Eqs. (4.39-4.41),

we can write equations satisfied by the ψm at each O(δm). At O(1) we obtain,

L0ψ0 = 0

⇒ ψ0 = ψ̄ + A01(X,T )eix + c.c. (4.44)

where Amn is the complex amplitude of mode n at O(δm). At O(δ) we get

L0ψ1 + L1ψ0 = 0

⇒ ψ1 = A11(X,T )eix + c.c. (4.45)

where (and henceforth) we neglect the constant term in view of its inclusion in Eq. (4.44).

At the next order we have

L0ψ2 = ∂Tψ0 − L1ψ1 − L2ψ0 − ∂2
x(ψ

3
0 − ψ0). (4.46)
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For ψ2(x, t) to remain bounded we have to guarantee that the right hand side of Eq. (4.46)

does not have a projection in the null space of L0, which yields a solvability condition

[97, 98] (also known as the Fredholm alternative). Applying the alternative imposes the

following condition on the amplitude at O(δ2):

∂TA01 = 4∂2
XA01 + (1− 3ψ̄2)A01 − 3A01|A01|2. (4.47)

Thus,

ψ2 = A21e
ix + A22e

2ix + A23e
3ix + c.c. (4.48)

where A22 = A2
01ψ̄/3, and A23 = A3

01/64.

At subsequent orders, the following equations are obtained for ψm:

O(δ3) : L0ψ3 = ∂Tψ1 − L1ψ2 − L2ψ1 − L3ψ0

−[∂2
x(3ψ

2
0ψ1 − ψ1) + 2∂X∂x(ψ

3
0 − ψ0)]

O(δ4) : L0ψ4 = ∂Tψ2 − L1ψ3 − L2ψ2 − L3ψ1 − L4ψ0

−[∂2
x(3ψ0ψ

2
1 + 3ψ2

0ψ2 − ψ2)

+2∂X∂x(3ψ
2
0ψ1 − ψ1) + ∂2

X(ψ3
0 − ψ0)]

O(δ5) : L0ψ5 = ∂Tψ3 − L1ψ4 − L2ψ3 − L3ψ2 − L4ψ1

−L5ψ0 − [∂2
x(ψ

2
1 + 6ψ0ψ1ψ2 + 3ψ2

0ψ3

−ψ3) + 2∂X∂x(3ψ0ψ
2
1 + 3ψ2

0ψ2 − ψ2)

+∂2
X(3ψ2

0ψ1 − ψ1)]

O(δ6) : L0ψ6 = ∂Tψ4 − L1ψ5 − L2ψ4 − L3ψ3 − L4ψ2

−L5ψ1 − L6ψ0 − [∂2
x(3ψ

2
1ψ2 + 3ψ0ψ

2
2

+6ψ0ψ1ψ3 + 3ψ2
0ψ4 − ψ4) + 2∂X∂x(ψ

2
1

+6ψ0ψ1ψ2 + 3ψ2
0ψ3 − ψ3) + ∂2

X(3ψ0ψ
2
1

+3ψ2
0ψ2 − ψ2)], (4.49)
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and successive applications of the Fredholm alternative yield the following amplitude

equations at those respective orders,

∂TA11 = −12i∂3
XA01 + 4∂2

XA11 − (1− 3ψ̄2)2i∂XA01 + (1− 3ψ̄2)A11

−6A11|A01|2 − 3A2
01A

∗
11 + 6i∂X(A2

01A
∗
01)

∂TA21 = −13∂4
XA01 − 12i∂3

XA11 + 4∂2
XA21 − (1− 3ψ̄2)(2i∂XA11 + ∂2

XA01)

+(1− 3ψ̄2)A21 − 3A2
11A

∗
01 − 6|A01|2A21 − 6ψ̄A22A

∗
01 − 3A23A

∗
01

2

−6A01|A11|2 − 3A2
01A

∗
21 + 6i∂X(A2

01A
∗
11 + 2|A01|2A11) + 3∂2

X(A2
01A

∗
01)

∂TA31 = 6i∂5
XA01 − 13∂4

XA11 − 12i∂3
XA21 + 4∂2

XA31 − (1− 3ψ̄2)(2i∂XA21 + ∂2
XA11)

+(1− 3ψ̄2)A31 − 6A11A21A
∗
01 − 6|A01|2A31 − 6A01A21A

∗
11 − 6A23A

∗
01A

∗
11

−6A01A11A
∗
21 − 3A2

01A
∗
31 − 6ψ̄A32A

∗
01 − 3A33A

∗
01

2 − 6ψ̄A22A
∗
11

+6i∂X(2A01|A11|2 + 2|A01|2A21 + A∗
01A

2
11 + A2

01A
∗
21)

+3∂2
X(A2

01A
∗
11 + 2|A01|2A∗

21) + h.o.t.

∂TA41 = ∂6
XA01 + 6i∂5

XA11 − 13∂4
XA21 − 12i∂3

XA31 + 4∂2
XA41

−(1− 3ψ̄2)(2i∂XA31 + ∂2
XA21) + (1− 3ψ̄2)A41 − 3A2

21A
∗
01 − 6A11A31A

∗
01

−6A01A41A
∗
01 − 6A11A21A

∗
11 − 6A01A31A

∗
11 − 3A2

11A
∗
21 − 6A01|A21|2

−6A01A11A
∗
31 − 3A2

01A
∗
41 − 6ψ̄A42A

∗
01 − 3A43A

∗
01

2 − 6ψ̄A32A
∗
11

−6A33A
∗
01A

∗
11 − 3A23A

∗
11

2 − 6ψ̄A33A
∗
22 − 6A01|A23|2 + 6i∂X(2A11A21A

∗
01

+2|A01|2A31 + A11|A11|2 + 2A01A21A
∗
11 + 2A01A11A

∗
21 + A2

01A
∗
31)

+3∂2
X(2A01|A11|2 + A∗

01A
2
11 + 2|A01|2A21 + A2

01A
∗
21) + h.o.t. (4.50)

Here, “h.o.t.” refers to higher order terms that are functions of A01 and its derivatives.

The amplitude function for the pattern (eix) can be written as

A(X,T ) = A01(X,T ) + δA11(X,T ) + δ2A21(X,T ) + . . . . (4.51)
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Using Eqs. (4.47), (4.50), and (4.51), and scaling back to original variables, i.e. X → δ−1x

and T → δ−2t, the amplitude equation to O(δ4) can be written as

∂tA = 4∂2
xA− 12i∂3

xA− 13∂4
xA+ 6i∂5

xA+ ∂6
xA− δ2(1− 3ψ̄2)

(
2i∂x + ∂2

x

)
A

+δ2
[
(1− 3ψ̄2)A− 3A|A|2 + 3

(
2i∂x + ∂2

x

)
(A|A|2)

]
−δ4

(
3

64
A|A|4 + 2ψ̄2A|A|2

)
+O(δ6) (4.52)

or more compactly, after replacing δ2 → ε, to O(ε2)

∂tA = − (1− L1D)L1D
2A− ε

[
(1− 3ψ̄2)L1DA+ (1− 3ψ̄2)A− 3A|A|2 + 3L1D(A|A|2)

]
−ε2( 3

64
A|A|4 + 2ψ̄2A|A|2) +O(ε3), (4.53)

where L1D ≡ (2i∂x + ∂2
x).

Let us now compare Eq. (4.53) with the one dimensional equivalents of the O(ε) am-

plitude equations that we have previously derived for hexagonal patterns, i.e. Eqs. (4.21)

and (4.29). Without re-deriving, the one dimensional equivalents are readily obtained by

setting

A2 = A3 = 0 and Lk2 = L1D (4.54)

in those equations. We observe that Eq. (4.53) (also truncated to O(ε)) contains at least

one term which is not present in either of the equations previously derived.

We note that the QDRG result of Eq. (4.21) is closer to the multiple scales result

compared to the proto-RG result (and the RG result in section 4.2.4), in that it fails

to capture only the nonlinear derivative term at O(ε), which is actually a higher order

correction to 3A|A|2. This is clearly because the spatial operator in the QDRG method is

an outcome of a linear stability analysis, whereas one would have to perform a nonlinear

stability analysis to obtain nonlinear spatial derivative terms. The clear advantage of

the QDRG calculation however is that it was done with significantly less effort, and in

a rotationally-covariant manner; perturbation theory to O(ε) was all that was required.

The multiple scales analysis, on the other hand, required a sixth order perturbation
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theory treatment, and in order to simplify the algebra, we only worked in one dimension.

In higher dimensions, the interference between the modes would have created a huge

increase in the complexity at each successively higher order in perturbation theory. The

QDRG calculation is only heuristic, but as we will show below, can be justified from a

full calculation, albeit with a slight technical modification of the previously-published

recipe, to take into account the special feature of the conservation law.

We conclude therefore that although the QDRG result of Eq. (4.21) and the mul-

tiple scales method to O(ε) still do not yield consistent results, the QDRG method is

still an improvement over the proto-RG method. In order to track down the source of

the discrepancy, we next attempted a full RG calculation without any shortcuts, i.e.

systematically calculating explicitly and renormalizing all the divergent terms to O(ε).

4.2.4 Renormalization group derivation

In this section, we present a derivation of the amplitude equation using the conventional

RG method, in one dimension for pedagogical simplicity (just as done for the method of

multiple scales). The calculation is complicated because of the need to obtain explicit

formulae for the secular divergences [32,33], but this is possible at the order to which we

worked.

Starting from Eq. (4.37) (with δ2 replaced by ε) and a naive perturbation series in ε

as in Eq. (4.17) the zeroth and first order solutions can be written as

ψ0 = ψ̄ + Aeix + c.c.

ψ1 = P1(x, t)e
ix +Q1e

2ix +R1e
3ix + c.c. (4.55)

The difficulty in the conventional RG method comes from the need to explicitly determine

the form of the secular coefficient P1. While this is a routine task for ODEs, it is far from

trivial for PDEs. A further complication is that the solution for P1 must be the highest

order polynomial that satisfies the PDE, to be able to eliminate all secular divergences.

It turns out that this is critical to obtaining the rotationally covariant operator at a lower
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order in ε. Using the method of undetermined coefficients we find such a solution to be

P1(x, t) = ε(1− 3ψ̄2 − 3|A|2)A
6∑

j=1

CjP1j(x, t), (4.56)

where

P11 = t

P12 = − 1

720
(−89280t2 + 7680t3 + 4320ixt− 34560ixt2

−4680x2t+ 2880x2t2 − 1440ix3t+ 120x4t+ x6)

P13 =
i

720
(−5760it2 − 1560xt+ 960xt2 − 720ix2t

+80x3t+ x5)

P14 =
1

312
(192t2 − 288ixt+ 48xt2 + x4)

P15 = − i

72
(24xt+ x3)

P16 = −x
2

8
, (4.57)

and the constants Cj satisfy
∑6

j=1Cj = 1.

The RG method proceeds as follows: (1) dummy variables X and T are introduced,

(2) the divergent terms in P1j of the form xmtn are split to read xmtn = (xmtn−XmT n)+

XmT n, (3) the constant amplitude A is redefined using an ε expansion A = AR(X,T )(1+∑
j=1 ε

jZj), where AR is now the renormalized amplitude, and Zj are the renormalization

constants which are chosen order by order in ε to absorb the XmT n terms, and (4) since

the solution ψ is independent of X and T , all derivatives of ψ with respect X, T , or a

combination thereof must be zero. This last condition yields the following RG equations

∂AR

∂T
= C1ε(1− 3ψ̄2 − 3|A|2)A

−∂
6AR

∂X6
= C2ε(1− 3ψ̄2 − 3|A|2)A

−6i
∂5AR

∂X5
= C3ε(1− 3ψ̄2 − 3|A|2)A
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13
∂4AR

∂X4
= C4ε(1− 3ψ̄2 − 3|A|2)A

12i
∂3AR

∂X3
= C5ε(1− 3ψ̄2 − 3|A|2)A

−4
∂2AR

∂X2
= C6ε(1− 3ψ̄2 − 3|A|2)A, (4.58)

at O(ε). Further, using
∑6

j=1Cj = 1 and replacing AR → A, X → x, and T → t, the

above equations can be combined to read

∂tA+ (1− L1D)L1D
2A = ε(1− 3ψ̄2)A− 3εA|A|2, (4.59)

which is also the 1-D proto-RG equation.

We close this section with some interesting observations. (i) The equations in (4.58)

do not form a unique set of solvability conditions. Other equations are possible, e.g.

− 1

16

∂4AR

∂X2∂T 2
= C2ε(1− 3ψ̄2 − 3|A|2)A

−3i

8

∂3AR

∂X∂T 2
= C3ε(1− 3ψ̄2 − 3|A|2)A
... (4.60)

The choice of Eqn. (4.58) is motivated by the observation that it yields a rotationally

covariant amplitude equation, and other physical considerations such as the microscopic

equation being only first order in time. (ii) The list of possible terms P1j does not

include the leading polynomial term Bx, where B is an arbitrary constant, as this term

is annihilated by the kernel of the PDE. Thus no constraint is available to fix B. It turns

out that unless this term is also renormalized, all secular divergences are not removed.

This may explain the absence of certain terms in Eq. (4.59) that however show up in the

multiple scales analysis. To be certain, the calculation needs to be carried out to higher

orders; but we do not attempt this here.
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4.3 Operator ordering ambiguity and its resolution

in the RG method

In this section, we resolve the discrepancy between the answers generated by the QDRG

method, the RG methods, and the method of multiple scales. Curiously, no such discrep-

ancy was observed in the treatment of the Swift-Hohenberg equation, a non-conservative

OPE, by RG methods [32, 33, 88] and multiple scales techniques [91]. The reader may

recall that it was ascertained in Section 4.2.1.1 that the QDRG method too produces the

same result as the other methods for this equation. Why then does a discrepancy arise

in the PFC equation? Clearly, the role played by the extra Laplacian, a consequence of

the conservation law in this case, must be non-trivial!

Note that this Laplacian operator carries over to the right hand side of both Eq. (4.18),

the O(ε) equation for the RG methods, and Eq. (4.46), the O(ε) equation for multiple

scales. However also note that, in the method of multiple scales, in addition to the non-

linear terms, this operator is also subjected to an ε expansion. There is no provision in

any of the RG methods to allow the same to happen to the Laplacian. In other words,

the operator may very well have not existed on the right hand side at O(ε), and we would

have obtained exactly the same result as before!

A clue to the subtlety is to look at the way in which the secular terms are renormal-

ized. The naive way, as followed here, would be to evaluate the right hand side first,

look for secular terms later, and then renormalize these divergent coefficients. However,

this will not eliminate secular terms generated by the differential operator. In order to

eliminate all secular terms, the amplitude must be renormalized before differentiation,

for the simple reason that renormalization and differentiation are non-commutable oper-

ations. In other words, there is an operator ordering ambiguity in the implementation

of the renormalization group method, exposed in this problem by the conservation law.

Performing the calculation with the operations of renormalization and differentiation

reversed is equivalent to performing an ε expansion in the differential operator.
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We find that by following this procedure, additional terms in the coefficients of the

resonant modes are automatically generated. Specifically, when we evaluate the right

hand side of Eq. (4.18) after assuming the amplitudes of ψ0 to have a space-time depen-

dence, the renormalized coefficients of the resonant exp(ik1 ·x) forcing term work out to

be

ε[(1− 3ψ̄2)A1 − 3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
− 6A∗

2A
∗
3ψ̄ − (1− 3ψ̄2)Lk1A1

+6
(
|A1|2 + |A2|2 + |A3|2

)
Lk1A1 + 6A∗

1|∇A1|2 + 3A2
1Lk1A

∗
1 + 6A1A

∗
2Lk1A2

+6A1A2Lk1A
∗
2 + 6A1A

∗
3Lk1A3 + 6A1A3Lk1A

∗
3 + 6ψ̄A∗

3Lk1A
∗
2 + 6ψ̄A∗

2Lk1A
∗
3

+12ψ̄∇A∗
2 · ∇A∗

3 + 12A1 (∇A1 · ∇A∗
1 +∇A2 · ∇A∗

2 +∇A3 · ∇A∗
3) + 12A2∇A1 · ∇A∗

2

+12A∗
2∇A1 · ∇A2 + 12A3∇A1 · ∇A∗

3 + 12A∗
3∇A1 · ∇A3], (4.61)

which when specialized for the 1-D case becomes

ε[(1− 3ψ̄2)A− 3A|A|2 − (1− 3ψ̄2)L1DA+ 6|A|2L1DA

+3A2L1DA
∗ + 6A∗

(
∂A

∂x

)2

+ 12A
∂A

∂x

∂A∗

∂x
]

= ε[(1− 3ψ̄2)A− 3A|A|2 − (1− 3ψ̄2)L1DA+ 3L1D(A|A|2)]. (4.62)

We note that the above terms are identical to the O(ε) terms on the right hand side

of Eq. (4.53). Therefore the correct amplitude equation to O(ε) should contain all the

terms in Eq. (4.61). In order to illustrate the generality of this approach, we apply this

idea again in the appendix to the Van der Pol oscillator, another equation for which

the previously reported implementation of the RG method, and the method of multiple

scales produce different answers.

We wish to point out that the assumption of a constant amplitude in the ψ0 so-

lution makes it possible for the coefficients of the non-resonant terms in ψ1 to assume

constant values, a fact that is favorably used in extending the proto-RG calculation to

the next order. However, with our modification to the proto-RG procedure, it is clear

that for the PFC equation at least, non-resonant coefficients cannot have constant val-
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ues. Thus computing higher order corrections to the amplitude equations, will require

explicit construction of particular solutions, which may limit progress beyond O(ε) by

purely analytical methods.

4.4 Concluding remarks

In this chapter, we have presented a detailed illustration of various perturbative tech-

niques to derive amplitude equations from order parameter equations that produce pe-

riodic patterns. Amplitude equations serve as powerful analytical tools with which to

investigate pattern stability and defect interactions, as well as accurate coarse-grained

descriptions of pattern forming systems, and this calls for practical and reliable mathe-

matical methods for deriving them.

Although our benchmark for accuracy is the widely-accepted method of multiple

scales, it is critical to note that this method is not failsafe, because it requires a priori

identification of the way in which space and time scale with the small parameter ε. There

are many instances where surprising scales emerge that would not easily be identified a

priori (e.g. see the analysis of the Mathieu equation in [32]).

The method of multiple scales typically involves a very lengthy calculation before a

rotationally covariant operator ensues, and involves computation of various higher order

terms which ultimately do not improve the overall result significantly. In the example

presented here, a sixth order calculation was required to get the lowest order amplitude

equation. The reader should bear in mind that the fairly involved calculation shown in

this chapter was only one dimensional.

On the other hand, the practicality of RG based methods, where the amplitude equa-

tion was obtained very quickly at O(ε) itself, is self-evident. No guesswork was required

to determine the scaling of the variables and all calculations started with naive pertur-

bation expansions in ε. In particular, our so called “quick and dirty” (QDRG) method

and the proto-RG method are attractive techniques, because there is virtually no need

to construct explicit solutions. Both methods use only information available from the
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differential equation and in that sense, are very general ways of building a controlled

coarse-grained approximation to the order parameter equation being studied. Further-

more, the QDRG method gives the correct result quickly, apart from a small non-linear

rotationally covariant gradient term which is not captured by the linear stability argu-

ment.

For the same order in ε, we have shown that the QDRG method produces a more

accurate amplitude equation compared to the proto-RG method, by capturing certain

extra terms that are revealed in the multiple scales analysis. However, with our modi-

fication (commuting differentiation and renormalization) to the way in which the RG is

implemented, we find that all methods converge identically.
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Chapter 5

Numerical Solution of Amplitude

Equations on Fixed Grids

In this chapter we compare numerical solutions of the complex amplitude equations with

solutions of the PFC equation, Eq. (3.9), using the problem of two-dimensional grain

nucleation and growth as an example, and also establish the computational advantage of

this approach versus direct numerical simulation of the nanoscopic OPE.

The evolution equation for the amplitude A1 in Eq. (4.21) and the cyclic permutations

for A2 and A3, when rescaled to original variables read

∂A1

∂t
= L̃1A1 − 3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
− 6ψ̄A∗

2A
∗
3

∂A2

∂t
= L̃2A2 − 3A2

(
2|A1|2 + |A2|2 + 2|A3|2

)
− 6ψ̄A∗

1A
∗
3

∂A3

∂t
= L̃3A3 − 3A3

(
2|A1|2 + 2|A2|2 + |A3|2

)
− 6ψ̄A∗

1A
∗
2, (5.1)

where,

L̃j =
[
1−∇2 − 2ikj · ∇

] [
−r − 3ψ̄2 −

{
∇2 + 2ikj · ∇

}2
]

(5.2)

is the rotationally covariant operator, and ε in Eq. (4.21) has been replaced by −r in

Eq. (5.1) to stay consistent with the notation of Eq. (3.9).
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5.1 Numerical methods and implementation ideas

We evolve Aj using an O(∆t,∆x2) finite difference discretization of Eq. (5.1), where ∆t is

the time step size and ∆x is the grid spacing. The spatial discretizations of the Laplacian

and gradient operators are given in Eqs. (B.1) and (B.5) respectively. While the nine

point discretization of the Laplacian operator is essential in order to avoid checkerboard

instabilities, even a simple central difference discretization for the gradient operator as

in Eq. (B.2) is enough, provided ∆x is sufficiently small. We have, however, noticed

significant improvement in solution quality if Eq. (B.5) is used. In certain situations, it

was possible to solve Eq. (5.1) on a coarser non-uniform grid, with rectangular elements.

For those simulations, the discretizations of the Laplacian and gradient operators are

given by Eqs. (B.6) and (B.8) respectively. Note that these discrete forms are consistent

with the discrete forms in Eqs. (B.1) and (B.2) for the special case of a uniform grid.

The density field ψ is reconstructed from Aj using Eq. (3.20).

We adopt a straightforward solution strategy in this chapter. We separate the complex

amplitudes Aj in Eq. (5.1) into their respective real and imaginary parts, and in this

manner obtain six evolution equations which are then evolved using a Forward-Euler

time discretization. As expected, this places a stability constraint on ∆t, which assumes

a power-law dependence on ∆x. Upon numerically examining the stability of the discrete

version of Eq. (5.1), we find that the criterion

∆t ≤ 0.003∆x5 (5.3)

guarantees linearly stable solutions for ∆x ∈ [π/16, π].

An important idea in the numerical implementation of Eq. (5.1) (as well as of Eq. (3.9)

earlier) is the “implicit” computation of all higher order derivatives. For instance, even-

though Eq. (5.1) has a sixth order derivative, we never explicitly discretize a sixth order

operator. Instead, ∇6Aj is computed as ∇2[∇2(∇2Aj)], where each term operated upon

by the Laplacian is discretized using the nine point stencil in Eq. (B.1). While this is

entirely equivalent to discretizing the operator ∇6 explicitly on a 49 point stencil, it is

82



much more efficient, allowing reuse of previously computed quantities (for example ∇2Aj

and ∇2(∇2Aj)).

5.2 Multiple crystal orientations and “beats”

A fixed set of reciprocal lattice vectors kj, given by Eq. (3.21) with k0 = 1, is used in all

our computations. This poses a tricky question. How do we incorporate multiple crystal

orientations using a single set of reciprocal lattice vectors?

While the density field ψ on a triangular lattice with basis kj is described by Eq. (3.20),

the density field on a lattice with basis kj(θ), where |kj(θ)| = 1, rotated from the basis

vectors kj by an angle θ, is described by

ψ(θ) =
3∑

j=1

Aje
ikj(θ)·x +

3∑
j=1

A∗
je
−ikj(θ)·x + ψ̄. (5.4)

Eq. (5.4) therefore describes the density field of a grain misoriented with respect to the

basis vectors.

Further, kj(θ) = kj + δkj(θ), where the vector δkj(θ) measures the rotation of each

lattice vector. Therefore,

ψ(θ) =
3∑

j=1

Aje
iδkj(θ)·xeikj ·x +

3∑
j=1

A∗
je
−iδkj(θ)·xe−ikj ·x + ψ̄, (5.5)

or

ψ(θ) =
3∑

j=1

Aθ
je

ikj ·x +
3∑

j=1

Aθ
j

∗
e−ikj ·x + ψ̄, (5.6)

where

Aθ
j = Aje

iδkj(θ)·x. (5.7)

Thus grains arbitrarily misoriented from the global basis kj can still be described in

terms of kj by suitably modifying the amplitude Aj according to Eq. (5.7). Therefore, a

straightforward way to include differently oriented grains in the system is to specify an
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initial condition via Eq. (5.6). By making the amplitude a non-uniform complex function

with a periodic structure, multiple grain orientations are automatically included. Fig. 5.1

illustrates this idea. Fig. 5.1(a) shows the real component of one of the three complex

amplitude functions Aj, specified by Eq. (5.7), and Fig. 5.1(b) shows the corresponding

density field constructed using Eq. (5.6).

(a) <(A1) (b) ψ

Figure 5.1: (a) Real component of the complex amplitude A1. As the grain in the
bottom-left corner is aligned with the basis kj in Eq. (3.21) its amplitude is constant,
while amplitudes of the remaining misoriented grains have “beats”. (b) Density field ψ
reconstructed using Eq. (5.6). Clockwise from the lower left corner, θ = 0, π/24 and π/6.

Eq. (5.1), being rotationally covariant, has the property of preserving these “beat” like

structures in the amplitudes (and therefore the corresponding orientation of the grain),

and hence any misoriented grain, remains so misoriented as the system evolves1. An

exception to this situation is when similarly oriented grains collide to form “small angle”

grain boundaries. Under such circumstances, the interactions can cause the frequency of

the “beats” to shift, implying grain rotation, a phenomenon that has been documented

in experiments.

1This property is critical to evolving polycrystalline systems.
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5.3 Model verification

Fig. (5.2) compares the time evolution for the heterogeneous nucleation and growth of a

two-dimensional film, calculated using the PFC equation, Eq. (3.9) and its RG-generated

counterpart, Eq. (5.1), for ψ̄ = 0.285 and r = −0.25. Note from Fig. 3.1 that this set

of parameters should lead to the growth of a stable triangular phase from the constant

phase.

The computations were performed on uniform grids, squares of side 192π, with

∆x = ∆y = π/4 for the PFC equation, and ∆x = ∆y = π/2 for the complex am-

plitude equations. We have verified that these choices of the grid spacing guarantee grid

converged results in each case. The initial condition comprised twelve randomly oriented

and located grains, each of radius 4π. As seen from Fig. (5.2), the crystalline domains

grow, colliding to form a polycrystalline nanostructure. The solutions from the two

different computational algorithms are essentially indistinguishable, indicating excellent

qualitative agreement.

As a more rigorous demonstration of accuracy, we also compare the computed grain

boundary energy as a function of misorientation angle for two grains, using the two

algorithms. The initial condition for this test comprises two misaligned crystals separated

by a narrow strip of liquid, on a periodic domain (see Fig. 5.3). One of the crystals is

misoriented with respect to the other by θ as in Fig. 5.3(a), and the system is evolved

for a very long time (t ∼ 3000) until equilibrium conditions are reached, i.e. until the

free energy of the system is relatively time invariant. The resulting structure contains a

pair of grain boundaries of length ≈ Ly, where Ly is the length of the domain in the y

direction, each delineated by a regular array of dislocations as seen in Fig. 5.3(b).

The grain boundary energy γ is computed as follows. We first compute the free

energy of a perfect crystal by running the same simulation with θ = 0, and evaluating

F(0) as per Eq. (3.7) (the integral is approximated as a Riemann sum). We then compute

the free energy F(θ) of the state with the grain boundary, i.e. Fig. 5.3(b). The excess

energy per unit length of the grain boundary [F(θ) − F(0)]/(2Ly) equals γ. We repeat
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(a) t = 56 (b) t = 184 (c) t = 720

(d) t = 56 (e) t = 184 (f) t = 720

Figure 5.2: Comparison of heterogeneous nucleation and growth in the PFC equation,
Eq. (3.9) (panels (a)-(c)), and its RG-generated mesoscale counterpart, Eq. (5.1) (panels
(d)-(f)). The order parameter is shown at the times indicated starting from the same
initial condition with ψ̄ = 0.285 and r = −0.25.
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this procedure for different values of θ, ranging from 0 to π/6, which is the maximum

possible misorientation between two crystals with hexagonal symmetry.

Fig. (5.4) compares the normalized predictions of the two models with the Read-

Shockley equation [106], a well known theoretical result for small angle grain boundaries,

which has been scaled to fit large misorientation data. The agreement is remarkably good

for both low and high angle grain boundaries, and the values predicted by the amplitude

equations closely follow the trends set by the PFC equation (data obtained from [28])

and the Read-Shockley equation. The maximum difference between the absolute values

of the free energy, as computed respectively by the amplitude equations and the PFC

equation over all θ, is about 1.6%.

We conclude that the coarse-grained amplitude equations can indeed be highly accu-

rate proxies to the nanoscopic PFC equation.

(a) Initial condition (b) After time evolution

Figure 5.3: In (a) the crystal in the center is misoriented from the one on the periodic
boundary by θ = π/16. As the crystals evolve, a pair of grain boundaries highlighted by
regular array of dislocations are formed.
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Figure 5.4: Comparison of grain boundary energy predicted by the amplitude equations
and the PFC equation, with Read-Shockley theory.

5.4 Computational efficiency

An apparent problem with our approach, which the reader may have immediately spotted,

is that we have traded a single sixth order scalar OPE, i.e. Eq. (3.9), for a system of six (3

amplitude fields × 2 components) sixth order partial differential equations, i.e. Eq. (5.1).

It is clear then that we have increased the computational complexity of the numerical

algorithm by a factor of six on the same mesh, roughly speaking. How then, is our

approach computationally efficient? Note that until this point, we have not exploited

the uniformity of the amplitude modulus and phase variables to speed up computations.

Nonetheless, even with this rather naive implementation, we will show that it is still

computationally advantageous to solve amplitude equations instead of the PFC equation.

Fig. 5.5 (inset) shows grid convergence behavior in the Read-Shockley test of the

solutions to the PFC and complex amplitude equations. The crystals are misoriented

by the maximum possible angle, π/6. We define the error ε0 =
∣∣‖y∆x‖2 − ‖y0‖2

∣∣, where
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‖y∆x‖2 is the L2 norm of the solution for a mesh spacing of ∆x, and ‖y0‖2 is the L2 norm

obtained by Richardson extrapolation to ∆x = 0 consistent with a second order finite

difference method. For a comparable level of accuracy, we see that ∆xRG ≈ 2∆xPFC is

a sufficiently small mesh spacing for the RG equations. Further, with a Forward-Euler

time evolution scheme and its attendant stability constraint on the time step for each

equation, we find that ∆tRG ≈ 6∆tPFC . Clearly therefore, the amplitude/RG equations

offer significant opportunities for improved computational efficiency. Fig. 5.5 compares
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Figure 5.5: Scaling of CPU time versus domain length Lx for the PFC and RG equations.
Inset shows error in the respective solutions with diminishing mesh spacing ∆x.

the CPU time as a function of domain size Lx for the Read-Shockley test with ∆θ = 3.88◦,

r = −0.25 and ψ̄ = 0.28, showing that the CPU time required for the RG equations is

about 4-5 times lesser than that required for the PFC equations. Consistent with the

grid convergence behavior described above, we chose ∆xPFC = π/4, ∆tPFC = 0.008,

∆xRG = π/2 and ∆tRG = 0.05. The difference in the free energy predicted by the RG

equations and PFC equations was < 1%.
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For the Read-Shockley problem in particular, since the general location of the grain

boundaries can be guessed a priori, it is easy to construct an appropriate non-uniform

mesh, which while adequately resolving the beats within the misoriented grains, has its

finest elements spread over the grain boundaries. Such a mesh, spanning a square domain

of side 128π is shown in Fig. 5.6, which shows a contour plot of <(A1) and contours of the

average amplitude modulus. The latter brings out crystalline imperfections rather nicely

as regions with steep amplitude gradients. For these simulations, we chose a constant

(a) <(A1) (b) (|A1|+ |A2|+ |A3|)/3

Figure 5.6: A stationary 1-D non-uniform mesh with finer elements spread around
grain boundaries, and coarse elements in the crystal bulk, illustrating the advantage of
performing adaptive mesh refinement with the RG equations. The “dimples” in (b) are
dislocations delineating grain boundaries. One still has to resolve the beats in misoriented
grains however.

grid spacing in the y direction, ∆y = π/2, and allowed ∆x to vary from a minimum of

π/2 near the grain boundaries to 2π in the interior of each crystal. This reduced the size

of the computational mesh from 256 × 256 elements to 96×256 elements, for a domain

size of 128π. We find that the speedup of the amplitude equations approach compared to

the original PFC model is now close to a factor of ten (see Fig. 5.5), while the error in the

free energy is still < 1%. Although this is only a simple fixed and unidirectionally non-
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uniform mesh, it shows the promise of adaptive mesh refinement (AMR) as a strategy

for solving the amplitude equations, especially in view of our goal to make micro-scales

accessible with the PFC model.

Fig. 5.6 also highlights an obstacle to progress with complex amplitude equations

alone. Any mesh used to discretize these equations will also need to resolve the beats,

which assume shorter and shorter wavelengths as the grains become more and more

misoriented from kj. As suggested in section 3.4 the approach should be to evolve the

amplitude modulus (which varies only near defects as shown in Fig. 5.6(b)) and phase

(which varies sharply only near grain boundaries as shown in Fig. 3.6) variables instead

of the real and imaginary components of the amplitude. We present an adaptive mesh

algorithm based on this idea in the next chapter.

5.5 Simulations of two dimensional hetero-epitaxial

growth and dislocation annihilation

Before concluding this chapter we report some interesting preliminary results from our

attempts to simulate two dimensional hetero-epitaxial growth (described in section 3.3)

with the complex amplitude equations.

Liquid phase epitaxial growth is simulated following Elder and Grant [28], who used

a more general version of the PFC equation for this problem, viz.

∂ψ

∂t
= ∇2

[{
r + (k2 +∇2)2

}
ψ + ψ3

]
. (5.8)

A value of k = k0 is chosen in the substrate region, a small part of the computational

domain, while k = k1 is used for the film. Clearly, patterns with different wavenumbers

must emerge in each region. However, as the field ψ must remain continuous across the

substrate/film interface, both the film and the substrate are elastically “strained” along

the interface. As the substrate is typically modeled by only a few layers of atoms and is

very close to its equilibrium configuration initially, it is very stiff and does not deform
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very much, the wavenumber therefore remaining very close to k0. On the other hand, the

film is forced to have a wavenumber near k0 at the interface and attempts to relax to k1

away from the substrate by emitting misfit dislocations at regular height intervals. The

magnitude of the strain is measured as ε = |a1 − a0|/a0, where a1 and a0 are the lattice

spacings in the film and the substrate respectively. However in a 1-mode approximation

to the crystal structure, a ∝ 1/k, and therefore ε = |k1 − k0|/k1.

We simplify the above situation somewhat to suit our approach with amplitude equa-

tions. Instead of including both the substrate and film in our computational domain, we

grow only the film, while imposing the mismatch strain due to the substrate, assumed to

be a perfect crystal with wavenumber k0, as a boundary condition on the complex ampli-

tude along the bottom edge of the domain. The boundary conditions on the amplitude

at the horizontal boundaries are therefore,

Bottom Edge : Aj = Āe
i(1− k1

k0
)kj ·x

Top Edge : Aj = 0 (liquid phase), (5.9)

while periodic boundary conditions are imposed on vertical boundaries. The basis vectors

for the film are (k1/k0)kj, where kj is given by Eq. (3.21), and therefore, the condition on

the bottom edge guarantees continuity of the density field ψ between film and substrate.

Ā is the equilibrium amplitude modulus of the substrate in a 1-mode approximation,

determined by Elder and Grant [28] to be

Ā =
1

5

(
ψ̄ +

1

3

√
−15r − 36ψ̄2

)
. (5.10)

Fig. 5.7 shows a time sequence in the evolution of a film with k1 = 1.05, over a

substrate with k0 = 1.0, i.e. ε = 4.76%. The field plotted is the average amplitude

modulus, (|A|1 + |A|2 + |A|3)/3. Simulation parameters were r = −0.25, ψ̄ = 0.285,

∆x = 1.8138, ∆t = 0.04, Nx = 401, and Ny = 201, where Nx and Ny are respectively the

number of grid points in the x and y directions on a uniform grid. As can be seen, the

flat film eventually becomes unstable, nucleating misfit dislocations in waves above the

92



substrate. These dislocations climb towards the substrate, several of them annihilating

each other, before finally leaving behind a low energy configuration.

Matthews and Blakeslee [107] have proposed a linear relationship of the form

ε ∝
[
1 + log10

(
Hc

a∗

)](
Hc

a∗

) , (5.11)

where Hc is the height of the first wave of dislocations nucleated above the substrate,

and a∗ is the thickness of a film layer. Fig. 5.8 shows a least square fit of our numerical

results with the functional form in Eq. (5.11), and the agreement is reasonably good.

Fig. 5.9 shows a zoomed-in time sequence of the dynamics of a dislocation pair that

eventually annihilate one another. The field plotted is the reconstructed atomic density

ψ, and the solid lines outline edge dislocations with opposite Burger’s vectors. The

distance between the dislocation cores δ(t) was measured as a function of the time to

annihilation ta − t, where ta is the absolute time when the dislocations annihilate, and

shows a power law scaling (also shown in Fig. 5.10)

δ(t) = 1.22(ta − t)0.49. (5.12)

This result appears to be consistent with a logarithmic interaction energy for a pair of

isolated edge dislocations [108] in 2-D crystals, and a simple viscous glide model for

dislocations. We illustrate this with a simple calculation. Let the interaction potential

between the dislocation cores [108] be

V (δ) = a− b log(
δ

ac

), (5.13)

where a and b are related to the elastic constants of the material and the dislocation

core energy respectively. ac is the dislocation core diameter. The tension along the line

between the dislocations is therefore

T =
dV (δ)

dδ
= −bac

δ
. (5.14)
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5.7: Time sequence showing liquid phase epitaxial growth of a thin film, simu-
lated with the amplitude equations. The elastically strained film nucleates misfit disloca-
tions at intervals above the substrate. Dislocations climb towards the substrate, several of
them annihilating each other, leaving behind a relatively low energy dislocation network.
The field plotted is the average amplitude modulus.
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Figure 5.8: Comparison of critical nucleation height of misfit dislocations versus strain
as predicted by numerical simulations of amplitude equations, with Matthews-Blakeslee
theory.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Reconstructed density field ψ during simulations of epitaxial film growth.
The black lines outline two dislocations with opposite Burger’s vectors, gliding towards
one another and annihilating.
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Viscous glide models assume that glide speeds are proportional to this tension, which

implies that
dδ

dt
= αT = −αbac

δ
(5.15)

where we α is some constant, and therefore

δ2 = −2αbact+ I1, (5.16)

where I1 is an integration constant. Since, δ = 0 when t = ta, i.e. when the dislocations

annihilate, I1 = 2αbacta and so we have

δ(t) =
√

2αbac(ta − t)1/2. (5.17)

Ambrozic et al. [109] have observed a similar scaling during the annihilation of edge

dislocations in liquid crystals.

10 100
(t

a
-t)

10

δ(
t)

Numerical simulations 
Linear least squares fit, δ(t) = 1.22(t

a
-t)

0.49

Figure 5.10: Power law scaling of inter-dislocation distance with time to annihilation,
ta − t, as calculated with the amplitude equations.
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Chapter 6

Numerical Solution of Amplitude

Equations on an Adaptive Grid

In this chapter we present a numerical algorithm for solving the amplitude equations in

Eq. (5.1) on an adaptively evolving mesh. We demonstrate that with our formulation,

it is possible to extend the modeling capabilities of the PFC equation to micro- length

scales, once again with the example of 2-D nucleation and growth of polycrystals.

6.1 Complex amplitude equations on an adaptive grid

using a cartesian representation

It must be evident from the last chapter, particularly from the discussion in section 5.4,

that beats may limit the effectiveness of adaptive mesh refinement. We have verified that

this is indeed the case. We simulated, yet again, the problem of heterogeneous nucleation

and growth of a two-dimensional film, from twelve randomly oriented and placed crystals

(the largest misorientation angle was θ = π/12) each with an initial radius 8π, on a

square domain of size 256π, but this time on an adaptively evolving mesh1 with periodic

boundary conditions. It is important to note that we solved for the real and imaginary

1A summary of the adaptive mesh refinement algorithm and criteria for refinement and coarsening
will be given in a later section.
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(a) t = 0 (d) t = 248

(b) t = 88 (e) t = 320

(c) t = 168 (f) t = 552

Figure 6.1: Evolution of a polycrystalline film simulated with complex amplitude equa-
tions, Eq. (5.1), on an adaptive grid. Note that the grid does not coarsen inside many of
the grains (misoriented with respect to kj) because of the “beats” problem discussed in
Sec. 5.2. The colored field plotted is the average amplitude modulus, which is “red” in-
side the crystal phase, “blue” in the liquid phase, “green” at the crystal/liquid interface,
and “yellow” near defects.
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parts of the Aj, which is what is implied by the cartesian representation. The simulation

parameters were chosen to be r = −0.25 and ψ̄ = 0.285, the smallest mesh spacing was

∆xmin = π/2, while the largest mesh spacing at any given time was ∆xmax = 24(∆xmin)

which provided 5 levels of refinement. On a uniform grid, this simulation would have

required 1025×1025 = 1, 050, 625 nodes with the PFC equation, and 513×513 = 263, 169

nodes with the amplitude equations. A time step of ∆t = 0.04 was used.

Fig. 6.1 shows the crystal boundaries and grid structure2 at various times during the

simulation. Although the grid is quite coarse initially (t = 0 and t = 88), because of the

large liquid fraction in the domain, this advantage falls off dramatically once the crystals

evolve, collide, and start to form grain boundaries. In particular, once all the liquid

freezes, only a couple of grains that are favorably oriented with respect to kj show any

kind of grid coarsening at all. The number of nodes in the adaptive grid corresponding

to the polycrystal shown in Fig. 6.1(f) is 219, 393, which is very near that on a uniform

grid, and therefore the adaptive refinement algorithm appears to be at best a marginal

improvement over a fixed grid implementation.

6.2 Complex amplitude equations in a polar repre-

sentation

Based on the properties of the solution, we anticipate that computational benefits with

adaptive mesh refinement would be much higher if, instead of solving for the real and

imaginary components of Aj, we solved for the amplitude moduli Ψj = |Aj|, and the phase

angles Φj = arctan(=(Aj)/<(Aj)), which together constitute a polar representation of

Aj. In this section we derive evolution equations for Ψj and Φj directly from Eq. (5.1), by

applying Euler’s formula for a complex number, i.e. Aj = Ψje
iΦj , and then by equating

corresponding real and imaginary parts on the left hand sides and the right hand sides

2The graphics were rendered with software developed by Mike Greenwood and Nik Provatas at
McMaster University.
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of the resulting equations. In this manner we get the coupled system of equations,

∂Ψj

∂t
= (r + 3ψ̄2)

[
−Ψj + C<(Ψj,Φj)

]
−
[
C<<(Ψj,Φj)− C==(Ψj,Φj)

]
+
[
C<<<(Ψj,Φj)− C<==(Ψj,Φj)− C==<(Ψj,Φj)− C=<=(Ψj,Φj)

]
−3Ψj

(
Ψ2

j + 2
∑
k 6=j

Ψ2
k

)
− 6

ψ̄

Ψj

(∏
k

Ψk

)
cos

(∑
k

Φk

)
(6.1)

and

∂Φj

∂t
=

{
(r + 3ψ̄2)C=(Ψj,Φj)−

[
C<=(Ψj,Φj) + C=<(Ψj,Φj)

]
+
[
C=<<(Ψj,Φj)− C===(Ψj,Φj) + C<=<(Ψj,Φj) + C<<=(Ψj,Φj)

]}
/Ψj

+6
ψ̄

Ψ2
j

(∏
k

Ψk

)
sin

(∑
k

Φk

)
(6.2)

where

C<(Ψj,Φj) = <
{

[∇2 + 2ikj · ∇] (Ψje
iΦj)

eiΦj

}
C=(Ψj,Φj) = =

{
[∇2 + 2ikj · ∇] (Ψje

iΦj)

eiΦj

}
C<<(Ψj,Φj) = <

{
[∇2 + 2ikj · ∇]

(
C<(Ψj,Φj)e

iΦj
)

eiΦj

}

C=<(Ψj,Φj) = =

{
[∇2 + 2ikj · ∇]

(
C<(Ψj,Φj)e

iΦj
)

eiΦj

}
(6.3)

and so on. From here on we refer to the evolution equations for Ψj and Φj as the

phase/amplitude equations, whereas Eq. (5.1) will be referred to as the complex am-

plitude equation. Unfortunately, the phase/amplitude equations in Eqs. (6.1) and (6.2)

turn out to be quite difficult to solve globally. The principal difficulties are summarized

below.

Ψj is practically constant within the individual grains and varies sharply only near

grain boundaries, rendering its equation ideally suited for solution on adaptive meshes. Φj
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(a) Contours of Ψ1. (c) Contours of Φ1.
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(b) Lineplot of Ψ1 along solid line in (a). (d) Lineplot of Φ1 along dashed line in (c).

Figure 6.2: While Ψ1 is smooth everywhere except near interfaces and defects, Φ1,
which is computed naively as arctan(=(A1)/<(A1)) is periodic and discontinuous. The
chaotic fluctuations in (d) near the two ends corresponds to regions in the liquid phase
where Φ1 has no physical meaning. The rapid, but periodic, variations of Φ1 in the left
grain is due to its large misorientation angle of π/6. In contrast, the grain on the right
is oriented along kj causing Φ1 to vary much more smoothly.
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on the other hand, if computed naively as arctan(=(Aj)/<(Aj)), is a periodic and discon-

tinuous function3 bound between the values −π and π, with a frequency that increases

with increasing grain misorientation. This poses a problem similar to that previously

posed by the beats, with the grid this time having to resolve the fine scale structure

of Φj. Further, one may need to resort to shock-capturing methods, such as ENO and

WENO schemes [110, 111], in order to correctly evaluate higher order derivatives, and

resolve jumps where Φj changes value from π to −π and vice-versa. Complications are

also caused by Φj being undefined in the liquid phase, and the tendency for Ψj, which

appears in the denominator on the right hand side of Eq. (6.2), to approach zero at those

locations. This calls for some type of robust regularization scheme4 for the phase equa-

tions. These problems are clearly highlighted in Fig. 6.2, which shows the impingement

of two misaligned crystals.

Ideally, one would like to reconstruct from the periodic Φj, a continuous surface

Φj +2nπ (where n is an integer) which would be devoid of jumps, and therefore amenable

to straightforward resolution on adaptive meshes. The implementation of such a re-

construction algorithm however, even if possible, requires information about individual

crystal orientations, and the precise location of solid/liquid interfaces, defects, and grain

boundaries at every time step, making it very computationally intensive. Further, such an

algorithm would be more appropriate in the framework of an interface-tracking approach

such as the level set method [112], rather than our phase-field modeling approach.

Despite these issues with the phase/amplitude equations, progress can be made via

certain assumptions, and by recognizing that these equations can be solved locally in

conjunction with the complex amplitude equations.

3Φj ≈ q(θ) · x, Φj ∈ [−π, π], where q(θ) is the phase vector, constant for a particular orientation of
the grain, and θ is the misorientation angle of the grain. Thus Φj , roughly speaking, has the structure
of a sawtooth waveform.

4We have determined that simple tricks such as setting Ψj to some small non-zero value, or setting
a heuristic upper bound on higher-order derivatives, have the effect of destroying defects and other
topological features in the pattern.
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6.3 Reduced equations and frozen phase gradients

The main idea that will be developed in this and subsequent sections is that of evolving

the phase/amplitude and complex amplitude equations simultaneously in different parts

of the domain, depending on where they can most appropriately be applied. Based on

the discussion in the previous section, it is clear that the phase/amplitude formulation

is best suited for numerical solution in the crystal bulk, away from defects, interfacial

regions, and the liquid phase. This does away with the need for regularizing the phase

equations where Ψj → 0, as Ψj � 0 in the crystal interior, and the other issue of the

phase being undefined in certain regions. The complex amplitude equations can be solved

everywhere else in the computational domain. We overcome the remaining issues with

the phase equation, viz. the difficulty of evaluating derivatives of the phase and the need

to resolve its periodic variations via certain controlled approximations described below.

Our uniform grid calculations with the complex amplitude equations indicate that

the functions Ψj and ∇Φj contain negligible gradients inside crystals as compared to

interfaces and defects. This can be seen from Figs. 6.2(b) and 6.3(b) which show one

dimensional variations of Ψj and one of the components of ∇Φj through cross-sectional

plots of two impinging misoriented crystals. These plots were generated by processing the

real and imaginary component fields of Aj. In fact, the uniform nature of these variables

can be inferred even from the filled contour plots in Figs. 6.2(a) and 6.3(a).

Based on the above observations, we neglect third and higher order derivatives of Ψj

and Φj
5, which allows us to simplify Eqs. (6.1) and (6.2) to the following second order

PDEs

∂Ψj

∂t
= (r + 3ψ̄2)

[
−Ψj + C<(Ψj,Φj)

]
−3Ψj

(
Ψ2

j + 2
∑
k 6=j

Ψ2
k

)
− 6

ψ̄

Ψj

(∏
k

Ψk

)
cos

(∑
k

Φk

)
(6.4)

∂Φj

∂t
=

(r + 3ψ̄2)C=(Ψj,Φj)

Ψj

+ 6
ψ̄

Ψ2
j

(∏
k

Ψk

)
sin

(∑
k

Φk

)
, (6.5)

5To consistent order, we can also neglect second order derivatives of Ψj .
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where C< and C= contain only first and second order derivatives in Ψj and Φj. The

task of evolving the phase/amplitude equations is now considerably simplified, as only

derivatives up to second order in Φj need to be computed. While the gradient and

Laplacian of Ψj can be computed in the usual manner using Eqs. (B.5) and (B.1), the

gradient of Φj needs to be computed with a little more care (in order to avoid performing

derivative operations on a discontinuous function).

∵ tan Φj =
=(Aj)

<(Aj)

=⇒ sec2 Φj∇Φj =
<(Aj)∇=(Aj)−=(Aj)∇<(Aj)

<(Aj)2

=⇒
(

1 +
=(Aj)

2

<(Aj)2

)
∇Φj =

<(Aj)∇=(Aj)−=(Aj)∇<(Aj)

<(Aj)2

=⇒ ∇Φj =
<(Aj)∇=(Aj)−=(Aj)∇<(Aj)

Ψ2
j

. (6.6)

Thus, the gradient operation on a discontinuous function Φj is now transformed into

gradient operations on the smooth components of the complex amplitude Aj. Further,

∇2Φj is computed as ∇ · ∇Φj, where the divergence operator is discretized using a

simple second order centered difference scheme. Eqs. (6.4) and (6.5) are the reduced

phase/amplitude equations.

However, as can be seen from Eq. (6.6), ∇Φj now depends on gradients of the real and

imaginary components of Aj, which may not be properly resolved in the crystal bulk as we

intend to coarsen the mesh there. To address this point, we assume that ∇Φj is frozen

temporally in the crystal bulk. This assumption implies that once ∇Φj is accurately

initialized in the crystal interior via Eq. (6.6), after ensuring adequate resolution of the

components of Aj, it need not be computed again. For example, in simulations of crystal

growth from seeds, we can start with a mesh that is initially completely refined inside

the seeds, so that ∇Φj is correctly computed. Once initial transients disappear and the

crystals reach steady state evolution, the growth is monotonic in the outward direction.

From this point on, ∇Φj hardly changes inside the crystal bulk (see next paragraph),
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Figure 6.3: Note that this is the same pair of crystals shown in Fig. 6.2. Like Ψj, the
components of ∇Φj are also practically constant inside the individual crystals. The spike
in (b) corresponds to a defect on the grain boundary. As seen from the time series in (c)
for ∂Φ1/∂x, ∇Φj hardly changes in the crystal bulk during its evolution.
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and the grid can unrefine inside the grains while correctly resolving gradients in ∇Φj.

Note that the apparent discontinuities in Φj no longer need be resolved by the grid.

We justify the above approximation of a locally frozen phase gradient6, once again via

a fixed grid calculation with the complex amplitude equations, where ∇Φj inside a steady

growing crystal is seen to be essentially time invariant. Fig. 6.3(c) shows a sequence of

line plots of the quantity ∆(∂Φ1/∂x) = ∂Φ1/∂x|t=840 − ∂Φ1/∂x|t, which illustrates the

difference between the x component of ∇Φ1 at time t = 840 and indicated times along

the dashed line in Fig. 6.3(a). As the crystal on the left grows (as t increases), it can be

seen that ∆(∂Φ1/∂x) stays close to zero inside. We have verified that this is also true

for the y component of ∇Φ1, and both components of ∇Φ2 and ∇Φ3.

∇Φj is a quantity that measures crystal orientation. An assumption that the orien-

tation of a freely evolving crystal does not change with time therefore seems perfectly

reasonable. On the other hand, when similarly oriented crystals collide to form a small

angle grain boundary, the situation turns out to be more energetically favorable for

grains to realign (i.e. ∇Φj changes inside the grains, close to the grain boundary) locally

in order to reduce orientational mismatch [113–116], rather than nucleate dislocations.

Fortunately, as such interaction effects originate at the grain boundary, where the full

complex equations will be solved, we anticipate that our assumption will not lead to

artificially “stiff” grains.

6.4 Domain decomposition

In order to implement our idea of evolving Eq. (5.1), and Eqs. (6.4) and (6.5) selectively,

we start by dividing the computational domain into two regions where each set of equa-

tions may be evolved simultaneously in a stable fashion. We term the region where Aj

is computed X, and the region where Ψj and Φj are computed Y. It is worth ensuring

that subdomain Y is well separated from locations with sharp gradients, such as inter-

6Note that the assumption of a frozen phase gradient does not mean that Φj itself cannot change.
Φj can continue to evolve as per Eq. (6.5) under the constraint of a fixed ∇Φj , although the changes
may actually be quite small.
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faces and defects. Otherwise, errors resulting from our approximations may grow rapidly,

causing X to invade Y, which will in turn require us to solve the complex equations ev-

erywhere. We will further assume that the decomposition algorithm is implemented after

a sufficient time, when initial transients have passed, and that the crystals are evolving

steadily, which implies that Ψj inside the crystals has reached some maximum saturation

value Ψmax
j . The scenario we have in mind is sketched in Fig. 6.4, with Y constituting

the shaded regions and everything else being X.

Crystal

Aj

Solid/Liquid Interface

Liquid

Crystal

Domain Boundary

Ψj Φj,
Ψj Φj,

Figure 6.4: Sketch illustrating the idea of selectively evolving the complex amplitude
and phase/amplitude equations in different parts of the computational domain. Ψj and
Φj are evolved inside the shaded circles that fall well inside the crystalline phase, while
the real and imaginary components of Aj are evolved elsewhere.

The pseudo-code shown in Algorithm 1 presents a simple algorithm to achieve this

decomposition. The algorithm first determines nodes with Ψj exceeding some minimum

value γΨmax
j , and |∇Ψj| beneath some limit ε1. The nodes satisfying these conditions

constitute domain Y, while those failing to, constitute X. The Y nodes are then checked

again to see if the quantity |∇(|∇Φj|)| is under some limit ε2. Nodes in set Y that fail

to satisfy this condition are placed in set X. The parameters γ, ε1, and ε2 are chosen

optimally, to ensure the largest possible size of set Y. A small problem is caused by the
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fields Ψj and |∇Φj| not being perfectly monotonic. As the limits ε1 and ε2 are sharp,

several small islands (clusters of grid points) of X or Y can be produced, which are

detrimental to numerical stability. We have resolved this issue via a coarsening algorithm

that eliminates very small clusters of X and Y.

Algorithm 1 Domain decomposition. The parameters γ, ε1, and ε2 are heuristic.
Compute Ψmax

j

Ψmax
j = γ ×Ψmax

j

{Split domain based on the magnitude of Ψj and |∇Ψj|}
for i = 1 to maxnode do {loop over all nodes}

count = 0
for j = 1 to 3 do {loop over amplitude components}

if Ψj ≥ Ψmax
j and |∇Ψj| ≤ ε1 then

count++
end if

end for
if count = 3 then

domain = Y {passed test, solve phase/amplitude equations}
else

domain = X {failed test, solve complex equations}
end if

end for
{Split domain based on |∇ (|∇Φj|)|}
for i = 1 to maxnode do {loop over all nodes}

count = 0
if domain = Y then {check only nodes that passed previous test}

for j = 1 to 3 do {loop over amplitude components}
if |∇(|∇Φj|)| ≤ ε2 then

count++
end if

end for
if count 6= 3 then

domain = X {failed test, solve complex equations}
end if

end if
end for

Fig. 6.5 shows results from a uniform grid implementation of Algorithm 1. No

islands are present, and the algorithm appears to do a nice job of decomposing the domain

in an unsupervised manner. Notice how the domain boundaries distort in Figs. 6.5(c) and
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(a) t = 120 (b) t = 200

(c) t = 280 (d) t = 360

Figure 6.5: Filled contour plot showing the time evolution of three misoriented crystals.
The field plotted is Ψ3. Superimposed on the plot as solid curves are the boundaries that
separate domains X and Y, with Y being enclosed by the curves.
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6.5(d) in response to the formation of a grain boundary between the two crystals, after

being roughly hexagonal at earlier times. The fact that the domain separatrices maintain

a safe distance from the grain boundary ensures that the phase/amplitude equations are

not evolved in regions with sharp gradients in∇Φj. Parameter values used were γ = 0.85,

ε1 = 0.0005, and ε2 = 0.003.

The beauty of this numerical scheme is that solving different sets of equations in

X and Y does not call for doing anything special near the domain boundaries, such as

creating “ghost” nodes outside each domain, or constraining solutions to match at the

boundaries. Both sets of variables, {Ψj,Φj} and {Aj}, are maintained at all grid points

irrespective of the domain they belong to, with one set allowing easy computation of the

other7. Therefore the transition between the two domains is a continuous one in terms

of field variables, which allows the finite difference stencils in Eqs. (B.1) and (B.5) to be

applied to the respective fields without any modification near domain boundaries.

6.5 Adaptive mesh refinement (AMR)

We have built a numerical implementation of our equations on a finite difference adap-

tive grid module developed by Greenwood and Provatas [117] for phase-field models of

solidification. We refer the interested reader to their work for full implementation details

of the AMR algorithm and refinement/unrefinement procedures while providing only a

gist here.

The adaptive grid module uses a quadtree data structure [118] to store information

pertaining to elements, their nodes, nodal connectivity, and element neighbors. Elements

with different refinement levels occupy different levels in the tree, with the depth of the

tree being equal to the total number of refinement levels. Starting at the root of the tree,

if an element, which is a leaf of the tree, satisfies some criterion and needs to be split,

it is quadrisected into four smaller elements (four new leaves) which preserve memory of

the parent node. Similarly, starting from the leaves of the tree, if elements belonging to

7For example in domain X where {Aj} is the field variable, Ψj = |Aj | and Φj = =(Aj)/<(Aj), whereas
in domain Y where {Ψj ,Φj} are the field variables, <(Aj) = Ψj cos(Φj) and =(Aj) = Ψj sin(Φj).
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the same parent are not to be split, they are merged. The tree is recursively searched for

elements that satisfy criteria for refinement/coarsening. An important rule associated

with the AMR algorithm is that any two elements sharing a node cannot differ by more

than one level of refinement8. For this reason, before an element is split, its neighbors are

checked to see if they satisfy the one-level rule [19]. If not, they are split as well. A nodal

linked list, which stores nodal variables and node neighbor information is also present.

Although finite difference methods use a nodal representation of the grid, the element

representation is more convenient from the point of view of AMR. The idea of using

dynamic data structures such as quadtrees and octrees for AMR goes back to Shephard

and co-workers for their work on unstructured finite element mesh generation [119–121]

through the 1980s.

We now focus on two aspects of the AMR algorithm that we have had to modify to

suit our equations.

6.5.1 Handling of ghost nodes

A nice feature of the AMR implementation in [117] is that each node sits at the center

of a uniform 5× 5 mini-grid. This is illustrated in Fig. 6.6, where the node represented

by the lightly shaded circle (labeled F), has access to all other nodes on the wireframe.

The advantage of this is that it allows us to use the uniform grid finite difference stencils

for the Laplacian and gradient operators in Eqs. (B.1) and (B.5) respectively, instead of

modifying them node-wise to accommodate variations in grid spacing. However, “ghost”

nodes now have to be introduced. These nodes, which are shown as dark shaded circles

in Fig. 6.6 are non-computational in nature, primarily serving to store field values inter-

polated from neighboring nodes, which are subsequently used for computing derivatives

at the computational nodes (open circles in Fig. 6.6). A similar situation arises in finite

element based AMR implementations [19,122] where “hanging” or “disconnected” nodes

need to be introduced when the refinement level changes between two adjoining elements.

8Described as the one-level rule in [19].
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Figure 6.6: Schematic showing a portion of the adaptive grid where the refinement level
changes. Open circles (and node F) are real nodes where the fields are computed, whereas
the rest are non-computational ghost nodes where the fields need to be interpolated.

The scheme used to interpolate values at the ghost nodes is an important source of

error in the numerical solution, and must be chosen carefully to ensure that the error

remains bounded. Ψj, ∂Φj/∂x, ∂Φj/∂y, <(Aj) and =(Aj) are very smoothly varying

functions, and therefore we linearly interpolate their values to the ghost nodes. Values

at ghosts residing on element9 edges, for example node M in Fig. 6.6, are obtained by

averaging values of the two end nodes Q and S, whereas values at ghosts residing at

the center of an element, node N for example, are obtained by averaging the values

at the four corner nodes, P, Q, R, and S. We have found this interpolation scheme

to be quite stable. We note however that, given the near-periodic variations in <(Aj)

and =(Aj), especially in misoriented grains, higher order interpolation functions (such

as cubic splines) will certainly improve accuracy of solutions, while strongly enforcing

continuity of fields across elements. We leave that as a small area for future work.

9We define an element as a square with real corner nodes.
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The interpolation of Φj at the ghost nodes is a little more tricky. Since Φj is a discon-

tinuous function, a simple average of the values at the neighboring real nodes may not

always give the correct answer, especially if the grid does not resolve the discontinuities

(which it does not). Even if it does, a simple average can lead to the wrong result. As a

case in point, consider the two real nodes Q and S in Fig. 6.6, with values ΦQ
1 = π − δ1

and ΦS
1 = −π + δ2 where δ1 and δ2 are very small but positive real numbers, on either

side of a discontinuity in Φ1. We wish to determine the value at the ghost node M, that

lies between Q and S. Although the values of Φ1 at Q and S are essentially equivalent in

phase space, differing in magnitude by ≈ 2π, a simple average gives ΦM
1 = (δ2−δ1)/2 ≈ 0,

which is quite wrong.

In order to interpolate correctly we need to make use of ∇Φj. For example in the

above case, the total change in the phase from Q to S is obtained by integrating the

directional derivative of Φ1 along the edge QS, i.e.

∆ΦQS
1 =

∫ S

Q

∇Φ1 · dr =

∫ yS

y=yQ

∂Φ1

∂y
dy. (6.7)

Eq. (6.7) can be evaluated numerically, and the accuracy of the result depends on how

well ∂Φ1/∂y is approximated. Consistent with our earlier assumptions, we approximate

∂Φ1/∂y as piecewise constant where

∂Φ1

∂y
=

1

2

(
∂Φ1

∂y

∣∣∣∣
S

+
∂Φ1

∂y

∣∣∣∣
Q

)
(6.8)

which leads to

∆ΦQS
1 =

1

2

(
∂Φ1

∂y

∣∣∣∣
S

+
∂Φ1

∂y

∣∣∣∣
Q

)(
yS − yQ

)
. (6.9)

Since ∂Φ1/∂y is constant along the edge QS, Φ1 must vary linearly along QS. Hence at

node M,

ΦM
1 = ΦS

1 +
1

2
∆ΦQS

1 : ΦM
1 ∈ [−π, π]. (6.10)

Interpolation of Φj at element center ghost nodes, such as N, is done in a similar manner

by interpolating linearly from ghost nodes at the centers of opposite element edges. Once

114



again, this scheme can be improved by choosing higher order polynomials to approximate

∇Φj inside elements.

6.5.2 Refinement criteria

Traditionally, AMR algorithms rely on some kind of local error estimation procedure to

provide a criterion for grid refinement. Years ago, Zienkiewicz and Zhu [123] developed

a simple scheme for finite element discretization of elliptic and parabolic PDEs by com-

puting the error in the gradients of the fields using higher order interpolation functions.

Berger and Oliger [124] on the other hand estimated the local truncation error of their

finite difference discretization of hyperbolic PDEs via Richardson extrapolation. As it

turns out, depending on the equations being solved and the numerical methods being

used, one scheme may work more effectively than another. We use a very simple and

computationally inexpensive refinement criterion [117] that works rather nicely for our

equations, based purely on gradients in the various fields. The outline of an algorithm to

decide whether or not to split an element is given in Algorithm 2. Algorithm 1 needs

to be called first in order to split the computational domain into subdomains X and Y.

The routine initially computes absolute changes in the real and imaginary parts of

Aj, and the x and y components of ∇Φj, in the element. We use absolute differences

in place of derivatives in order for the refinement criterion to be independent of element

size.

First, an element flag is checked to see if the element lies on the separatrix between X

and Y, or within the Y subdomain, k layers from the boundary. If it does, this element

is split. This ensures that the fields are always resolved on the interface between X and

Y, and just within the boundary on the Y side. The latter is required because of the

higher order derivative operations that need to be performed while evolving the complex

amplitude equations in X.

If the element does not split and belongs to X where Aj are the field variables, the

variations in the real and imaginary parts of Aj are checked to see if they exceed a certain

bound ε1. If any one of them does, this element is split. If on the other hand, the element
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Algorithm 2 Criteria for element splitting

{N1, N2, N3 and N4 are the element nodes in clockwise manner}
for i = 1 to 3 do {loop over amplitude components}
{Change in real part of Ai over element}
DRi = |N1 → <(Ai)− N2 → <(Ai)|+ |N2 → <(Ai)− N3 → <(Ai)|
+|N3 → <(Ai)− N4 → <(Ai)|+ |N4 → <(Ai)− N1 → <(Ai)|
{Change in imaginary part of Ai over element}
DIi = |N1 → =(Ai)− N2 → =(Ai)|+ |N2 → =(Ai)− N3 → =(Ai)|
+|N3 → =(Ai)− N4 → =(Ai)|+ |N4 → =(Ai)− N1 → =(Ai)|
{Change in x component of ∇Φi over element}
DGPXi = |N1 → ∂Φ1/∂x− N2 → ∂Φ1/∂x|+ |N2 → ∂Φ1/∂x− N3 → ∂Φ1/∂x|
+|N3 → ∂Φ1/∂x− N4 → ∂Φ1/∂x|+ |N4 → ∂Φ1/∂x− N1 → ∂Φ1/∂x|
{Change in y component of ∇Φi over element}
DGPYi = |N1 → ∂Φ1/∂y − N2 → ∂Φ1/∂y|+ |N2 → ∂Φ1/∂y − N3 → ∂Φ1/∂y|
+|N3 → ∂Φ1/∂y − N4 → ∂Φ1/∂y|+ |N4 → ∂Φ1/∂y − N1 → ∂Φ1/∂y|

end for
if element on X/Y boundary OR k layers inside Y then

Split element and exit
else if element inside X then

count=0
for i = 1 to 3 do {loop over amplitude components}

if DRi ≥ ε1 OR DIi ≥ ε1 then
count++

end if
end for
if count 6= 0 then

Split element and exit
end if

else {element is inside Y}
count = 0
for i = 1 to 3 do {loop over amplitude components}

if DGPXi ≥ ε2 OR DGPYi ≥ ε2 then
count++

end if
end for
if count 6= 0 then

Split element and exit
end if

end if
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belongs to Y where the phase/amplitude equations are solved, variations in the x and y

components of ∇Φj are checked to see if they exceed another limit ε2. If they do, this

element is split. If none of the above criteria are satisfied, the element is not split and is

automatically placed in the list of elements to be checked for coarsening.

As we demonstrate in the next section, by recursively applying the above refinement

criteria to the quadtree, the finest elements are automatically placed around domain

separatrices, solid/liquid interfaces, and defects.

6.6 Results and computational efficiency

Using the various approximations and algorithms described in the previous sections we

are now in a position to solve the phase/amplitude and complex equations simultaneously

in different parts of our computational domain using the AMR module of Greenwood and

Provatas [117]. Algorithm 3 shows the flow of control from the main subroutine in our

computer program via pseudo-code. The complex amplitude equations, Eq. (5.1), are

initially evolved everywhere until time Ntr, when initial transients completely vanish and

the crystals evolve steadily outward. The domain is then split into subdomains X and Y,

following which the reduced phase/amplitude equations, Eqs. (6.4) and (6.5), are evolved

using a forward Euler time stepping scheme10 in subdomain Y. The grid is refined after

a predetermined number of time steps Nadapt, which is chosen heuristically. We wish to

point out that the current implementation can handle only periodic boundary conditions.

Work is currently underway to enable handling of more general boundary conditions.

Using this implementation, we simulated the same problem (same initial and bound-

ary conditions and problem parameters) that was solved adaptively in section 6.1 using

only the complex amplitude equations. Fig. 6.7 shows the crystal boundaries and grid

structure at various times during the simulation. Ntr was chosen to be 3000 for this

simulation. With ∆t = 0.04, this implies that this simulation is identical to the previ-

10We have determined that the discrete versions of Eqs. (6.4) and (6.5) are numerically stable for the
same time step size that satisfies the stability criterion in Eq. (5.3) for the complex amplitude equations
(which are evolved in subdomain X).
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Algorithm 3 Flow of control

InitVar() {Initialize program variables and parameters}
InitGrid() {decide where to initially refine/coarsen based on initial condition}
UpdateGhostsFV() {interpolate Aj, Ψj, Φj at ghost nodes}
ComputePhaseGradients(1) {compute ∇Φj everywhere}
UpdateGhostsPG() {interpolate ∇Φj at ghost nodes}
for i = 1 to Ntr − 1 do {evolve until initial transients subside}

if i mod Nadapt = 0 OR i = 1 then
AdaptGrid() {uses Algorithm 2}

end if
EvolveComplexAmp() {evolve Eq. (5.1) everywhere}
UpdateAllFields() {compute Ψj and Φj from Aj}
UpdateGhostsFV()
ComputePhaseGradients(1)
UpdateGhostsPG()

end for
DivideDomain() {call Algorithm 1 to split domain into X and Y}
for i = Ntr to Nend do {evolve after transients subside}

if i mod Nadapt = 0 then
DivideDomain()
AdaptGrid()

end if
EvolveComplexAmp() {evolve Eq. (5.1) in X}
EvolvePhaseAmp() {evolve Eqs. (6.4) and (6.5) in Y}
UpdateAllFields() {evaluate Ψj and Φj in X, evaluate Aj in Y}
UpdateGhostsFV()
ComputePhaseGradients(i) {compute ∇Φj in X only, frozen gradient approx.}
UpdateGhostsPG()

end for
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(a) t = 0 (d) t = 248

(b) t = 88 (e) t = 320

(c) t = 168 (f) t = 552

Figure 6.7: Evolution of a polycrystalline film simulated with Eq. (5.1), and Eqs. (6.4)
and (6.5), on an adaptive grid. The conditions in this simulation are identical to those in
section 6.1 and Fig. 6.1. Note that this time, the grid coarsens even inside grains that are
misoriented with respect to kj, and “beats” are no longer a limitation. The colored field
plotted is the average amplitude modulus, which is “red” inside the crystal phase, “blue”
in the liquid phase, “green” at the crystal/liquid interface, and “yellow” near defects.
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ous one until t = Ntr × ∆t = 120. Surely enough, Figs. 6.7(a) and 6.7(b) are identical

to Figs. 6.1(a) and 6.1(b). The real advantage of the current implementation starts to

appear from Fig. 6.7(c), whenceforth, unlike in Fig. 6.1, even grains that are misoriented

with respect to the basis kj show grid unrefinement within. It is also notable that the

grid remains nicely refined near solid/liquid interfaces, grain boundaries, and defects,

ensuring that key topological features are correctly resolved.

We now compare solutions from the two simulations quantitatively. We find it more

informative to make a pointwise comparison of the two solutions along cross sections of

the domain, rather than comparing solution norms, as we believe that this is a more

severe test of our implementation. We choose two random cuts, one running parallel

to the y axis at xcut = 70π, and the other parallel to the x axis at ycut = 118π. The

solutions are compared along these cuts at two different times, t = 168 and t = 552

in Figs. 6.8 and 6.9 respectively. The solid curves in the figures (labeled “hybrid”) are

variations in Ψ1 and ∂Φ1/∂x along the entire length of the domain as computed with the

current implementation, whereas the symbols (labeled “complex”) are variations in the

same variables as computed using fully complex equations (section 6.1). The agreement is

remarkable, indicating that our simplifications based on approximations in the preceeding

sections work reasonably well.

Because the performance of our algorithm is sensitively tied to the type of problem

that is being solved, it is difficult to come up with a universal metric that quantifies its

computational efficiency. The difficulty lies in accounting for the change in CPU time

per time step, which increases with the number of mesh points. For example, Fig. 6.10

shows the number of nodes in the simulation as a function of time steps. Clearly, an

adaptive grid implementation would have a significant computational advantage over an

equivalent fixed grid implementation at the earlier stages of the simulation.

One performance measure that we can certainly look at is the projected speed of our

implementation over a uniform grid implementation of the PFC equation. This speedup
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Figure 6.8: Pointwise comparison of the numerical solution obtained by solving
only the complex amplitude equations adaptively, with that obtained by solving the
phase/amplitude equations and complex amplitude equations simultaneously (hybrid) in
different parts of the domain on an adaptive grid, at different instants of time, along the
cross section x = 70π in Fig. 6.7. Some of the data points in the complex solution were
omitted for clarity of presentation.
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Figure 6.9: Pointwise comparison of the numerical solution obtained by solving
only the complex amplitude equations adaptively, with that obtained by solving the
phase/amplitude equations and complex amplitude equations simultaneously (hybrid) in
different parts of the domain on an adaptive grid, at different instants of time, along the
cross section y = 118π in Fig. 6.7. Some of the data points in the complex solution were
omitted for clarity of presentation.
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Figure 6.10: Number of computational nodes in the grid as a function of time, for
simulations in Fig. 6.1 (black curve) and Fig. 6.7 (red curve). The number of nodes
reaches a constant value after all the liquid freezes. The dashed line shows the number
of nodes required by a uniform grid implementation of the complex amplitude equations
for the same problem.
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is estimated by the simple formula,

S =
NPFC

NRG−AG

× ∆tRG−AG

∆tPFC

× 1

6
× β (6.11)

where NPFC is the number of grid points required to solve the PFC equation, NRG−AG

is the number of grid points required in a hybrid implementation of the amplitude/RG

equations, ∆tPFC and ∆tRG−AG are the time steps used in the respective implementa-

tions, the factor 1/6 comes from solving six RG equations in place of the PFC equation,

and β ∈ [0, 1] is the overhead of the AMR algorithm. The difficulty lies in fixing NRG−AG

which is constantly changing with time. One estimate for NRG−AG, that we find reason-

able, is the average number of nodes across our simulation. This can be easily computed

by dividing the area under the hybrid curve in Fig. 6.10 by the total number of time

steps taken, which gives NRG−AG = 104, 747. Further, based on heuristics collected while

running our code, we conservatively estimate mesh refinement/coarsening to constitute

about 3% of the CPU time, which gives β = 0.97. Therefore, from Eq. (6.11) we have

S =
1, 050, 625

104, 747
× 0.04

0.008
× 1

6
× 0.97 = 8.1. (6.12)

We do recognize that for a more accurate estimate of S we would also need to consider

overhead costs that may come from sub-optimal cache and memory usage owing to the

data structures used. Hence these numbers should only be considered as rough estimates

of true speedup.

While a speedup factor of 8 may not seem a quantum leap in computational efficiency

at first glance, the reader needs to bear in mind that the number of nodes in the AMR

algorithm scales (roughly) linearly with interface/grain boundary length, which is quite

substantial in the system we just simulated. Naturally, we do not expect the maximum

computational benefit, when simulating systems with large numbers of grains. On the

other hand, we can now simulate the growth of a few crystals in a system that was previ-

ously impossible to simulate with the PFC equation on our single processor machine with

1 GB of memory. We choose a square domain of side 4096π, which in physical dimen-
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(a) t = 0 (d) t = 1620

(b) t = 840 (e) t = 2080

(c) t = 1120 (f) t = 2800

Figure 6.11: Micro-scale simulation of two dimensional crystal growth with amplitude
equations using AMR.
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sions translates to 722 nanometers (approaching a micron) if we assume an interatomic

spacing of 4 Å units11. We initiate three randomly oriented crystals, two a little closer

together than the third, so that a grain boundary forms quickly. The crystals are shown

at different times in Fig. 6.11. The simulation was terminated at t = 3960 when memory

requirements exceeded 1 GB, after running on a dedicated processor for about one week.

0 20000 40000 60000 80000
Time steps

0

1e+05

2e+05

3e+05

4e+05

N
od

es

Figure 6.12: Number of computational nodes in the grid as a function of time for the
1 µm × 1µm domain. The growth is almost linear.

Let us calculate the speedup factor for this simulation as we did previously, after

70, 000 time steps (t = 2800, Fig. 6.11(f)). Fig. 6.12 shows the number of nodes in the

adaptive grid to be varying nearly linearly with the number of time steps, and we estimate

the average number of nodes NAG−RG to be 200, 721. The same simulation on a uniform

grid using the PFC equation would have required 268, 435, 456 nodes (not possible on

our computers). We estimate β = 0.98. In this case the speedup is about three orders of

11This is the interatomic spacing in Aluminum [125], which has a face centered cubic lattice.
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magnitude,

S =
268, 435, 456

200, 721
× 0.04

0.008
× 1

6
× 0.98 = 1091. (6.13)

Fig. 6.13 paints a more vivid picture of the range of length scales from nanometers to

microns spanned by our grid in this simulation highlighting its “multiscale” capability.

Figure 6.13: The above grid spans roughly three orders of magnitude in length scales,
from a nanometer up to a micron. The leftmost box resolves the entire computational
domain whereas the rightmost resolves dislocations at the atomic scale.

We would like to emphasize that as with any adaptive grid implementation, refinement

criteria can change S by a constant factor, approximately. In order to enable testing our

implementation on a much larger domain subject to the available memory resources, the

criteria were relaxed. Note however, that even if we had roughly doubled the number of

finely spaced nodes near the interfaces and the grain boundary, which would lead to a

significantly more accurate calculation, S would still be about 500 times faster than an

equivalent implementation of the PFC equation on a uniform grid.
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Chapter 7

Conclusions and future directions

To summarize (Chapters 3-6), we first presented a theoretical approach for deriving

coarse-grained amplitude equations from the nanoscopic PFC equation, by perturba-

tively applying the renormalization group. Using solutions to the amplitude equations,

high-fidelity approximations to solutions of the PFC equation can be constructed, when

the parameters r and ψ̄ are chosen in a regime that satisfies the assumptions made in

the derivation of these equations. We further demonstrated that by numerically solv-

ing the amplitude equations, the evolution of polycrystalline systems can be accurately

modeled, with predictions of grain boundary energy as a function of grain misorienta-

tion closely adhering to trends shown by the PFC equation and an analytical model of

grain boundaries. We also presented some exciting preliminary results from our ongoing

work to simulate two dimensional heteroepitaxial growth of thin films and the resulting

dislocation dynamics, with amplitude equations.

We showed that even on uniform grids it is computationally efficient to solve am-

plitude equations in place of the PFC equation. We then proceeded to develop a more

efficient hybrid numerical implementation, that combines cartesian and polar representa-

tions of the complex amplitude with adaptive mesh refinement, and allows the modeling

capabilities of the PFC equation to be extended to micro- length scales, as shown in

Fig. 7.1. Depending on the choice of application, we have shown that our scheme can

be anywhere between 1− 3 orders of magnitude times faster than an equivalent uniform
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grid implementation of the PFC equation, on a single processor machine. We anticipate

that this edge will be preserved when both implementations are migrated to a parallel

computer, which is an important next step required to give the RG extension of the PFC

model full access to micro- and meso- scale phenomena.

In conclusion, we have shown that multiscale modeling of complex polycrystalline

materials microstructure is possible using a combination of continuum modeling at the

nanoscale using the PFC model, RG and related techniques from spatially-extended

dynamical systems theory, and adaptive mesh refinement.
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Figure 7.1: Adaptive grid–Renormalization Group extension of the PFC model to micro-
length scales.

We regard this work as only a first step out of many that need to taken before our

modeling approach with the RG extension of the PFC can be successfully adapted for

studying important engineering and materials science applications. We have identified

a few issues that require immediate attention. The first, although an implementation
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issue, is critical, and has to do with using amplitude equations for applications involving

externally applied loads and displacements to a polycrystal that has been evolved with

our equations. Simple applications could be, subjecting the polycrystal to shear, uniaxial,

or biaxial loading states [28,86]. Such boundary conditions are difficult enough to apply

to the scalar field ψ in the PFC equation. Meaningfully translating them to equivalent

boundary conditions on the amplitudes and phases of ψ can be a very difficult task,

requiring the solution of systems of nonlinearly coupled equations at the boundaries.

Apart from the two dimensional heteroepitaxial growth problem, where the amplitude

boundary condition we used was relatively easy to implement, we have not investigated

this issue in any detail. An efficient technique to implement such boundary conditions

with the amplitude equations needs to be developed.

The next couple of issues are more fundamental. Our derivation of the amplitude

equations was based on a one mode approximation to the triangular lattice, and as we

always chose parameters fairly close to the boundary between the triangular phase and

coexisting triangular and constant phases, i.e. |r+3ψ̄2| � 1, the amplitude equations we

derived were within their validity and our results were quite accurate. It is almost certain

that a one-mode approximation will not give similarly accurate results if we operated in

regimes where |r + 3ψ̄2| ∼ O(1) (although it would be interesting to see how much the

error actually is). It is not clear if this in any way precludes certain phenomena from

being studied with our equations, as we can always choose parameters to stay in the

regime where the one-mode approximation is valid, but if it does, amplitude equations

for dominant higher modes can be systematically developed using the same techniques

described in Chapter 4 of this thesis.

An important assumption made in the derivation of our so called “hybrid” formulation

of the complex amplitude equations is that of locally freezing the phase gradient vector

∇Φj. In fact, it is this assumption that allows us to effectively unrefine the interior of

grains and gain significant speedup over the PFC equation. If for example, the problem

we are studying involves the application of a large external shear strain that could change

∇Φj in the grain interior via grain rotation, it is uncertain if our algorithm would continue
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to maintain its superior computational efficiency over the PFC. This is again a matter

worth investigating.

Other important future directions involve extending the ideas described herein to

materials modeling in three dimensions, and making contact with real materials.
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Appendix A

RG Analysis of the Van der Pol

Oscillator

In this appendix, we explore the commuting of differentiation and renormalization with

a simple ordinary differential equation example: the Van der Pol oscillator. Note that

this yet another case in which a differential operator is multiplied by a small parameter

(see right hand side of Eq.(A.1)).

The autonomous ODE is given by

y′′ + y = ε(1− y2)y′, (A.1)

where ′ denotes differentiation with respect to the variable t. As there is a derivative on

the right hand side of this equation we anticipate that the proto-RG amplitude equation

will fail to capture certain terms that turn out in the multiple scales analysis.

It is known that the scaling τ = εt works for this problem [97]. Hence,

y′ → (∂t + ε∂τ )y

y′′ → (∂2
t + 2ε∂τ∂t + ε2∂2

τ )y, (A.2)
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where the subscripts denote partial differentiation. Expanding y in a perturbation series

y = y0 + εy1 + ε2y2 + . . . (A.3)

we obtain

O(1) : (∂2
t + 1)y0 = 0

O(ε) : (∂2
t + 1)y1 = −2∂τ∂ty0 + (1− y2

0)∂ty0

O(ε2) : (∂2
t + 1)y2 = −2∂τ∂ty1 + (1− y2

0)∂ty1 − ∂2
τy0

−2y0y1∂ty0 + (1− y2
0)∂τy0. (A.4)

From this we find

y0 = A01(τ)e
it + c.c.

y1 = A11(τ)e
it + A13(τ)e

3it + c.c. (A.5)

Application of the Fredholm alternative at O(ε) and O(ε2) yields the following amplitude

equations

2i∂τA01 = iA01

(
1− |A01|2

)
∂2

τA01 + 2i∂τA11 = i
(
A11 − 2A11|A01|2 − A2

01A
∗
11

)
+∂τ

(
A01 − A01|A01|2

)
+
A01|A01|4

8
(A.6)

which can be combined after scaling back to original variables to get

∂2
tA+ 2i∂tA = ε

[
iA(1− |A|2) + ∂tA(1− |A|2)

]
+O(ε2). (A.7)
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Nozaki and Oono [88] on the other hand have obtained the following equation using

the proto-RG method

∂2
tA+ 2i∂tA = εiA(1− |A|2) +O(ε2). (A.8)

Note that the missing term ∂tA(1 − |A|2) can be captured by differentiating the lower

order result, i. e.

2i∂tA = εiA(1− |A|2) (A.9)

but this does not seem a very general approach. In particular, it is not obvious how this

can be extended to PDEs.

The O(ε) equation using the proto-RG method reads

y′′1 + y1 = (1− y2
0)y

′
0, (A.10)

where

y0 = Aeit + c.c.

y1 = P (t)eit +Qe3it + c.c. (A.11)

where A can be a constant while P cannot. Thus, the proto-RG operator turns out to

be

L = ∂2
t + 2i∂t, (A.12)

and the proto-RG equation reads

LA = εLP +O(ε2), (A.13)

where A is now the renormalized amplitude. When evaluating LP however, we allow for

the possibility that A, which appears on the right hand side of the equation can also be a

function of t, or equivalently renormalize A on the right hand side before differentiating
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y0, which gives us

LP = ε
[
iA(1− |A|2) + ∂tA(1− |A|2)

]
. (A.14)

Therefore the true amplitude equation should read (using Eq. A.13)

LA = ε
[
iA(1− |A|2) + ∂tA(1− |A|2)

]
+O(ε2), (A.15)

which is identical to the multiple scales result of Eq. (A.7).
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Appendix B

Discretization of Operators

B.1 Laplacian

The Laplacian of a function f(x, y) is discretized at point (xi, yj) = (i∆x, j∆x) using a

nine point finite difference stencil as shown below, where ∆x is the mesh spacing.

∇2f
∣∣
i,j

=
fi+1,j + fi−1,j + fi,j+1 + fi,j−1

2∆x2
+
fi+1,j+1 + fi−1,j−1 + fi−1,j+1 + fi+1,j−1

4∆x2

−3fi,j

∆x2
+O(∆x2). (B.1)

A Fourier transform of this isotropic discretization, described by Tomita in [126], is shown

to very nearly follow the −k2 isocontours.

B.2 Gradient

The gradient of a function f(x, y) is discretized at point (xi, yj) = (i∆x, j∆x) using a

nine point second order finite difference stencil as shown below, where ∆x is the mesh

spacing. The stencil is designed to minimize effects of grid anisotropy which can introduce
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artifacts in the solution, especially on adaptive grids. We have

∇f |i,j = ∇̃⊕f
∣∣∣
i,j

+O(∆x2)

=

(
fi+1,j − fi−1,j

2∆x

)
~i+

(
fi,j+1 − fi,j−1

2∆x

)
~j +O(∆x2). (B.2)

But

∇f =

(
fx + fy√

2

)(
~i+~j√

2

)
+

(
−fx + fy√

2

)(
−~i+~j√

2

)
(B.3)

and hence we also have

∇f |i,j = ∇̃⊗f
∣∣∣
i,j

+O(∆x2)

=

(
fi+1,j+1 − fi−1,j−1

2
√

2∆x

)(
~i+~j√

2

)
+

(
fi−1,j+1 − fi+1,j−1

2
√

2∆x

)(
−~i+~j√

2

)
+O(∆x2)

=

(
fi+1,j+1 − fi−1,j−1 − fi−1,j+1 + fi+1,j−1

4∆x

)
~i

+

(
fi+1,j+1 − fi−1,j−1 + fi−1,j+1 − fi+1,j−1

4∆x

)
~j +O(∆x2). (B.4)

Using the discrete forms for the gradient in Eqs. (B.2) and (B.4) we can write the isotropic

second order discretization as

∇f |i,j =
1

2

(
∇̃⊕f

∣∣∣
i,j

+ ∇̃⊗f
∣∣∣
i,j

)
+O(∆x2). (B.5)

A discretization scheme similar to Eq. (B.5) is given by Sethian and Strain [127].
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(i,j+1)
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Figure B.1: Schematic showing the node neighbors surrounding a typical node (i, j),
on a 1-D non-uniform grid.

B.3 Laplacian on a 1-D non-uniform grid

The Laplacian of a function f(x, y) is discretized at point (xi, yj), shown in Fig. B.1,

using a nine point finite difference stencil as shown below.

∇2f
∣∣
i,j

= C1fi+1,j + C2fi−1,j + C3fi,j+1 + C4fi,j−1

+C5fi+1,j+1 + C6fi+1,j−1 + C7fi−1,j−1 + C8fi−1,j+1

−Σ8
k=1Ckfi,j +O(a2, b2, c2) (B.6)

where

C1 =
1

a2 + ab
, C2 =

1

ab+ b2

C3 = C4 =
1

c2
− 1

2ab
, C5 = C6 =

1

2 (a2 + ab)

C7 = C8 =
1

2 (ab+ b2)
, Σ8

k=1Ck =
1

ab
+

2

c2
. (B.7)
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It is easily verified that Eq. (B.6) reduces to Eq. (B.1) for the special case of a uniform

grid where a = b = c = ∆x.

B.4 Gradient on a 1-D non-uniform grid

The gradient of a function f(x, y) is discretized at point (xi, yj), shown in Fig. B.1, using

the following four point second order finite difference stencil

∇f |i,j =

(
a

b(a+ b)
fi+1,j +

b− a

ab
fi,j −

b

a(a+ b)
fi−1,j

)
~i+

(
fi,j+1 − fi,j−1

2c

)
~j+O(a2, b2, c2).

(B.8)

Again, it can be verified that Eq. (B.8) reduces to Eq. (B.2) for the special case of a

uniform grid where a = b = c = ∆x.
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