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Abstract

In this dissertation, I present work addressing three systems which are traditionally

considered to be unrelated: turbulence, evolution, and social organization. The com-

monality between these systems is that in each case, microscopic interaction rules give

rise to an emergent behavior that in some way makes contact with the macroscopic

scale of the problem. The open-ended evolution of complexity in evolving systems

is analogous to the scale-free structure established in turbulent ows through local

transportation of energy. In both cases, an invariance is required for the cascading

behavior to occur, and in both cases the scale-free structure is built up from some

initial scale from which the behavior is fed.

In turbulence, I examine the case of two-dimensional turbulence in order to sup-

port the hypothesis that the friction factor and velocity pro�le of turbulent pipe ows

depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl

theory. By simulating two-dimensional ows in controlled geometries, either an in-

verse energy cascade or forward enstrophy cascade can be produced. The friction

factor scaling of the ow changes depending on which cascade is present, in a way

consistent with momentum transfer theory and roughness-induced criticality.

In the problem of evolution, I show that open-ended growth of complexity can

be obtained by ensuring that the evolutionary dynamics are invariant with respect

to changes in complexity. Finite system size, �nite point mutation rate, and �xed

points in the �tness landscape can all interrupt this cascade behavior, producing

an analogue to the integral scale of turbulence. This complexity cascade can exist
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both for competing and for symbiotic sets of organisms. Extending this picture to

the qualitatively-di�erent levels of organization of real lifeforms (viruses, unicellular,

bio�lms, multicellular) requires an understanding of how the processes of evolution

themselves evolve. I show that a separation of spatial or temporal scales can enhance

selection pressure on parameters that only matter several generations down the line.

Because of this, I conclude that the prime candidates for the emergence of novel

evolutionary mechanisms are bio�lms and things living in oscillating environments.

Finally, in the problem of social organization, I show that di�erent types of control

hierarchies - leaders or communal decision making - can emerge depending on the

relationship between the environment in which members of the social group act and

the development and exchange of information.
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Chapter 1

Introduction

In this dissertation, I present work addressing three systems which are traditionally

considered to be unrelated: turbulence, evolution, and social organization. The com-

monality between these systems is that in each case, microscopic interaction rules

give rise to an emergent behavior that in some way makes contact with the macro-

scopic scale of the problem. Thus, it is often not necessary to know exactly what the

microscopic interactions are in detail - it is su�cient to understand what macroscopic

symmetries they possess. Otherwise, much of the work here would be hopelessly

speci�c to particular microscopic choices in the model building.

1.1 Turbulence

Turbulence is locally just the product of viscosity and Galilean invariance. A problem

which would be a simple matter of linear di�usion becomes highly nonlinear when the

elements of the system are allowed to be in relative motion with respect to each other.

In this case the microscopic rules are fairly clear, but the emergent behavior is very

complex. The turbulent ow establishes a range of scales in which advection domi-

nates and transports conserved quantities to larger or smaller scales. The properties

of the turbulent ow are then determined by the size of this inertial range. From

1



this one can de�ne a dimensionless number characterizing the ow - the Reynolds

number.

Turbulence is hard to pin down - there are very few exact results in turbulence

research. Even though the governing equation has been known for some time, its

solutions defy exact analysis. Far more success has been obtained with statistical

approaches, dimensional analysis, and simplifying pictures that incorporate assump-

tions about what is and what is not important about a given ow. Intuitively, the

rich structure of a turbulent ow should be important in determining how that ow

behaves, but that connection has been elusive. In my discussions on turbulence, I

will present work that has been done to make those connections, linking the scale-

free structure of turbulent ows to macroscopic properties such as their transport

behaviors and mean velocity pro�les. These connections are similar in construction

to the links between the scale-free structure that arises from criticality in statistcal

mechanics and the associated scalings of the order parameter and other macroscopic

variables with respect to the thermodynamic variables[1].

The approach I will present in Chapter 3 to understanding the connection be-

tween the microscopic and macroscopic behavior of turbulence is the most grounded

of the three topics. There is a generally accepted equation of motion for the system -

the Navier-Stokes equation, and it is supported by an extensive body of experimental

work and measurements of turbulent ows. In Chapter 3 I will begin by explaining the

momentum transfer theory of Gioia and Chakraborty[2], which connects the friction

factor of pipe ows to the energy spectrum of the ow's turbulent structure. I will

also discuss how this connects with the picture of turbulence as a nonequilibrium crit-

ical phenomenon, as proposed by Goldenfeld[1]. I will present work I did with Nigel

Goldenfeld, Gustavo Gioia, and Pinaki Chakraborty in using the basic assumption of

momentum transfer theory to predict the velocity pro�le of the turbulent ow. This

relies on the interconnectedness of the set of three quantities: energy spectrum; fric-
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tion factor; and velocity pro�le. I extend these results to the case of two-dimensional

turbulent ows, in which the energy spectrum may contain both an inverse energy

cascade[3; 4] and a forward enstrophy cascade[4]. Because the energy spectrum of

two-dimensional turbulence may be di�erent from that of three-dimensional turbu-

lence, the predictions of the momentum transfer theory for the velocity pro�le and

friction factor also change, and so two-dimensional turbulence can be used as a test for

the assumptions of the momentum transfer theory. I will also discuss the transition

to turbulence and the question of the lifetime of turbulent pu�s near the transitional

Reynolds number. In work done with Goldenfeld and Gioia, we found a relationship

between the lifetime of these turbulent pu�s and the energy uctuation distribution

of turbulent ows. The stability of the pu� depends on the maximum of a set of

energy uctuations over the pu�'s volume being above a critical threshold.

In Chapter 4, I will discuss the tool I use to examine two-dimensional turbulent

pipe ows in order to test the momentum transfer theory. In order to do this, I

constructed a two-dimensional Navier-Stokes solver using conformal mapping to allow

for boundaries with nontrivial geometry. I will present the details of this solver, and of

the conformal mapping technique. The conformal map causes only minor alterations

to the Navier-Stokes equation in the form of two additional local body forces. This

can be used to analytically extend the results of smooth pipe ow into the case of

rough pipe ow.

In Chapter 5, I will present simulations of two-dimensional pipe ows with smooth

and rough walls, in which the energy spectrum was controlled by changing the method

of turbulence generation. From these simulations I measured the friction factor and

the pro�les of various salient quantities of the ow: transverse velocity, energy, dissi-

pation, and shear. These results support the predictions of the momentum transfer

theory, and clearly display the spectral dependence of the macroscopic properties of

the ow. Furthermore, the friction factor curves collapse onto a universal curve in the
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same fashion as the data of Nikuradze[5] do in the analysis of Goldenfeld[1], but with

the appropriate changes to the data collapse form to take into account the predicted

di�erences in two-dimensional ow. I will compare these results to experiments on

turbulent soap �lm ows performed by the groups of our collaborators Walter Gold-

burg and Hamid Kellay.

1.2 Evolution

Next, I will discuss the evolutionary systems that I studied as part of this research.

The principal question that we will be concerned with is the mechanism by which

novel forms and dynamics are generated from a system that is perhaps very simple

to begin with. I propose that the generation of new and more complex structures

is similar to the cascades of turbulent ow, in which local interactions between the

organisms is what gives rise to structure, rather than the response of the evolving

organisms to a system which is inherently structured and complex in its own right.

If this is the case, it is necessary to determine which interactions between organisms

will lead to such complexi�cation, and what will eventually limit it (similar to how

the turbulent cascades eventually stop when they reach the scale of the system and

the scale of molecular viscosity).

In Chapter 6, I will discuss the nature of evolutionary complexi�cation and the

di�erence between novelty and complexity. It may be possible for an organism to

become more complex without actually developing novel modes of interaction. Fur-

thermore, as organisms in the system evolve, there may develop interactions which

somehow fundamentally change the way that evolution works. These events I refer

to as abstraction transitions. They are abstractions in the sense that the level of rep-

resentation that exists prior to the transition becomes a background against which

some new level of organization operates. The detail of the lower level of dynamics
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is coarse-grained away by the operation of the new mode of interaction. They are

transitions because such changes in the operational modes of evolution open up new

degrees of freedom and change the symmetries of the system, and so new regions of

phase space open up.

Chapter 7 of this thesis concerns `Foodchain', a model of the evolution of complex-

ity through evolving predator-prey interactions. I will discuss the e�ects of mutation

rate and system size, and describe the necessary conditions for this type of complex-

ity cascade to occur. Similar to the case of turbulent ows, the scaling of quantities

in the complexity cascade are all related, and so a data collapse of the saturation

complexity of the system is attained as a function of system size and mutation rate.

The data collapse scalings are explained in the context of the theory of population

genetics.

In Chapter 8, I will discuss PlantNet, which is a model of trees competing for

sunlight. The genomes of organisms map onto their shapes in a shared space. As

organisms cast shadows upon each other, there is a cost associated with not being as

tall as one's neighbors. The end result is that the system evolves in such a way that

the global �tness decreases, as there is a cost associated with being large. The e�ects

of a �xed �tness landscape on the complexity cascade are similar to the e�ects of

mutation rate and �nite system size, and �t into the general critical scaling picture.

In Chapter 9, I discuss the evolutionary dynamics of parameters of evolution such

as the mutation rate. There is competition between adaptations that have bene�ts

only after time has passed (a change in the evolutionary dynamics) and adaptations

that are immediately useful. When a timescale or lengthscale exists in the system, this

can tune between the two modes of evolution. I present a way to measure evolutionary

pressure, and show the spatial clustering (synchronous selection) and periodic strong

selection events have similar e�ects on meta-evolution.
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1.3 Social Organization

The last section of this thesis, Chapter 10, discusses the emergence of social organi-

zation from the interactions between individual agents. Here we are concerned with

the consequences of shared information, and how the ability to exchange informa-

tion changes the collective dynamics of a system. This work applies not only to the

aforementioned issue of social organization, but also to the dynamics of biological

systems that have some form of information sharing: quorum sensing in unicellular

organisms[6], horizontal gene transfer, and the foraging behavior of insects.

1.4 My Contributions

In the work on turbulence, I derived the predictions of the momentum transfer theory

in two dimensions - for both the friction factor and velocity pro�le. I contributed to

the three-dimensional velocity pro�le by suggesting that local values of � and � must

be used to determine the local transport, and helped in creating a solid framework for

deriving the �nal version of the velocity pro�le derivation which I present from the

Navier-Stokes equation. I also contributed by solving the resulting equations numer-

ically. I derived the method by which the friction factor could be inverted to predict

a velocity pro�le, and performed the comparisons in two dimensions. Furthermore, I

wrote the two-dimensional Navier-Stokes solver that was used for all of the turbulence

simulations presented in this dissertation. As part of this I developed the conformal

mapping technique used to map the rough-walled pipe onto a rectangular boundary.

In the work on evolution, I designed and simulated the in-silico evolutionary

models presented - Foodchain, PlantNet, and the simple systems used for the meta-

evolution study. I originated the idea of the complexity cascade and its connection

to the inertial range in turbulence, and the idea of abstraction transitions in which

the mode of evolution changes via the introduction of new degrees of freedom. I
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designed the method by which selection pressure was measured locally in time in the

meta-evolution study.

7



Chapter 2

Turbulence

Turbulent ows are marked by rich structure over a range of scales|they host uc-

tuations, vortices, tangles, and other coherent structures that continue to defy a

detailed, analytical understanding[7; 8]. When parameterized in terms of the typical

ow speed U , characteristic length scale L and kinematic viscosity of the uid �,

three-dimensional turbulence exhibits universal phenomena as the Reynolds number

Re � UL=� ! 1. Most famously, in a theory referred to as K41[9; 10], the de-

pendence of the uctuation energy spectrum E(k) on wavenumber and mean energy

transfer rate �� occurs in a way that is independent of �: E(k) = ��2=3k�5=3 for values of

wavenumber in the so-called inertial range, intermediate between the scales of forcing

and the scales where molecular viscosity becomes signi�cant. In this inertial range,

turbulent eddies break up into smaller eddies through a mechanism which is to a

�rst approximation Hamiltonian, and results in a cascade of energy to smaller length

scales[11].

During the 1930's, Nikuradse undertook a systematic series of measurements of

the pressure drop across a turbulent pipe ow as a function of Re[5] and also as a

function of r=R, the scale of the roughness of the pipe walls r, normalized by the

pipe radius R[12]. The former measurements provided strong support for Prandtl's

boundary layer concept[13], and have been replicated and surpassed only recently[14],
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while the latter measurements, despite recent e�orts[15; 16], remain to this day the

most complete data set of its kind, spanning three orders of magnitude in Reynolds

number and a decade in the dimensionless roughness r. These data reveal that the

frictional drag experienced by a turbulent uid in a pipe with rough walls is a non-

monotonic and complicated function of Reynolds number and roughness, which de-

spite intense interest and practical importance (see, e.g. Ref. [13]), has only begun

to be understood[1; 2] through two related developments.

First, Gioia and Chakraborty[2] estimated the momentum-transfer between the

walls of the pipe and the ow, explicitly taking into account the presence of rough-

ness. Their resultant formula for the dimensionless friction factor (de�ned precisely

below) is expressed in terms of the turbulent kinetic energy spectrum E(k), and thus

makes a direct connection between a macroscopic ow property and the velocity �eld

correlations. Second, Goldenfeld[1] pointed out that the power law behavior of Niku-

radse's friction factor data in the regimes Re ! 1 and r=R ! 0 was analogous to

critical phenomena, where the inverse Reynolds number and roughness play similar

roles to, for example, the coupling constant and external magnetic �eld in an Ising

model. Consequently, the dependence of Nikuradse's data on Re and r can be col-

lapsed onto a universal function with su�cient precision for intermittency corrections

to be extracted[17]. These results show that the friction factor reects the nature

of the turbulent state through its dependence on the energy spectrum, and that the

turbulent state is itself a manifestation of a non-equilibrium critical point at Re =1
and r=R! 0.

The purpose of the research that we present in the following chapters is to test

the claims of Refs. [2] and [1] in a context where detailed calculations are in principle

possible: the case of two-dimensional soap-�lm turbulence[18; 19]. Here, a soap �lm

is supported between two vertical wires, and the draining ow provides a versatile

laboratory for exploring two-dimensional turbulence[19]. It is well-understood that
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the nature of turbulence in 2D is di�erent from 3D: there is no vortex stretching, for

example. Nevertheless, turbulent phenomena exist, and possess the novelty that there

are two cascades: an energy inverse cascade that runs from small to large scales[3; 4],

and a forward cascade[4] in the enstrophy 
 � jr�vj2, where v is the uid velocity

�eld. This enstrophy cascade yields an energy spectrum E(k) = �2=3k�3, where � is

the rate of transfer of enstrophy.

Prior work, dating back to Prandtl and others (for a review see Ref. [13]) is not able

to make a prediction about the friction factor in these cases, because it has no speci�c

representation of the nature of the turbulent state, and in particular is disconnected

from the energy spectrum. On the other hand, the momentum-transfer theory of Gioia

and Chakraborty[2] can reect the character of 2D turbulent states, as expressed by

the energy spectrum, through the dependence of the friction factor on Re and r. It

will be shown that the momentum-transfer theory predicts a signi�cant dependence

of the friction factor on the nature of the turbulent cascade, one that is observed

in direct numerical simulations reported here, and which obeys the scaling predicted

by roughness-induced criticality. Thus our direct numerical calculations agree well

with the momentum-transfer and roughness-induced criticality picture, and strongly

suggest that the standard picture of turbulent boundary layers is incomplete.
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Chapter 3

Theory of turbulent pipe ows

3.1 Reynolds Number

The �rst step towards an understanding of turbulent pipe ows is to characterize the

possible states of a pipe ow. At very low velocities, high viscosities, or small pipes,

the ow is laminar. There are no spatial or temporal uctuations in the ow variables.

As the ow becomes faster, the pipe larger, or the viscosity smaller, uctuations with

a single period develop, quickly giving way to chaotic motion.

In a pipe with �xed geometry (aspect ratio, shape, etc.), the only relevant variables

to describe the uid motion are the uid density � (units of [M ]=[L]d), dynamic

viscosity � (units of [M ][L]2�d=[T ]), average velocity U (units of [L]=[T ]), the length

of the pipe L, and the linear dimension of the pipe's cross section R. These variables

can be combined to construct various dimensionless numbers to describe the regimes

of ow. As we are interested in the ideal case of in�nitely long pipes, L does not

contribute to characterizing the turbulent ow. We are then left with only one possible

dimensionless number, the Reynolds number[20]:

Re � UR�

�
=
UR

�
(3.1)

where � = �=� is the kinematic viscosity. Though there is usually some ambiguity
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in the lengthscale R, turbulent ows across multiple systems will generally have the

same behavior at similar values of Re. The laminar state is stable below Re � 103,

beyond which the transition to a turbulent state rapidly occurs.

3.2 Navier-Stokes Equations

Let us begin our treatment of turbulent ows with the Navier-Stokes equations, a

continuum model of uid transport. Consider a domain 
 with boundary S in a

volume of uid. The uid has associated with it a conserved momentum p = �V and

a pressure P . By taking into account the uxes � at the boundaries of the volume

and the inuence of external forces (in this case, the pressure �eld), we can write

down an equation for the time rate of change of the total momentum in the domain

due to advection:

Z



dpj
dt

d3r =

Z
S

�ijn̂
id2� �

Z



rPjd
3r (3.2)

The ux �ij is a rank two tensor �Vipj. We can relate the integral around the

boundary with an integral over the volume using Stokes theorem:

Z



dpj
dt

d3r = �
Z



ri�
i
jd

3r �
Z



rPjd
3r (3.3)

If we take the limit of an in�nitessimal domain, the integrals are replaced by their

values at the center of the domain:

dpj
dt

= �riV
ipj �rPj (3.4)

dpj
dt

= �pjriV
i �Viripj �rPj (3.5)

If the ow is incompressible, then riV
i = 0 and � is a constant, and so we have:
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dp=dt+ (V � r)p = �rP (3.6)

This is the Euler equation[20], which describes an inviscid, incompressible ow.

To add the e�ects of viscosity, we need only consider the additional di�usive ux �

of momentum across the boundaries of our in�nitessimal cell:

�ij = ��rin̂
ipj (3.7)

Here � is the kinematic viscosity. This gives rise to an additional term �r2p,

giving us the Navier-Stokes equations:

dV=dt+ (V � r)V = �r2V �rP=� (3.8)

r �V = 0 (3.9)

We need an additional equation to determine the pressure P and ensure that the

incompressibility condition is met. We do this by �nding the time rate of change of

the divergence r �V:

dr �V=dt+r � (V � r)V = �r2r �V �r2P=� (3.10)

We now determine P such that this is zero. This gives us the pressure equation:

r2P = ��r � (V � r)V (3.11)

While the Navier-Stokes equations give a description of the underlying motions of

turbulence and there are a number of known exact solutions for speci�c ows[21; 22],

in general these equations are impossible to solve analytically. Some progress can be

made with approximate solution via linear-stability analysis, but the results are not

consistent with the actual dynamics of the transition to turbulence[23{28].
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The Navier-Stokes equations are of primary utility in giving us a framework to

build time or space-averaged models, and in numerical simulation of turbulence. Our

attempts at understanding the dynamics of turbulence needs more physical insight

to proceed.

3.3 Energy Spectrum

Let us turn now to a statistical description of the turbulent state. While we cannot

hope to exactly solve the Navier-Stokes equation for any given system, we can perhaps

say something about the average behavior over long times and spaces, correlation

functions, velocity distributions, and other such statistical quantities.

Let us consider the function of the advection operator (V � r)V in the vicinity of

a small eddy superimposed on a background velocity �eld, such that the velocity is

V = Veddy +V0. In this case, the advection operator is:

(V � r)V = (Veddy � r)Veddy + (V0 � r)V0 + (Veddy � r)V0 + (V0 � r)Veddy (3.12)

These four terms can be considered: the action of the eddy upon itself; the action

of the background velocity �eld upon itself; the action of the eddy upon the back-

ground velocity �eld; and the action of the background velocity �eld upon the eddy.

We will discuss two cases - one in which the background velocity �eld has turbulent

structure only at a signi�cantly di�erent scale than the eddy, and one in which they

are both have turbulent structure at similar scales.

In the �rst case, we will make use of the Taylor frozen turbulence hypothesis[29]:

that turbulent uctuations in a background velocity �eld are passively advected by

it. For one of the �elds (the one with smaller structure), the larger �eld appears to

be constant, and so the smaller structure is just advected by a constant velocity �eld

and as such is unchanged. On the other hand, the smaller structure cannot do much
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to the larger structure, as rV is very small. So the cross terms between the velocity

�elds are both small when the scales involved are very di�erent. The self-terms in

either case represent the motion of that �eld independent of the interaction. So it

seems that turbulent structures at di�erent scales will not interact strongly, though

their own scales may change due to self-interactions.

In the second case, when scales are similar, it is possible for the eddy to be signi�-

cantly sheared and stretched by the underlying �eld (and vice-versa). This may either

cause the scale to increase (in the direction of stretching) or decrease (perpendicular

to the direction of stretching). However, this change in scale is proportional to the

current scale of the eddy - there is no �xed scale involved.

It is therefore expected that the energy and other quantities carried by eddies

should propagate to larger or smaller scales via a process that is local in scale space.

There may also be sources and sinks of these quantities. The advection term conserves

energy, however, and so only the viscosity and pressure gradient can change the energy

in the system. In the case of the viscosity, energy is dissipated most strongly at the

smallest scales, and so in the limit of a large Reynolds number, there should be a

scaling range in the energy as a function of scale that is not inuenced directly by

the viscosity, except as a boundary condition. This is known as the inertial range of

turbulence, predicted by Kolmogorov and Obhukov[9; 10]. There is still the possibility

of energy injection via a pressure gradient:

dEP
dt

= hVrPi (3.13)

This can be rewritten:

dEP
dt

= hr � PV � Pr �Vi (3.14)

For incompressible turbulence, the second term vanishes. Furthermore, for homo-

geneous turbulence the average value of a spatial gradient will be zero. This means
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that for the case of homogeneous, incompressible turbulence there is no energy in-

jection due to pressure. As such, the turbulence will eventually decay unless there

is some external driving force. The scale at which the driving force operates will

interrupt the scaling range of advective energy transfer and set the upper limit of the

range. The reason it sets the upper limit rather than the lower limit is that there are

no other mechanisms for dissipating energy at larger scales, and so energy must be

transported from the source towards the sink - viscosity - at the smallest scales. We

will later show that in two-dimensional turbulence this is not necessarily the case due

to the addition of a second conserved quantity.

We can use a simple argument to determine what the form of the energy spectrum

in the inertial range should be. It has been established that energy - a conserved

quantity - is being transported across scales without the presence of any sources.

This means that the amount of energy being transported at every scale (in the inertial

range) must be a constant �. Once the viscous range is reached, this assumption will

fail as that energy will be very quickly dissipated.

Considering the energy contained between two wavenumbers k and k + dk, this

is:
R k+dk
k

dE =
R k+dk
k

E(k)dk. The argument of the integral, E(k), tells us the part

of the total energy of the ow that is contained in the vicinity of a wavenumber k.

Let us determine the relationship between the energy spectrum E(k) and the

velocity �eld in d dimensions. If we take the velocity �eld and �lter it, such that all

structure with wavenumber less than kc is removed, then the energy of the resultant

velocity �eld is
R1
kc
E(k)dk. Writing the Fourier expansion of v, this gives the relation:

Z 1

kc

E(k)dk =
�

2

Z
ddr

Z 1

kc

eikr~v(k)d3k

Z 1

kc

eik
0r~v(k0)ddk0 (3.15)

The integral
R
ddrei(k+k

0)r is a delta function �(k� k0), so:

Z 1

kc

E(k)dk =
�

2

Z 1

kc

~v(k)~v(�k)ddk (3.16)
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This implies that:

E(k) / kd�1j~v(k)j2 (3.17)

Furthermore, we can relate this to the correlation function of the turbulent velocity

�eld. Let us consider the two-point correlation tensor Sij(r) = hui(x)uj(x+ r)i. The
Fourier expansion of Sij is:

Sij(r) =

Z
ddr0

Z
ddk

Z
ddk0ei(k+k

0)r0eik
0r~ui(k)~uj(k

0)

=

Z
ddk0e�ik

0r~ui(�k0)~uj(k0) (3.18)

So the energy spectrum is related to the spatial correlation functions by:

E(k) / ~Sii(k) (3.19)

We will use a dimensional analysis argument to determine the form of E(k).

Observe that E(k) has units of [L]3=[T ]2. The only other quantities that are relevant

to the inertial range are k, with units [L], and �, with units [L]2=[T ]3. If there is

complete similarity in terms of the viscosity and the energy injection scale I, then

one can use dimensional analysis to say that the energy spectrum must take the

following form:

E(k) / �2=3k�5=3f(k�)g(kI)dk (3.20)

Here � is the Kolmogorov lengthscale, at which the inertial range terminates due

to viscous forces. The asymptotic behavior of f and g are that they tend to a nonzero

constant when their argument limits to zero or in�nity, respectively. If one considers

the interaction between the transported energy � and the viscosity �, this suggests

that the scale � should be:
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� / (
�3

�
)1=4 (3.21)

For a �nite system - for instance, pressure-driven pipe ow - the energy injection

scale I will be related to the system size. This gives the Reynolds number its meaning

in that context - the Reynolds number tells you how large the inertial range is. If one

considers � to be set by the �nite system size L, then by dimension analysis:

� / U3

L
(3.22)

This implies that � = LRe�3=4.

It is possible to make some statements about the unknown functions f and g.

There are theoretical predictions for f using models of the energy transfer function

between wavenumbers. If one assumes that the e�ect of turbulent structure is a

renormalized eddy viscosity[30], then the e�ect of turbulent shear can be absorbed

into the energy dissipation term. This results in a k�7 behavior in the viscous range

at large k.

The function f is often taken to be a decaying exponential exp(�b�k), based on

empirical observations of spectra[31; 32]. Can this be justi�ed theoretically? If one

estimates the rate of transport from dimensional considerations, this gives rise to an

energy ux[30; 33]:

S(k) = �(k)E(k) = ��1�1=3k5=3E(k) (3.23)

In the steady-state, this gives an energy spectrum of the form:

E(k) = ��2=3k�5=3 exp(�3

2
�(�k)4=3) (3.24)

The explicit dependence of the argument of the exponent on viscosity suggests

that �P should scale linearly with viscosity in order to cancel out that dependence.

This result would appear very similar to the exp(�b�k) empirical form.

18



The limiting behavior of the function g can be determined through an expan-

sion of the integral representation of the energy spectrum following the derivation in

Hinze[34]. The asymptotic behavior of the spectrum at small k can be obtained by

looking at the relation between the distribution of energy due to the uctuations along

a pair of directions i; j: Sij(r; t) = vi(r; t)vj(r; t) and its fourier transform Eij(k; t):

Eij(k; t) =

Z
dd�1


Z 1

0

rd�1Sij(r; t)eik�rdr (3.25)

We have made the assumption that the turbulence is isotropic so Sij(r) = Sij(jrj).
Fixing the direction of k (without loss of generality, due to the assumption of isotropy),

this is:

Eij(kx; t) = C

Z 1

0

rd�1Sij(r; t)dr
Z
d�eijkjjrj cos(�)

Z
dd�2
 (3.26)

The � integral is the Bessel function J0(k) which behaves as 2� � �
2
k2r2 + ::: as

k ! 0. If one integrates over all possible directions of the k vector, one �nds the

connection to the energy spectrum: E(k) = Ckd�1Eii(kx; t), where C is the solid

angle integral in the appropriate number of dimensions (e.g.
R 2�
0
d� = 2� in two

dimensions, and
R 2�
0

R �
�� cos(�)d�d� = 4� in three dimensions).

So the behavior of the spectrum as k ! 0 is:

E(k) = C1k
d�1
Z 1

0

rd�1Sii(r; t)dr � C2k
d+1

Z 1

0

rd+1Sii(r; t)dr + ::: (3.27)

The �rst integral vanishes for incompressible ows[34], so in three dimensions the

energy spectrum behaves as E(k) / k4 for small k. This is insu�cient to determine

the crossover function between this regime and the inertial range, but one can write

down a function with the correct asymptotic behavior:

g(k) = (1 + k�2)�17=6 (3.28)
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This satis�es the criterion that the combined form: k�5=3(1 + k�2)�17=6 behaves

as k4 for small k and k�5=3 for large k.

3.4 Two-dimensional Turbulence

In two dimensions, there is an additional invariant of motion that could contribute

to the scaling of the inertial range: the enstrophy 
 = (r�V)2. Let us examine the

form of the advection operator in three dimensions and in two dimensions in order to

see this.

First let us look at the advection of the vorticity ! = r�V. Take the curl of the

advection operator, one obtains:

r� (V � r)V = (V � r)(r�V)� (r�V � r)V (3.29)

The �rst term is just the transport of vorticity, and so conserves vorticity and

enstrophy. The second term �(! � r)V corresponds to a rotation of vorticity by the

underlying velocity �eld, and does not necessarily conserve enstrophy (though it does

conserve angular momentum). In two dimensions, however, the x and y components

of ! are always zero. Because of this, the second term in two dimensions is �!z@zV,

which is zero. Therefore, this vortex stretching mechanism does not operate in two

dimensions, and enstrophy is conserved.

Once enstrophy is also conserved there are two transport quantities in the inertial

range: the transport of energy between scales �, and the transport of enstrophy

between scales �. Because of this, one can no longer determine the form of the

energy spectrum E(k) from dimensional analysis, because there are multiple ways to

construct a dimensionally correct E(k) from these two transports. If, however, there

is reason to believe that a given ow's structure is dominated by one transport or

the other in a certain range of k, the similarity arguments that give the Kolmogorov-
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Obhukov spectrum will still work, but only in that range. For the transport of energy

�, the predicted energy spectrum is the same:

E�(k) / �2=3k�5=3 (3.30)

although the direction of the energy transport is now reversed - from small scales to

large[35]. Kraichnan derived the energy spectrum that would result from enstrophy

transport[4]:

E�(k) / �2=3k�3 (3.31)

In principle, these spectra could coexist in the same ow, but with each having a

range of wavenumber in which it dominates. Spectra of this sort have been observed

in atmospheric ows[36], soap �lm ows[37], and in two-dimensional direct numerical

simulation[38; 39].

If we repeat the calculation for the energy range correction in two dimensions, we

�nd that instead of the relation E(k) / k4 for small k, the asymptotic behavior of the

energy spectrum is E(k) / k3. This implies a new energy range correction function

for the two-dimensional enstrophy cascade:

g(k) = (1 + k�2)�3 (3.32)

3.5 The Friction Factor

When there is turbulent pipe ow, there is a transport of momentum from the ow to

the walls via viscosity and pressure uctuations. However, if the pipe is of constant

cross-sectional area, the mean velocity of an incompressible ow cannot change as

one moves down the pipe. Because of this, in order for there to be a steady state ow
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of non-zero velocity, there must be a pressure drop that adds momentum to the ow

to replace what was leaked to the walls.

For a smooth-walled pipe, the longitudinal momentum lost to the walls in a cross

section A of the pipe per unit length is entirely due to viscous transport:

dp

dt
= �l� du

dy
(3.33)

where y is the coordinate perpendicular to the wall and l is the perimeter of the cross

section.

The momentum per unit length introduced to the ow due a pressure gradient

@xP is:

dp

dt
= A@xP (3.34)

This implies a relationship between the shear at the wall and the pressure drop:

@xP = � l

A
�
du

dy
(3.35)

In order to describe this relationship with dimensionless variables our parameters

are the pressure gradient @xP , the linear dimension of the pipe cross-section L, the

density �, and the mean velocity U . We can therefore make a dimensionless number

f to describe the friction force due to the ow through the pipe. This de�nition is

only up to a constant of proportionality a that is set by convention:

f = �aL@xP
�U2

(3.36)

The only other dimensionless group we can construct is the Reynolds number, and

so we expect that f = f(Re) is a complete description of the scaling of the pressure

drop. We can then connect this to the shear � = � du
dy
:
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Figure 3.1: Two momentum-carrying vortices near a rough wall. The transport
across the dashed line determines the friction factor. In the case of the larger vortex,
it intersects the dashed line at a shallow angle, and so the momentum ux is reduced
compared to smaller vortices that intersect the dashed line perpendicularly. The scale
of the roughness and the boundary layer both determine how large a vortex can be
before the intersection can no longer be perpendicular.

f = �aL@xP
�U2

= a
lL

A
� (3.37)

There are two friction factors normally used in three-dimensional ows: the Darcy-

Weisbach friction factor, in which a = 8[40], and the Fanning friction factor, in which

a = 2 [20]. Because we will be concerned with the connection between the friction

factor and the velocity pro�le in two-dimensional pipes, it is useful to choose a friction

factor de�nition that trivially connects to the shear � . For a two-dimensional pipe,

the ratio l
A

= 2 because of the two walls. As such, we will �nd a � 1
2
to be a

convenient choice of de�nition for our two-dimensional ows, so that the shear � may

be read o� directly. All friction factor data shown in this thesis will use this choice

of a.

3.5.1 Momentum Transfer and the Friction Factor

Three Dimensions

The momentum transfer theory of Gioia and Chakraborty[2] can be used to predict

the asymptotic scaling of the friction factor. The core assumption is that there is
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a rate of transfer associated with eddies of a given size, and that the transport of

momentum from the main body of the pipe ow into the viscous layer is dominated

by a particular scale of eddy. The reason for a single scale to dominate the transport

can be seen by looking at the geometric constraints that must be obeyed by an eddy

straddling the viscous layer (Fig. 3.1). For large vortices, they intersect the viscous

layer at a shallow angle, and so the ux of momentum is reduced by a geometric factor.

Below a certain size, any vortex can intersect the viscous layer perpendicular to the

layer, maximizing its momentum transfer contribution. However, smaller vortices

tend to be less e�cient at transporting momentum. The consequence is that there is

a vortex size that most strongly transports momentum, set by the scale of the viscous

layer � and the roughness r.

We can then look at the characteristic velocity of a vortex of size s = f(r; �),

where the form of the function f determines cross-over behavior between the fully

rough and fully smooth regimes. This function must scale linearly with the larger of

its two arguments when that argument is much larger than the other. We will assume

for sake of de�niteness in the asymptotic analysis that this function is r + a�, with

the understanding that we will incorrectly capture the cross-over regime.

The characteristic velocity can be determined from dimensional analysis. The

relevant variables are E(k) and k, from which we obtain us /
p
2�E(2�s�1)=s[30].

An alternate version of this argument (the one used in the original momentum transfer

paper) is to use the total energy contained in all smaller scales as the characteristic

energy (us =
qR1

2�s�1
E(k)dk), as opposed to the di�erential energy at that scale.

Both versions give the same asymptotic behaviors, though the intermediate behaviors

are somewhat di�erent.

The transport of momentum per unit length of pipe is then dp
dt
= ljusj�p, where

�p is the momentum contrast between the body of the pipe and the wall: �p = �U .

We can use this to immediately evaluate the friction factor:
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f = f0
us
U

(3.38)

where f0 is a dimensionless geometric factor f0 =
aL�l
A
. For the three-dimensional

energy spectrum, this gives us a friction factor:

f = f0(s=2�L)
1=3

r
exp(�3

2
�(2��=s)4=3)(1 + (s=2�L)2)�17=6 (3.39)

We can now see the asymptotic scalings of the friction factor in three dimensions.

If the pipe is very smooth, then s � � = LRe�3=4. This gives us the Blasius friction

factor scaling[41] at large Re:

f(Re) = f0Re
�1=4 (3.40)

If the pipe is very rough, then s � r and the predicted friction factor scaling is

the Strickler scaling[42]:

f(r) = f0(r=L)
1=3 (3.41)

Two Dimensions

In two-dimensional turbulent systems, both the energy cascade or the enstrophy cas-

cade may be observed, or they may occur individually[37] depending on the manner

of energy injection and the scale at which it occurs. The two-dimensional inverse cas-

cade friction factor is the same as the case of three-dimensional ows, with a Blasius

scaling of f / Re�1=4 and a Strickler scaling of f / (r=L)1=3. The energy spectrum

due to the enstrophy cascade leads to a new prediction for the friction factor: a scal-

ing of f / Re�1=2 in the Blasius regime and f / (r=R) in the Strickler regime. These

are the central predictions that we will seek to verify by numerical simulation in the

next two chapters.
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We can construct a general form of the energy spectrum resulting from an arbitrary

conserved quantity, using the same dimensional analysis derivations as we used for

the energy and enstrophy cascades. We begin with a conserved quantity with units

[L]a[T ]b. The dissipation of this quantity will have units [L]a[T ]b�1 and, in the integral

range, is related to the pipe geometry by � = U b�1R1+a�b. We can therefore construct

an energy spectrum:

E(k) / �2�=ak2(��1) (3.42)

where � � a=(1� b). We also obtain a characteristic lengthscale

� = (����=a)1=(2��): (3.43)

Combining these results, we obtain that the Blasius friction factor is:

f / Re�(1��)=(2��) (3.44)

and the Strickler friction factor is:

f / (r=L)1�� (3.45)

For the case of the 3D or inverse energy cascade, � = 2=3. For the enstrophy

cascade, � = 0.

There are some concerns with this derivation which we will address. Can we say

that the energy spectrum near the wall is really the same as the isotropic, homoge-

neous turbulence result that we derived before? This has been addressed in measure-

ments of the near-wall structure functions of turbulence. While the anisotropy due

to the presence of the wall has a strong e�ect on high-order moments, the energy

spectrum corresponds to the second order moment, which is not signi�cantly altered

from its behavior at the center of the pipe[43].
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Another concern is that we have treated the turbulent state itself as its average

over the pipe cross-section, but we are interested in transport occuring around a layer

near the wall. If, for example, � depended on y, then this could result in a correction

factor due to the di�erence between the local � and the global �. We will address this

in the next section, where we will use the momentum transfer argument to derive the

ow velocity pro�le.

A third concern is the determination of � by dimensional analysis: � / U3=L.

There is the possibility that � may scale with a dimensionless number such as the

Reynolds number. If we consider the energy budget of the ow, the uid is gaining

an amount of energy per unit volume dE=dt = �U@xP due to traversing the pressure

gradient. If the ow is in a steady state, then this energy must somehow be removed

from the system for the total energy to remain constant. Because the velocity pro�le

approaches a linear pro�le at the wall, there is no transport of energy to the wall

- all energy lost from the ow must be lost due to viscous dissipation. The viscous

dissipation can be separated into dissipation from the time-independent structure of

the velocity pro�le (�0) and dissipation due to the turbulent cascade (�). This implies

that �0 + � = dE=dt = (U3=L)(f=a).

This implies an upper bound on the the turbulent energy dissipation: � � U3

L
f(Re)
a

.

Because the momentum transfer calculation of the Blasius friction factor scaling has

assumed a constant turbulent � of the form cU
3

L
, then this constant turbulent � will

comprise the entirety of the energy dissipation when f = ca. In the momentum

transfer theory, f � Re�1=4 in 3D under the assumption of a Reynolds number in-

dependent turbulent �. As such, f is predicted to continue to decrease towards zero

in the limit of a smooth pipe, and so the predictions of the theory are no longer self

consistent beyond some �nite Reynolds number at su�ciently small roughness (such

that f(r;Re!1) � ca, schematically depicted in Fig. 3.2), and we expect that the

Blasius scaling is not the true asymptotic behavior when Re!1.
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Figure 3.2: This �gure schematically depicts the regime of validity of the momentum
transfer theory given the shape of the friction factor data of Nikuradse, under the
constraint of energy balance. At small Re and r, the energy input to the ow by the
pressure drop is too small to account for the energy spectrum that the momentum
transfer theory assumes.

3.6 Velocity Pro�le

3.6.1 Classical Theory

The classical theory of the velocity pro�le in three-dimensional pipe ows[44] is the

basis upon which the modern understanding of the mean behavior of wall-bounded

ows has been built. It has been used to derive the friction factor of turbulent pipe

ows, to determine the pro�les of energy and Reynolds stress, and as a basis for

asymptotic matching between the deviation of the velocity pro�le near the viscous

layer and the wake region of the ow[45]. Colebrook and White extended the results
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of Prandtl to take into account pipes with rough surfaces, and the Colebrook-White

equation[46] sees extensive use in engineering in predicting the coe�cient of friction

in many ow applications.

Despite its successes, the classical theory makes no connection with the unsteady

structure of turbulent ows. Turbulent ows consist of a collection of structures at

many scales, which all participate in the transport properties of the ow. These

structures are known to accelerate the process of mixing[47], which suggests that

these structures should be highly important in the transport of momentum and es-

tablishment of the structure of the shear near the wall and throughout the pipe.

We will use the connection between the friction factor and velocity pro�le to

shed light on the importance of the self-similar structure of the turbulent ow in the

context of the momentum transfer theory[2], which predicts a spectral dependence of

the friction factor scaling. This implies that the velocity pro�le should also depend

on the spectrum of the turbulent ow. However, in three-dimensional incompressible

ows there is only a forward energy cascade which scales as k�5=3[9; 10]. By looking

at the case of two-dimensional turbulence, in which there is both a forward enstrophy

cascade and an inverse energy cascade[3; 4], we can test the predictions of a spectrally

dependent velocity pro�le. We should expect to �nd that the velocity pro�le in the

two-dimensional enstrophy cascade should be steeper than three-dimensional velocity

pro�les, leading to a decrease in the von K�arm�an constant. Furthermore, the theory

predicts a power-law velocity pro�le with an exponent 1=3, meaning that the von

K�arm�an constant will appear to have a Reynolds number dependence as the size of

the turbulent boundary layer increases.

Let us �rst review the classical theory. We can determine an equation for the

balance of momentum transport in a layer of uid parallel to the wall of an in�nite

pipe by averaging the Navier-Stokes equation over time and parallel coordinates x (in

the streamwise direction) and z (transverse to the ow direction):
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hdV
dt
i+ hV � rVi = �r2hVi � hrPi (3.46)

The average of the derivative of a quantity with respect to a coordinate (time or

space) over that coordinate is the di�erence in the value of that quantity between the

end and beginning of the pipe divided by the length of the pipe. For all quantities

other than the pressure, this is zero. For the pressure in the streamwise direction, this

is the pressure drop per unit length �fU2 related to the friction velocity u� = �U
p
f .

Furthermore, the time-averaged pressure over a cross-section of the pipe must be

constant or the ow would be preferentially driven towards or away from a point on

the boundary (which is forbidden by the symmetry of the system). Additionally, the

time average of the component of the velocity perpendicular to the uid layer must

be zero for similar reasons of symmetry. Let us now consider only the component of

the velocity in the direction of the ow u:

hV � rui = �@2yhui+ u2� (3.47)

Because the uid is divergence free we can write the advection operator as @x(u
2)+

@y(uv)+@z(uw). The �rst and third components of this must average to zero - in the

case of the �rst component, because the velocity pro�le is the same at the start and

end of the pipe, and in the second because the average involves an integral around

the perimeter of the pipe, and so the beginning and ending points are the same.

Therefore we can express this relation:

@y(�@yhui � huvi+ u2�) = 0 (3.48)

Integrating this towards the wall from the center of the pipe where we know the

boundary condition that the ux must be zero by symmetry, we obtain the exact

averaged momentum transport balance:
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�@yhui+ huvi = u2�(1� y=R) (3.49)

In the turbulent boundary layer, the wake term 1�y=R is asymptotically constant,

and the viscous transport �@yu is much smaller than the Reynolds stress. To proceed

further, it is necessary to impose a closure condition that relates the Reynolds stress

to known quantities. In the Prandtl closure, the Reynolds stress is written in the form

�u�y@yu, where � is the von K�arm�an constant[48; 49] from dimensional considerations

involving only the near-wall scales. This gives rise to a logarithmic velocity pro�le

and the Prandtl friction factor scaling:

@yu=u� =
1

�y
(3.50)

u = (u�=�) ln(y=y�) (3.51)

In order to exclude the divergence at y = 0 we must impose a cuto�. This is due

to the previously neglected viscous contribution becoming large at a scale y� where

� � u�y�. Because of this, the lower limit of integration is y� = �=u�.

The Prandtl friction factor form results from integrating this velocity pro�le over

the turbulent boundary layer, and relating that to the mean velocity of the ow:

1p
f
=

1

�
ln(Re

p
f) +B (3.52)

The expression of the Reynolds stress in terms of near-wall variables is an assump-

tion of complete similarity of the turbulent boundary layer with respect to Reynolds

number. This is equivalent to assuming that any intrinsic scales of the turbulent

ow do not contribute to the problem of the turbulent boundary layer other than

the distance from the wall and the shear at the wall. If, however, the structure of

turbulence does contribute directly, then there is an undetermined function in the

classical theory which modi�es the di�erential equation for the velocity pro�le.
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@yu=u� =
1

�y
g(y=y�); y� = R=Re

p
f (3.53)

Here we have allowed the viscous lengthscale to contribute to the scaling of the

Reynolds shear away from the boundary. In the usual picture, the function g(x)

asymptotically approaches a constant as its argument approaches zero. However, if

the zero-viscosity limit of turbulence is a singular limit rather than a regular one then

g(x) could continue to scale. In this case one would expect the scaling of the viscous

lengthscale to determine the characteristics of the ow even as it approaches zero.

There is evidence in the form of observed data collapse[1; 17] that there is a critical

point at in�nite Reynolds number and zero roughness, which would suggest that one

cannot safely neglect the scaling of g(x) in determining the form of the velocity pro�le.

3.6.2 Connection to the Friction Factor

If the scaling of g(x) is not neglected, there is insu�cient information to determine

the friction factor and velocity pro�le without further inspection of the physics of the

ow. It is however possible to determine one if the other is known. The procedure

for �nding the friction factor for a given velocity pro�le is the same as in the Prandtl

friction factor case discussed above. We will consider the reverse of that procedure

in order to convert observations of the friction factor into predictions of the form of

the velocity pro�le.

We start with the velocity pro�le:

u(y) = u�=�
Z y

y�

1

x
g(
x

y�
)dx (3.54)

From here we can substitute z = x=y� to �nd that u(y) = u�=�
R y=y�
1

1
z
g(z)dz. The

important piece of information here is that u can be expressed as a function of y=y�:

u(y) = u�G(y=y�). We have absorbed the constant � into the function G(y=y�).
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Then we can relate this unknown velocity pro�le to the mean velocity in order to

get a relation for the friction factor:

1p
f
=

1

R

Z R

y�

G(
y

y�
)dy (3.55)

With a change of variables z = y=y�:

1p
f
=
y�
R

Z R=y�

1

G(z)dz (3.56)

Re =

Z Re
p
f

1

G(z)dz (3.57)

It is convenient now to think of Re as a function of � � Re
p
f so that we may

di�erentiate both sides with respect to Re
p
f and extract G(z). We then have:

G(�) =
dRe

d�
=

1p
f +Re=(2

p
f) df

dRe

(3.58)

To make use of this, it is necessary to determine f(�) and Re(�), and so it is

necessary to invert � = Re
p
f . This imposes certain constraints on the friction factor

- namely, Re
p
f must be monotonic over the full range of y=y� needed for a partic-

ular pipe's geometry for this procedure to work. Furthermore,
p
f + Re@Ref=(2

p
f)

must always be greater than zero. These constraints can fail during the drag catas-

trophe, where the hysteresis of the transition to turbulence allows non-monotonicity

in Re
p
f (Fig. 3.3). Similar to the case of the liquid-gas transition, a single mono-

tonic curve must be constructed to connect those cases for it to be possible to relate

the viscous layer to the rest of the velocity pro�le. One possibility is to combine

the two friction factors with a smooth interpolating function around the point where

flaminar = fturbulent, resulting in a smooth and monotonic f . Errors due to the interpo-

lation will be localized around the transition between the viscous layer and turbulent

boundary layer.
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If we have a way to predict the friction factor, we can then proceed to pre-

dict the velocity pro�le. We will use the momentum transfer theory of Gioia and

Chakraborty[2], which connects the transport of momentum from the mean ow to

the wall to the energy spectrum of turbulence. This is done by modelling the pipe

as two layers - the central ow, and the layer in which momentum is coupled to the

wall via roughness or viscosity. From the momentum transfer theory we can make

predictions for the form of the friction factor in 2D and 3D[50], and as such predict

the velocity pro�le of 2D turbulent ows.

The asymptotic Blasius behavior (f � Re�1=4 in the energy cascade and f �
Re�1=2 in the enstrophy cascade) predicted by the momentum transfer model leads to

power-law velocity pro�les with exponents 1=7 and 1=3 respectively. The y1=3 power

law is a novel result, and compares well with numerical simulations of 2D ows[50].

In Fig. 3.4, we show the velocity pro�le from simulation and calculated from the

two-dimensional friction factor.

3.6.3 From Momentum Transfer (3D)

Let us now consider directly how we may derive the velocity pro�le of three-dimen-

sional turbulence from the momentum transfer theory. We will begin with the Navier-

Stokes equation and derive the equations of momentum and energy balance. We will

then make a closure using the momentum transfer theory to determine the Reynolds

stress �huvi from the energy spectrum. The equation for energy balance determines

the relation between the local energy dissipation � and the structure of the velocity

pro�le. This lets us determine how the energy spectrum depends on distance from

the wall.

We begin with the Navier-Stokes equation:

@u

@t
+ (u � r)~u = �r2u�rP (3.59)
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To derive the energy balance, we take the dot product with u and convert terms

of the form u@xu into @xu
2=2.

@E

@t
+ u � u � ru = �u � r2u� u � rP (3.60)

We now write ur2u as r2juj2=2 � jruj2. This second term is the local energy

dissipation �. We can rewrite the pressure term as: r�Pu�Pr�u. For incompressible
ow, the second term is zero.

@E

@t
+ u � u � ru = �r2E � u � rP � � (3.61)

Averaging over time eliminates the time derivative of the energy. We can further

split u into its average value and its uctuations: u = �u+ u0. From here we will use

the component representation of u as (u; v; w).

All terms that are �rst order in the uctuations will average to zero. We will

assume that all terms of third order in the uctuations are very small compared to

terms of second order. Also, in a pipe ow situation we know that there is no net

ow on average towards or away from the walls, so �v and �w are both zero, and that

the fully developed ow does not depend on x so that @x of any averaged quantity

except pressure will be zero. The surviving terms are:

u0v0@y�u+ �u@yu
0v0 + u0w0@z�u+ �u@zu

0w0 =

1

2
�@2y �u

2 +
1

2
�@2y(u

02 + v02 + w02)� �

��u@x �P � @y(P
0v0)� @z(P

0w0) (3.62)

If we are in two dimensions, or are near the wall, we can average over the coordinate

parallel to the wall (z):
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(�u0v0)@y�u+ �u@y(�u0v0)+
1

2
�@2y �u

2 +
1

2
�@2y(u

02 + v02 + w02) =

�+ �u@x �P + @y(P
0v0) (3.63)

We can use the momentum balance equation in the x direction to say that @yu
0v0 =

�@2y �u� @x �P :

(�u0v0)@y�u+ �u@x �P � ��u@2y �u+

1

2
�@2y �u

2 +
1

2
�@2y(u

02 + v02 + w02) =

�+ �u@x �P + @y(P
0v0) (3.64)

So, using �u@2y �u = @2y �u
2=2� (@y�u)

2:

(�u0v0)@y�u+ �(@y�u)
2 + �@2yE

0 = �+ @y(P
0v0) (3.65)

Let us now use the fact that we know the total shear from global momentum

balance: �@y�ui � u0v0 = fU2(1� y=R):

fU2(1� y=R)@y�u = �� �@2yE
0 + @y(P

0v0) (3.66)

It has been empirically observed in three-dimensional ows that in the scaling

range of the velocity pro�le, the �nal two terms in Eq. 3.66 balance each other in the

turbulent boundary layer[20]. If we assume that this balance holds, we arrive at:

� = fU2(1� y=R)@y�u (3.67)

We will now use the momentum transfer theory to develop a closure for �huvi in
the momentum equation. In the global momentum transfer theory, we posited that

transport of momentum arose from a dominant eddy with size s. The transport of

36



momentum was therefore �usU , where �U is the momentum source (and the momen-

tum sink is at zero). Let us consider the net transport of momentum across some

arbitrary boundary, where the momentum sink is not necessarily at zero.

If we have an eddy spinning in a uniform background �eld, we expect there to be no

momentum transport, and so the momentum source term cannot simply be the local

momentum. It must instead be a momentum contrast, involving spatial derivatives of

the local momentum. The lowest-order term that satis�es this symmetry is l@y(�u),

where l is some length-scale. If we consider this term to be a momentum contrast,

it makes sense that the scale l is the same as the size of the eddy s, as the term is

therefore the di�erence between the momentum at the upper edge of the eddy and

the momentum at the lower edge of the eddy.

When we were transporting momentum to the viscous layer, the dominant eddy

size was limited by the scale of the viscous layer. However, at some arbitrary distance

y from the wall, eddies of size y and smaller can participate in the transport. Out

of those eddies, the largest possible eddy will have the highest contribution to the

transport, and so we expect that the size of the dominant eddy is proportional to y.

This is the Townsend similarity hypothesis[51] and is supported by experiments in

three-dimensional pipe ows[14].

We therefore posit the closure for the Reynolds stress: �huvi = uyy@y�u, where

uy =
qR1

2�y�1
E(k)dk.

We combine this closure with our local � to derive the velocity pro�le.

�@y�u+ (fU2(1� y=R)@y�u)
1=3

sZ 1

2�y�1
k�5=3f(k�)g(kI)y@y�u = fU2(1� y=R) (3.68)

In the limit of in�nite Reynolds number, the spectral integral becomes y2=3 and

terms proportional to � limit to zero. This reduces the di�erential equation to:

C(@y�u)
4s4 = f 2U4 (3.69)
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where C is a combination of numerical factors. This gives us exactly the Prandtl

di�erential equation for the velocity pro�le:

(@y�u) = Cu�=y (3.70)

The results of numerically integrating the full di�erential equation are shown in

Fig. 3.5. The viscous layer, log-layer, and wake are all present. Additionally, only

when the full energy spectrum including the integral scale corrections is considered

does the wake overshoot the log law as seen in the experimentally observed velocity

pro�les.

3.6.4 From Momentum Transfer (2D)

Let us now perform the previous calculation in the case of the enstrophy cascade. It

is necessary to determine the equivalent of the energy equation for the enstrophy, so

that we can evaluate the dependence of � on the local pro�le.

We start from the time-averaged Navier-Stokes in the vorticity formulation (by

taking the curl of the usual Navier-Stokes equation):

u � r! = �r2! (3.71)

In order to get an equation for the enstrophy, we multiply through by the vorticity

!:

u@x
 + v@y
 = �r2
� �jr!j2 (3.72)

If we discard terms that will average to zero when we take the average over the

pipe length x, we obtain

@yhv
i = �@2yh
i � � (3.73)
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where � = �((@x!)
2 + (@y!)

2).

We can rewrite v and 
 in terms of uctuating and constant parts:


 = (@yu+ @yu
0 � @xv

0)2 (3.74)

v
 = v0(@yu)2 + v0(@yu0)2 + v0(@xv0)2 + 2v0@yu0@yu� 2v0@yu@xv0 � 2v0@yu0@xv0 (3.75)

If we assume that all terms of order �3 can be neglected, and average over x, this

becomes:

v
 = 2(@yu
0v0)@yu (3.76)

We now have:

2@y(@yhu0v0i@yhui) = �@2yh
i � � (3.77)

We know from the momentum balance that hu0v0i = �@yhui � fU2(1� y=R) and

so in the in�nite Re limit:

� = �2fU2=R@2yhui (3.78)

We can then use the momentum transfer closure for huvi:

yuy@yu = fU2(1� y=R) (3.79)

where uy =
qR1

y�1
E(k)dk.

If we use the enstrophy cascade energy spectrum (Eq. 3.31, 3.32) with an expo-

nential dissipation, we can evaluate uy:

uy = (�2fU2=R@2yu)
1=3

sZ 1

y�1
k�3 exp(���k)( 1

1 + k2
)3 (3.80)
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If we neglect the dissipative and large-scale parts of the spectrum, and the in-

uence of the wake, this becomes: uy = yp
2
(�2fU2=R@2yu)

1=3. We then obtain the

di�erential equation for the velocity pro�le in the in�nite Re limit:

1p
2
y2(�2fU2=R@2yu)

1=3@yu = fU2 (3.81)

Making the substitution v = @yu and cubing, this becomes:

@yv
4 = �4

p
2f 2U4Ry�6 (3.82)

Integrating towards the wall from the center of the pipe where @yu = 0, we obtain:

@yu =
25=8

51=4

p
fUR1=4(y�5 �R�5)1=4 (3.83)

Away from the center of the pipe, we therefore have:

u(y)=U = U0=U � 221=85�1=4
p
f(y=R)�1=4 (3.84)

This solution has the property that it goes to zero at some positive value of y

determined by U0. If we attempt to match this solution to the viscous layer, we

should have u(�=U
p
f) = U

p
f :

U0=U =
p
f(1 + 221=85�1=4Re1=4f 1=8) (3.85)

Let us now use this pro�le to compute the friction factor, to see if the result is

consistent with the original momentum transfer theory. To do this, we integrate the

velocity pro�le to determine the mean velocity. This then gives us an equation for

the friction factor:

(1 + 221=85�1=4Re1=4f 1=8)� 237=85�1=43�1(1� (Re
p
f)�3=4) = 1=

p
f (3.86)
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Let us write this in terms of K � Re
p
f :

C2K
1=4(1� C2)K + C1K

5=4 = Re; (3.87)

where C1 � 221=85�1=4 and C2 � 237=85�1=43�1. If we consider the large-Re limit

as we have been doing, the dominant terms are Re and C1K
5=4. This tells us that in

the large Re limit:

f = Re2=5C
�8=5
1 (3.88)

This is somewhat inconsistent with the previous prediction of f / Re�1=2, but not

by much. If we examine the friction factor curve obtained by solving the full form of

Eq. 3.87, we obtain a signi�cant region of Re�1=2 scaling at moderate Re(Fig. 3.6).

Why is this? Note that if we discard the K1=4 term, it does not signi�cantly change

the shape of the resultant curve at turbulent Reynolds numbers. We can then attempt

to solve the equation formed by the remaining terms:

C4
1K

5 � A4K
4 + A3ReK

3 � A2Re
2K2 + A1Re

3K � Re4 = 0 (3.89)

Where the A's are positive combinations of C1 and C2 whose speci�c form is

not germane to this analysis. If we change variables to u =
p
f , this conveniently

becomes:

Reu5 � A4u
4 + A3u

3 � A2u
2 + A1u� 1 = 0 (3.90)

Note that if u � Re�1=5 (as predicted earlier), then the largest terms at large Re

are Reu5 and 1, reproducing our previous limit consistently. If one now considers

the case where u � Re�1=5+�, then the next point at which two terms become of

the same order in Re is when � = 1=20, corresponding to f � Re�1=2. In this case,

the terms A1u and Reu5 are of the same order in Re, and balancing them gives us
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f = A
1=2
1 Re�1=2, which is the intermediate behavior that we observe in the Blasius

regime. The next crossing of orders is when f � Re�1. By this time, the K1=4 term

that we discarded is likely to become relevant, and so this behavior is not actually

observed in the computed solution to the full equation. This does however predict that

we should expect a steeper friction factor scaling when leaving the drag catastrophe

than the eventual Blasius result.

We have shown that in the case of the enstrophy cascade, the Blasius scaling

can be seen as an intermediate Re result of the velocity pro�le derived from the mo-

mentum transfer closure. This prediction also anticipates curvature of the friction

factor away from the Blasius scaling at large Re, in analogy to what is seen in the

three-dimensional case. It is somewhat mysterious that the intermediate scaling is

accessible directly in the enstrophy cascade, and yet is elusive in the inverse energy

cascade where the resulting equation for the friction factor is transcendental. How-

ever, in both cases the simpler form of the momentum transfer theory seems to be

able to predict the intermediate (but not the eventual) scaling ranges.
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Figure 3.3: Non-monotonicity and extreme derivatives in Re
p
f around the drag

catastrophe. The light lines are schematic representations of possible trajectories of
the friction factor due to hysteresis around the drag catastrophe. Several of these
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comparison are data from our direct numerical simulations of 2D enstrophy cascade
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Chapter 4

The Transition to Turbulence

The fundamental nature and stability of the turbulent state of uids remains an open

and challenging question. Fluid ow is characterized by a dimensionless number Re,

which depends on the characteristic length L, velocity U and kinematic viscosity of

the uid � through the relation Re � UL=�. As the Reynolds number increases from

zero, the ow becomes increasingly structured and eventually statistical in nature, so

that at large Re, the ow is said to be turbulent[52]. The conventional assumption|

that the turbulent state is absolutely stable|has been challenged recently by a series

of theoretical[53; 54] and experimental probes[55{60] of the transition to turbulence.

Taken as a whole, these works suggest that turbulence might, in some ow regimes

at least, be a long-lived metastable state[25{27; 53; 61]. Such a view would be

consistent with the fact that long-lived transient turbulent states can be excited as

�nite-amplitude instabilities of the laminar state, so that the laminar and turbulent

states can coexist (for a review of foundational work in this area, see e.g. Ref. [28];

recent developments are summarized in Refs. [25{27]). However, the question remains

as to whether the turbulent state is ever sustainable with an in�nite lifetime for �nite

Reynolds numbers. This is a di�cult experimental question to decide, because the

lifetime of the turbulent state can become so long that accurate measurements become

impossible. With the necessary restriction to a small range of Reynolds numbers, the
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data have, until recently, been di�cult to interpret in a compelling way.

In a set of elegant and remarkably accurate experiments on transitional pipe

turbulence[59], Hof et al. have brought into question the idea that pipe ow tur-

bulence is stable at long times beyond a �nite critical Reynolds number[54; 62]. The

laminar state of a straight smooth pipe ow is linearly stable at all Reynolds numbers

(see e.g. Ref. ([63])), but a su�ciently large perturbation triggers localized turbu-

lent pu�s that persist for long times. The decay of the transient turbulent state is

reported to follow a Poisson distribution, with a lifetime �(Re) that increases sharply

with increasing Reynolds number. The new measurements of the lifetime of these

localized pu�s[59] reveal that �(Re) apparently only diverges at in�nite Reynolds

number, scaling in a super-exponential way with Re. Similar observations in another

linearly stable ow|Taylor-Couette ow with outer cylinder rotation|have recently

been reported by Borrero-Echeverry et al.[60]. The absence of any sort of transition

at �nite Reynolds number is consistent with roughness-induced criticality|the no-

tion that pipe turbulence is governed by a non-equilibrium critical point at in�nite

Reynolds number in the singular limit of perfectly smooth ow boundaries[1; 2].

In this article, we show that the form of the experimental data is consistent with

a simple and general interpretation using extremal statistics. Our approach is related

to the notion that the transient turbulent phenomena reect escape from a low-

dimensional dynamical attractor[64{66], but we conceive turbulence as a spatially-

extended phenomenon with a large number of degrees of freedom. The determining

factor for the suppression of a pu� is the probability that the largest uctuation in a

spatio-temporal interval consisting of multiple uctuations fails to attain a threshold

value. Thus, if we regard such dangerous uctuations as a�ecting the amplitude of

turbulent velocity uctuations, we need to calculate the probability that the maximum

amplitude of turbulent velocity uctuations �v(~x; t) falls below some threshold value,

which we termAc. We will assume below that once the turbulence has been su�ciently
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suppressed, the turbulent state is quenched. Our calculation shows that the super-

exponential dependence of the lifetime of the turbulent state is a generic result of

extremal statistics, and makes a non-trivial universal prediction about the coe�cients

extracted from the �ts to the experimental data. We con�rm this prediction using

the newly-available high precision measurements of the lifetime from both pipe and

Taylor-Couette ows.

In order to understand the lifetime of turbulent pu�s, we assume that turbulent

velocity con�gurations may be regarded as independent over a mean time scale �0, and

that there is a probability p that the pu� will be suppressed within each time interval

�0. Then, the lifetime statistics will be Poisson. The probability P that turbulence

persists to a time t after becoming established at a time t0 is P = (1 � p)N , where

the number of intervals is N�0 = (t� t0). Therefore

ln(P ) = N ln(1� p) = f(t� t0) ln(1� p); (4.1)

and so it follows that 1=� = �f ln(1 � p). Since 1 � p > 0, we can estimate

ln(1 � p) = �p and therefore express the time constant of the lifetime statistics in

the form

� = �0=p: (4.2)

We now determine how p depends on the Reynolds number of the ow and po-

tentially other factors. Within a spatial and temporal interval, multiple uctuations

occur, sampled from the turbulent velocity distribution PT (�v). There is an energy

associated with these uctuations �v2. When this energy fails to attain a certain

threshold at all points in the pu�, the turbulent state becomes unstable and decays.

If we consider a Gaussian distribution of velocity uctuations with standard devia-

tion �, then the probability distribution of the magnitude of the velocity uctuations

49



b =
p
�v2 is given by

P (b) = Sd(
1

2��2
)3=2r2 exp(�b2=2�2); (4.3)

where Sd is the surface area of a unit sphere in d dimensions. Since we are interested

in whether or not the system has a su�cient level of energy to sustain turbulence

compared to a critical amount that scales in some way with Reynolds number, let us

consider the probability distribution of z � ln(b):

P (z) = Sd(
1

2��2
)3=2 exp((d� 2)z) exp(� exp(2z)=2�2): (4.4)

The behavior at small z, which is the regime of interest, is dominated by an

exponential tail. If the distribution of velocity uctuations were exponential rather

than Gaussian (as is the case at high Reynolds numbers), the behavior at large z would

change but the exponential prefactor would still dominate at small z. As such, the

probability distribution PM(x) for the maximum x of a set of energy uctuations f�v2i g
is governed by the appropriate Fisher-Tippett distribution[67], where the universality

class for PM must be the Type II Fisher-Tippett distribution, sometimes known as

the Gumbel distribution[68]

PM(x) =
1

�
exp(�(x� �)=�) exp(exp(�(x� �)=�)); (4.5)

where � sets the scale and � the location of the distribution. The mean and standard

deviation are �+�� and ��=
p
6 respectively, where � � 0:577 is the Euler-Mascheroni

constant. The corresponding cumulative distribution is the probability that x < X,

and is given by

F (X) �
Z X

�1
PM(x) dx = exp(� exp(�(X � �)=�)): (4.6)

Thus, p = F (ln(Ac)), where Ac is the threshold.

We anticipate that Ac is a decreasing function of Re, reecting the intuition that

at higher Re, turbulence can be more easily sustained by small uctuations. We
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will consider the behavior of ln(Ac), as this sets the threshold in the distribution of

energy maxima. The experiments are conducted in nominally smooth pipes within a

narrow range of Re, so it is appropriate to expand Bc = ln(Ac(Re)) about a particular

Reynolds number Re0, leading to Bc = B0
c +B1

c (Re�Re0) +O(Re2). We choose Re0

to be the Reynolds number at which localized turbulent pu�s �rst appear. This

onset is not a precisely de�ned point because, as the pu�s are metastable, direct

determination of Re0 depends on the timescale of the measurements. This is familiar

from the coexistence point between liquid and gas phases in equilibrium statistical

mechanics of uids.

Collecting results, we �nd that the average lifetime of a turbulent pu� will scale

as:

� = �0 exp(exp(�(B0
c +B1

c (Re� Re0) +O((Re� Re0)
2))) (4.7)

in agreement with experimental �ndings. The coe�cient �0 may in principle depend

on pipe length or aspect ratio if these factors change the spatial scale on which

regions of the localized turbulent pu� are statistically independent, and the timescale

on which the state of the pu� loses memory of previous states. This analysis suggests

that the experiments measuring the lifetime of turbulent pu�s have been conducted

(understandably) over too small of a range of Reynolds numbers to detect e�ects of

order Re2 or higher. A similar scaling should also be present, in principle, for the

dependence on r; however, it is not clear whether there are any grounds for a more

quantitative scaling prediction, along the lines given for pipe friction factor scaling at

high Re[1].

We make an additional prediction beyond the universal functional form of the

lifetime of the turbulent state. From (4.6) we can write

ln ln(�=�0) = �(Bc � �)=� = c1Re + c2 (4.8)

where we have used the notation of Ref. ([59]) to denote the coe�cients c1 and c2 of
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the linear �t to the data. Comparing with Eq. (4.7) we read o� that

c1 = �B1
c=� c2 = �(B0

c � ��B1
cRe0)=� (4.9)

Now, at Re0, the lifetime becomes comparable to the correlation time �0. We will

assume that for Re = Re0, � = e �0 for de�niteness, although it is straightforward to

verify that our results have only a very weak dependence on the precise coe�cient

used. Then from Eq. (4.7), we see that B0
c = �, and thus the ratio of the coe�cients

c2=c1 = �Re0. Thus, the Reynolds number at which the localized pu�s begin to have

a signi�cant lifetime of O(�0) can be determined from measurements of the constants

c1 and c2.

We now discuss the role of the spatial structure of the localized turbulent pu�s

within the framework of our approach. The pu�s are localized, and thus do not reect

the global geometry of the ow. Thus we expect that Re0 should be a local property

determined only by the ow geometry on the lengthscale of the pu�, in contrast to

a global transitional Reynolds number associated with the onset of fully developed

turbulence. As such, a Taylor-Couette apparatus with a su�ciently large radius of

curvature (larger than the scale of the localized pu�) should have the same ratio c2=c1

as a straight pipe. The Reynolds number must be de�ned in a consistent fashion for

this ratio to be comparable for di�erent systems. For example, in Taylor-Couette

ow, it must be chosen such that in the limit of an in�nite radius of curvature the

Reynolds number reduces to the Reynolds number of the straight pipe. As long as

a consistent de�nition of Re is used for di�erent ows, their transitional behavior is

directly comparable, and the predicted value for c2=c1 should be the same, with no

adjustable parameters. In this sense, the ratio is a universal one, only for a given

de�nition of Re, as is commonplace in uid dynamics. These considerations also

suggest that in short pipes, where the length to diameter ratio is small compared to

the pu� size, the lifetime statistics should not be described by our approach, because

the transient turbulence would then �ll the pipe completely, as observed in direct
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numerical simulations[69; 70]. In such a situation, the lifetime will scale with the

length of the pipe, but in the regimes of the experiments on pipe and Taylor-Couette

ows, the pu�s are smaller than the streamwise direction length, and the lifetime

should then be independent of the length of streamwise direction length.

To test this prediction, we compare the two sets of available experimental results,

for pipe and Taylor-Couette geometries. The de�nitions of Re used in both sets

of experiments are identical in the limit that the gap between the cylinders remains

�xed as the circumference of the Taylor-Couette apparatus becomes large. In the pipe

ow experiments of Hof et al. [59], the �tted values are reported to be c1 = 0:0057

and c2 = �8:7, giving c2=c1 = 1526. In the Taylor-Couette experiments of Borrero-

Echeverry et al.[60], c1 = 3:57 � 10�4 and c2 = �0:56, giving c2=c1 = 1569. Thus,

while the details of the experiments were very di�erent, the ratio of c2=c1 is the same

(to a good approximation) in both cases, as predicted. Furthermore, the value of Re0,

in the range 1526-1569, is a reasonable approximation to the onset of turbulence in

the pipe experiments. The Taylor-Couette experiment and the pipe ow experiments

di�er in their aspect ratio (length of the ow arena/diameter of ow): in the former

it is 46 in the streamwise direction, whereas in the latter it ranges from 143 to 3600.

Due to the �nite nature of the turbulent pu�, we expect that the intrinsic onset value

Re0 should be related only to the local geometry rather than the global geometry, and

so we expect it to be di�erent than the reported transitional Re for Taylor-Couette

ows.

In conclusion, we have argued that the lifetime statistics of transient turbulent

pu�s are governed by extreme events, showing that the Reynolds number dependence

observed in experiments has the expected form, and verifying that the available ex-

periments are consistent with a parameter-free prediction about the details of the

lifetime statistics near the turbulence threshold.
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Chapter 5

Simulation of Two-dimensional

Pipe Flow

We have established a theory for the di�erence between the scalings of two-dimen-

sional and three-dimensional ows. In two dimensions, the friction factor and velocity

pro�le should both depend on the particular turbulent cascade that is exhibited by

the ow. In the inverse cascade, the results are the same as for three-dimensional

ows, but in the enstrophy cascade we expect new scalings. How shall we test these

predictions?

One way would be to look at naturally occuring ows. Atmospheric ows are

laminated in nature, owing to sharp gradients in temperature and pressure with

respect to height, and have been known to exhibit enstrophy cascade scaling[36].

Furthermore, experiments have been done with soap �lm ows that have also shown

the enstrophy cascade scaling[37]. We will also briey discuss a comparison between

my simulations and soap �lm experiments performed by Walter Goldburg, et al.[71]

in the chapter detailing the results of this study.

However, there are many problems associated with either of these systems. Natu-

rally occuring ows are at best quasi-two-dimensional, in that the viscous lengthscale

is longer than the third dimension of the ow. Fluctuations out-of-plane may still oc-
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cur, leading to behavior similar to that of compressible ows | waves and other such

phenomena can occur at the surface. Furthermore, even when such uctuations are

well-controlled, we must contend with transport at the interface between the con�ned

ow and its surroundings. In soap �lm ows, air resistance modi�es the shape of the

velocity pro�le[72; 73], and may change the observed friction factor. These problems

can be controlled by using a soap �lm ow in a vacuum, a rather di�cult experiment

to perform.

Another option is to solve the Navier-Stokes equations computationally. This has

the advantage that one has full access to the entire ow �eld at every point in time,

so it is easy to make measurements that would be di�cult to make experimentally.

It is also possible to simulate a perfectly two-dimensional ow, with no out of plane

uctuations or transport at the interfaces.

The disadvantages of simulation for this problem must also be considered. The

friction factor is dominated by the behavior of an extremely thin layer of the ow near

the wall. If this layer is under-resolved, it is possible to have a ow �eld that appears

to be correct in terms of measurements made in the bulk, but which gives the incor-

rect friction factor. Furthermore, the friction factor is very sensitive to errors made in

establishing the boundary conditions, and so methods such as the immersed boundary

method [74] for handling the roughness may systematically alter the results unless

a �nite volume method is being used to ensure that they are conservative. Another

problem is that of numerical dissipation, and numerical instability. If a low-order

advection scheme is used, then it will arti�cially increase the e�ective viscosity of the

system and prevent resolution of high Reynolds numbers. If, on the other hand, a

high-order advection scheme is used, then the simulation tends to be numerically un-

stable to the formation of waves. Perhaps most signi�cantly, simulating systems large

enough to avoid entry e�ects and exit e�ects is extremely computationally expensive.

In three dimensions, simulating Nikuradze's full apparatus is completely beyond cur-
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rent capabilities. In two dimensions, it would be possible, but prohibitively costly.

Fortunately, we can resolve some of these issues by judicious choices of algorithm.

The three big choices to make are: how do we represent the ow, how do we handle

advection, and how do we handle incompressibility?

5.1 Representation

When we talk about simulating the Navier-Stokes equation, we've already implicitly

made a choice about how to represent the ow. We could in principle use other ways

to simulate a uid ow: molecular dynamics, smooth particle hydrodynamics[75], or

an incompressible lattice Boltzmann algorithm[76; 77]. These other representations

have advantages and disadvantages that make them ideal for speci�c problems in

uid dynamics. Molecular dynamics and smooth particle hydrodynamics have the

problem that the particle size must be signi�cantly smaller than the viscous scale, so

an extremely large number of particles are needed to resolve the ow. This rules them

out for high Reynolds number simulations, in which the viscous scale is very small.

Lattice Boltzmann instead discretizes space, and allows each grid cell to contain a

number of particles with some distribution of velocities. It has the advantage over

other algorithms of being unconditionally stable, so there is no issue of numerical

instability. Certain artefacts become obvious at high Reynolds numbers, unless the

timescale is set to be very small. If particles can move several grid cells without their

momentum distribution relaxing to equilibrium, then sheets of particles tend to ow

o� of any obstacles to the ow. The small requisite timestep for physical behavior

makes lattice Boltzmann inconvenient for high Reynolds number ows.

This leaves us with directly solving the Navier-Stokes partial di�erential equation.

The price we pay for having a continuous representation of the velocity �eld and a

�xed particle density is the possibility for numerical instability, and the need for a
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Figure 5.1: In our scheme, the pressure is stored at cell centers. The velocity in the
x direction is stored at the center of the left and right sides of the cell. The velocity
in the y direction is stored at the center of the top and bottom sides of the cell. For
the advection algorithm, the values are interpolated so that the advected quantity is
co-located with the advecting velocity.

non-local algorithm to maintain the incompressibility constraint. There is another

choice to be made here | how do we discretize the equation, and where do we put

the simulation variables on the grid? It is possible to use anything up to a completely

unstructured grid (using �nite elements methods[78]), but what we gain in generality

we lose in increased computational cost and complexity of code. If we can use a

rectangular, uniform, orthogonal grid, this will later let use use fast spectral methods

to satisfy the incompressibility condition. After having chosen the type of grid, we

also need to decide whether the velocity will be placed at the center of the grid cell,

or on the faces of the grid cell. There are advantages to either choice, but we will

later see that putting velocity on the faces of the grid cell allows us to ensure that

the advection code conserves momentum, which is important to our friction factor

measurements.
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5.1.1 Conformal Mapping

If we wish to later use a spectral method to satisfy the incompressibility constraint, we

must have a rectangular, orthogonal, and uniform grid. However, we would also like

to simulate pipes with rough walls. We could use an immersed boundary, and treat

the roughness geometry as some local body force that tries to keep velocity at zero

at their surface. However, when cells within the boundary have their velocity set to

zero, more momentum is lost than would normally be lost through viscous transport,

and so we strongly overestimate the friction factor. It seems like it is necessary for

the roughness elements to be the actual boundary of the ow.

Because we are interested in two-dimensional ows, there is a trick we can use

so that we do not have to give up on using a spectral method. In two dimensions,

it is possible to use conformal mapping to transform between any two domains in

the plane such that all perpendicular coordinate lines in one of the domains remain

perpendicular in the new one (that is, the map preserves angles). This is normally

used for solving the steady-state di�usion equation r2 = 0, because the operator

r2 is preserved up to a multiplicative factor by conformal maps, and so the solution

in one domain can be transformed to a solution on a new domain.

The Navier-Stokes equation does not transform so simply under a conformal map,

though as we will see it does not change by much. However, the equation for the

pressure (Eq. 3.11) is almost identical to the steady-state di�usion equation, and so

we can use the mapping combined with spectral methods to solve the incompressibility

condition on nontrivial domains.

A conformal map is a complex function of a complex argument that is de�ned

solely in terms of analytic functions of that argument. As such, the complex conjugate

or any direct reference to the real or imaginary part will not show up in a conformal

mapping function. If we start from a domain in which we have coordinates (u; v)

on the complex plane, then the complex argument of the map is w = u + iv. The
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mapping is then given as z = f(w) (where z = x + iy), which takes us to a new

domain with coordinates on the complex plane (x; y). Lines of constant u and v in

the original coordinate system will be the boundaries of our computational domain.

The physical coordinates of these boundaries are the corresponding z(u) and z(v)

curves.

The derivatives of analytic functions of complex numbers with respect to the real

and imaginary parts of their argument are related. If we have the complex function

z = f(w) = f(u + iv), we can relate dx=du, dx=dv, dy=du, and dy=dv (shortened to

xu, xv, yu, yv for convenience):

df

du
= �i df

dv
(5.1)

So:

xu = Re[
df

du
] = Im[

df

dv
] = yv (5.2)

xv = Im[
df

dv
] = �Re[ df

du
] = �yu (5.3)

We can also determine a relationship between the second derivatives: xvv =

�yuv = �xuu.
For convenience we will de�ne the quantity g2 = x2u+ x2v. This is the local scaling

factor of the map.

We can use the de�nition of the conformal map and these properties to determine

how operators transform under the map. As we are concerned with velocities, which

are themselves rates of change of a coordinate with time, we will also represent the

velocities in the computational coordinates rather than the real space velocities.

The vectors (xu; yu) and (xv; yv) are the local basis vectors in the physical space

that correspond to the basis vectors of the computational map. As such, we can do

a change of basis Vxy =MVuv, where
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M =

2
64 xu xv

yu yv

3
75 (5.4)

Inverting M , we �nd:

M�1 =
1

g2

2
64 yv �xv
�yu xu

3
75 (5.5)

Vuv =M�1Vxy (5.6)

Let us de�ne new vectors �Vu and �Vvto remove the g
2 scaling:

�Vu = g2Vu (5.7)

�Vv = g2Vv (5.8)

We will now examine how the Navier-Stokes equation transforms under a confor-

mal map by looking at each of its operators. First, we will determine how a partial

derivative transforms.

We apply our coordinate transform to the vector of partial derivatives:

2
64 xu yu

xv yv

3
75
2
64 @x

@y

3
75 =

2
64 @u

@v

3
75 (5.9)

So, solving and using the relations between derivatives, this becomes:

@x =
xu@u + xv@v

g2
(5.10)

@y =
xu@v � xv@u

g2
(5.11)

The gradient transforms as:

rxy =
1

g2
(x̂(xu@u + xv@v) + ŷ(xu@v � xv@u) (5.12)
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Next, we will look at the transformation of the Laplacian:

r2
xy =@x@x + @y@y =

�
yu@v � yv@u
xvyu � xuyv

)2 + (
xu@v � xv@u
xvyu � xuyv

�2

=
(y2u + x2u)@

2
v + (y2v + x2v)@

2
u � 2(yuyv + xuxv)@uv

(xvyu � xuyv)2
(5.13)

This is problematic because of the @uv term. But because a conformal map is also

an orthogonal map, that term vanishes as it is just the dot product between the u

and v basis vectors. For a conformal map, these directions have the same length, and

so x2u + y2u = x2v + y2v = xvyu � xuyv = g2:

r2
xy =

1

g2
r2
uv (5.14)

We will also need the divergence of our remapped vectors in order to compute the

right hand side of the pressure equation:

@xVx + @yVy =
1

g2
[(yu@v � yv@u)Vx � (xu@v � xv@u)Vy]

=
1

g2

�
(xv@v + xu@u)

xu �Vu + xv �Vv

g2
+ (xu@v � xv@u)

�xv �Vu + xu �Vv

g2

�

(5.15)

Writing this out in full will give three sets of terms: derivatives of g2, derivates of

the map coordinates, and derivatives of the vector quantities. The result after some

cancellation is:

(1=g4)[g2(@u �Vu + @v �Vv)� (�Vu@u + �Vv@v)(g
2=2)+

�Vu(xvxuv + xuxuu) + �Vv(xuxuv � xvxuu)] (5.16)

Evaluating the derivatives of g2, we �nd that:
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@u(g
2=2) = xuxuu + xvxuv (5.17)

@v(g
2=2) = xuxuv � xvxuu (5.18)

These exactly cancel out the other terms in the �rst part of Eq. 5.16, leaving the

�nal relationship for the mapped divergence:

rxy �Vxy = (1=g2)ruv � �Vuv (5.19)

Combining Eqs. 5.14 and 5.19, we can write down the equation for the incom-

pressibility constraint in the transformed coordinates:

r2
uvP = ruv � �Vuv (5.20)

This is exactly the same as in the untransformed coordinates, so the pressure

equation is conformally invariant.

We now compute the mapping of the advection operator on an arbitrary scalar �:

V � r�.

(Vx@x + Vy@y)� =
1

g4
((xu �Vu + xv �Vv)(xu@u + xv@v)+

(�xv �Vu + xu �Vv)(xu@v � xv@u))�

=
1

g2
(�Vu@u + �Vv@v)� (5.21)

So the advection operator on a scalar is scaled by 1=g2 but is otherwise unchanged.

If we instead operate on a vector, we must also worry about the derivatives of the

coordinate transform M of the vector:

Vxy �rVxy =
1

g2
(�Vuv �r(M=g2)�Vuv) =

1

g2
(M=g2)�Vuv � �Vuv+ �V2

uvr(M=g2)) (5.22)
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Furthermore, this is in terms of the x and y components of the advection operator.

Since we want the u and v components, we multiply by g2M�1:

1

g2
(�Vuv � ruv

�Vuv +M�1g2(�Vuv � ruv)(M=g2)�Vuv) (5.23)

We have recovered the usual advection operator on the new velocity vector, in

addition to a term that takes into account local changes in the orientation of the

coordinate system. This extra term is:

�j
�Vuvj2
g4

2
64 xuxuu + xvxuv

xuxuv � xvxuu

3
75 � �j�Vuvj2

g4
A (5.24)

where:

A =

2
64 xuxuu + xvxuv

xuxuv � xvxuu

3
75 (5.25)

Finally, we look at the viscous di�usion operator.

r2
xy =

1

g2
r2
uv (5.26)

r2
xyVxy =M

1

g2
r2
uv

2
64 Vx

Vy

3
75 (5.27)

We de�ne: �x = r2
uvVx and �y = r2

uvVy. Changing Vxy to �Vuv, we have:

�i = @j@
jg2M�1

ik
�Vk (5.28)

Let us de�ne the matrix:

N � g2M�1 =

2
64 xu �xv
xv xu

3
75 (5.29)
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We have:

� = Nik@j@
j �Vk + �Vk@j@

j(Nik) + 2@j(Nik)@
j �Vk (5.30)

We evaluate the various derivatives of the matrix N:

@uN =

2
64 xuu �xuv
xuv xuu

3
75 (5.31)

@vN =

2
64 xuv xuu

xuu xuv

3
75 (5.32)

@2uN =

2
64 xuuu xvvv

�xvvv xuuu

3
75 (5.33)

@2vN =

2
64 �xuuu �xvvv

xvvv �xuuu

3
75 (5.34)

(5.35)

This implies that @j@
jNik = 0.

The viscous operator is:

r2
xyVxy =M

1

g2
� (5.36)

Combining these results, we have:

r2
xyVxy = r2

uv
�V+

2

g2

0
B@
2
64 xuxuu + xvxuv

xvxuu � xuxuv

3
75ruv � �V+

2
64 xuxuv � xvxuu

�xuxuu � xvxuv

3
75ruv � �V

1
CA (5.37)
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Since the ow is divergence free, the viscous operator reduces to:

r2
xyVxy = r2

uv
�V +

2

g2
A?ruv � �V (5.38)

where:

A? =

2
64 xuxuv � xvxuu

�xuxuu � xvxuv

3
75 (5.39)

This is just the perpendicular vector to the vectorA that we found in the advection

term.

The complete conformally mapped Navier-Stokes equation is therefore:

g2
@ �V

@t
+ (�V � r)�V = �r2 �V +

j�Vj2
g2

A+
2�

g2
A?(r� �V) (5.40)

All that has happened is that we have added two body force terms to the Navier-

Stokes equation in the transformed (rectangular) domain, in addition to an over-

all spatial weighting factor g2 that modi�es the time derivative, resulting from the

changed volume of each cell.

To simulate a rough-walled pipe, we apply a conformal map of the form w =

z+r exp(ikz), where the aspect ratio is held constant (rk = 3=4) and the wavenumber

k may be varied to produce roughness of di�erent scales. Note that r plays the role

of roughness in Nikuradse's experiments, but our aspect ratio is 3=4 and not unity as

in his experiments.

5.2 Advection

We would now like to consider how to handle advection. Advection is the sole non-

linear operator in the Navier-Stokes equation. It is also the source of most of the

numerical instabilities, at least at high Reynolds number. The simplest advection
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Figure 5.2: Conformal mapping of the rough pipe used for our simulations.

methods are �rst order upwinding algorithms. These discretize the operator udu
dx

around the grid site i in the following way:

ui
ui�ui�1

�x
ui � 0

ui
ui+1�ui

�x
ui < 0

(5.41)

If we Taylor expand u around ui, we can see the error we make in approximating

the actual operator. We will take the ui > 0 case for simplicity.

ui�1 = ui ��x
du

dx i
+
�x2

2

d2u

dx2 i
+O(�x3) (5.42)
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� = ui
ui � ui�1

�x
� ui

du

dx i
(5.43)

� = �ui�x
2

d2u

dx2 i
+O(�x2) (5.44)

This means that the consequence of using the upwinding operator in place of the

actual continuous operator is that we have added a term ui
�x
2
d2u
dx2 i

to the opposite side

of the Navier-Stokes equation. This term has the same form as a viscous term with

viscosity ui
�x
2
. As a consequence, the errors we make in having too large of a grid

size will take the form of an increase in viscosity. If the errors had the opposite sign,

then this would decrease the e�ective viscosity. If that made the e�ective viscosity

negative, then the simulation would exhibit a checkerboard pattern of instability at

the grid scale. This is why the upwinding algorithm chooses the direction in which

to evaluate the derivative based on the local velocity | it is ensuring that the error

term always increases the e�ective viscosity rather than decreasing it. This makes

the algorithm rather stable, but has the downside of introducing signi�cant numerical

dissipation.

To �x this problem, we must go to a higher-order scheme, so that the additional

terms will be of order �x2 or better. In practice, going beyond third order is somewhat

futile as numerical dissipation will give way to lack of resolution as the main barrier to

reaching high Reynolds numbers. We could construct a third order scheme by using

the Taylor expansion of u around ui, and combining neighboring values of u until we

had eliminated all error terms of order �x3 or smaller. This solves the numerical

dissipation issue, but adds a new problem: because it is somewhat nonlocal, the third

order advection operator may introduce new maxima and minima into the advected

�eld. This gives rise to non-physical wave behavior that eventually blows up, unless

the timestep is kept very small.

This problem has been addressed by so-called ux limiter advection schemes, that
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Figure 5.3: Stencils for the �rst order and third order cell-centered upwinding
schemes.

make use of a boundedness criterion in order to ensure that waves are not introduced.

For a survey of various ux limiter schemes, their implementations, and the principles

on which they work, see [79]. The SMART algorithm[80] is a compromise between

the complexity of the operator (which makes it more computationally expensive to

evaluate) and stability. The SMART algorithm is a third-order algorithm that in-

terpolates the velocity in a controlled fashion, dependent on the local derivatives, in

order to ensure that the resulting interpolated function is bounded above and below

by the largest and smallest values in the local region. This prevents that overshoot

from manifesting as spurious waves.

Another advantage of the SMART algorithm is that it is written to make use of

uxes at the walls of the computational grid cells, rather than the ow through the

cell center. This means that we can guarantee conservation of momentum. If we

place the velocities on the cell faces, then we can write an expression for the net ux

of momentum through either side of a cell. The di�erence in the uxes then gives us

our change in momentum. Since the ux into the next cell is the same as the ux

out of the cell sharing its face, so long as all the cells are properly connected to each
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other and the boundaries then the momentum of the system will be conserved. This

is in fact the same thing as the advection operator, but with the added bene�t that

even if the ow �eld is compressible, it will properly conserve momentum.

In the case of high velocities near a boundary, the SMART algorithm can have

symmetry problems due to an arbitrary choice of direction to do upwinding when

v = 0 exactly. We expect this e�ect to be minimal in fully developed ows where

v � 0 near the boundary due to viscous e�ects, but work is being done to test these

results with an algorithm that does not su�er this symmetry problem.

5.3 Incompressibility

A large part of the shedding of turbulent eddies from obstacles in a ow comes

from the proper consideration of incompressibility. This is what causes the ow to

curl up into vortices rather than smear out in long shearing streaks. Satisfying the

incompressibility constraint can be the most time consuming part of the turbulence

simulation, as it is a non-local problem.

There are a number of ways to approach the constraint. One way would be to use a

formulation of the Navier-Stokes equation that eliminates the need for the constraint

entirely by using a basis for the ow �eld that is automatically divergence free. The

way to do this is to take the curl of the Navier-Stokes equation to get an equation for

the vorticity:

d!

dt
+ v � r! = �r2! (5.45)

This eliminates the pressure, and guarantees that the velocity �eld is divergence

free (because it is speci�ed only by its curl). We still must determine the velocity �eld

at each timestep in order to evaluate the advection operator. This is, unfortunately,

a non-local problem:
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r� v = ! (5.46)

So, taking the curl of both sides:

r�r� v = �r2v = r� ! (5.47)

So we must solve a Poisson equation over the entire domain every timestep. The

advantage of using a vorticity representation is that anomalies in the solution to the

Poisson equation (e.g. by using an iterative solver rather than an exact solver) will not

propagate from time step to time step they way they might if the velocity �eld itself

were allowed to have a divergence. However, the boundary conditions for the vorticity

representation are very hard to determine correctly and furthermore we would have

to work backwards to �nd the pressure �eld in order to measure the friction factor.

So we will not use this method.

Other approaches usually involve di�erent ways of solving the pressure Poisson

equation in the standard representation of Navier-Stokes. If we have just updated

the velocity �eld from a previous step, it may have divergences introduced by the

advective operator or by various errors in discretization. We will then perform a

projection step which determines the pressure �eld that renders our velocity �eld

divergence free. We stagger the advection and di�usion steps with these projection

steps to ensure that at the end of every timestep we have a divergence-free velocity

�eld.

If our velocity �eld before projection is v, then our velocity �eld after projection

(implemented via the pressure gradient) will be v�rP�t. Let us take the divergence
of this and set it to zero:

r2P = r � v=�t (5.48)

This is the pressure Poisson equation that we must solve to ensure that our velocity
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�eld is divergence free. One small point is that our results depend on how we choose to

discretize the divergence operator and the Laplacian. We should be careful to choose

complementary de�nitions with how we implement advection, or we will introduce

errors wherever we assume incompressibility. An example choice for velocities that

are stored on the grid cell walls and pressures stored at the cell centers is:

r � v =
(ui+1=2;j � ui�1=2;j) + (vi;j+1=2 � vi;j�1=2)

�x
(5.49)

r2P =
Pi+1;j + Pi�1;j + Pi;j+1 + Pi;j�1 � 4Pi;j

4�x2
(5.50)

These two representations are consistent because we can arrive at the representa-

tion for r2 by applying the representation for r to itself.

Once we have this equation, we can use a number of di�erent solution techniques.

The problem we are solving is linear, so it would be possible to set the problem up

as a matrix and then exactly invert the matrix. While this has the advantage that

the resulting pressure �eld is an exact solution to guarantee a divergence-free velocity

�eld, it has the problem that exact matrix inversion scales as O(N3) in the dimension

of the matrix, which for a two-dimensional domain means that it scales as L6.

If we are willing to sacri�ce accuracy, we can use any number of relaxation methods

to solve the problem. The immediate connection to our previous attempt is to use

a conjugate gradient solver to iteratively approximate the inverse of the matrix. We

may also use a multigrid method to quickly converge to a solution. Multigrid methods

work by representing the problem at multiple scales, and �rst solving it at the coarsest

scales. The reason that Poisson's equation takes a long time to converge is that

there is a limit to how fast information can be allowed to propagate or the process

becomes numerically unstable. This limit is the size of the stencil used to represent

the Laplacian operator | basically, if the stencil connects to nearest neighbors, then

the continuous solution cannot call for information to move more than one grid cell
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per iteration.

If, however, we coarsen the problem to a grid which only has four cells, then moving

one grid cell per iteration is not a very stringent constraint. We can then take the

coarse solution and use it for an initial condition for the next level of re�nement, and

iterate this process recursively until we are back at the true grid resolution. This

process takes O(N logN) steps to converge for a one dimensional system of length

N . This is very competitive. The main downsides to the multigrid method are that

it can be hard to handle certain cases around the boundaries when the coarsening

destroys boundary detail, and that it can lead to more complex code with more room

for errors. It is also not an exact solver.

It is possible to solve the pressure equation exactly in O(N logN) steps in certain

cases. Note that the operators in the pressure equation are translationally invariant

and are linear. This suggests that taking a Fourier transform of the equation will

convert the partial di�erential equation into an algebraic equation. If we do this to

the continuous pressure equation, we see that:

�k2 ~P = ik � ~v=�t (5.51)

We can immediately solve this for ~P and then invert the Fourier transform to �nd

the pressure �eld. In practice we will want to be careful to take the Fourier transform

of the actual operators we are using for discretization, rather than the transform of

the continuous operators:

cos(2k�x)� 1

�x2
~P = F [r � v=�t] (5.52)
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Figure 5.4: Plots of the friction factor at high roughness computed in simulations
at resolutions �x = 1=256, �x = 1=384, and �x = 1=512. The behavior at high Reis
expected to be in the saturated part of the Strickler regime. Beyond the limit of grid
convergence, the friction factor begins to drop as 1=Re as the viscous layer becomes
under-resolved.

5.4 Simulation Details

Now that we have chosen the algorithm to use, we can discuss the detailed setup of

the simulation. It is necessary to be able to represent the viscous lengthscale, or the

e�ective value of the viscosity will be higher than the intended value, resulting in a

decreased Reynolds number. More importantly, we will under-resolve the scaling of

the viscous layer, and so will not correctly determine the transport of momentum. It

is useful to understand what our results will look like in this case.

If we have under-resolved the viscous layer, then all viscous transport will take
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place across one computational grid cell. In the viscous layer, the velocity pro�le

is linear, with a slope �U2f=�. There is a certain velocity proportional to the mean

velocity at which the viscous layer starts to become turbulent | let us call this

Uc = a �U . If l is the width of the viscous layer (which normally would depend on

Reynolds number[20]), then this implies that f = �Uc �U
�2l�1, or f = aRe�1(R=l).

The scaling of l then determines the friction factor scaling. If now we �x the width

of the viscous layer to be �x, this means we will see a friction factor that scales as

f = aRe�1(R=�x) | in other words, we will see the ow exhibit a laminar friction

factor scaling. This means that if we are under-resolved at a certain Reynolds number,

the friction factor will appear to sharply drop below its normal behavior.

We have performed a series of simulations at di�erent grid sizes to test our grid con-

vergence. The friction factor curves from these parallel runs are plotted in Fig.(5.4).

It appears that in order to approach Reynolds numbers of 60000 or so and still be

converged, we need a grid spacing �x = 1=512 or smaller.

As we are making our domain periodic, there is also the question of how long of

a section of pipe we need. If we only used a segment one pipe diameter long, we are

implicitly saying that the largest turbulent structure should be of about that length-

scale. Furthermore, if there are interactions between adjacent roughness elements, we

are saying that those interactions should always see a periodic ow structure. How

long then do we need to make the pipe? Simulations at a variety of pipe lengths show

that when the pipe length is only two pipe diameters, the periodic symmetry causes

pairs of stationary vortices to form, one in a cove at the top part of the pipe, and

one in a cove at the bottom part, o�set by one roughness element. This structure

weakens at a length of three diameters, and appears to go away at a length of four

diameters.

We use a simulation domain of 2048�512 to simulate a section of pipe of diameter

1 and length 4. After initializing the velocity �eld we allow the system to evolve for
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a su�cient number of pipe transits so that the system is fully turbulent (one pipe

transit corresponds to four units of time as the mean ow velocity is set to 1 in

the simulation units). The smaller the roughness, the more transits are needed. This

results in roughness-generated turbulence, in which case the observed energy spectrum

is dominated by the inverse cascade, as shown in Fig. (5.5).

In order to attain an enstrophy-dominated ow, we used a technique suggested by

the observations reported by Rutgers[37]. We simulated grid-generated turbulence,

by placing a series of cylinders at the mouth of the pipe; in each cylinder we set the

velocity �eld to zero every timestep. After one pipe transit the velocity �eld is fully

developed. We then remove the grid and allow the turbulence to decay for a transit

before we begin to measure the friction factor and other ow properties. We have

observed energy spectra dominated by the enstrophy cascade in this system, as shown

in Fig. (5.5).
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Figure 5.5: Energy spectra for grid- and roughness- generated turbulence. Grid-
generated turbulence exhibits the k�3 enstrophy cascade, compared to the k�5=3 in-
verse cascade scaling of roughness-generated turbulence. Inset: simulated wall veloc-
ity pro�le of grid-generated turbulence in a smooth pipe at Re = 60000. The pro�le
is consistent with a power law with exponent 0:323� 0:005. We predict an exponent
of 1=3 for enstrophy cascade turbulence.
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Chapter 6

Two-dimensional Pipe Flow

Results

In this chapter we will present the results from our simulations of two-dimensional

pipe-ow turbulence. We examine the friction factor scalings and velocity pro�les

for both the inverse cascade and enstrophy cascade energy spectra. We �nd that the

predictions of momentum transfer are supported for the friction factor scalings and

for the enstrophy cascade velocity pro�le, but that there are inconsistencies from the

predicted scaling of the friction factor uctuations and the inverse cascade velocity

pro�le.

We have examined a range of Reynolds numbers from 1000 to 80000, with rough-

nesses (de�ned by the parameter r in our conformal map) between 0:05 and 0:2. In

these ranges, we see primarily the laminar and Blasius regimes, and the very onset

of the Strickler regime. This is su�cient to examine the possibility of data collapse

with respect to the predicted Strickler scaling.

77



10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 1  10  100

E
(k

)

k

Re=20000

Re=35000

Re=70000

k
-3

Figure 6.1: Energy spectrum of grid-generated turbulence at three Reynolds num-
bers. The solid line indicates k�3. At higher Reynolds numbers, the range of the k�3

scaling is obeyed increases.

6.1 Energy Spectra

Here we discuss in detail the measurements of the energy spectra (the energy con-

tained in an in�nitessimal range of wavenumbers between k and k + dk) in our two-

dimensional simulations. In order to measure the energy spectrum, we relate it to

the velocity �eld using Eq.3.17. We can obtain the longitudinal component of E(k)

by taking the power spectrum of the Fourier transform of the longitudinal velocity

along the pipe at speci�c distances from the wall. The transverse component is not
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well de�ned in this ow as the ow is not periodic or in�nite in extent in directions

parallel to the wall. We can therefore see that the energy spectrum retains its form

even close to the wall, as required by the momentum transfer theory.

For roughness-generated turbulence, we see a spectrum with a k�5=3 range, a sharp

fall-o� at large k, and the far edge of the integral range (Fig. 5.5). It is questionable

whether the behavior at large k is the enstropy cascade or the dissipative range, or

some combination. It is signi�cantly steeper than the k�3 scaling we would expect

of the enstrophy cascade, however. It is closer to the k�7 or exponential scalings

that have been predicted for the dissipative range. Furthermore, we see that as we

change the Reynolds number, this range moves outwards as we would expect for the

dissipative range.

For grid-generated turbulence, we see both an enstrophy cascade and a small

section of inverse cascade (Fig.6.1). As the friction factor scaling in the smooth pipe

is dominated by the smallest scales, this small inverse cascade contribution should

not inuence the Blasius scaling. When we combine grid-generated turbulence with

roughness, however, the inverse cascade range expands and dominates the spectrum.

Consequently, we cannot immediately measure the roughness scaling in the enstrophy

cascade unless we can prevent that from happening.

We �nd however that if we add a noise term to the Navier-Stokes equation at the

smallest scales, this enhances the enstrophy cascade and sustains it in the presence

of roughness. We use this trick to measure the dependence of the friction factor on

roughness in the enstrophy cascade.

6.2 Friction Factor

Our simulation results at small values of the dimensionless roughness (r=R = 0:067)

are plotted in Fig. (6.2). These results were obtained by averaging over 5 full pipe
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Figure 6.2: Scaling of the friction factor with respect to Re for inverse cascade and
enstrophy cascade dominated ows in 2D. The roughness is r=R = 0:067, and the
data have been averaged over a time of 5 pipe transits.

transits, yielding reproducible values for the friction factor, with error bars determined

from bootstrap resampling of the data using 1000 replicates each consisting of 50%

of the timeseries data. For this ow we observe an approximate power-law scaling of

the friction factor with Reynolds number, with an exponent �0:22� 0:03 (error bar

determined by the uncertainty in the nonlinear �t) together with an energy spectrum

dominated by the inverse-cascade. In the case of grid-generated decaying turbulence,

corresponding to an enstrophy-cascade dominated spectrum, we observe an exponent

of �0:42� 0:05. These results are within satisfactory agreement with the scalings of
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�1=4 and �1=2 respectively, predicted for the 2D Blasius regime on the basis of a

momentum transfer argument.

We cannot reach su�ciently high Reynolds numbers to observe a pure Strickler

regime, but we can verify the Strickler scaling exponent with data collapse. In three

dimensions, or in a system dominated by the inverse cascade, we expect data col-

lapse when plotting fRe1=4 against (r=R)Re3=4[1]. For the enstrophy cascade, these

variables should be fRe1=2 and (r=R)Re1=2 respectively. We have observed previously

that in the presence of roughness, the spectrum is dominated by the inverse cascade.

However, we have found that by adding a small amount of random forcing to the

velocity �eld, the enstrophy cascade may be observed even in a rough pipe, though

it may be coexistant with an inverse cascade. Using this method we can obtain the

roughness dependence of the friction factor in an enstrophy cascade dominated ow.

The collapse of the friction factor curves using the enstrophy cascade variables is

shown in Fig. (6.3). The collapse is quite good, despite an apparent shallowness to

the Blasius regime in the raw data. This shallowness is likely caused by the pres-

ence of a small amount of roughness, modifying the expected Re�1=2 scaling at larger

Reynolds numbers. We have neglected intermittency, which may be negligible or at

least very small in 2D compared to 3D[81].

6.3 Velocity Pro�le

Following Prandtl[44], we have calculated the mean velocity pro�le u(y) as a function

of distance from a wall y, and for the enstrophy cascade this yields u(y) � y� with

� = 1=3, corresponding to the Blasius regime. For a general conserved quantity,

� = (1��)=(3��). This relation depends on the zero roughness limit. In [82], it has

been shown that roughness modi�es the velocity pro�le so as to increase the apparent

scaling exponent. Other work[83; 84] also considers the inuence of rough walls on
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the velocity pro�le and near-wall scaling.

In our simulations of smooth-pipe enstrophy cascade turbulence, we have mea-

sured the velocity pro�le and found the power-law scaling exponent � = 0:323�0:005

between 0:01R and 0:1R, as shown in the inset of Fig. (5.5), close to the predicted

� = 1=3. In the case of our rough-pipe simulations, the velocity pro�le yielded an

exponent of 0:333� 0:002, signi�cantly steeper than the predicted � = 1=7 that ap-

plies in the smooth, inverse cascade case. Our interpretation is that this is due to

spectral contamination from an enstrophy cascade, as in the case of the simulations

with random forcing that we presented. The momentum transfer theory integral has

an upper limit that is comparable with the Kolmogorov lengthscale at low roughness,

and so in that case the small-k part of the energy spectrum controls the friction factor

scaling. Because of this, we would expect to see a velocity pro�le consistent with the

enstrophy cascade until the roughness or Reynolds number were high enough to place

the crossover between the inverse cascade and contaminant enstrophy cascade below

the scale of the roughness.

Our results for the power-law Blasius regime in 2D enstrophy-dominated turbu-

lence show convincingly that this regime is more than an empirical �t, and has a

dynamical signi�cance. The fact that the friction factor scaling changes when we

change the spectrum of our ows further supports the connection between the scale-

free structure of turbulence and its macroscopic transport properties. We additionally

see that the velocity pro�le in two-dimensional enstrophy cascade turbulence behaves

di�erently from the three-dimensional case, as we predicted in Chapter 3.

Two-dimensional turbulent pipe ow is experimentally accessible in the form of

gravity-driven soap �lm ows. Experiments by Tran, et al.[71] have investigated the

behavior of the velocity pro�le and the friction factor in such soap �lms. They observe

an enstrophy cascade spectrum, and friction factor scalings consistent with the pre-

dictions of the momentum transfer theory. Additionally, they observe a von K�arm�an
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constant that is signi�cantly lower than the three-dimensional value, consistent with

our predictions.

These results support the fundamental connection between spectral structure and

friction factor scaling, which is manifested in the observed roughness-induced criti-

cality.
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Figure 6.3: The bottom inset shows the enstrophy cascade data collapse of the
friction factor curves for nondimensional roughness 0:05 (�), 0:08 (�), 0:1 (4), and
0:2 (O) over a range of Reynolds numbers from 1000 to 80000. The top left insent
shows the unscaled friction factor data. The top right inset shows the energy spectrum
at r=R = 0:08 and Re = 80000. The straight lines correspond to k�5=3 and k�3.
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Chapter 7

Biological Complexity

Biological organisms exhibit many di�erent levels of organization and function. Even

at the level of single-celled organisms, there are layers of structure | proteins with

direct functional consequence such as structural proteins and enzymes, regulatory

proteins that control the expression rates of other proteins, ribosomal RNA to trans-

late from the encoding of information in DNA to the actual expressed proteins, and

(particularly in bio�lms) emergent behaviors such as colony-wide structures and cell

di�erentiation[85]. In multicellular organisms, there are further levels of organization,

some of which are clearly advanced forms of what is seen in bio�lms. Di�erentiation

between somatic cells and functional cells occurs. Organisms are macroscopic, and

interact with the world mechanically rather than primarily chemically. Furthermore,

secondary levels of information storage appear in the form of neurons, which encode

information taken from the environment during the lifetime of the organism and allow

for a faster adaptation to changing conditions.

The lengthscales across which living (in the sense of being self-replicating and of

undergoing evolution) structures exist span nine orders of magnitude, from viruses

at a scale of 10 nanometers to the largest ocean-dwelling mammals at 10 meters. A

detailed explanation for this wide range of coexisting scales has not been given. In

principle, evolutionary processes will allow organisms to �nd optima for survival and
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fast replication in their given environments, but why would macroscopic organisms

with orders-of-magnitude slower replication times and orders-of-magnitude higher

nutritional requirements for survival be able to coexist with the smallest bacteria,

which easily out-replicate the larger organism?

7.1 Separation of Scales

I propose that the answer to this is a separation of scales arising from predominantly

local interactions in the space of organismal complexity and size. This picture of

local interactions can lead to a cascade in which the complexity of organisms in

the system increases even at the cost of decreasing the total �tness. One might

suggest that the rules should be di�erent for di�erent kinds of organisms | why

would insects, mammals, and avians share the same scaling relationships? However,

other scaling relationships in multicellular organisms have been shown to hold across

multiple phyla[86]. In multicellular predator-prey systems, one can use a scaling

argument to support the idea that this sort of locality exists. Organisms that are much

smaller than a given predator don't provide enough nutrients to be worth pursuing,

and organisms much larger are impossible to consume. As a consequence, there is a

narrow range of scales in which predation is e�cient.

We will begin by considering a predator of scale l and prey of scale s. This predator

cannot e�ectively eat things much larger than itself, though it may eat larger things

within the same order of magnitude of scale. The amount of food that the predator

requires to survive is proportional to its body mass, and so scales as l3. Furthermore,

the food provided by a given prey species scales as its body mass s3. If we consider

that the distance that a given predator may range to �nd food scales as its length,

then a predator that lives in d dimensions covers a volume ld when searching for

prey, where the density of prey in that volume will scale as 1=sd. Consequently, the
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e�ciency � of a given predator in acquiring food by pursuing prey of scale s is:

� = (l=s)d�3 (7.1)

For predators existing in a three-dimensional environment, it appears that the size

of prey is irrelevant under these assumptions. This is consistent with the observation

of very large oceanic creatures that eat many many very small creatures - whales and

krill for instance. However, within two dimensions, such as predators ranging on land,

the e�ciency scales linearly with the size of the prey species s. This means that the

most e�cient choice is to specialize in eating something on the same scale as itself,

and so one can predict that on land there should be a cascade of organisms at many

scales, each eating things of similar scale to itself.

While this argument may work for very late-appearing forms of life, it is necessary

to explain the separation of scales without resorting to multicellular, land-bound

creatures. The �rst large change of scale corresponds to the formation of bio�lms

and multicellular plants and fungi, which do not have predator-prey interactions.

However, these systems enjoy direct advantages from cooperative e�ects compared

to isolated unicellular organisms. Bio�lms can establish local chemical environments

that are more e�cient for metabolism and other cell functions[87], and protect the

cells from external uctuations via an exterior layer of structural insulating cells.

The improvement in replication due to higher cell density is observed across many

unicellular systems, not only bio�lms, and is known as the Allee e�ect[88; 89].

On the other hand, bio�lms are less e�cient in times when environmental food

supplies are short. Individual cells have higher motility and can cover a larger vol-

ume in search of food compared to a bio�lm which is �xed in place. As such, it is

understandable that simple quasi-multicellular forms would coexist with unicellular

organisms (and in fact, that bio�lms would use regulation to switch between cohesive

behavior and unicellular behavior depending on the availability of food or presence
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of environmental stresses).

Though replicating structures smaller than a single-celled organism exist (viruses),

they are all parasitic in nature, and so require the existance of single-celled organisms

in order to replicate. There seems to be a minimal scale necessary for e�cient self-

replication without recourse to external replication machinery. This explains the

lower cuto� of the range of scales observed.

There are putative precursors to cellular organisms - self-replicating metabolic

cycles[90], and the RNA world hypothesis[91]. It has been observed that DNA on its

own can replicate without the intervention of enzymes in suitable environments[92].

These forms of replication seem to all be much slower than cellular replication, how-

ever. Encapsulation allows for chemical concentrations much higher than would exist

in an open environment. So while early life may have bootstrapped its way up to

cells, it is unsurprising that all currently known life is either cellular or parasitizes

cellular life.

7.2 Complexity

Beyond the issue of multiple coexistant scales in existing life, there is the question

of the reason for the observed complexity of life and how it may be explained. This

issue is at �rst apparently less troublesome, as there are many possible sources for the

complexity of actual life. The laws of physics and chemistry, the environment, and

the many scales of uctuations all suggest that the complexity of life may simply be

the complexity needed to be an optimal replicator | that is, an organism that �lls

up its local environment with copies of itself as quickly as possible. This argument

breaks down when one notices that there are also many di�erent scales of complexity

in living organisms. Simply looking at the active component of genome content, it

varies across six orders of magnitude[93].

88



We will attempt to address this by looking at simulations of arti�cial organisms.

In simulations, the inherent complexities of chemistry, physics, and the uctuating

environment are not by default present. It is also of interest to determine what is

necessary to have open-ended evolution in such simulations, in order to drive evo-

lutionary algorithms and explore possibilities in arti�cial intelligence. An intelligent

system and a system with open-ended evolution share the property that they are

both self-directed, and so perhaps insight in one version of the problem could lead to

insight in the other.

In general, no computer model can hope to capture the actual complexity of

the chemistry and environment that real organisms experience. Certain things will

be very di�cult to predict through model building due to this inherent background

complexity. On the other hand, many behaviors of systems in the real world stem

from extremely simple underlying mechanisms, such that even when details are omit-

ted, these mechanisms remain more or less unchanged. We propose that open-ended

evolution is qualitatively di�erent from evolution towards a �xed point and neutral

evolution, and that this qualitative di�erence stems only from a small set of necessary

elements. By strictly controlling what goes into the model, the minimal set of neces-

sary elements to have self-replicating organisms that evolve in an open-ended fashion

may be discovered. In this sense, the idea is to build a series of minimal models to

isolate the root causes for di�erent evolutionary behaviors.

The earliest attempts to model arti�cial self-replicating life may be the cellular

automata of John von Neumann[94]. He described a way in which a self-replicating

system could be built via the implementation of a universal constructor. He initially

designed a set of rules for the transitions of sites on a two-dimensional grid that would

give rise to such an object, though he could not get it to copy itself entirely. Much

later, these rules were improved such that a self-replicating universal constructure

could be built[95]. Evolution in this system was possible with the addition of ran-
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domness to the rules, but the eventual behaviors were strongly bounded by the choice

of rules.

The question of whether or not arti�cial replicating systems would complexify has

been broadly considered [96]. While the potential to complexify is present in almost

all such arti�cial life simulations, baring those whose rules are so simple that only

replication and some �xed functionality is possible, whether or not it actually occurs

is another issue entirely. The rules of the von Neumann cellular automaton were

comparatively simple, but the structure itself was very rigid as far as what changes

could be made that would not destroy its function entirely.

Following from the basic idea of computation as life, other attempts at arti�cial

life were made. One approach to achieving a rich set of behaviors is to create a

very exible and general set of rules for the mapping between synthetic organisms'

genetic code and their dynamics, which abstracts away any sort of biochemistry. The

organisms then interact and evolve within the arti�cial ecosystem represented in the

computer according to these simpli�ed rules. The Tierra[97] and AVIDA[98] projects

use computer languages as a way to produce a general set of rules. Given a su�cient

minimal set of operations, a computer language is Turing complete and can emulate

any other such computer language. As a result, any behavior can in principle be

developed by the arti�cial organisms. One problem is that many of these behaviors

may be more or less di�cult to evolve depending on the speci�cs of the language

chosen to represent the dynamics.

In the Tierra model it became evident that the dynamics were not neutral with

respect to the size of replicating programs. Evolutionary pressure favored programs

becoming smaller as they would then replicate more quickly and out-produce the

larger programs in the system. This led to the development of interesting parasitic

behavior in which a program would use a neighbor's replication code to decrease

its length[97; 99]. Though corrected in later work, this was insu�cient to obtain
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open-ended complexity growth. Work by Standish[100] analyzed the complexity of

organisms in Tierra and attempted to pinpoint the cause for the eventual limit in

organismal complexity; but the results were inconclusive.

It is not necessarily the case that the arti�cial organisms need to be Turing com-

plete in order for the simulation to produce interesting evolutionary behaviors. A

minimal model can be more informative as it is easier to control representational

e�ects, and the causes of speci�c features of evolution can be isolated. An example

is the work of Vetsigian and Goldenfeld[101] in studying the e�ects of homologous

recombination. The result was that certain structures were predicted to occur in

the genomes of bacterial populations (and were reportedly observed by comparative

genomes), simply as a result of the genetic mechanisms, independent of any sort of

selective pressure.

In the following two chapters I will present my work in making abstract minimal

models that can be simulated on a computer over evolutionary timescales. The models

implement the genetic operations extant in real biological systems, but the interac-

tions between organisms and the environment in the system are highly simpli�ed.

The goal is to �nd the necessary structure of a simulation in which the complexity of

organisms has open-ended growth.

There are two features necessary to accomplish this. The �rst is that the evolu-

tionary dynamics must have an invariance with respect to changes in the complexity

of the evolving organisms. That is, if there are inhomogeneities which encourage or-

ganisms to have a speci�c complexity, then that will act to prevent the complexity

of the system from continually increasing. This feature is related to the origin of the

Kolmogorov cascade in turbulence | in the turbulent cascade, a hierarchy of length-

scales exists due to a transport of energy by scale-invariant processes between a large

length scale and a small length scale. In this case, processes invariant to changes in

complexity will produce a hierarchy of complexities in the system. An overview of the
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e�ects of di�erent genetic operations will be presented with respect to this invariance

criterion. This criterion can also apply to the way that the �tness of an organism is

determined in the dynamics, either explicitly or implicitly.

The second feature is that there must be some advantage which can only be gained

by an organism in the system being more complex than the average population. This

feature occurs naturally in competitive interactions. This has the same function as

viscosity in turbulent ows. That is, it sets the directionality of the relevant transport.

7.3 Abstraction Transitions

Once the open-ended evolution of complexity is established, there is still the question

of the evolution of qualitatively di�erent features. It is in principle possible for a

given species to evolve a high complexity in a single facet of its interaction with the

environment or with other organisms. That is, a pair of species could for instance

develop more and more sophisticated poisons and immunities in an attempt to com-

pete for space. However, this is fundamentally di�erent than, for instance, one of

the species developing some new mode of interaction that allows it to access or even

create new ecological niches.

One point of view is that these qualitatively di�erent modes of behavior are simply

due to the existance of unexplored niches, and that they are eventually limited to the

total number of niches that the underlying physics creates. However, this leaves out

the issue of niches that exist solely due to the presence of organisms in the system,

such as things that consume the waste products of other organisms. The structure of

niches themselves can uctuate due to what the organisms in the system are doing.

In a broader sense, however, there are certain qualitative changes that fundamen-

tally change the way evolution itself works. The transition from pre-genetic life to

organisms that stored their template in DNA and then made use of the translation
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apparatus to convert that stored information into functional proteins is an exam-

ple of one such change. Before the existance of a polymer with an invariance that

allowed substitution of di�erent monomers at di�erent sites without changing the

polymer's behavior, any hereditary information in the system must have been dis-

tributed somehow across the varying chemical concentrations of the environment. It

was not necessarily the case that changes could be made in a way that they were

inherited, nor that many pathways were open to evolution. Even if one considers

the RNA world picture[91], changes to the ribozymes that would catalyze their own

self-replication would have immediate impact on their ability to replicate, and so it

would be hard to evolve secondary ribozymes that would aid replication but would

be insu�cient on their own.

Another example is the evolution of gene regulation. Without a regulatory ap-

paratus, a given organism would always have one set of behaviors, and so would be

unable to use environmental information to change its mode of operation without

building it into the protein chemistry of the cell directly. By attaching complexes to

DNA such that certain regions could be activated or repressed, it became possible

to change the cellular state in response to external stimuli. This also provided a

new layer of information in the genome, and a new mode of evolution. Now, rather

than constructing a certain function by producing the necessary proteins to enact it,

functions could be produced by having timed combinations of proteins. This again

changed the way that evolution operated.

In studying the evolution of the translation apparatus, Carl Woese pointed out

that \evolution becomes an expansion of an informational universe"[102] as a way

to understand the new degrees of freedom accessible due to the development of

translation-based protein synthesis. I propose that these transitions share a universal

structure, though the details of the transitions will be di�erent each time. Each of

these transitions consist of the development of a new level of information upon which
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evolution can operate in the sense of Woese's expanding \informational universe",

such that the new level is partially decoupled from the lower level (in the example

of regulation, evolution can operate on the proteins, or the regulatory network that

relates their expression levels). As such, there is a degree of abstraction of the lower

level that is similar to the emergence of quasiparticles in many physical systems. I

will refer to these transitions as abstraction transitions.

The actual operation of evolution at a given level requires more machinery than

simple point mutation to be e�cient. Mechanisms such as error correction[103],

homologous recombination[104], and illicit horizontal gene transfer[105] vastly speed

up and stabilize the operation of evolution[106; 107]. When a new level of evolution

becomes available, these mechanisms, such as they exist at the current level, will

not necessarily function in a way that is e�cient for the new one. Thus, in these

transitions, the evolutionary e�ciency of the system as far as phenotypic changes is

predicted to be low at �rst. In order for the transition to be viable, pressures that

allow the evolution of new evolutionary mechanisms must be present.

When there is competition between something immediately bene�cial and some-

thing that only has bene�ts several generations down the line, evolutionary pressure

operates more strongly on the thing with immediate bene�t unless some other time

or space scale exists in the system. However, if there is a timescale in the selec-

tion pressure much longer than the lifespan of an individual organism, or if there

is larger spatial organization or collective e�ects that allow organisms to depend on

each other for their survival, this can change the balance of evolutionary pressure and

put emphasis on longer-term bene�ts such as the development of new evolutionary

mechanisms. As such, we would expect to see the seeds of abstraction transitions in

environments with long timescale uctuations or places where collective e�ects have

produced groups of mutually supporting organisms.

Looking at the various forms of life on Earth, there are several times where an

94



abstraction transition may have occured in addition to the origin of DNA as an

information-bearing molecule and the emergence of regulation. In the origin of mul-

ticellular organisms, the formation of spatially-varying structures became possible -

the new layer of evolutionary information in this case is cellular di�erentiation. In

multicellular organisms, the development of neurons allowed information to be stored

and processed on a faster timescale than the replicative timescale. The mechanisms

of learning then comprise the new evolutionary level. Once nervous systems are in

place, organisms can develop communities, pack structure, and the like. With com-

munication and later language providing the mechanism for information exchange

and heritability, this leads to the formation of societies and culture as the next evo-

lutionary level.
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Chapter 8

Foodchain

Experiments on digital organisms represent one of the most accurate and informative

methodologies for understanding the process of evolution[108]. Systematic studies

on digital organisms are especially informative, because the entire phylogenetic his-

tory of a population can be tracked, something that is much more di�cult|but not

impossible[109]|to do with natural organisms. Experiments on digital organisms

can be performed over time scales relevant for evolution, and can capture universal

aspects of evolutionary processes, including those relevant to long-term adaptation

[110; 111], ecological specialization[112; 113] and the evolution of complex traits[114].

Despite this progress, the way in which evolution leads to ever increasing com-

plexity of organisms remains poorly understood and di�cult to capture in simulations

and models to date. Is this because these calculations are not su�ciently realistic,

extensive, or detailed, or has something fundamental been left out? In this Chapter,

we argue that two fundamental aspects of evolutionary dynamics, with the character

of symmetries, have been omitted, thus causing complexity growth to saturate.

The �rst feature is that the evolutionary dynamics must be invariant with re-

spect to changes in the complexity of the evolving organisms. That is, if there are

inhomogeneities which encourage organisms to have a speci�c complexity, then these

will act to prevent the complexity of the system from continually increasing. This
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invariance is similar in spirit to that which lies at the heart of the Richardson cascade

in turbulence[9; 11]. Here, a hierarchy of length-scales exists due to a transport of

energy by scale-invariant processes between a large length scale and a small length

scale. The largest and smallest features of the ow are determined by where the in-

variance is broken. In the biological case, processes invariant to changes in complexity

will allow the dynamics to produce structures of arbitrarily high complexity. We will

see below, in an explicit model, the e�ects of di�erent genetic operations with regard

to this invariance criterion. This criterion can also apply to the way that the �tness

of an organism is determined in the dynamics, either explicitly or implicitly.

The second feature is that there must be some advantage which can only be gained

by an organism in the system being more complex than the organisms it competes

with. Competitive interactions can drive such a dynamic; for example, if competition

can be thought of as one organism setting the environmental problem that the other

organism must solve. The resulting co-evolution favors an increase in complexity over

a decrease, because for the problem-setter, simplifying the problem does not exclude

an organism already able to solve the problem. This factor has the same function as

viscosity in turbulent ows: it sets the directionality of the relevant transport.

These two features have precisely the same mathematical role in evolutionary

models as the mechanisms of energy transfer and viscous dissipation do in uid tur-

bulence. Thus, the open-ended growth of complexity in our model, and the existence

of a hierarchy of structures at all scales in turbulent ows are mathematical conse-

quences of the same underlying dynamics. It is not important for this argument what

is the direction of energy ow in the turbulence case: in fact, the direction depends

on dimensionality, with the possibility of the accumulation of large-scale structures

in two-dimensional turbulence through the so-called inverse cascade.

The implications of this dynamical systems argument are far-reaching, and impose

constraints on how digital evolution models should be built. For example, despite its
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popularity, the \�tness landscape" [115{117] picture of evolution does not satisfy these

constraints, and is conceptually insu�cient to account for the open-ended growth

of complexity. To illustrate our points, we now show how open-ended growth of

complexity emerges from underlying dynamical rules in a simple caricature of an

evolving ecosystem.

8.1 Complexity Saturation in Digital Ecosystems

Tierra[97] and Avida[98] are systems of digital organisms, which are represented as

self-replicating programs in a Turing complete language. In principle any program or

behavior can then be encoded with a su�ciently large genome. In Tierra, organisms

exist in a linear space for which each point in space is associated with an instruction

and replication occurs via a loop which copies the contents of the space at an o�set.

In early work on the Tierra model it became evident that the dynamics were not

neutral with respect to the size of replicating programs. Evolutionary pressure favored

smaller programs as they replicate with fewer instructions and out-produce the larger

programs in the system. This led to the development of interesting parasitic behavior

in which a program would use a neighbor's replication code to decrease its length, i.e.

the complexity of organisms did not increase. When this was corrected by a change

in the way in which resources were allotted, the length of organisms was observed

to increase in bursts, but eventually saturated for longer and longer intervals[97], a

�nding attributed to insu�cient richness of the environment[100].

In Avida, there is a two-dimensional grid, each cell of which contains a program,

and replication occurs between cells. Selection is based on an organism's ability

to solve a particular mathematical problem. Avida uses an information-theoretic

de�nition of complexity based on the information learned by the organism from its

environment[114]. For evolution occurring in a single niche, it is found that this
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complexity increases for some time, then saturates to a value determined by the

maximum information associated with the niche (the potential complexity) [118].

A similar pattern of complexity saturation is found in `WebWorld'[119{122]. Here,

species are described by a set of features that may be either present or not, and the

total rate of predation between species is determined by summing over a random

interaction matrix for each feature possessed by the predator and each possessed by

the prey. The total number of features possessed is found to increase in the presence of

interactions above the neutral case. However, the increase in complexity is eventually

limited by the prede�ned set of features, there being no possibility of creating new

features in the model.

In summary, these and other digital ecosystems appear to lack the drive to in-

creasing complexity that arguably is present in real biological systems.

8.2 The Model

We now present an abstract minimal model of an evolving predator-prey system,

which we call \Foodchain". This model exhibits the potential for an open-ended

growth of complexity. Organisms in this model exist in a two-dimensional space and

interact with each other. The detailed mechanics of replication are abstracted away

(unlike Tierra and Avida)|during replication, genetic operators (point mutation and

gene duplication) are applied to the genomes, which are of �xed length 2048, to

produce the genome of the o�spring. In `Foodchain', �tness is determined solely

by interactions between organisms, as they attempt to eat a random neighbor each

timestep. A certain amount of energy is introduced to each living organism every

time step, and replication occurs when an organism has an adjacent empty grid cell

and a su�cient amount of energy.

Each organism has a �xed-length string of letters as its genome. These letters can
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be upper or lower case, so that each letter is one of 52 possible letters. All but eight

letters are inactive and do not inuence the interactions between organisms. Of the

eight active letters, four are o�ensive (A,B,C,D) and four are defensive (a,b,c,d).

The predator-prey interactions are determined by organisms' genomes. A partic-

ular organism is not predisposed to be predator or prey, and may even be able to eat

its own o�spring. The comparison between genomes consists of matching contiguous

substrings of o�ensive letters in the organism attempting predation with defensive

letters in the prey. If the predator has a sequence of o�ensive letters that is not

matched in the prey by a corresponding defensive string, the prey organism dies and

the predator gains a percentage of its energy. A neutral letter or letter of a di�erent

type ends a sequence.

This interaction rule satis�es the condition that �tness in the system should de-

pend only on relative quantities as well as the condition that in interactions between

di�erent complexities, higher complexities produce a bene�t for the organism. If a

particular organism only has a defensive string of length L, then a predator with an

o�ensive string of length at least L + 1 will always be able to eat it; thus there is

always a structure at a higher complexity which can bypass a particular defense.

When an organism replicates, its genome is subject to change from mutation and

other genetic operations. Point mutations occur at a rate rm per letter and set the

mutated letter to a random letter, which may be the same as the original. Gene

duplication occurs at a rate rd. In gene duplication, three random values between

zero and the length of the genome are generated: a start position istart, ending position

iend, and an o�set iofs. The sequence between istart and iend is stored in memory and

written back into the genome starting at istart+ iofs. The genome is treated as being

periodic as in microbial DNA, so if iend < istart the reading process proceeds through

the end of the genome and wraps around to the beginning.

In this system the complexity is taken to be the longest functional string (separated
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into attack and defense complexities). The motivation for this choice is that it is

directly related to the capabilities of the organism. It also represents the interaction

between pieces of information in the organism's genome: together, a sequence of

multiple letters have a certain functionality that, apart, they would not.

Point mutations do not satisfy the condition that the dynamics should be invariant

to changes in complexity. If an organism has a particular active string of length L,

there are L chances for a point mutation to decrease the complexity, and 2 chances for

a point mutation to increase the complexity. More speci�cally, if a mutation occurs

at the �rst letter before or after the string, there is a 1=13 chance that the length

of the active string increases by 1. If a mutation occurs anywhere within the string,

there is a 12=13 chance that the active length will decrease. The average resultant

length L0 of an active string initially of length L after a single point mutation is given

by:

hL0i = 3

4
L� 1

2
� 1

4L
(8.1)

The dynamics of point mutations tends to decrease the active length because there are

many more ways to decrease it than to increase it. This entropy pressure competes

against the selection pressure due to the advantage that results from having a sequence

of higher active length. The magnitude of the advantage, and thus the selection

pressure, is independent of the absolute sequence length, whereas the entropy pressure

scales with the sequence length. Therefore, there is an equilibrium active string length

(complexity) at which the entropy pressure is balanced against the selection pressure.

Gene duplication on the other hand operates equally on sequences of di�erent

active lengths so long as the active length is much smaller than the total genome

length. The probability that the gene duplication region cuts a sequence of length L

is L=Lgenome. If a particular sequence is captured, its length will at least be preserved

and may increase by an amount proportional to the average sequence length in the

organism if the write region is adjacent to another sequence of the same type.
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Figure 8.1: Defense complexity versus time in Foodchain for system sizes 64, 128,
256 and 512 square grids. Duplication rate is set to 0:1 and mutation rate is set to
0:01.

Point mutations are necessary to fully explore the genetic space, but if the point

mutation rate is too high, the complexity cascade is inhibited. The next section

examines the results of simulations for a variety of point mutation rates and system

sizes in order to probe this e�ect.

Every hundred timesteps the system-wide population, average energy, average

attack complexity, and average defense complexity are stored for analysis. The attack

and defense complexities are taken to be the longest contiguous string of attack and

defense functionality. The simulation is run for di�erent initial random seeds in order

to extract the mean behavior of these quantities with simulation time.

102



 0

 5

 10

 15

 20

 25

 100  200  300  400  500  600

Sa
tu

ra
te

d 
D

ef
en

si
ve

 C
om

pl
ex

ity

System Width

Mutation
0.001

0.0025
0.005

0.0075
0.01

(C
-C

0)
 r0.

6
r0.6 S2

Figure 8.2: Dependence of maximum defensive complexity on system size and mu-
tation rate. The inset shows that the data collapse onto a single curve when plotted
with a dependent variable (C � 6:65)r0:6 and independent variable r0:6S2.

8.3 Results

The average defensive complexity of organisms in the system as a function of time is

plotted in Fig. 8.1 for di�erent system sizes. These simulations use a gene duplication

rate (per replication) of 0:1 and a mutation rate of 0:01 per letter. The complexity

increases with time for short times, but then saturates at a value which depends on

the system size. We observed that in a system with no gene duplication, the increase

in complexity was logarithmic with time, whereas the system with gene duplication

exhibited super-logarithmic complexity growth. Increasing the system size beyond

256 has diminishing returns, as the change from 256 to 512 is less than the change

from 128 to 256.

When the mutation rate is decreased to 0:001, the saturation at low system sizes

is unchanged, but at high system sizes the saturation point increases. These results
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Figure 8.3: This �gure shows the growth of the average maximum defense complex-
ity as a function of time with and without the gene duplication mechanism, averaged
over many runs. In the case without gene duplication, the complexity grows loga-
rithmically with time. With gene duplication (at a rate of 0:1 per generation), the
complexity grows super-logarithmically.

are shown in Fig. 8.2. This suggests that a large mutation rate creates a speci�c

maximum complexity value due to entropy pressure, and that a small system size

creates a di�erent speci�c maximum complexity value. Thus the system will increase

in complexity until it reaches the �rst of those maxima. When the data are plotted

in terms of variables which reect the asymptotic complexity scaling, they collapse

onto a single curve. This is analogous to �nite size scaling around a critical point in

which the system size creates a departure from criticality and causes the scaling to

saturate.

The data collapse takes the form of ra(C � C0) = f(raSb) where f(x) scales as
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x when x ! 0 and f(x) approaches a constant when x ! 1. The data are found

to collapse for a = 0:6 � 0:2, b = 2 � 0:1, and C0 = 6:65 � 0:1. The error in these

quantities was determined by varying them around the point of best collapse and

monitoring the quality of the collapse. The S2 dependence is indicative that the total

population is the relevant quantity when determining �nite-size e�ects. The value

of C0 is consistent with the complexity one would generate by randomly generating

strings of length 2048 with a proportion of defense characters to alphabet size equal to

that observed in the smallest systems. That is to say, at the asymptote corresponding

to high mutation rate and low system size, the complexity of strings is due entirely to

evolutionary pressures on the relative proportions of the di�erent characters, rather

than spatial organization within the genome.

The saturation due to large point mutation rate can be understood as being due

to its complexity dependence as discussed earlier and in terms of the Eigen error

threshold [123; 124], but the observed scaling exponent is not at this time understood.

The system size scaling is surprising as it is not obvious a priori that the complexity

of an organism's genome should be related to the size of the space the organism lives

in (in contrast with turbulence, in which the complexity of the ow is expressed in

the distribution of velocity throughout the system).

It is possible that the connection between system size and complexity in `Food-

chain' is a result of the �xation of complexity-decreasing mutations. For a �nite

population of organisms with a set of traits that may be present or absent in each

organism, the uctuations in the population and the dynamics of reproduction will

eventually cause the trait to be either present or absent in every member of the

population. The probability of a particular mutation going to �xation is P (s) =

(1 � exp(�2s))=(1 � exp(�4Ns)), where s is the selective advantage and N is the

population size[125{127].

In the context of the Foodchain model, each organism may have many strings of
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varying complexities only a few of which are responsible for the organism's reproduc-

tive success. The pivotal strings are not necessarily those of the highest complexity

(short defense strings can still be important in defending against short attack strings

held by other organisms, for instance). However, a mutation to the most complex

string may turn it into a pivotal string even if it is not currently experiencing selective

pressure. In the low mutation rate limit �xation of complexity-decreasing mutations

imposes a limit on the maximum sustainable length L of a particular string. We

balance the rate of �xation of complexity-increasing mutations (which occur at a

constant rate) with the rate of �xation of complexity-decreasing mutations (which

occur at a rate proportional to L): P (s) � LP (0) = 0, where P (0) / 1=N [126].

This results in the scaling L / N , consistent with the system size scaling exponent

observed in the data collapse.

Another point of interest in the dynamics of the Foodchain model is the presence

of large uctuations in the time series of the complexity. Compared to the case of

neutral mutation, the probability distribution of complexity uctuations has long tails

that follow a decaying exponential for small uctuations, but a power-law for larger

uctuations. The defensive complexity uctuation distribution function for several

runs at di�erent system sizes and mutation rates is plotted in Fig. 8.4. We observe

that for large uctuations, the probability of a given uctuation x scales as x�3:5�0:7.

This can be understood as the consequence of the blocking dynamics of the inter-

actions. An organism survives so long as it has a defense string for all of its neighbors.

As a consequence, the large-scale dynamics of the system can become locked up, mod-

ulo small uctuations due to mutations during replication. However, once something

evolves a new attack string that does not have a corresponding defense string in its

neighborhood, it will expand until either a mutation provides a defense string, or

everything around it is extinct. This causes large changes in the composition of the

system. Furthermore, if something with a very complex defense string is blocked, but
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Figure 8.4: Here we plot the distribution of average maximum defense complexity
changes from one generation to the next for di�erent system sizes and mutation
rates. The uctuations are power-law distributed and do not strongly depend on
either system size or mutation rate.

then mutates so that it can eat its neighbors, its representation in the system will

grow quadratically (due to the dynamics of an expanding front in two dimensions).

Consequently, the average complexity of the system will change dramatically in a

short time.

If the large uctuations arise from changing representation in the system, one

would expect that the defense complexity uctuations would be symmetric about the

mean (as it is the attack complexity that determines whether something will grow,

and so one would not expect the defense complexity to preferentially increase or de-

crease). On the other hand, if the large uctuations arise due to the dynamics of gene
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duplication and mutation, the uctuations should be skewed as the two mechanisms

act with di�erent strengths to increase and decrease complexity. We observe that the

uctuations are symmetric about the mean, suggesting that they are a result of the

dynamics of changing representation of organisms in the system.

These long-tailed uctuations in system representation may cause the diversity of

the system to obey a di�erent scaling law than in the case of either neutral evolution

or evolution towards a �xed point. The representation of the system can change

rapidly. This is similar to results seen in bioreactors[128; 129], in which the dominant

OTU changes on a very fast timescale even if the throughput of the system remains

constant.

8.4 Conclusions

We have shown that in the absence of a complexity scale, an evolving system can

cascade towards ever-increasing complexity. A �nite rate of point mutation, or �nite

system size can both interrupt this cascade, creating a point of saturation in analogy

to the saturation of complexity in previous evolutionary simulations.

Unlike the case of turbulence, however, we do not see a scale-invariant distribution

of organisms in complexity space. In the simple `Foodchain' model presented here,

there is no separation between primitive organisms that compete with each other

using structures of low complexity and organisms with very complex o�ensive and

defensive strings. In order to generate a rich hierarchy of structures, some form of

trophic structure would need to be represented in the system[130].

The mechanism for the cascade presented here in competition. We can also see

a complexity cascade in symbiotic interactions, by making a small change to the

`Foodchain' model. If we imagine that there is some chemical energy input to the

system that is broken down into waste products, which can then be processed as a

108



10
0

10
1

10
2

10
3

10
4

10
5

 0  10  20  30  40  50  60  70  80

C
o

u
n

t

Complexity

t=5000

t=4000

t=3000

t=2000

t=1000

Figure 8.5: Population histogram with respect to string complexity in a symbiotic
complexity cascade. The system develops a travelling peak at the maximal complex-
ity. Organisms of lower complexity can still exist stably in the system. At later times,
secondary peaks at lower complexity can develop.

secondary energy source that produces its own waste products, and so on. The model

equivalent for this picture is that organisms with a given active string can metabolize

the waste products of any matching shorter string (in a non-destructive way). The

strings will lengthen by the exact same mechanism as in competitive `Foodchain', but

in a non-competitive fashion. This gives rise to a diverse population of organisms

with many di�erent active string lengths (Fig. 8.5).

We therefore see that the complexity cascade can be a mechanism for niche forma-

tion, and give rise to ecological structure in an otherwise homogeneous system (that

is, one with no inherent niche structure).

Despite these results, we have not seen the emergence of qualitatively di�erent

modes of interaction in this model, as the organisms do not have any way to develop

a new mode of interaction other than comparing more complicated strings.
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Chapter 9

PlantNet

In this chapter I will discuss a second model system that exhibits a complexity cas-

cade. In the previous chapter we saw the role of mutation rate and �nite system

size in preventing an in�nite cascade from occuring. We have postulated that a �xed

�tness landscape will also inhibit the cascade, as the complexity scales inherent in

the lengthscale may cause the system to become stuck. If this is a strong constraint,

though, then no natural systems can be reasonably thought of as having a complexity

cascade. There are minor di�erences in e�ciency associated with almost any detail

of an organism's structure, so it is inconceivable that certain organisms truly have a

complexity-invariant �tness landscape.

To resolve this dilemma, we will consider the e�ects of perturbations to the �tness

landscape of di�erent size and complexity scale. It is not necessarily the case that

an in�nitessimally small term added to the �tness landscape with a �xed scale will

completely disrupt the cascade | one expects that small terms should have smaller

inuence in determining where the cascade saturates, just as one obtained part of a

complexity cascade even at �nite mutation rate. The prediction is then that organ-

isms whose dynamics are predominantly evolution towards a �xed point will behave

di�erently than organisms whose dynamics are predominantly interactions with the

population, but that there is the possibility to go from one regime to the other as
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evolution continues.

The model we will use to test this idea is one of competition between organisms

for a shared resource - food or light that is being transported down from the top of the

system. The organisms in the system will evolve to become larger in order to not be

blocked by their neighbors. However, the more mass an organism has, the less e�cient

they are | the consequence is that there is an absolute �tness landscape, where

the shortest organism (that manages to get access to the food) is the optimal one.

We will see that even when this �tness landscape exists, the slope of the landscape

(how much penalty associated with a certain amount of added mass) determines the

saturation point of the complexity cascade. Here, unlike in Foodchain, the organismal

complexity reduces simply to the organism's height relative to its neighbors (though

there may be many di�erent ways of attaining that height). Because of this, there is

an analogy here between the complexity cascade picture and Red Queen evolutionary

dynamics[131], of which this is a classic case.

We can thus understand the complexity cascade as a broader version of Red Queen

dynamics. It is not simply that two particular channels of evolution are co-evolving

in an arms race, but that as these avenues saturate out (it is impossible to become,

e.g., a faster runner) then the organisms must explore new possibilities and modes of

competition.

We consider a model in which the three-dimensional structure of organisms is

uniquely derived from its genome. Our model is a variation of a model used to

construct realistic virtual environments[132; 133], in which coevolutionary pressure

on the height of the virtual trees was observed. The primary di�erence is that, unlike

in the case of the Lindenmeyer systems used in their model, the size of an organism

in our model is correlated with the length of the ordered regions in the organism's

genome. The demands we impose on our organisms in order for them to change

shape are much more stringent than those of real multicellular organisms. Rather
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than determining the size of an organism by associating the various dimensions and

lengths with scalars that are controlled by gene expression or regulation (which would

imply a �xed type of geometry to some degree) or by connecting it to the degree of

recursion, we allow the structure to be completely general. In this way it is hoped that

we can see more than the simple scalar Red Queen situation, because it is necessary to

add new information to the genome in order for the organism to continue progressing

in a given direction (for it to become taller, have more branches, etc.)

9.1 Theory

We can understand the e�ect of a �xed �tness landscape by asking a similar question

as we did in Foodchain to understand mutation and system size e�ects: what do the

evolutionary dynamics do to the average string length in the genome? The complexity

cascade then saturates at the �xed point of the evolutionary dynamics.

Let us consider a tree of height h with a total number of cells C, a subset � of

which receive light. As a �rst approximation, only the canopy of the tree can receive

light, and so we have the bound C � h+ �max. The �tness function is:

F = �=C � � (9.1)

The �rst term is the amount of the radiant energy absorbed from the environment

that each cell in the organism receives. The second term is the amount of energy that

each cell needs to survive. Consequently, the optimal state at nonzero � in the absence

of other organisms is a mat with minimal height, such that � = C and the �tness is

1� �. This implies that for any organism in the system to survive, � < 1. If � = 0,

then any tree that receives at least one cell worth of light will survive, and as such the

optimal state is to be in�nitely tall. The maximum survivable height of an organism

with canopy area A is strictly limited by:
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hmax=A =
1

�
� 1 (9.2)

Due to the presence of other trees, � may be reduced. If there is no neighboring

tree which is taller, then the tree will be completely illuminated. Otherwise, some

portion of its light will be blocked. If its height is less than the maximum survivable,

then so long as it is taller than every other nearby tree, it is guaranteed to survive.

Only a few trees will have this distinction, however. On average, a given tree will

experience some amount of shadow based on its height with respect to the distribution

of tree heights in the system.

If we assume a Gaussian distribution of heights in the system, characterized by an

average height hhi and a standard deviation hh2i � hhi2, then the amount of shadow

a given tree receives is distributed according to the probability that some number of

its neighbors are taller than it. If the tree has N neighbors, and each neighbor can

shadow 1=N of the tree's canopy, then we will generically have a Poisson distribution

of the amount of shadow S:

P (S) = � exp(��S) (9.3)

The sharpness of the distribution depends on where the tree's height is with

respect to the average. If there is a probability Ph that a given neighbor is taller, then

� = N ln(Ph=(1�Ph)) � N ln(Ph). The probability of survival is then the probability

that the tree receives at least �C light, or that the amount of shadow is less than

A� �C

Ps = 1� exp(��(A(1� �)� �h)) (9.4)

The optimum height is therefore:

h = A(1=�� 1) +

p
��hN ln(2)

2N
(9.5)
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Figure 9.1: This is an example system in which there are three modules: A,B, and
C, shown on the left. These modules have di�erent attachment sites (4,�,�) which
are speci�c to each other. On the right, the resultant tree from expressing the genome
ACB is shown. Cells with matching attachment sites are placed so that they overlap.

So we again see a scaling of the equilibrium height with 1=�.

9.2 The Model

Organisms in the PlantNet model have three-dimensional structures that are uniquely

determined by their genome. The structures are composed of a series of modules with

attachment points. These modules are small, connected sets of cells that are generated

at the start of the simulation by randomly �lling in a �xed-size region of space and

ensuring that the resultant structure is fully connected - that is, there are no oating

nodes. Each module corresponds to a particular base in the genome. The genome

is an ordered variable-length string of these bases, which represents the sequence of

expression as the structure grows. Cells in a given module may be attachment sites
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or otherwise inert. All cells receive light and cast shadows.

The structure begins by placing whatever module corresponds to the �rst base

in the sequence. Then, the genome is expressed base by base in order. When a

given module is expressed, it attaches at all open sites. If there are multiple possible

attachment pairs on the two modules, the pair that produces a minimum overlap with

the existing structure is chosen. Modules that cannot be placed without generating

more than a threshold level of overlap are not placed. In cases where two open

sites would create an overlap with each other, there is an �xed, arbitrarily chosen

ordering to which has precedence. This process of construction continues until the

genome has been fully expressed. An example set of modules and resultant organism

is shown in Fig. 9.1. One consequence of this structuring is that a subset of the

genome moved elsewhere will produce the same sub-structure, but will produce it

at a di�erent stage of the organism's growth. As such, this representational scheme

is innately modular. Gene duplication is a very e�ective mechanism in this system

because of that modularity.

Each organism has a root cell where the �rst module is placed. When an organism

replicates, it picks a random new grid site. This is then used as the root for a new

organism with a slightly mutated genome. Organisms are allowed to overlap, but

overlapping cells do not contribute energy to the organism. Another version of this

model involves special replicative cells such that the o�spring is generated directly

beneath a random replicative cell. This introduces the e�ect of spatial clustering

of the organisms, but also introduces artefacts as organisms attempt to structure

themselves so as to not be overshadowed by their own o�spring. The central results

are similar in both cases. In the interest of keeping the number of mechanisms at work

small, we will only discuss the simpler version with random o�spring positioning.

The genome of the o�spring is changed via three mechanisms: mutation, deletion,

and gene duplication. Mutation has a chance of operating on every base in the
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genome. When it operates, it randomizes the base that it is operating on. Deletion

has a chance of operating once every replication. If it does so, it deletes a randomly

chosen subset of the genome. Gene duplication copies a random subset of the genome

to a new position, re-inserting the string at that location. It has a �xed probability

of operating once during per replication. Deletion and gene duplication are made to

have the same distribution of substring lengths in order to ensure that there is not a

preferred genome length.

Every iteration, each organism has a chance to expire based on its �tness as well

as a random culling process. If the �tness of any organism is less than or equal to

zero, that organism will die. Additionally, there is a �xed chance per organism that

it dies regardless of its �tness. This prevents the system from freezing if it happens to

reach a state in which no organism shadows any other organism. For each organism

that dies, an o�spring is generated from a random parent to replace it and keep the

population �xed.

For the �tness function, we use Eq. 9.1.

F = �=C � � (9.6)

9.3 Results

The system we considered had 80 building blocks each existing within a cube of side

5 grid cells. The templates each contained from 4 to 8 attachment sites and any

number of inert cells, such that all cells were placed adjacent to each other. When

constructing the trees from the genomes, the overlap threshold beyond which we did

not allow a module to be expressed was 5. Organisms initially had random genomes of

lengths from 16 to 32 bases long. Each organism was bounded to a column with base

20 grid cells and height 120 grid cells. The system was a space of size 30� 30� 120
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grid cells.

We simulated this system at mutation rates of 0:001 and 0:01 per base, with �

varying from 10�4 to 10�1. The deletion rate and gene duplication rates per replication

were held constant at 0:01. For these parameter ranges, there was no noticeable

e�ect of the mutation rate on the limiting heights of the organisms. For the smallest

values of �, organisms in some runs reached the system size limit, and so we expect

a deviation from scaling in that range. The heights of the organisms appeared to

converge after a few hundred generations (Fig. 9.2), with some sudden changes due

to gene duplication events. In determining the limiting heights of organisms and

their error bars, we used height values from multiple initial conditions averaged from

t = 1000 to t = 1500.

We observe that the limiting heights increase with decreasing � as expected

(Fig. 9.3. For � � 10�1, the scaling asymptotes to our prediction of 1=� (Eq. 9.2).

However, at smaller values of � it quickly deviates, growing only logarithmically with

decreasing �. This could be due to a combination of factors. The limiting height

value is strongly initial-condition dependent, however, suggesting that the system

has many local minima. As such, it may be that much longer simulation times would

give rise to increased limiting height values over the ones we report due to rare events

knocking the system out of its local minimum. Furthermore, the values of h at which

the scaling deviates from the prediction are comparable with the system size, and so

system size e�ects are likely interrupting the cascade.

Also of note is the connection between genome length and height. Because of the

way that the structure of the organism is tied to its genome, it is necessary for the

genome to elongate in an ordered manner (such that each module has a connection

site that matches to one on the previous module) for the tree to become taller. The

correlation between genome length and organism height is plotted in Fig. 9.4. For

short times, the curves of height versus genome length for di�erent parameter values
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Figure 9.2: Time dependence of the average organism height and average genome
length for a system with m = 10�3 and � = 6 � 10�4. The average height saturates
to its limiting value quickly, though the genome length continues to uctuate.

collapse onto a single curve - here, growth of the genome and growth of the organism's

structure are strongly connected. At longer times, the genome continues to grow

through the evolutionary operators, but the height becomes �xed by balance from

the penalty term.

9.4 Conclusions

The way in which the organism's genome connects to its structure in this model is

more similar to the construction of large proteins than the actual phenotypic evo-
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Figure 9.3: Scaling of the limiting height of organisms with respect to mutation rate
and �. At large �, the predicted 1=� scaling is observed.

lution of trees, algaes, or other macroscopic organisms that this system appears to

model. This would be a de�cit were one to try to use this model to study, for exam-

ple, the height distribution of trees in a jungle. On the other hand, this particular

organization allows this system to be used to study the complexity cascade described

in the previous two chapters. Here, changing the height of the organism is not just

a matter of changing expression levels of a particular �xed set of genes, but rather

requires an increasingly large section of the organism's genome to be ordered in a

speci�c fashion. A mutation somewhere in the middle of that section could remove a

module whose connection point was needed for the rest of the genome to make sense.
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Figure 9.4: Average organism height versus average genome length for four systems.
Though there is a wide variance, there is a clear correlation between genome length
and organism height that shows the connection between internal organization and
external structure in this model.

As such, the increasing height of trees in the Plantnet model is tied to an increase in

genome complexity, and is perhaps better thought of as similar to the introduction

of increasingly developed structures in the evolution of embryogenesis.
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Chapter 10

Meta-evolution

We turn now to a question of evolvability. It is well known that the evolutionary

dynamics of the parameters of evolution itself is markedly di�erent from the evolu-

tion of phenotype[134; 135]. Selection tends to work immediately upon acquisition

of a harmful phenotype, and somewhat immediately upon acquisition of a bene�cial

phenotype. On the other hand, changes to the dynamics of evolution do not man-

ifest selective advantage until many generations later. How then did the variety of

evolutionary mechanisms beyond simple point mutation manage to evolve?

From another point of view | that of designing genetic algorithms | it is in-

teresting to consider the evolution of evolutionary mechanisms because one would

like to �nd the optimal set of parameters for a given problem. If the problem is not

well-known before-hand, it is necessary to �nd that optimum via some method. If the

optimum could be found as part of the iteration of the genetic algorithm itself, that

would be advantageous. On a further level, if new evolutionary operators speci�cally

tuned to the relevant problem space could be developed by the dynamics of evolution,

then the solution times for those problems would be much improved. Much of the

convergence time of a genetic algorithm depends on setting up the problem in the

right representation[136], so a way to automatically �nd such a representation would

be very useful.
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We would like to concern ourselves with the conditions in which evolutionary pres-

sures on the mechanisms of evolution is comparable to the pressures on phenotypes.

It is in those conditions that the evolutionary operators themselves have the greatest

chance of changing signi�cantly. These conditions are also a necessary part of the

abstraction transition picture, as new levels of evolution demand new evolutionary

mechanisms as well.

There are two candidate conditions that are likely to produce selection pressures

on meta-evolutionary parameters. Firstly, a system which has some sort of long-time

periodic selection might be able to emphasize long-time evolutionary bene�ts over

short-time evolutionary bene�ts. Long-time periodic selection could arise from the

day-night cycle, tides, seasonal variations, or rare disasters.

Secondly, a system in which multiple organisms are supporting one another may

be able to emphasize long-term bene�ts, as some subset of the organisms in the system

are free to evolve without having to support as much evolutionary load (that is, only

some organisms need to focus on phenotype, and they stabilize the environment and

decrease the e�ective selection pressure on phenotype for the others). In essence, the

dynamic is that a subset of the organisms in the system live or die as a whole |

the selection of that subset is synchronized. As such, di�erent subsets are e�ectively

competing with each other. Synchronous selection is most likely to occur in bio�lms,

but may also result from spatial isolation into subsystems (pools, for instance).

In order to test these conditions, we will perform simple simulations in which the

conditions are enforced by hand, and both the mutation rate and a scalar phenotypic

parameter are allowed the vary. We will then measure the selection pressure using a

technique detailed in the Simulations section. A consequence of the nature of meta-

evolutionary parameters is that even though they do not appear in the �tness function,

they experience selection pressure. While the change in these parameters may be

computed by careful application of the statistics of the alterations they introduce,
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the ability to include them as an e�ective term in the �tness function is useful in

order to connect them to traditional models from population genetics.

The simulations suggest that both time delays and synchronous selection can give

rise to pressures on evolutionary parameters, and that there are optimum time delays

and optimum group sizes in order to maximize such pressures. Furthermore, we see

that it is necessary for the system to be in a constant state of evolution towards

an unattained goal in order for meta-evolutionary aspects to develop. As such, the

open-ended evolution of the complexity cascade may be an ideal system to drive the

development of new evolutionary dynamics.

10.1 Theory

10.1.1 Price's Theorem

To predict the scaling of selection pressure on mutation rate and other meta|

evolutionary quantities, we will make reference to results from the theory of pop-

ulation genetics. For sake of completeness, and because the derivations are simple

and elegant, I will rederive here the central result that we will make use of: Price's

equation[137]. I will reproduce here a version of the derivation from [138], but using

language familiar to statistical physicists.

We begin with an in�nite population of organisms that each have some set of

traits, encoded by the vector ~ . We furthermore propose that we can determine the

probability that a given organism survives a selective event, proportional to its �tness

P / F . We then wish to determine the new average value of some combination of

the traits h�i. Between selective events, there may be drift or other mechanisms

operating on the trait. These e�ects are summed up in a term ��, which corresponds

to the change in � between the previous selection event and the present one. We

must be careful to include these before the e�ects of selection.
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In order to properly normalize the new averages, we must consider the change in

the total number of organisms (even if this number is in�nite). For a population of size

N , the average number of organisms after a generation has passed is
PN

i=1 Fi = NhF i.
We can then use this to determine the new value of any system average:

h�i0 =
PN

i=1(�i + �i)FiPN
j=1 Fj

=
h�F i
hF i (10.1)

So the change in the average value of � is give by Price's Theorem:

�h�i = h�F i � h�ihF i+ h��F i
hF i (10.2)

It is important to note that this must be the �tness evaluated in terms of the

variables at the moment of selection. As such, � will in practice show up in the

correlations as well.

10.1.2 Time delays

Let us consider a system with a single scalar phenotype s and a scalar mutation

rate r. The system consists of N organisms which each undergo a series of T neutral

replications before selection occurs. Each replication, the scalar phenotype is o�set by

a gaussian-distributed random amount with standard deviation r, and the mutation

rate is o�set by a gaussian-distributed random amount with �xed standard deviation

�.

After T replications, the new value of s and r for a particular organism will be:

s0 = s+
TX
i=1

(r +�
i�1X
j=1

�rj)�si (10.3)

r0 = r +�
TX
i=1

�ri (10.4)
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If the �tness function is Fi = f0+f1si+f2s
2
i + :::, then we can use Price's theorem

(Eq. 10.2) to �nd the average value of the mutation rate after a selection event hr0iS:

�hri = hrF i � hrihF i+ h�rF i
hF i (10.5)

We will expand the �tness in terms of its value at the time of the previous selection

event, compared to its value immediately before selection occurs:

�hri = hr(F + �F )i � hrih(F + �F )i+ h�r(F + �F )i
hF + �F i (10.6)

We assume no a-priori correlation between mutation rate and �tness to start

with, and so the covariance term is zero. Furthermore, by the construction of our

evolutionary rules, there is no correlation between the change in mutation rate and

the �tness outside of selective events. This leaves us with:

�hri = hr�F i � hrih�F i+ h�r�F i
hF + �F i (10.7)

Where �r and �F are:

�r = �
TX
i=1

�ri (10.8)

�F = f1�s + f2�s2 + ::: (10.9)

�sn =
n�1X
k=0

n!

k!(n� k)!
sk(

TX
i=1

(r +�
i�1X
j=1

�rj)�si)
n�k (10.10)

To second order in F , we have:

�hri = f2(hr�s2i � hrih�s2i) + f1h�r�si+ f2h�r�s2i
f0 + f1hsi+ f2hs2i+ f2h�s2i (10.11)

We can determine these correlations:
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hr�s2i =hr(
TX
i=1

(r +�
i�1X
j=1

�rj)�si)
2i+ 2hrs(r +�

i�1X
j=1

�rj)�si)i

hr�s2i =hr3iT + hri�2T (T � 1)

2
(10.12)

h�s2i =h(
TX
i=1

(r +�
i�1X
j=1

�rj)�si)
2i+ 2hs(r +�

i�1X
j=1

�rj)�si)i

h�s2i =hr2iT +�2T (T � 1)

2
(10.13)

h�r�si = 0 (10.14)

h�r�s2i =�h(
TX
k

�rk)(
TX
i=1

(r +�
i�1X
j=1

�rj)�si)
2i

h�r�s2i =2hri�2T (T � 1)

2
(10.15)

Combining these results, we have:

�hri = f2T
hr3i � hrihr2i+ hri�2(T � 1)

f0 + f1hsi+ f2(hs2i+ hr2iT +�2 T (T�1)
2

)
(10.16)

We can compare this to the lowest-order change in the phenotypic parameter s:

�hsi = hs(F + �F )i � hsihF + �F i+ h�s(F + �F )i
hF + �F i (10.17)

�hsi = f1
hs2i � hsi2 + hr2iT +�2 T (T�1)

2

f0 + f1hsi (10.18)

Note that the lowest order term in the change in mutation rate is proportional to

the time between selection events, whereas the corresponding term in the change in

the phenotypic parameter is not proportional to T at all. This means that when T

126



is very small, there will be no selection pressure on the mutation rate. If the �tness

function is concave down, the �rst order in T term is actually negative, selecting

against mutation rate. However, if the �tness function monotically increases in terms

of the phenotypic variable s, then there must be a higher order derivative of F (s)

which is positive, with the consequence that a su�ciently long time between selection

events will eventually drive an increase of the mutation rate.

Let us consider the e�ect of balancing the mutation rate against a direct penalty.

If there is a cost associated with implementing an evolutionary operator, we would

like to know how high that cost can be before the evolutionary operator is selected

against. This is a more direct measurement of the selection pressure, as opposed to

the rate of evolution.

We use the �tness function: F � = F � �r and see what additional terms are

generated:

(�hri)� = �hri+ �
hr�ri � hrih�ri+ h�2ri

hF + �F i (10.19)

Because r and �r are uncorrelated, the only surviving terms are:

(�hri)� = �hri+ ��2T

hF + �F i (10.20)

We can then �nd the value of � such that the mutation rate does not change:

� =
f2(hr3i � hrihr2i+ hri�2(T � 1))

�2
(10.21)

The selection pressure has a T dependent term and a T independent term. The T

independent term depends entirely on the third-order variation in the distribution of

mutation rates. These results suggest that for an arbitrary evolutionary operator, it

might be characterized by the scaling of its selection pressure with time delay in the

presence of a concave-up �tness function of phenotype in absence of intrinsic variation.

Terms that have direct impact on the �tness will scale with an exponent of 0, whereas
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local operators such as point mutations will scale with exponent 1. Operators such

as horizontal gene transfer that involve the structure of the entire population might

scale with even larger exponents. We must be careful however | this simple picture

involves continuous scalar quantities, whereas the dynamics of biological evolution

operate on strings of symbols instead. Unlike in this case, there is likely to be a �nite

optimum mutation rate for a given evolutionary problem.

The dependence on concavity of the �tness function furthermore suggests that

the evolution of meta-evolutionary operators will be strongest when new phenotypic

degrees of freedom are being opened up. When a new degree of freedom is opened

up, the gains from exploiting it are likely to increase the further one moves in that

direction. On the other hand, once the system is near its optimum, the possibility

of overshooting the optimum and the diminishing returns on optimization will cause

the �tness function to become concave down.

10.2 Simulation

We will discuss two simulations of meta-evolution in order to test the predictions of

the theory. One will vary the timescale between selection events, while the other will

vary the group size and implement synchronous selection. In both simulations, the

�tness is determined by the degree of matching to a target string, which is either held

constant or allowed to change with time. In this fashion, we can see what inuence

the quantized nature of the genetic code has on the dynamics of meta-evolution,

compared to the simple scalar model we discussed in the Theory section.

10.2.1 Measuring Selection Pressure

We would in general like to know the instantaneous strength of selection pressure

on an evolutionary parameter �, given the ability to evolve the system forward in
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time many times over from any given state. If we were to simply measure the rate of

change of � with time, we would not know whether what we observed was a result

of selection pressure, or rather some combination of pressure with the intrinsic rate

drift, a change in the rate of replication of organisms in the system, or any other such

dynamics. Instead, we would like to measure the selection pressure in terms of the

�tness function, using the known parts of the �tness function to set a scale for the

relative strength of selection. For example, if we know the local slope of the �tness

function with respect to a pair of explicit parameters  1 and  2, we can compare the

selection strength on those parameters by comparing their slopes. It may be that due

to a lower intrinsic mutation rate,  1 changes more slowly, but if we can measure the

�tness function we can actually determine their precise relative selection strengths.

When we add meta-evolutionary parameters, they do not show up explicitly in

the �tness function. However, they do have an inuence on the eventual changes in

�tness that the system undergoes. If we explicitly link these parameters to the �tness

function, we can �nd the point at which our explicit term balances the term that we

cannot directly measure:

F � = F � �� (10.22)

Since d�=dt / @F �
ef=@�, where F

�
ef is the e�ective �tness function that we would

have were we to know the exact inuence of the meta-evolutionary e�ects, if we can

change � such that d�=dt = 0, we have measured the strength of the e�ective selection

on �. That selection strength is given by the value of � such that d�=dt = 0.

10.2.2 Time Delay

In this simulation we have a population of N organisms, each of which has a genome

L bases long. Each base is allowed to either be 0 or 1. Each organism also has a

scalar parameter r that controls its mutation rate. The �tness of a given organism is

129



a function of the number of 1's (n1) in their genome and the mutation rate parameter:

F = g(n1)� �r (10.23)

Every generation, the organism's mutation rate and genome evolve. Each base

has a probability of changing given by:

Pmut =
1

1 + exp(�r) (10.24)

The mutation rate r changes each generation via a random walk with coe�cient

M . The reason for constructing this map between the actual probability of mutation

and the rate parameter is that otherwise, we would have to arti�cially bound r to

lie between 0 and 1. If we do this, there is an entropy pressure from the edges

of the interval. Furthermore, it becomes hard to achieve precise yet small rates in

such a model | the rate of change of the mutation parameter would roughly set the

smallest possible mutation rate one could achieve. We would like the system to as

easily maintain a mutation rate of 10�12 as one of 10�2, and so it makes sense to use

a function such that a value of � inf is mapped to zero and a value of + inf is mapped

to one.

Each organism replicates in place (replacing its parent) for T generations, after

which the fraction f (50% in these simulations) of the population with the lowest

�tness die, and are replaced randomly by replication of the remaining organisms. In

terms of our �tness function from before, this selection mechanism produces a step-

function around a particular �tness value. As such, it is hard to evaluate exactly what

f2 would be in the context of the above model; for the lower end of the system, it will

be very positive, whereas for the upper end of the system it will be very negative.

This process is iterated for 10 cycles of selection around a given initial condition,

and the change in the mutation rate is measured. This is repeated for many values of

the counter-pressure � to generate the function �r(�) (see Fig. (10.1). The zero of
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�r(�) is then found by a local linear �t, and the resultant value of � is the selection

pressure for the corresponding value of T .

It is necessary to consider the initial conditions in examining the e�ects of meta-

evolution. For any given set of initial conditions of interest, the simulation will imme-

diately relax unless all of the moments of the distributions begin at their equilibrium

values. This can dominate over any long-term pressures on the mutation rate by

weakening the importance of mutations in changing the �tness of the system. Since

we are interested in how the selection pressure scales with T , it makes sense to choose

initial conditions that maximize the selection pressure so as to produce the best sig-

nal. In order to do this, each organism is initialized with an identical genome. This

way the value of r determines the rate at which the standard deviation of the popu-

lation grows, which in turn controls the speed of evolution. In terms of Eq. (10.16),

we are extracting the term 2f2T hri�2 T�1
2
, so we expect a quadratic dependence of

the selection pressure on T . We have determined the selection pressure curves for

initial �tnesses of 0%, 25%, and 50%, for initial values of r = �6 (corresponding to

a mutation rate of 0:0025) and � = 0:5. These results are plotted in Fig. (10.2).

Note that the mutation rate also does not have any initial variation. This case would

correspond to a situation in which some new parameter of evolution had just become

available, and so has not yet developed its equilibrium distribution.

Let us analyze the results of this simulation. There are marked di�erences from

our predictions from the scalar phenotype model. First of all, the selection pressure is

non-zero even at very small T . This initial selection pressure decreases as we approach

an initial �tness of 50%, suggesting that it may be related to the fact that when the

average �tness is less than 50%, mutations will on average increase �tness, even before

selection operates. This means that there should be an additional term due to the

dependence of the selection pressure on the correlation hrF i � hrihF i from Price's

Theorem.
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When we look at how the selection pressure scales with time delay, it grows more

slowly than the predicted linear dependence on T . Observationally, it seems to scale

as
p
T . Furthermore, there is a particular time delay which maximizes the meta-

evolutionary pressure which depends on the average �tness of the system.

If we now allow the mutation rate to have an initial variance, but prevent the mu-

tation rate from itself mutating (� = 0), we should see a change in the scaling of the

selection pressure with T . We now initialize the system such that the rate parameter

varies around its mean of �6 with a standard deviation of 1. This corresponds to the

continued development of an evolutionary mechanism that is already well-integrated

into the population. The selection pressure curves are plotted in Fig. 10.3.

Of note here is that for the case in which the system is initialized with an equal

number of zeroes and ones, the selection pressure is initially independendant of T .

This matches our prediction from Eq. 10.21, in which the only surviving term when

� = 0 is is T -independent.

10.2.3 Multi-level Selection

We now turn to the e�ects of clustering on meta-evolutionary emphases. It is already

well-understood that the evolutionary dynamics of groups of organisms give rise to

enhanced pressures on collective mechanisms such as altruism[139{142] due to the

occurance of multi-level selection. However, something like the single-organism mu-

tation rate is not a priori a collective mechanism. The proper distribution of mutation

rates does however dominate the long-term �tness of the group, so in that sense it is

a local property that over time gives rise to a collective e�ect.

There are many possible sources of multi-level selection of this sort. We will be ex-

amining the case in which the reproductive fates of a number of cells are all correlated

| that is, their either live to reproduce or die as a group, using a collective �tness.

This synchronous selection process means that the individual selective pressures on
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each organism are diluted. In e�ect, it may be a number of replications before the

�tness of a given organism is responsible for whether or not the group survived. As

such it may have the same e�ects on selection pressure as the time delay that we

introduced in the previous section.

In this simulation, we divide the total population into a number of subgroups,

each with a �xed size n. The total population is set such that there are always the

same number of groups (G), so that the e�ective population upon which selection is

operating is held constant. The �tness of a group is simply taken to be the average

�tness of organisms in the group. Every iteration, the fraction of the set of groups f

with lowest �tness die, and are randomly repopulated from the other groups. There

are a few possible ways to do this. One way would be to pick random organisms

from the rest of the system in order to assemble the new group. This would tend to

destroy correlations within groups over time, and may not be the best test system.

Furthermore, bio�lms and colonies of cells may repopulate through sporulation[143],

which suggests that new groups should be generated from a speci�c progenitor group.

The system we use, therefore, is that the new group is be formed from a random choice

of members of a randomly chosen progenitor group. A third possibility would be that

each organism of the progenitor group replicates in-place to �ll up the new group,

exactly maintaining the internal population structure of the group. However, this is

somewhat unrealistic for things that are not multicellular organisms and so we do not

use it.

For this simulation, we use a genome of length 1024. The number of groups used

is G = 256, and selection kills o� the lowest 25% of groups. The initial mutation

rate parameter is, as before, r = �6. We look at both the case in which the initial

variation in the mutation rate is zero but � = 0:5 (Fig. 10.5), and the case in which

the initial distribution of the mutation rate is set, but � = 0 (Fig. 10.6).

Here we see some of the same features as when we varied the selection timescale.
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The selection pressure increases with group size as the group size increases. However

there does not seem to be the same sharp dropo� beyond an optimum, but instead the

selection pressure asymptotes to a constant value. Additionally, in the case without

initial variation in the mutation rate, the selection pressure is zero up until a threshold

group size, at which point it suddenly becomes positive. This can be understood by

looking at the �r(�) curves (Fig. 10.4). The selection for the mutation rate at these

parameters is too weak to measure when the initial �tness is at 50% (that is, the

point at which all mutations are neutral on average). This may be because of the

details of the selection procedure (killing o� the lowest �tness fraction, rather than

having random comparisons or some other mechanism) or because of the low initial

mutation rate (since as per Eq. 10.21, the pressure on mutation rate is proportional

to the mutation rate).

10.3 Conclusions

We have seen that both long timescales and spatial correlations (in the form of group-

ing) in the process of selection can increase the selection pressure on meta-evolutionary

parameters when compared to parameters with direct phenotypic consequence. For

su�ciently large time delays, there is a sharp dropo� in the selection pressure on

meta-evolutionary parameters which is not seen in the corresponding case of su�-

ciently large groups. When there is a population with initial variance in the value

of the mutation rate, the delay and group size dependences of the selection pressure

change.

The actual scalings observed for the case of an evolving string do not seem to

correspond with the predictions for the scalar model. Whereas the scalar model will

always predict scaling with an integer power of the time delay, we observe a time-delay

scaling that appears to go as
p
T when the initial variance of the mutation rate is
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zero. This observed power law changes exponent and regime of validity depending on

the initial conditions of the system and when variance of the mutation rate is allowed

to exist. This makes it unlikely that evolutionary operators can be cleanly classi�ed

by their time-dependence as proposed earlier, because the same operator will give

many di�erent scalings in di�erent situations.

The increase of meta-evolutionary pressures in the presence of groupings and time-

delays suggest places where the emergence of novel evolutionary mechanisms would be

expected to have occured. Bio�lms and places with low-frequency natural oscillations

(tidal pools, for example) are prime candidates for such transitions, as they have the

necessary elements to enhance meta-evolutionary selection pressures over immediate

phenotype selection.

135



-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0.5  1  1.5  2  2.5  3  3.5  4

∆r

α

T=1

T=4

T=8

Figure 10.1: �r versus � for three di�erent time delays in a system with no initial
variance in the mutation rate and 25% initial �tness. The locations of the zeroes
correspond to selective pressures on mutation rate for the di�erent values of the time
delay.
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Figure 10.2: Selection pressure � versus time delay T in a system with no initial
variation in the mutation rate for di�erent values of the initial �tness I. For I = 0,
the genome is initially entirely comprised of zeroes, whereas for I = 50% it is an even
mix of zeroes and ones. As such, the automatic bene�ts of mutation decrease as I
increases.
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Figure 10.3: Selection pressure � versus time delay T in a system with initial
variation in the mutation rate, but no mechanism for changes of the mutation rate
aside from selection. In this case, it is observed that at I = 50%, the selection pressure
is initially independent of the time delay, as predicted from Eq. 10.21
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Figure 10.4: �r versus � for three di�erent group sizes in a system with no initial
variance in the mutation rate and 25% initial �tness. For group sizes below a certain
threshold size, increases in the mutation rate are selected against. The selection on
mutation rate increases discontinuously across this threshold, as evidenced by the
plateau in the �r versus � curves.
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Figure 10.5: Selection pressure � versus group size n in a system with no initial
variation in the mutation rate for di�erent values of the initial �tness I. For I = 0,
mutation rate is selected for even at the minimum group size. For I = 25% there is
a threshold at n = 4 below which the mutation rate is selected against, and above
which the mutation rate is selected for.
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Figure 10.6: Selection pressure � versus group size n in a system with initial varia-
tion in the mutation rate but mechanism for drift in the mutation rate, for di�erent
values of the initial �tness I.
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Chapter 11

Emergence of Politics

To understand the systems of social and political organization in the world, it is

tempting to begin by trying to understand the individuals that form them. This

approach quickly runs into a problem|the behavior of individuals is very hard to

predict. The behavior of any given individual depends upon a large number of fac-

tors: their culture, their experiences to date, their genetics, the events they are

currently experiencing, their education, their economic status, and so on. It seems

as if understanding the behavior of a group is an impossible goal if predicting the

behavior a single person is so di�cult. However, models of group behavior through

agent-based modelling[144] have been reasonably successful despite this, reproducing

generic properties of the dynamics of crowds, mobs, and riots[145{147]; collective

opinion formation[148{150]; the structure of social groups[151{158]; and �nancial

markets[159]. When large numbers of people interact there exists the possibility for

the emergence of collective e�ects which are surprisingly insensitive to the details of

the elements which comprise them.

The purpose of this chapter is to understand the factors at work in setting up and

maintaining the large scale structure of societies from the point of view of an abstract

model. Other models[160] have analyzed the stability and transitions of an established

form of social order. In this paper, we will instead seek to explain how social order
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emerges from an unstructured state due to collective interactions between individual

agents. This must take into account that the connections between individuals may

change, leading to a situation in which one has an active network[161].

The emergence of networks of preferred interactions between agents has been ob-

served in [162; 163]. The resultant structure of agents is heterogeneous|a state

emerges in which some subset of the population (the leaders) extracts maximal ben-

e�t. There is however no explicit ow of information from the leaders to the other

agents. We posit that the structure of information exchange in the system is a key

element to the form of political organization it possesses. We would like to di�eren-

tiate between the agent with the greatest payo� and the agent whose decisions hold

maximal weight in inuencing the decisions of others. In our model, we observe the

development of a division of labor from simple sel�sh behavior and communication

between the members of the system. The role of active information is central to

achieving this heterogeneous population structure. Information exchange has been

studied in various other models. However, in such models it is usually a passive

variable, for instance in voting and opinion formation models.

The role of active information|information used to make a decision with either

positive or negative consequence|is less well known. In [164], active information

played the role of a di�usive �eld in a spatial prisoner's dilemma model, and in [165],

information was given to a subset of members of a swarm to see how informed decisions

would propagate to determine the swarm direction. In these cases, the agents had

no way of evaluating the quality of the information they received|whether it had in

the past led to a good or bad decision. This leads to information acting primarily as

a homogenizing agent: it determines the average behavior in [164], and directs the

average swarm direction in [165]. In our model, each agent determines the optimal

degree of trust to place in information received from another. By giving each agent

the ability to tune its trust in the other members of the system, it is possible for
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clusters to form in which the members of the cluster have voluntarily given over the

reins of their decision making to a leader of their choice.

This organization, in its simplest form, arises from uniform information exchange

between the individuals in the system, resulting in a homogeneous, shared information

pool. This corresponds to communal decision-making by majority vote. In a system

in which di�erent agents are better or worse at making decisions, one would expect

the emergence of a system of weighting by reputation, simply as a tool to optimize

the decision-making process. If, however, resources can be allocated towards making

better decisions, it becomes possible for a subset of the individuals to specialize in

being an information source. At this point, the majority of agents in the system

will be following instructions provided by a minority of agents, without a signi�cant

information ow in the reverse direction. These two phases|unstructured and struc-

tured respectively|are distinct forms of political organization, and which is achieved

depends on the costs and bene�ts associated with information generation.

A requirement for stability in the structured phase is that the agents which are

acting as an information source must either gain from producing information or lose if

they fail to produce information, as they dedicate their own resources into providing

this information. In modern governments, systems of taxation subsidize the decision-

makers, but the emergence of such structures is di�cult without a heterogeneous

system already being in place. Our results show that in certain circumstances, the

decision-making structure of a population may become heterogeneous even without

the inclusion of subsidies or resource exchange, due to a collective e�ect where the

refusal to generate information by the majority of the population forces the agents

that are the last to act to take on the decision-making role simply to preserve their

own bene�t. From this phase, the introduction of a resource subsidy would improve

the e�ciency of the system, and could be done in a continuous manner. A schematic

phase diagram that qualitatively exhibits the nature of the phases and transitions
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between them is illustrated in Fig. (11.1).

11.1 Model

We propose the following model to capture the dynamics of information exchange.

The system consists of a set of agents, each which can choose to distribute resources

to any other agents. In addition, each agent chooses to allocate its time between

producing resources or producing information about the environmental state (`think-

ing'). Whether or not resource production is successful depends on the accuracy of

the agent's guess as to the current nature of its environment, which is randomly in

one of O possible states. If the agent guesses the environmental state correctly, it

produces a number of resources proportional to the fraction of its time it allocated

to production. Furthermore, an agent can look to see what other agents are guessing

in order to determine its own guess.

We assume in this �rst part that each agent has a number of degrees of freedom

(how to combine information from other agents, how many resources to distribute

to other agents, and how much time to allocate towards producing resources) which

are adjusted in order to maximize its average score. The immediate consequence

of this is that we may determine trivially what the trust network should be, and

thus determine our trust-network order parameters in terms of the distribution of

`thinking' values|the agent with the highest thinking value will have the most trust

directed at it, and if the thinking values are distributed homogeneously then trust

will also be distributed homogeneously. This treatment neglects dynamical e�ects

and uctuations. Later, we will analyze the e�ect of uctuations and dynamics on

the stability of the various phases.

The base accuracy|that due to the agent's own production of information, is a

nonlinear function of the fraction of time dedicated towards information production
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T . A successful guess then produces 1 � T resources. The choice of functional form

must satisfy a number of constraints. The accuracy should monotonically increase

with the fraction of time dedicated towards it. Additionally, it is bounded above by

1 and below by 1=O (the accuracy of a random guess). Given these constraints, we

may choose any function of the form A = (1=O + (1 � 1=O)f(T )) where f(T ) is a

monotonically increasing function that maps the interval [0; 1] to itself.

The key character of our choice of function will be its concavity|other details

should not strongly inuence the results. If f(T ) is concave up, then specialization is

favored. If concave down, then there are diminishing returns and even an in�nitesimal

amount of time dedicated towards producing information will be bene�cial.

While we could in principle combine an arbitrary number of concave up and

concave down regions, it is hard to justify that arbitrary complication. A simple

choice of function that allows us to smoothly vary between concave up and concave

down behavior with a single parameter is A = (1=O + (1 � 1=O)T�), where � is a

parameter of the model controlling the nonlinearity. If � > 1 then the function is

concave up, and specialization is favored. With this basis, we can discuss a number

of possible system con�gurations and evaluate their average score for optimal choices

of T .

11.1.1 Disconnected, Homogeneous Phase

In the case that no agent in the system uses information from any other agent, there

is an optimal value of T to maximize an agent's score. The average score in this phase

�SDH is perforce independent of N .

�SDH(T ) =
1

O
(1� T )(1 + (O � 1)T�) (11.1)

The optimal value of T satis�es:
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T��1(�� (� + 1)T ) =
1

O � 1
(11.2)

If � = 1, then this value of T is always less than zero, so T = 0 is the optimal

choice. At larger values of � a local maximum appears in the curve at a �nite value of

O, and then becomes a global maximum as O increases. The value of O at which the

maximum value of the score is equal to the value at T = 0 is O = 1+��=(�� 1)��1.

In the limit of large �, this becomes O � e� + (1 � e=2). So in e�ect, for values of

� > 1 (representing a nonlinear reward for dedicating resources to `thinking') there

is a �rst order transition between a `guessing' phase and a `thinking' phase, where

the more options there are, the more valuable a resource spent on `thinking' is. The

larger � is, the larger O must be for a non-zero thinking phase to be optimal. The

score function for various values of � and O is plotted in Fig. 11.2.

An additional consideration is the e�ect of uctuations on this phase. If each agent

may only specify their actual thinking value to within some standard deviation, then

the resulting average score is lower than if uctuations had been absent. Near the

limits of the range of the thinking variable uctuations are constrained such that

they may not take it outside of the range. For uctuations of magnitude � around

an optimal value of T , we expect that the average score will change by:

�S = �2
d2S

dT 2
= �2�T��2((�� 1)� (� + 1)T )

O � 1

O
(11.3)

For �xed �, as O becomes large the optimal value of T approaches �=(�+1) and

so the decrease in the score approaches:

�S = ��
�

�

� + 1

���2
�2 (11.4)

When the optimal solution is T = 0, however, the �rst derivative is non-zero and so

uctuations have a linear e�ect. The e�ect of this is that �S = � dS
dT
=
p
� assuming

Gaussian uctuations. The slope of the score function around T = 0 is:

147



d �SDH
dT

= �1=O (11.5)

So we expect �S = ��=(Op�) to be the leading e�ect at this point. The consequence
of this is that su�ciently large uctuations will favor the T = 0 phase.

11.1.2 Connected, Homogeneous Phase

If communication between agents is permitted, but no resource reallocation takes

place, then the resulting accuracy is higher than any of the individual accuracies in

the system (so this phase is always favored over the disconnected phase for permitted

values of T ).

For O = 2, the e�ective accuracy can be solved for in the large N limit. If the

initial accuracy is A, then the total number of agents that pick the correct option

C0 is C0 =
PN

i �i where �i is either 1 (with chance A) or 0 (with chance 1 � A).

In the large N limit, C0 is described by a Gaussian distribution with mean NA and

standard deviation A(1� A)
p
N .

The probability that the system picks the correct option is thus the probability

that C0 > N=2. As the range of permitted values is not in�nite, care must be taken

to compute the correct normalization factor. So:

Aeff =

R N
N=2

exp(�( x�AN
2NA(1�A))

2)R N
0
exp(�( x�AN

2NA(1�A))
2)

(11.6)

which evaluates to

Aeff =
erf( (1�A)pNp

2A(1�A))� erf( (1=2�A)
p
Np

2A(1�A) )

erf( (1�A)pNp
2A(1�A))� erf(� A

p
Np

2A(1�A))
(11.7)

where A(T ) = (1 + T�)=2 in this case.

For O = 2 and � = 2, bene�ts from a non-zero value of T do not appear until

around N > 35. Figure 11.3 shows the score function for the homogeneous, connected

phase compared with the isolated phase.
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The e�ects of uctuations are less obvious in this case, because they must be

considered each agent independently, whereas this analysis is done for all agents

behaving in the same fashion. In the case of this model, uctuations may actually

increase the e�ective score, as a uctuation to higher thinking rate in one agent

bene�ts the guesses of all other agents. Similarly, a decrease in thinking rate in one

agent will not signi�cantly decrease his accuracy but may increase his yield. This is

a hint that this particular phase is unstable to an inhomogeneous phase.

A rough estimate would suggest that when adding together the e�ects of uctu-

ations on each of the individual agents, the e�ective size of uctuations is reduced

from � to �0 = �=
p
N . This has the consequence that the connected, homogeneous

phase is less sensitive to uctuations than the disconnected phase.

11.1.3 Connected, Inhomogeneous Phase

If the agents become inhomogeneous and divide their labor between thinking and

working, then structures in which there is a directional information ow become

possible. Given perfect communication and no uctuations, the optimal con�guration

will be that of a single agent with high accuracy (T ), and N�1 agents with minimum

accuracy but always picking the action of the `leader' agent. The average score for

this phase is simply:

�SCI =
(N � 1) + (1� T )(1=O + (1� 1=O)T�

N
(11.8)

This phase in static conditions scores far better than the homogeneous phases, but

it is very susceptible to uctuations lowering the score, compared to the connected

homogeneous phase. The result of this is that neither the pure homogeneous nor

heterogeneous phases are realized. In a fully-connected population with some form of

noise, the system produces a number of leaders L which scales with the population

size.
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The inhomogeneous phase with a number of leaders can always have a higher

average score than the homogeneous phase, but is not generally stable when the indi-

vidual scores are examined. Each leader agent can improve their score by decreasing

the portion of resources they dedicate to thinking to the optimal value for the discon-

nected phase. When the disconnected phase optimal value is T is greater than zero,

the inhomogeneous phase may still occur. This occurs for small �, large O, and small

N . If � is too large, the height of the secondary maximum is decreased below that of

the T = 0 score function maximum and a homogeneous T = 0 phase occurs. If N is

su�ciently large, the homogeneous connected phase with nonzero T can outperform

a phase consisting of a single `sel�sh leader'. So there are �rst order phase transitions

in the space of O, �, and N between three phases: T = 0, leader, and homogeneous

connected (or `communal' phase). A cross section of the phase diagram at �xed O is

plotted in Fig. 11.4, and a cross section at �xed N is plotted in Fig. 11.5.

11.1.4 Resource Subsidy

We have so far shown that for certain values of the parameters, the inhomogeneous

`leader' phase is stable even without the leaders being subsidized. The system has

not maximized its resource production in this phase|rather, the limit on resource

production is set by the cost to the leader agent, in that even though it might produce

a large amount of resources for others by changing its behavior, doing so would

decrease its own resource production.

If we allow agents to exchange resources as well as information, then starting from

the connected, inhomogeneous phase it is possible to improve or keep constant the

scores of all agents. If we have a phase with a single leader agent, then for that agent

to dedicate more than the disconnected optimal fraction of resources to thinking, it

must be reimbursed by at least the same amount of resources as it loses to increase

the resources it spends on thinking. This resource cost may then be absorbed by the
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remaining N � 1 agents. In e�ect, the criterion of sel�sh optimization becomes one

of global optimization. The globally optimal phase in the absence of uctuations is

that with a single leader agent.

This need not be the case in general, as one may posit the existence of cheaters:

agents which do not give resources towards the subsidy but still gain its bene�ts. A

system with multiple types of resource or multiple agendas, such as in [166] might

also retain a more detailed structure.

When uctuations are added, it becomes bene�cial to have multiple leaders in

order to reduce the impact of uctuations but retain the bene�t of increased e�ciency.

We use the connected, homogeneous solution for L agents to determine the accuracy

of the remaining N �L given a known accuracy of the leaders. For simplicity, we will

assume that the leader agents have T = 1, which the optimal choice converges to as

N � L. For a given level of uctuations, each leader will have an e�ective, adjusted

accuracy. We evaluate the score function numerically as a function of L and �nd the

location of the maximum as a function of N . The results are plotted in Fig. 11.6. At

large N , the optimal number of leaders approaches L / log(N).

For a spatially distributed system, or one in which there is not total connectivity,

it is expected that such e�ects will require a larger number of leaders to cover the

system extent. For example, in a two-dimensional system in which agents can only

communicate within a radius R, a number of leaders proportional to
p
N=�R2 would

be expected to ensure total coverage.

11.2 Applications

The abstract model of emergent political systems that we have outlined is capable of

providing a framework in which to analyze real social systems, and in this section we

briey indicate some examples. It is important to emphasize that our model is not
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required to model all situations in which division of labor occurs|a simpler model

with only a nonlinear bene�t to specialization and some form of exchange of services

would be su�cient to enable division of labor to emerge. Such a process would not

need to involve information sharing as a core element. On the other hand, our work

shows that the emergence of the leader phase (which corresponds to the occurrence

of a division of labor in other pictures) is primarily a consequence of the special

property of information when compared to other resources that, once created, it can

be duplicated with a much smaller additional cost than the cost to �rst generate

it. This process of information ampli�cation makes the leader phase described here

distinct from other scenarios that produce division of labor.

We must also be careful to understand the nature of the relevant optimization

being implicitly performed when considering a given system. In human economic and

political behavior, one considers that each individual tries to maximize its personal

bene�t in the context of the greater system. In other systems, such as foraging insects,

the net bene�t to the colony as a whole is what is likely maximized|this corresponds

to the case where resources may be redistributed, which in our model means that the

leader phase is always optimal for all parameter values.

Even with these caveats, there are several systems which could potentially be un-

derstood in the context of our model: the behavior of social and hierarchical insects

compared to asocial insects[167{169], the distribution of information in swarms[170],

and innovation-sharing in unicellular organisms via horizontal gene transfer[106; 171].

All of these cases involve some piece of information being discovered by a single

individual|a randomly chosen one of a set of similar individuals in the case of swarm

behavior (corresponding to the homogeneous phase), or via directed searching by a

specialized subset of the population, as is the case in some foraging insects (corre-

sponding to the leader phase). We will now briey discuss each case.

Di�erent species of insects are socialized to di�erent degrees. On one extreme,
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there are insects such as the solitary wasps[167], which do not share resources or

information. On the other extreme, eusocial insects such as bees, ants, and certain

kinds of wasps have highly structured communication channels and vehicles of infor-

mation discovery. Foragers and scouts use various means to communicate the location

of food supplies or nesting sites. The distinction here seems to be that bees and ants

reproduce centrally via a queen, and so maximizing their interest corresponds to max-

imizing the interest of the queen. As a result, resources can be redistributed freely,

and so we expect the system to emerge in the leader phase.

In the case of honey bees, the various scouts return with information about po-

tential food locations, after which the swarm comes to a uni�ed decision about which

site to pursue. The method of decision making seems to be a weighted average[170],

similar to what we use to model the decision making of our agents. Each scout

has a certain chance of �nding the best site within a given distance|even if they

spend 100% of their time searching, they have a limited maximum accuracy. This

corresponds to the uctuating case in our model, so, as the swarm size grows, we

can predict that the optimal number of scouts should scale logarithmically with the

swarm size.

Microbial organisms[172; 173] and even multicellular eukaryotes[174{177] have the

ability to swap genetic material and integrate it into their genomes via several path-

ways, mediated often by mobile genetic elements such as viruses and plasmids. There

is cellular machinery associated with this process, which can be active or inactive

in a given cell. In microbes, the state in which such an organism is receptive to

external DNA is called genetic competence. The regulatory network associated with

competence has been shown to generate a distribution of cells with di�ering levels of

competence[171]. A small subset of the cells at any given time end up being receptive

to this information exchange, whereas the rest remain closed. The competent subset

changes with time, so eventually, all cells will at some time be able to accept foreign
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genetic material. This dynamic may be analogous to the leader phase in our model.

Here, the information ampli�cation takes place when a subset of cells exchange ma-

terial and either live or die as a result. The surviving exchanges are then passed on

to the local population, amplifying the induced information.

11.3 Conclusions

We have shown that a model of communicating agents that divide their time between

information generation and information usage has three distinct phases of organiza-

tion corresponding to structures identi�able in human political systems. The ow of

information between agents in the system is critical to this phase structure. If agents

can exchange resources in a way that does not permit cheating, then the optimal

structure is to have a small number of leaders that scales logarithmically with the

system size, and a larger number of workers. Fluctuations in the reliability of agents

tend to emphasize the communal phase over the leader phase.

The phase transitions predicted by this model are all �rst order in nature. As

such, in a situation in which the agents are approaching equilibrium dynamically, the

various phases can coexist over much of the parameter space. This makes sense when

one looks at the diversity of actual political systems in existence, on both the local

and national scales. The transition to the leader phase from a communal phase takes

the form of an inhomogeneous decay in the levels of decision making of the agents

in the system, leaving one agent in charge by default. In a dynamical version of this

model in which the distribution of agents changes with time, the transition between

di�erent leader agents could be studied.

This model has a relatively simple phase structure, as only the thinking value and

trust levels are allowed to vary. The addition of spatial considerations, information

exchange costs, lying, resource exchange with cheating, or other such factors could
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vastly increase the diversity of phases exhibited by the model.
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Figure 11.1: Schematic phase diagram for our model. The Investment axis is the
degree that a large initial investment of resources is needed to see an improvement in
accuracy: this corresponds to the nonlinearity � in the model. The bene�t axis is the
total di�erence in accuracy between random guessing and perfect knowledge, which
corresponds to the variable O in our model. In the Lazy Phase, random guessing
is the optimal behavior. In the Heterogeneous Phase, a subset of agents dedicate
their resources to thinking whereas the rest of the agents dedicate their resources to
working (division of labor). In the Homogeneous Phase), all the agents dedicate the
same non-zero amount of resources to thinking.
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Figure 11.2: Score functions in the Isolated Phase as a function of thinking time
T , for four values of O and �. In the Isolated Phase, each agent does not receive
information from other agents.
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Figure 11.3: Score functions in the Homogeneous Phase as a function of thinking
time T , for di�erent numbers of agentsN , with O = 5 and � = 5. In the Homogeneous
Phase all agents share information and have the same parameters.
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Figure 11.4: Phase diagram for O = 10 in the space of the nonlinearity � and num-
ber of agents N . The phase transition from the heterogeneous phase as N increases
is due to the communal phase being more e�cient than a sel�sh leader phase. The
phase transition as � increases is due to the transition of the isolated phase to a T = 0
phase. The dotted lines show the phase boundaries when Gaussian uctuations with
a standard deviation of 0:1 are added to the T value of each agent.
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Figure 11.5: Phase diagram for N = 50 in the space of the nonlinearity � and
thinking bene�t O. The dotted lines show the phase boundaries when Gaussian
uctuations with a standard deviation of 0:1 are added to the T value of each agent.
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Figure 11.6: Optimal number of leaders as a function of total number of agents
for a system with O = 5 and two di�erent uctuation strengths. In this case, the
uctuations are parameterized by the resultant average accuracy A of a leader with
T = 1.
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Chapter 12

Conclusions

In this thesis I have discussed several di�erent systems in which multiscale structure

emerges from relatively simple local rules. In turbulence, these rules are the transport

of momentum by a ow; in evolution, these rules are the way in which organisms in-

teract with each other and their environment. In both of these cases, the determining

factor for the structures which emerged was not some small detail of the rules, but

rather the broad symmetries that the rules possessed | Galilean invariance and en-

ergy conservation (and enstrophy conservation in 2D) in the case of turbulence, and

complexity invariance in the case of the complexity cascade in evolution. The univer-

sality of these cascades connects with the ideas of phase transitions and criticality,

where only certain dominant degrees of freedom remain relevant to the behavior of

the system.

Furthermore, it is important to understand the scale-free structure in each of

these cases in order to understand the actual macroscopic behaviors that are more

immediately observable. In the case of turbulence, I showed that the drag friction and

velocity pro�les of pipe ows depends on the particular form of the turbulent cascade

present | either energy or enstrophy. Consequently the way in which the turbulence

was generated determines its properties in a fashion not predicted by the classical

theory. The uctuations of ow properties are also tied to the scale-free structure of
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the ow, in a way that informs the transition into the turbulent state.

The consequences of an evolutionary complexity cascade are readily apparent in

the richness and complexity of life on Earth. Whether by Red Queen dynamics[131]

or a symbiotic cascade or some other invariant pathway, life on Earth has explored

and created a hierarchy of niches, something more structured and complex than `the

simplest, fastest replicator'. By understanding the symmetries that underly this

complexi�cation, it is possible to begin to ask questions about the distributions of

diversity that it engenders, the rate of evolution, and the history of evolution of Earth.

Additionally, understanding of the necessary symmetries to achieve a complexity

cascade is a useful tool in constructing simulations that exhibit open-ended evolution,

either to answer evolutionary questions or as a tool for computer science (that is, as

a certain subclass of genetic algorithms).

This work suggests directions for future inquiry. None of the simulations presented

in this thesis satisfy the criteria for abstraction transitions. Some physical systems

can give rise to quasiparticles on a coarser scale than the underlying dynamics, while

others cannot. As an abstraction transition implies a sort of multi-level emergence,

understanding the necessary elements for the emergence of evolutionary quasiparticles

may allow such a simulation to be constructed. The dynamics of meta-evolution show

interesting dependences on system size and timescale, but in none of these cases are

the evolutionary pressures on the meta-evolutionary parameters very strong compared

to the direct selection pressures. In particular, if the average mutation is neutral or

harmful, the meta-evolutionary pressures are incredibly weak. Are there additional

elements in real evolving systems that make meta-evolutionary selection stronger, or

is real meta-evolution simply a matter of very long times?
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