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Abstract

My research uses computational and analytical techniques from statistical physics to examine spatial patterns and

dynamics in complex biological systems. More specifically I used these techniques to analyze aspects of three different

complex biological systems, namely stochastic Turing patterns, transposon and retrotransposon dynamics in live cells,

and bistability in ant foraging.

In collaboration with experimentalists at MIT and UIUC, I have shown how noise can stabilize emergent behav-

iors such as Turing patterns in biofilms. Normally, one would think that noise destroys patterns but we found that

fluctuations in the copy number of signaling molecules acting as activator and inhibitors of gene expression leads to

pattern formation. Surprisingly, we can show theoretically that these fluctuations increase the range of experimental

conditions in which patterns can form.

In collaboration with experimentalists at UIUC, we have observed how evolution acts on variation in time, space,

and genome locus by imaging live cells with fluorescent reporters that allow us to track transposon dynamics. Trans-

posons, also known as “jumping genes,” are found in all organisms and have activity that can cause mutations and

drive evolution. As part of this collaboration I developed the software for image analysis of the cells and analyzed

the resulting statistics of events. We discovered that the excision rate of transposons depends on orientation of the

element, spatial location of the cell, and some heritable factors.

In a follow-up experiment, I recently developed a model to explain our collaborators’ observation that the number

of retrotransposon transcripts, transcripts produced by a copy and paste type of mobile genetic element, produces

an exponential growth dependence defect. I developed a model for the copy number dynamics of retroelements and

the time it takes these elements to be lost from a population of cells depending on the observed growth rate defect,

transposition rate, and inactivation rate. This model explains why Group II introns are present in about 30% of

bacterial species, while retrotransposons are essentially absent. This research sheds light on the early evolution of the

eukaryotic spliceosome, the cellular machinery allowing complex organisms to remove intra-gene junk DNA during

gene expression.

I have extended a model for ants foraging from two food sources [1] to include indirect recruitment of ants with

pheromones rather than direct recruitment by the ants themselves. This model continues to show bistable foraging for
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ants when their population is below a critical population size that depends on the deposition rate and evaporation rate

of pheromones.

iii



For everyone who believed in me.

iv



Acknowledgments

I would like to first and foremost thank my advisor Nigel Goldenfeld. Nigel has been instrumental in guiding me

as a young scholar. He is responsible for helping me develop many of the ideas and research directions found in

this thesis. He has been a huge help in getting me unstuck when I was stuck and was a great resource for cool new

ideas and interesting projects. Nigel has helped facilitate many excellent opportunities for me, including being able

to participate in the 66th Lindau Nobel Laureate meeting, teaching at the CPLC summer school for biophysics, and

attending various conferences. I would like to thank Nigel for all his aid in my post-doc applications. Nigel not only

cares for his students academic growth, he also cares about his students personal well-being. He runs a wonderful

group; during our often six-hour weekly meeting, group members teach each other about their research interests and

support one another in our respective projects.

I would like to thank all of Nigel’s former and current group members with whom I have interacted, including:

Vikyath Rao, Farshid Jafarpour, Chi Xue, Hong-Yan Shih, Maksim Sipos, Tommaso Biancalani, Purba Chatterjee,

Minhui Zhu, and Zhiru Liu. I would especially like to thank Vikyath and Farshid for being good friends, and often

eating our lunch together. In addition, I would like to thank Minhui and Zhiru for giving me the opportunity to learn

how to be a mentor, and for all their hard work on other projects, including colony size scaling laws and segmenting

pictures of corn roots.

I would like to thank Tom Kuhlman as an excellent collaborator and mentor, whose patient explanation of basic

biology and experimental details was very helpful. Meeting with him always provided insight. Tom also provided me

the opportunity to be his teaching assistant for Physics 435, and I learned a lot about teaching from this experience. In

addition, I would like to thank the members of Tom’s group with whom I have had a wonderful opportunity to interact

and discuss ideas for our collective research, including Nicholas Sherer, Neil Kim, Gloria Lee, and Davneet Kaur.

Additionally, I would like to thank Ron Weiss for the use of his experimental Turing data and his collaboration. I also

thank Andrew Leakey for his collaboration and insights on the segmentation of pictures of plant roots. In addition, I

would like to thank all the members of my committee; Karin Dahmen, Kenneth Schweizer, Tom Kuhlman, and Nigel

Goldenfeld.

I am appreciative of the funding support that I have received. It enabled me to pursue my research goals. I have

v



received funding from the National Science Foundation through the Center for Physics of Living Cells (PHY 1430124)

and I also received funding from Andrew Leakey’s and Nigel Goldenfeld’s grant on maize root structure, NSF IOS

1638507.

I would like to thank the support that I have received over the years from my family. They have kept me grounded

and have been there for me whenever I needed them. They were a source of very important emotional support and

over the years have provided me with countless opportunities.

I would also like to thank the professors at my undergraduate university, RIT, who helped develop me into a

young researcher. I would especially like to thank George Thurston and Dawn Hollenbeck, my undergrad co-research

advisors. They spent a lot of time with me, gave me opportunities to work on their research, and cared about my

personal and academic growth.

I would also like to thank all the other people who have helped me over the years and that I have neglected to

mention directly in this thesis. Just know that I deeply appreciate everything you have done for me.

vi



Table of Contents

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Stochastic Turing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Transposable Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 DNA Transposons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Retrotransposons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Stochastic Switching in Ant Foraging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part I Stochastic Turing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Introduction on Pattern Forming Systems and Stochastic Calculation Techniques . . . . . . 7
2.1 Linear Stability Analysis and the Turing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Individual Level Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Van Kampen System Size Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Generating Random Numbers Using Inverse Transform Method . . . . . . . . . . . . . . . . . . . . 11
2.6 Gillespie Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3 Stochastic Turing Patterns in a Synthetic Bacterial Population . . . . . . . . . . . . . . . . . 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Synthetic Biology of a Bacterial Community . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Experimental Patterns and Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Power Spectra Analysis of Experimental Observations . . . . . . . . . . . . . . . . . . . . . 37

3.4 Reduced Model for Stochastic Turing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Stochastic Model Power Spectra Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.1 Alternative Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.2 Summary of Evidence for Stochastic Turing Patterns . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Supplement: Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Part II Transposable Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4 Background Chapter on Transposons and Evolution: An Introduction to DNA Transposons
and Retrotransposons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



Chapter 5 Watching Mutations and Evolutionary Dynamics in Real Time . . . . . . . . . . . . . . . . . 56
5.1 DNA Transposons - Real Time Transposable Element Activity in Individual Live Cells . . . . . . . . 56
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 TE Observation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Verification of TE Observation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Quantification of Excision Response to Transposase Concentration . . . . . . . . . . . . . . . . . . . 59
5.5 Observing Real Time Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Excision Rates Depend on Growth State of Cells . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.2 Excision Event Rate is Constant Once Initiated . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.3 Excision Events are Spatially Correlated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.4 Pair correlation function, g(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.5 Colony and g(r) Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.6 Distribution of Rates is Consistent with Additional Control by a Heritable Luria-Delbrück

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.7 Luria-Delbrück Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 6 Characterizing Evolutionary Pressures of Retrotransposons . . . . . . . . . . . . . . . . . . 73
6.1 Role of Non-homologous End-joining in the Proliferation of LINE-1 Retrotransposons and Group II

Introns in Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Description of Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Description of Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 Effects of Retroelement Expression on Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Modeling of Physiological Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7 Modeling of Retrotransposon Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.7.1 Moran Model of Extinction of Transposons . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.7.2 Mean Field Models Containing More Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.9 Supplement: Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.9.1 Effects of Retroelement Expression on Growth . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.9.2 L1 Successfully Integrates into E. coli’s Chromosome . . . . . . . . . . . . . . . . . . . . . 97

Part III Stochastic Dynamics of Ants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 7 Stochastic Dynamics of Ants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1 Direct Recruitment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Stochastic Model for Ant Foraging with Pheromones . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



List of Abbreviations

TE Transposable element

L1 LINE-1

E. coli Ecscheria coli

B. subtilis Bacillus subtilis

P. aeruginosa Pseudomonas aeruginosa

IPTG isopropyl β -D-1 thiogalactopyranoside

GFP Green flourescent proteins

RFP Red flourescent proteins

2DFT Two-dimensional Fourier transform

2D Two-dimensional

ISLEAD Imperfect palindromic sequences encoded in the leading strand

ISLAG Imperfect palindromic sequences encoded in the lagging strand

LE IP Left end imperfect palindromic sequence

RE IP Right end imperfect palindromic sequence

HILO Highly inclined and laminated optical sheet

AIC Akaike Information Criterion

NHEJ non-homologous end joining

aTc anhydrotetracycline

TPRT Target-primed reverse transcription

ix



Chapter 1

Introduction

My research uses computational and analytical techniques from statistical physics to examine spatial patterns and

dynamics in complex biological systems. Using these computational and analytical techniques I examined Turing

patterns in biofilms, tracked live cell transposon and retrotransposon dynamics, and bistability in ant foraging.

In Part I, Stochastic Turing Patterns, I present my research on Turing patterns in biofilms. In collaboration with

experimentalists at MIT and UIUC (Professor Ron Weiss’ group) I have shown how noise can stabilize emergent

behaviors such as Turing patterns in biofilms. Normally, one would think that noise destroys patterns but we found

that fluctuations in the copy number of signaling molecules acting as activator and inhibitors of gene expression leads

to pattern formation. Surprisingly, we can show theoretically that these fluctuations increase the range of experimental

conditions in which patterns can form.

In Part II, Transposable Elements, I present work performed in collaboration with experimentalists at UIUC (Pro-

fessor Thomas Kuhlman’s group). We have observed how evolution acts on variation in time, space, and genome

locus by imaging live cells with fluorescent reporters that allow us to track transposon dynamics. Transposons, also

known as “jumping genes,” are found in all organisms and their activity can cause mutations and drive evolution. As

part of this collaboration I developed the software for image-analysis of the cells and analyzed the resulting statistics

of events. We discovered that the excision rate of transposons depends on orientation of the element, spatial location

of the cell, and some heritable factors.

In a follow-up experiment, discussed in Chapter 6 of part II, I recently developed a model to explain our collab-

orators’ observation that the number of retrotransposon transcripts, transcripts produced by a copy and paste type of

mobile genetic element, gives rise to an exponential growth dependence defect. I developed a model for the copy

number dynamics of retroelements and the time it takes these elements to be lost from a population of cells depending

on the observed growth rate defect, transposition rate, and inactivation rate. This model explains why Group II introns

are present in about 30% of bacterial species, while retrotransposons are essentially absent. This research sheds light

on the early evolution of the eukaryotic spliceosome, the cellular machinery allowing complex organisms to remove

intra-gene junk DNA during gene expression.

In Chapter 7 I have extended a model for ants foraging from two food sources [1] to include indirect recruitment
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of ants with pheromones rather than direct recruitment by the ants themselves. This model continues to show bistable

foraging for ants when their population is below a critical population size that depends on the deposition rate and

evaporation rate of pheromones.

1.1 Stochastic Turing Patterns

In his paper, “The Chemical Basis of Morphogenesis,” [2] Turing showed how a periodic pattern instability can emerge

from an initially uniform activator inhibitor reaction diffusion system. In this picture the activator activates its own

production and that of the inhibitor while the inhibitor inhibits its own production and that of the activator. In an

initially homogeneous state the activator will amplify any small perturbation creating more activator and inhibitor

locally. The inhibitor then diffuses more quickly than the activator suppressing further growth. In this way a periodic

pattern will form. Note that in the traditional analysis this requires the two morphogens to have very different diffusion

rates for pattern formation. On the other hand, in a stochastic model using the intrinsic noise from the birth and death

processes, it turns out that the diffusion rates do not need to be so widely different [3, 4, 5].

In Chapter 3 of Part I, I analyzed the data from an experiment that was conducted at MIT where our collaborators

attempted to engineer a Turing pattern. From my analysis I was able to show that the patterns they formed were

actually stochastic Turing patterns rather than traditional Turing patterns. I did this by measuring the power spectrum

of the pattern and showed it was consistent with theoretical predictions for the power spectrum of a stochastic Turing

pattern. In addition, I analyzed and simulated a detailed model of their system and showed for the measured parameters

of their system the model can only produce patterns if the stochasticity of the birth and death processes were included.

Because the precise values of the model parameters are not known, I also mapped how much of parameter space would

produce stochastic patterns as compared to deterministic Turing patterns, and showed that it was most probable that

the experiment was in the stochastic Turing pattern regime.

1.2 Transposable Elements

Transposable elements (TE), more colloquially known as jumping genes, are DNA sequences that can move their

position around the genome. There are two main types of transposable elements, DNA transposons which use a cut

and paste mechanism of transposition and retrotransposons which use a copy and paste mechanism of transposition.

Transposable elements make up a large fraction of eukaryotic genomes. For example, roughly 85% of maize’s genome

is TE and 46% of the human genome consists of TE. Transposable elements, through their activity, generate mutations

in the genome and thus are important for understanding disease, development, and evolution.
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1.2.1 DNA Transposons

Little is known about the dynamics of TE elements in live cells. Previous works [6, 7, 8] inferred transposition rates

from bulk sampling of cells, which averages over many cells and loses information about fluctuations. Others [9, 10]

attempted to measure the rates from phylogenetic comparisons, but this method suffers from the limitation that only

events that have become fixed in a population can be observed. This misses events that could cause extinctions and

the corresponding estimates of rates will likely underestimate the rate of transposition.

To overcome these limitations our experimental collaborators use a transposon to interrupt a promotor for the

expression of mCerulean. When the transposon excises it will produce a full promotor and the cell will start to express

mCerulean and glow blue. Additionally, the protein that is responsible for excision of the transposon, known as

transposase, is tagged with another fluorescing protein that glows yellow. By observing the fluorescence of cells the

amount of transposase can be quantified and it is possible to determine if a transposition event has occurred.

As discussed in Chapter 5, I developed image analysis software to automatically detect when and where trans-

position had occurred. Using this software we were able to extract rates of excision of 6.3× 10−3 events/cell/hr.

Furthermore, we were able to test if excision was uniform in time and space (See Chapter 5). We found that the rate

of transposition is growth state dependent. Initially, no events were detected until growth arrest. Events were uniform

in time upon their initiation in growth arrest for 35 hours and had Poisson statistics. Furthermore, we found excision

events to be clustered in space as shown by an excess in the radial correlation function within a few cell lengths as

compared to simulations assuming a completely uniform event distribution. This clustering of excision events suggests

that there may be a heritable change that effects excision rate. To test this hypothesis we measured the distribution

of event rates from 984 colonies. We found that the resulting distribution was well fit by a two-step process: first, a

heritable change can occur during exponential growth that predisposes cells to TE activity; then, upon growth arrest

the cells containing this change have a probability of their TEs excising.

The growth state dependence, spatial clustering, and heritability of TE excision suggests that mutations caused

from reintegration will also be heterogeneous and growth state dependent. This is potentially important since many

models of mutation and evolution start with the assumptions of uniform and homogeneous mutation rate.

1.2.2 Retrotransposons

Retrotransposons are abundant in Eukaryotes but are rare in bacteria. In Eukaryotes, retroelements exist in high copy

number, while in bacteria a simpler form of retroelement known as a group II introns can be present, but only in

low copy number and only in 30% of bacterial species. For example, in humans the retrotansposon LINE-1 (L1)

makes up 17% of the human genome, with about 500,000 integrants and roughly 100 active copies, whereas group

II introns in bacteria typically have only 1-10 copies. To try to characterize some of the differences between bacteria
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group II introns and Eukaryotic retrotransposons our experimental collaborators succeeded in transplanting a human

L1 into a bacterial host Escherichia coli (E. coli). They observed that L1 expression is detrimental to the growth of

E. coli and Bacillus subtilis. The growth rates of these bacteria were exponentially depressed with additional copies

of L1 transcript. I modeled this in Chapter 6 using a simple binary growth model where each transcript has a certain

probability of integrating and disrupting the cell’s ability to grow. Thus, the probability that a cell will be able to grow

is the binomial distribution with zero negative integration events. This simple model produces an exponential growth

defect. Our experimental collaborators measured the growth defect for both bacteria and measured the growth defect

for group II introns.

I also developed a model for the copy number of retroelements given a measured birth defect, transposition rate per

transposon, inactivation rate of the retroelements, and death rate of bacteria. This more complicated model predicts

that the measured growth defect of L1 in bacteria will cause the bacteria to quickly lose L1, matching results of the

experiment. It also predicts that for the measured growth defect of group II introns, they will persist in low copy

numbers for at least millions of generations, consistent with the observations of group II introns in bacteria. Finally, it

predicts that for L1 to persist in human populations at high copy number the growth defect must be very small. This

may be achieved in Eukaryotes by the spliceosome which limits genetic damage caused by integrants.

In summary, this project suggests that the spliceosome in Eukaryotes may have evolved in response to selection

pressure from retroelements. In particular, it is consistent with phylogenetic evidence that shows how group II intron

proteins were early predecessors of eukaryotic spliceosomal proteins, suggesting that the spliceosome was transmitted

to Eukaryotes by an early horizontal gene transfer from bacteria [11, 12, 13, 14].

1.3 Stochastic Switching in Ant Foraging

Bistability is usually modeled using a double well potential and simple white noise. There is, however, an alternative

mechanism for achieving bistability, a simple harmonic potential and multiplicative noise. The noise is greatest at the

bottom of the well and vanishes at the boundaries of the well. The characteristic equation for this type of bistability

is ż = −z+ s
√

1− z2η , where η is Gaussian noise, z is the bistable quantity and s controls the strength of the noise.

In a recent paper it was shown that ants foraging from two food sources that directly recruit one another exhibit this

type of bistability[1]. At small population sizes the ants will forage bistably from the different food sources, but as

the population size is increased they will start to forage from both food sources equally. In Chapter 7 I have taken this

model and extended it to include indirect recruitment via a pheromone. I investigate how the critical population size

depends on the evaporation rate of the pheromones and the rate at which the pheromones are created. The conclusion is

that the stochastic switch in foraging is robust to model elaboration, suggesting that these predictions could potentially
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be experimentally tested.

1.4 Contributions and Publications

All the work done in this thesis was in close collaboration with my advisor Nigel Goldenfeld.

The work appearing in chapter 3 of Part I is the result of a collaboration between MIT and UIUC. The people

involved in this collaboration included David Karig, Ting Lu, Nicholas A. DeLateure, Nigel Goldenfeld, and Ron

Weiss. This work is in the process of being published in PNAS and this chapter is a modified version of that paper.

The experiments and experimental design were developed by David Karig and Ting Lu. I performed the stochastic

simulations and measured pattern characteristics of both the simulations and experiments, including spot size, power

spectrum, and minimum distance between spots. I developed the phase diagram and sensitivity analysis of parameters

for the detailed stochastic model. I also developed the phase diagram for the reduced model. For Chapter 3 of Part I,

the majority of my contributions appear in sections 3.3 and 3.4.

The Work in Part II represents a collaboration with Thomas Kuhlman’s lab.

Chapter 5 is a modified version of Real Time Transposable Element Activity in Individual Live Cells [15], a

collaboration between Neil H. Kim, Gloria Lee, Nicholas A. Sherer, K. Michael Martini, Nigel Goldenfeld, and

Thomas E. Kuhlman. For this chapter I contributed the software that detected the transposition events, calculated the

radial correlation function for the experimental data, calculated the average intensity profile of an excision event, and

wrote a simulation to compare to the measured g(r) and event rate distribution. The majority of my contributions

appear in section 5.5 of this chapter.

The work done in chapter 6 represents a collaboration between Gloria Lee, Nicholas A. Sherer, Neil H. Kim,

Ema Rajic, Davneet Kaur, Niko Urriola, K. Michael Martini, Chi Xue, Nigel Goldenfeld, and Thomas E. Kuhlman. I

developed the models in this section in collaboration with Chi Xue and Thomas Kuhlman. The analytic calculations

appearing in 6.6, 6.7.1 are mine as are the simulations. I developed the model in 6.7.2 and conducted some of the

simulations.

All of the work in chapter 7 is my own.
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Chapter 2

Introduction on Pattern Forming Systems
and Stochastic Calculation Techniques

2.1 Linear Stability Analysis and the Turing Mechanism

Alan Turing, in 1952, made the surprising observation that in the right circumstances diffusion can act to destabilize an

initially homogeneous state into a patterned state [2]. This is now known as the Turing instability. One of the simplest

examples of a classical Turing pattern is an activator-inhibitor system. In this classical reaction diffusion system, one

of the chemicals is a slowly diffusing activator, activating the synthesis of itself and the synthesis of the inhibitor. The

other chemical is a fast diffusing inhibitor, inhibiting synthesis of the activator and itself. Initially the activator and

inhibitor are distributed randomly. Areas with local concentrations of activator will autocatalytically grow, forming

dense clumps of activator. Inhibitor will also be produced near these clumps of activator and will rapidly diffuse

outward suppressing the further spread of activator.

In what follows I will describe the process of linear stability analysis and show that at certain wave numbers an

initially homogeneous state becomes unstable. To serve as an example of an activator and inhibitor model I will use

the Levin-Segel model of herbivore-plankton interaction [16].

∂tφ =µ∇
2
φ +bφ + eφ

2− pψφ (2.1)

∂tψ =ν∇
2
ψ + pψφ −dψ

2 (2.2)

Here φ is the concentration of activator, ψ is the concentration of inhibitor, µ and ν are the the diffusion constants

of the activator and inhibitor, respectively. The term pψφ is a competition term, eφ 2 is a nonlinear activation term,

and −dψ2 is a nonlinear self inhibition term for the inhibitor.

In linear stability analysis, the growth or decay of an infinitesimal perturbation away from an equations’ fixed

points (φ ∗,ψ∗) is examined. A fixed point is a place in the dynamics where the concentrations do not change. That is

∂tφ
∗ = 0 and ∂tφ

∗ = 0. Specifically, we want to consider an initially homogeneous solution for these equations. We

need our initial state to be constant and not vary spatially. For the Levin-Segel model this involves solving the system

of equations:
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0 = bφ
∗+ e(φ ∗)2− pψ

∗
φ
∗ (2.3)

0 = pψ
∗
φ
∗−d(ψ∗)2 (2.4)

The solution of these equations show that there is a coexistence point at ψ∗ = pb
P2−de and φ ∗ = bd

p2−de . Since the

population densities must be positive, this imposes the condition p2 > de.

A fixed point is considered linearly unstable if the perturbation grows and linear stable if the perturbation shrinks.

In linear stability analysis we choose a perturbation of the form δφeσt−ikx and δψeσt−ikx. Plugging in φ = φ ∗+

δφeσt−ikx and ψ = ψ∗+δψeσt−ikx into eq. 2.1 and only keeping terms linear in δφ and in δψ we find that

σδφ =−µk2
δφ +(b+2eφ

∗− pψ
∗)δφ +(−pφ

∗)δψ (2.5)

σδψ =−νk2
δψ +(pψ

∗)δφ +(pφ
∗−2dψ

∗)δφ (2.6)

where the 0th order terms were already eliminated using 2.3. These equations can be written in matrix form and

further simplified using 2.3.

σ

δφ

δψ

=

−µk2 + eφ ∗ −pφ ∗

p2φ∗

d −νk2− pφ ∗


δφ

δψ

 (2.7)

This is a standard eigenvalue problem for σ . Its solution can be written as σ = 1/2(Tr±
√

Tr2−4Det) where

Tr is the trace and Det is the determinant of the above matrix. The real part of the eigenvalue σ determines if the

perturbation grows or shrinks. If R(σ) is negative the perturbation will shrink, positive the perturbation will grow.

Notice that σ is in fact a function of wavenumber k. See Fig. 2.1 for a sketch of a typical situation. At most wave

numbers R(σ) is negative and the homogeneous state is stable. However, at some values of k, R(σ) can become

positive and destabilize the homogeneous state. The wavenumber with the largest positive real eigenvalue sets the

characteristic scale for pattern formation. Once destabilized the nonlinearities will eventually stabilize the pattern. For

this linear stability analysis to be valid, the initial state has to be stable, and therefore p > e.

This system exhibits a Turing instability when [16]:

ν

µ
>

(
1√

p/d−
√

p/d− e/p

)2

. (2.8)
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Figure 2.1: Linear Stability Analysis. The real part of the eigenvalue σ is plotted as a function of wavenumber
for different ratios of diffusion constants. At high enough diffusion constant ratio the eigenvalue becomes positive
creating an instability in the initial stable homogeneous state.

2.2 Individual Level Models

There are many different types of models for physical systems, each appropriate to answering different questions.

Many questions in Ecology and Chemistry deal with large numbers of organisms or chemicals, respectively. In these

instances we are used to writing down continuum mean field, mass action equations that describe the dynamics of the

densities of these populations. This works well when the number of entities is sufficiently large that the underlying

stochasticity of the birth-death processes is sufficiently small. It turns out though that even when there are large

numbers of entities, if the system is spatially extended, there can be areas where the local numbers are small enough

that the stochasticity of these birth and death processes matter.

In situations where one expects these effects to matter it is appropriate to use a different level of description than

the continuum modeling, known as an Individual Level Model. In an Individual Level Model, interactions and the birth

and death processes of entities are modeled using chemical reaction like equations. The underlying entities, however,

do not need to be chemicals and in fact, could be organisms if one were trying to model an ecological system. For

example, to model the birth process of a rabbit the corresponding individual level model would be A b−→ A+A, where

b is the birth rate. If there are N rabbits the corresponding transition rate is T (N + 1|N) = bN. In the section on the

Gillespie algorithm, 2.6, these transition rates are denoted ai where i corresponds to the reaction index in consideration.

A few examples of reactions and their corresponding transitions rates are as follows [17]:
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Table 2.1: Reactions and their corresponding transition rates.

Reaction ai

A
c1−→ 2A a1 = c1X1

A
c2−→ B a2 = c2X1

2A
c3−→ A a3 = c3(X1)(X1−1)/2

A+B
c4−→ 2A a4 = c4X1X2

A+B
c5−→ 2B a5 = c5X1X2

Here X1 and X2 correspond to the number of entities of type A and B, respectively. Note that the reaction rates for

individual level models are related to their deterministic mean field counterparts by factors of system size, depending

on the order of the reactions. For first order reactions they are the same. For second order they are related by one

factor of the system size.

2.3 Master Equation

In our stochastic models we often want to know P(~X , t), the probability that there will be X1 .... XN molecules in

volume V at time t. The time evolution of the probabilities is described by the Master Equation. The Master Equation

models the time evolution of the probability of being in a given state by keeping track of the rate at which that state

is being populated from other states and the rate at which that state is transitioning to other states. The transition rate

T (x|x′) is the rate at which the system will transition from state x′ to state x . The rate of transition into state x from

state x′ given the probability of being in state x′ is thus T (x|x′)P(x′). Combining this all together produces the Master

Equation.

∂

∂ t
P(x, t) = ∑

x′ 6=x
[T (x|x′)P(x′, t)−T (x′|x)P(x, t)] (2.9)

where terms on the left are from states x′ entering state x and terms on the right are for the rate at which state x is

leaving for other states.

Solving this multidimensional PDE is often intractable both numerically and analytically. One way to make

this problem more tractable analytically is by doing various approximations. One of the most common approximation

schemes is called the Van Kampen system size expansion, described in section 2.4. Another strategy taken by Gillespie

[17], was to simulate trajectories that represent exact samples from the probability function corresponding to the

Master Equation. His strategy was to calculate the reaction probability density function, which allows his algorithm

to figure out when the next reaction is going to occur and what reaction takes place. This is discussed in section 2.6.
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2.4 Van Kampen System Size Expansion

In the Van Kampen system size expansion the Master Equation can be expanded by making an ansatz about how the

fluctuations scale with the system size. Specifically, Van Kampen made the ansatz that the copy number Xi consists of

a deterministic part corresponding to the scaled up concentration Ωφi and random fluctuations about this that scales as

Ω1/2ξi, ie. Xi = Ωφi +Ω1/2ξi [18]. This ansatz allows for a systematic expansion of the Master Equation by equating

order by order in powers of Ω. The leading order of this expansion results in a Fokker-Planck equation with linear

coefficients.

2.5 Generating Random Numbers Using Inverse Transform Method

To perform stochastic simulation, it is necessary to have the ability to generate a random number from any given

probability distribution. Generally, most computer programming languages and computational software give the user

the ability to generate random numbers uniformly in the interval zero to one, x ∈ [0,1]. These same software systems

may also give the user the ability to generate random numbers from other common distributions such as Gaussian and

Poisson, but these languages cannot have all possible probability distributions preprogrammed. In those cases that

the distribution is not already programmed it is still possible to generate a random number from a given probability

distribution, as long as the user is able to calculate the inverse of the cumulative distribution and generate a random

number on a uniform interval.

One method of generating random numbers from a desired probability distribution is called the inverse transform

sampling method. The basic steps to generate a random number x from an arbitrary probability distribution p(x) using

this method are as follows:

1. Generate a uniform random number r from the interval [0,1].

2. Compute the value x of the cumulative probability distribution corresponding to the distribution p that gives you

r as an output. If the cumulative probability distribution has an analytic inverse this step is easy and can be done

directly. Otherwise, it is still possible to do this step computationally by using a root finding method.

3. The value x will be from the desired probability distribution.

This means that to generate a random number from our desired random distribution p(x) we only need to generate

one random number on a uniform interval and we can transform it directly into a random number from our desired

distribution. This is an example of a direct method of generating a random number. There are other methods that

require generating multiple random numbers from a uniform distribution to generate one random number from the

desired probability distribution, for example, using an accept and rejection method similar to throwing darts at a dart
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board. The advantage of the inverse transform method is that it requires only generating one random number; but in

cases where calculating the inverse of the cumulative probability distribution is computationally expensive it can be

beneficial to use other methods to generate a random number from a specific distribution.

As an example of how inverse transform sampling works consider the following examples: generating a random

number from an exponential distribution and generating a number from a discrete distribution. To generate a random

number from the exponential distribution p(x) = λe−λx we first generate a uniform random number r ∈Uni f (0,1).

We then calculate the value of x that gives us r from the cumulative probability distribution.

r =
∫ x

0
λe−λ sds

r = [1− e−λx] (2.10)

and we find

x =
1
λ

ln
(

1
1− r

)
(2.11)

Note that since u = 1− r is still a uniform random number in the interval [0,1], instead of drawing r draw u and

calculate x directly as x = 1
λ

ln
( 1

u

)
.

For a discrete probability distribution px we can use the following procedure. Draw r ∈Uni f (0,1) then pick x

such that

x−1

∑
i=1

pi < r ≤
x

∑
i=1

pi (2.12)

That is, compute the partial sum of probabilities until that partial sum is greater than the random number drawn. The

ability to draw random numbers from the exponential distribution and from a discrete distribution are both necessary

to be able to perform a Gillespie simulation.

2.6 Gillespie Algorithm

As mentioned in section 2.3, solving the Master Equation is often intractable, both numerically and analytically.

Instead, Gillespie chose to explicity simulate each reaction, where the sequence and timing of the chemical reactions

will correspond to an exact sample from the corresponding Master Equation. To be able to do this Gillespie calculated

the reaction probability density function P(τ,µ)dτ , the probability that the next reaction will be reaction µ and that

it will happen in the time interval (t + τ, t + τ + dτ). Gillespie’s main idea was that a sample from this probability
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distribution will produce the time increment to the next reaction and the next reaction to perform. Upon updating the

state of the system, this procedure can be repeated. A trajectory calculated in this way will correspond to a simulation

of the stochastic system.

The basic steps of Gillespie’s algorithm are thus:

1. Initialize.

2. Monte Carlo Step - generate the time to the next reaction and the reaction that occurs by drawing from the

reaction probability density function.

3. Update the time, the number of reactants, and the transition rates.

4. Record the number of reactants and time, if the sampling time has passed.

5. Repeat.

This procedure depends on being able to calculate the reaction probability density function and sampling from it.

Gillespie was able to calculate this distribution as follows [17]. Let aµ dt be the probability that reaction µ will

occur in time dt. Then the reaction probability density function P(τ,µ) = P0(τ)aµ dτ consists of two parts: the

probability aµ dt that reaction µ occurs in time dτ , and the probability P0(τ) that no reaction occurs in the time

interval τ . To calculate P0(τ) break up the interval τ into K sub-intervals of size ε = τ/K. The probability that a

reaction n does not occur in the sub-interval ε is (1− anε). The probability that no reaction occurred in the sub-

interval ε is therefore ∏
N
n=1(1−anε) ≈ 1−∑

N
n=1 anε +O(ε2) = 1−aτ/K where a = ∑

N
n=1 an. Thus, the probability

that no reaction occurred in the interval τ is the probability that no reaction occured in any of the K sub-intervals of

length ε; namely that

P0(τ) = lim
K→∞

(
1+
−aτ

K

)K

= exp(−aτ) (2.13)

Thus, we see that the reaction probabilty density function is

P(τ,µ)dτ = aµ exp(−aτ) =
aµ

a
·aexp(−aτ) (2.14)

It is also possible to decompose the reaction probability distribution so P(τ,µ) = P1(τ)P2(µ|τ), where P1(τ) =

aexp(−aτ) is exponentially distributed and is the probability that the next reaction will occur in time τ , and P2(µ|τ) =

aµ/a is the probability that reaction µ will occur at time τ . Thus, to do the Monte Carlo step described above one

can use the inverse transform sampling method to draw two random numbers, one from the exponential distribution,

and one from the discrete distribution P2(µ|τ). That is, calculate the time for the next reaction as τ = 1
a ln
( 1

u

)
u ∈

Uni f (0,1), and find the next reaction x using ∑
x−1
i=1

( ai
a

)
< r ≤ ∑

x
i=1
( ai

a

)
r ∈Uni f (0,1).
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Thus in summary, the Gillespie algorithm samples from the reaction probability distribution to draw one number

that is exponentially distributed which represents the time to the next reaction, and one number which represents which

reaction to choose. Once these numbers have been drawn the simulation state is updated by performing the selected

reaction µ and incrementing time by τ . It is important to remember to update the number of molecules and transition

rates an. Once the update is finished the whole process can be repeated.

By producing multiple trajectories using the Gillespie algorithm it is then possible to calculate the probability

distribution of states at different times. This should obey the Master Equation. The Gillespie algorithm is a wonderful

tool that is easy to implement and is a good benchmark for testing any analytic solutions that are found.
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Chapter 3

Stochastic Turing Patterns in a Synthetic
Bacterial Population

The work appearing in this chapter is the result of a collaboration with Ron Weiss’s lab at MIT. The people involved

in this collaboration included David Karig, Ting Lu, Nicholas A. DeLateure, Nigel Goldenfeld, and Ron Weiss.

This work is in the process of being published in PNAS and this chapter is a modified version of that paper. The

experiments and experimental design were developed by David Karig and Ting Lu. I performed the simulations and

measured pattern characteristics of both the simulations and experiments, including spot size, power spectrum, and

minimum distance between spots. I developed the phase diagram and sensitivity analysis of parameters for the detailed

stochastic model. I also developed the phase diagram for the reduced model. The majority of my contributions appear

in sections 3.3 and 3.4.

3.1 Introduction

A central question in biological systems, particularly in developmental biology, is how patterns emerge from an

initially homogeneous state [19]. In his seminal 1952 paper, “The Chemical Basis of Morphogenesis,” Alan Turing

showed, through linear stability analysis, that stationary, periodic patterns can emerge from an initially uniform state in

reaction-diffusion systems where an inhibitor morphogen diffuses sufficiently faster than an activator morphogen [2].

However, the requirements for realizing robust pattern formation according to Turing’s mechanism are prohibitively

difficult to realize in nature. [16, 20, 21]. Although Turing patterns were observed in a chemical system in 1990 [22],

the general role of Turing instabilities in biological pattern formation has been called into question, despite a few rare

examples (see for example [23, 24, 25, 26, 27, 28]).

Recently, Turing’s theory was extended to include intrinsic noise arising from activator and inhibitor birth and

death processes [3, 4, 5, 29]. According to the resulting stochastic Turing theory, demographic noise can induce

persistent spatial pattern formation over a wide range of parameters, in particular, removing the requirement for

the ratio of inhibitor-activator diffusion coefficients to be large. Moreover, stochastic Turing theory shows that the

extreme sensitivity of pattern-forming systems to intrinsic noise stems from a giant amplification resulting from the

non-orthogonality of eigenvectors of the linear stability operator about the spatially-uniform steady state [29]. This
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amplification means that the magnitude of spatial patterns arising from intrinsic noise is not limited by the noise

amplitude itself, as one might have thought naively. These developments imply that intrinsic noise can drive large-

amplitude stochastic Turing patterns for a much wider range of parameters than the classical, deterministic Turing

theory. In particular, it is often the case in nature that the activator and inhibitor molecules do not have widely

differing diffusion coefficients; nevertheless, stochastic Turing theory predicts that even in this case, pattern formation

can occur at a characteristic wavelength that has the same functional dependence on parameters as in the deterministic

theory.

In order to explore how global spatial patterns emerge from local interactions in isogenic cell populations, a

promising strategy that has been advocated is to develop synthetic bacterial populations whose collective interactions

can be controlled and well-characterized (for an introduction to this perspective, see e.g. [30]). Synthetic systems

can be forward-engineered to include relatively simple circuits that are loosely coupled to the larger natural system

into which they are embedded. This makes it easier to design and control the molecular underpinnings of a biological

pattern phenomenon [31, 32, 33, 34] and even front propagation phenomena [35]. Previous pattern formation efforts

in synthetic biology have focused on oscillations in time [36, 37, 38, 39] , or required either an initial template [40,

32, 41, 34] , or an expanding population of cells [42], neither of which demonstrates a Turing mechanism. In short, by

programming a synthetic biological system where patterning is instead driven by activator/inhibitor diffusion across an

initially homogeneous lawn of cells [30], we can explore stochastic Turing patterns. The use of a synthetic population

overcomes the challenges presented by natural biological Turing pattern systems – namely, that natural systems are

difficult to manipulate because their chemical and genetic mechanisms are complex and not fully-understood [24, 25,

26, 27, 28, 23]. Our synthetic system helps to reveal design principles of biological patterning systems and represents

a proof-of-principle for engineered biological spatial patterns stabilized by stochastic gene expression.

3.2 Experimental Results

3.2.1 Synthetic Biology of a Bacterial Community

To address the problem of Turing instability induced pattern formation alluded to above, we designed a synthetic

pattern forming gene circuit that destabilizes an initially homogeneous lawn of genetically engineered bacteria. This

system is subject to stochastic gene expression, and as we show below, produces stochastic patterns with a spatial scale

much larger than that of a single cell. The patterns observed in our engineered cells are noisy, with power spectrum

power-law tails consistent with theoretical predictions for patterns stabilized by intrinsic noise.

In our synthetic gene network design we used two artificial diffusible morphogens: the small molecule N-(3-

oxododecanoyl) homoserine lactone, denoted here as A3OC12HSL, and the small molecule N-butanoyl-L-homoserine
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lactone, denoted here as IC4HSL, from the Pseudomonas aeruginosa las and rhl quorum sensing pathways respectively

in Pseudomonas aeruginosa [43]. A3OC12HSL serves as an activator of both its own synthesis and that of IC4HSL,

while IC4HSL serves as an inhibitor of both signals (Fig. 3.1a-b). A3OC12HSL activates its own synthesis and synthesis

of IC4HSL by binding regulatory protein LasR to form a complex that activates the hybrid promoter PLas−OR1. This

promoter regulates expression of LasI, a A3OC12HSL synthase, and rhlI, a IC4HSL synthase. To increase the sensitivity of

A3OC12HSL self-activation, LasR is regulated by a second copy of PLas−OR1. IC4HSL inhibits synthesis of A3OC12HSL and

itself by forming a complex with regulatory protein RhlR. This complex activates expression of lambda repressor CI

which, in turn, represses transcription of LasI, RhlI, LasR and RhlR. Pattern formation in our system can be modulated

by altering the concentration of isopropyl β -D-1-thiogalactopyranoside (IPTG), a small molecule inducer that binds

LacI and alleviates repression of PRhl−lacO. Green and red fluorescent proteins (GFP and RFP) are expressed from the

rhl and las hybrid promoters respectively to aide in experimental observation.

In our experimental setup, the A3OC12HSL activator diffuses more slowly than the IC4HSL inhibitor. The estimated

diffusion coefficient for A3OC12HSL is 83 µm2/s and for IC4HSL is 1810 µm2/s. The experimentally determined ratio of

diffusion rates in our system of 21.6 is much higher than the value of 1.5 predicted by Wilke-Chang correlation in water

[44], likely due to partitioning of A3OC12HSL in the cell membrane, which slows its diffusion from cell to cell [45].

The slower diffusion rate of A3OC12HSL, coupled with positive feedback regulating its synthesis, allows A3OC12HSL

to aggregate in local domains, leading to formation of visible red fluorescent spots (cellular lawn illustration shown

in Fig. 3.1c). Within these red domains, both A3OC12HSL and IC4HSL are found in high concentrations, but because

A3OC12HSL competitively binds RhlR, GFP is attenuated [46]. The faster diffusion rate of IC4HSL allows it to diffuse

into regions outside of the red fluorescent domains. Here, IC4HSL is free to bind RhlR, activating GFP expression.

Collectively, these processes lead to green regions between red spots.

3.2.2 Experimental Patterns and Controls

Cells harboring appropriate plasmids were initially grown in LB liquid media with corresponding antibiotics at 30oC

until optical density at 600 nm reached 0.1− 0.3. Cells were then concentrated and re-suspended in M9 media with

appropriate antibiotics[47]. 0.5 mL of concentrated cell solutions (OD600 = 2.0) were poured onto a 2% M9 agar plate

(60×15 mm Petri dish) to form a cellular lawn. Plates were incubated at 30 oC and fluorescence images were captured

periodically. To examine the single cell fluorescence evolution of toggle switch cell populations, we performed flow

cytometry at the beginning of the experiment (0 h) and at the end of the experiment (24 h).

To study pattern forming behavior, engineered cells harboring appropriate plasmids were initially grown in LB

liquid media with corresponding antibiotics at 30oC until optical density at 600 nm reached 0.1−0.3. Cells were then

concentrated and re-suspended in M9 media with appropriate antibiotics [47]. 0.5 mL of concentrated cell solutions
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Figure 3.1: Design of a synthetic multicellular system for emergent pattern formation. a, Abstractly, the sys-
tem consists of two signaling species A3OC12HSL and IC4HSL: A3OC12HSL is an activator catalyzing synthesis of both
species while IC4HSL is an inhibitor repressing their synthesis, with additional repression by A3OC12HSL via competi-
tive binding. b, Genetic circuit implementation. Promoter regions are indicated by white boxes, while protein coding
sequences are indicated by colored boxes. IPTG is an external inducer modulating system dynamics. c, Top: Illus-
tration of signaling species concentrations in one-dimensional space. The dashed orange and blue lines correspond
to A3OC12HSL and IC4HSL respectively. Middle: Spatial profiles of reporter proteins. RFP expression (red line) corre-
lates with A3OC12HSL concentrations, while GFP expression (green line) roughly mirrors RFP expression. Bottom: A
vertical slice of cell lawn. Cells express fluorescence proteins according to the profiles above and produce a global
multicellular pattern. 18



(OD600 = 2.0) were poured onto a 2% M9 agar plate (60× 15 mm Petri dish) to form a cellular lawn. Plates were

incubated at 30 oC and fluorescence images were captured as needed. Prior to the self-activation of the A3OC12HSL

synthase positive feedback loop, the cell lawn exhibits no fluorescence. However, over time red fluorescent spots

emerge with sizes much larger than that of a single cell (10-1000x). Simultaneously, green fluorescence develops in

a pattern with dark voids positioned precisely in the locations of the intense red fluorescence (Fig. 3.7a). Time-series

microscopy reveals that patterns begin to emerge after approximately 16 hours (Fig. 3.5).

In control experiments, we show that our patterns are not simply a result of the outward growth of clusters of

differentially colored cells (Fig. 3.7b-c). For this we first assayed the phenotypic behavior of lawns of cells that express

fluorescent proteins constitutively. As shown in Fig. 3.7b, when red and green fluorescent cells are grown separately

or together, uniform fluorescent fields develop. The difference between these control experiments and the emergent

patterns is illustrated clearly in the red/green fluorescence density plots (Fig. 3.7c). We further tested additional ratios

of constitutively fluorescent green and red cells and again observed relatively uniform fields of fluorescence (Fig. 3.2).

These experiments demonstrate that, in our experimental setup, neither cell growth nor initial spatial heterogeneity of

cell density give rise to the large scale spatial patterns observed with the Turing cells.

1:0 999:1 99:1

9:1 7:3 1:1

3:7 1:9 0:1

Figure 3.2: Populations of E. coli expressing constitutive fluorescent reporter proteins GFP or mCherry were mixed

in various ratios of [Green:Red] on M9 supplemented minimal media and then imaged by microscopy. Scale bar,

200 µm.
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Also, by performing an experiment with cells that harbor independent bistable green/red toggle switches, we test

whether observable patterns would emerge if individual cells autonomously made cell-fate decisions at some point

after plating (Fig. 3.3a) [48]. For these switches, which are essentially net positive feedback loops, IPTG induction

results in expression of TetR/GFP, aTc induction results in expression of LacI/RFP, and absence of inducer results in

a “memory” of the cells’ most recent state (at 30oC) [48]. Co-induction with both inducers gives rise to co-expression

of all proteins; subsequent simultaneous removal of the inducers causes each cell to make an independent quasi-

random decision and enter one of the two stable states. To explore whether such an independent decision-making

process results in global pattern formation, we induced toggle cells with 3 µM IPTG and 0.3 µM aTc in liquid culture

for 5 hours. Flow cytometry analysis confirmed that after this initial incubation period, all cells in the population had

roughly the same red/green fluorescence levels (Fig. 3.3b). Co-induced cells were then plated onto Petri dishes lacking

inducers (bistability condition) using the same technique as the experiments above. The fluorescence fields after 24

hour incubation at 30 oC were uniform, showing no emergence of patterns (Fig. 3.3d-f). However, flow cytometry

analysis of cells scraped from the plate after 24 hours revealed that the initially homogeneous cell population had

bifurcated almost completely into two subpopulations, one with high GFP expression and the other with high RFP

expression (Fig. 3.3c). The toggle switch cell lawn maintained spatial homogeneity but individual cells settled into

one of the two states, suggesting that this autonomous quasi-random fate decision by individual cells does not lead to

global spatial patterning.

Figure 3.3: Behavior of cell populations with each cell harboring an intracellular green/red bistable toggle switch. a, A
bistable toggle switch derived from Gardner et al [48]. b, Flow cytometry fluorescence density plot of the toggle cells
at time 0. c, Flow cytometry fluorescence density plot of cells scraped from the cell lawn at 24 hours. d-e, Microscope
images of cell lawns harboring the toggle switch circuit at 24 hours. Both RFP (d) and GFP (e) are homogeneously
distributed and qualitatively different from that of a population carrying the emergent circuit in Fig. 2a. Scale bar,
100 µm. f, Fluorescence density plot of the microscope images in panels d-e.
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Next, we examine how changes in the strengths of localized interactions lead to different global outcomes in our

pattern forming gene circuit. In our system, IPTG can be used to modulate the inhibitory efficiency of IC4HSL in

individual cells by affecting CI expression from PRhl−lacO, up to the threshold of toxicity. Our data show that mean

GFP levels increase sigmoidally with inducer concentration while the overall area of red spots decreases (Fig. 3.8a-

c), correlating well with the results from our mathematical model (Fig. 3.8d-g). To quantify changes in the spatial

characteristics of the patterns in response to different IPTG concentrations, we define a collectivity metric as follows:

Θ =
M

∑
i, j=1

σi, j, where σi, j =


1 if pixels i and j are in the same red spot

0 otherwise

where M is the total number of pixels in the image. Figure 3.8b shows that in our experiments, the collectivity metric

decreases approximately 9 fold as a function of IPTG, indicating that an increase in the inhibitory effect of IC4HSL in

each individual cell results in reduced overall global clustering. Moran’s I [49] is also plotted to illustrate how the

spatial autocorrelation of an image decreases with IPTG (Fig. 3.8b, inset), qualitatively consistent with the analysis

of our simulated patterns (Fig. 3.4). Additionally, spots become smaller due to IPTG induction as is visible in the

microscope images in Figure 3.8a.
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0.97

Figure 3.4: Moran’s I of the patterns from our deterministic simulations.

We performed a 32-hour experiment to gain a better understanding of the dynamics of pattern emergence. A

lawn of cells was prepared as described above, placed in a microscope chamber and incubated at 30 oC. Fluorescence

images of the same region were captured once every 30 minutes. Figure 3.5 shows images at 4 hour intervals (0-, 4-,

8-, 12-, 16-, 20-, 24-, 28-, and 32-hour). There is no fluorescence initially until hour 16 when tiny spots emerge. These

tiny spots grow quickly and new spots continue appearing and growing during the following few hours. By hour 24,
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Figure 3.5: Emergence of patterns over time. Snapshots of red fluorescence were taken every 30 minutes for 32
hours. Shown are images in 4-hour intervals. Scale bar, 100 µm. Left: Average minimium distance between spots as
a function of time, blue shading indicates standard deviation. Right: Average spot diameter as a function of time.
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Figure 3.6: a, GFP image and corresponding Fourier transform.b, RFP image and corresponding Fourier transform.
c, Radial power spectrum of GFP and power law fit of -2.3. d, Radial Power spectrum of RFP with a powerlaw tail
fit of -3.9. e, Pattern forming regimes in parameter space and estimated parameters for our system. The parameters
fall above the region where stochastic patterns form but below the region where normal Turing patterns form. f,
Characteristic separation of spots with average separation of 32±8px (45±11 µm).
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Figure 3.7: Experimental observations of emergent pattern formation. a, Representative microscope images
(based on 6 technical replicates) of a typical field of view showing a fluorescent pattern formed by an initially ho-
mogeneous isogenic lawn of cells harboring the Turing circuit with no IPTG. Spots and voids appear in the red and
green fluorescence channels, respectively. Scale bar, 100 µm. b, Microscope images of cell lawns with constitutive
expression of fluorescent proteins. Left: cells expressing RFP; Middle: cells expressing GFP; Right: mixed popula-
tion of red and green cells. c, Fluorescence density plots computed from the images above (left-to-right: red, green,
red/green, and Turing). Color intensity is in log scale (a.u.).
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spots have emerged with typical sizes much larger than that of a single cell. The spot pattern remains roughly the same

from hour 24 to hour 32. However, as our experimental system is fundamentally a dissipative system, and we do not

feed fresh nutrients, an eventual breakdown is inevitable.

We can also extract the characteristic scale of the pattern. To do this we found the centroid points of each clump

of activator. We then created a histogram of distances to the nearest neighboring centroids Figure 3.6f. From this plot

we found that the average separation of clumps is 45±11 µm. Additionally, we can extract the distribution for sizes

of the spots. We found the the average radius of the clump is 14 µm.

Moran’s I

Moran’s I was developed to measure spatial autocorrelation and indicates whether adjacent observations of the same

phenomenon are correlated. Moran’s I was proposed as follows [49]

I =
N

∑
N
i=1 ∑

N
j=1 wi j

∑
N
i=1 ∑

N
j=1 wi j(xi− x̄)(x j− x̄)

∑
N
i=1(xi− x̄)2

(3.1)

where N is the total number of pixels, x is the variable of interest (red fluorescence level here), x̄ is the mean of x,

and wi j a weight matrix of pixels. We employ a simple form of the weight matrix as follows: wi j = 1 if two pixels

are directly adjacent and wi j = 0 otherwise. Moran’s I values typically range from +1, representing complete positive

spatial autocorrelation, to −1, corresponding to complete negative spatial autocorrelation.

3.3 Theoretical Results

Having established that our system forms emergent patterns, we proceeded to study the mechanisms driving these

patterns. We formulated deterministic and stochastic models and analyzed our data to assess agreement with the

theory of stochastic Turing patterns.

3.3.1 Deterministic Model

We first developed a detailed deterministic reaction-diffusion model. The model explicitly describes chemical reac-

tions for the LasI and RhlI synthases, regulatory protein CI, and synthesis and diffusion of the morphogens A3OC12HSL

and IC4HSL. As the overall system involves a large number of reactions with rate constants that span multiple time-

scales, we made two commonly used simplifying assumptions. First, we assume that operator states of a promoter

fluctuate much faster than protein degradation rates. Second, we assume that mRNA half-life is much shorter than

protein half-life. These assumptions allow us to eliminate operator fluctuation and mRNA kinetics and model the
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system at the communication signals and protein levels as follows:

∂U
∂ t

= αuIu− γuU +Du∇
2U (3.2)

∂V
∂ t

= αvIv− γvV +Dv∇
2V (3.3)

∂ Iu

∂ t
= αiuF1(X1,C)− γiuIu (3.4)

∂ Iv

∂ t
= αivF1(X1,C)− γivIv (3.5)

∂C
∂ t

= αcF2(X2,L)− γcC (3.6)

where U and V are the concentrations of the two diffusible morphogens A3OC12HSL and IC4HSL, Iu and Iv are the

concentrations of corresponding AHL synthases, and C refers to CI.

We model the hybrid promoters using the following Hill functions:

F1(X1,C) =
[1+ f1(

X1
Kd1

)θ1 ][1+ f−1
2 ( C

Kd2
)θ2 ]

[1+( X1
Kd1

)θ1 ][1+( C
Kd2

)θ2 ]
(3.7)

F2(X2,L) =
[1+ f3(

X2
Kd3

)θ3 ][1+ f−1
4 ( L

Kd4
)θ4 ]

[1+( X2
Kd3

)θ3 ][1+( L
Kd4

)θ4 ]
(3.8)

where F1(X1,C) and F2(X2,L) are the production rates of the promoters PLas−OR1and PRhl−lacO, X1 and X2 are the

LasR-A3OC12HSL complex and the RhlR-IC4HSL complex respectively, and L is the concentration of unbound LacI

protein. We use the definitions

X1 = RuU (3.9)

X2 =
RvV

(1+U/Kc3)
(3.10)

L = λl

(
1+ f−1

6 (I/Kd6)
θ6

1+(I/Kd6)
θ6

)
(3.11)

where I is the IPTG concentration, Ru and Rv are the regulatory proteins LasR and RhlR:

Ru = λuIu (3.12)

Rv = λv

(
1+ f−1

5 (C/Kd5)
θ5

1+(C/Kd5)θ5

)
(3.13)

A summary of the variables used in our model is available in Table 3.1 and definitions of the rate constants in Ta-

bles 3.2-3.3. As the goal of producing this deterministic model was to see if we could reproduce the principal features

of the observed pattern, we use order of magnitude estimates for parameters. Hill functions employed in this model
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have a shared form of Y = 1+ f (X/K)θ

1+(X/K)θ
, where X and Y correspond to the input and output of the function, K is the

dissociation constant, θ is the Hill coefficient and f is the fold change of Y upon full induction by X .

To study patterning using our model, we divide a cellular lawn into a mesoscopic M×M grid (M = 64 in our

simulation). As is common for deterministic Turing simulations, we introduce small variation into the initial concen-

trations of the molecules for initial symmetry breaking. All the variables (species) were initially assigned low values

(random values obeying a Gaussian distribution that has a mean of 1.0 and a variance of 0.05) to approximate the

initial condition in our experimental setup. We numerically integrate the partial differential equations over time to

simulate spontaneous pattern formation. We also perform numerical simulations with a range of IPTG concentrations

(from 10−6 to 10−2 M) to explore modulation of pattern formation. Sizes of simulated patterns are determined in

terms of relative fluorescence intensities rather than absolute values to match our image processing procedures for the

experimental data.

We initially ran simulations of this model using a high diffusion rate ratio ( Dv
Du

) of 100. These simulations yield

patterns of red spots and green voids (Fig. 3.8d), suggesting that the underlying dynamics of our system are Turing-

like, with the potential for Turing instabilities. Deterministic simulations of IPTG modulations also correlate well with

the trends of the experimental results (Fig. 3.8e).

While the overall behavior of our system is reminiscent of classical Turing patterns [50], there are key differ-

ences. In particular, when we ran simulations at the measured diffusion rate ratio of Dv
Du
≈ 21.6, patterns did not arise

(Fig. 3.8f). For some two-node implementations of Turing systems, this rate would be sufficient for pattern formation

[51]. In addition, certain networks with more nodes can allow small or even equal morphogen diffusion rate ratios

to generate Turing instabilities [52]. However, a practical biological implementation imposes certain dynamics such

as delays associated with protein production that can strongly impact pattern formation [53, 54]. Indeed, our deter-

ministic modeling results suggest that the ratio of diffusion constants for the activator and inhibitor in our system is

either barely within the range required for a Turing instability, or even outside the range, depending on the precise

medium in which signal diffusion is measured. In addition, whereas in the deterministic simulation, spots are identical

and evenly distributed, those in the experimental systems vary in size, shape, fluorescence intensity, and the intervals

between them.

3.3.2 Stochastic Model

The deterministic modeling results indicate that our system may be beyond the regime where classical Turing patterns

are formed, but still within the regime where stochastic Turing patterns occur [3, 4, 5, 29]. Indeed, gene expression

in microbes is inherently noisy due to the small volume of cells and the fact that many reactants are present in low

numbers, suggesting that stochastic Turing patterns could be present in our system [55].
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Figure 3.8: Mathematical modeling and correlation between pattern modulation experiments and simulations.
a, Experimental results for IPTG modulation of pattern formation with microscopy images corresponding to specific
IPTG concentrations in b. The same display mappings were used for all images in a. b, Collectivity metric parameter
Θ is influenced by IPTG modulation. Inset: Moran’s I (section 3.2.2) decreases with IPTG. c, Pattern statistics over
IPTG modulation for experimental results. d, Pattern obtained from simulating a deterministic reaction-diffusion
model with Dv/Du = 100. e, Pattern statistics over IPTG modulation for deterministic modeling. f, Patterns obtained
from simulating our deterministic model (top) and stochastic spatiotemporal model (bottom) at the measured diffusion
ratio of Dv/Du = 21.6. g, Pattern statistics over IPTG modulation for stochastic modeling.
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Noise in stochastic Turing patterns expands the range of parameters in which patterns form, in contrast to the usual

expectation that noise serves as a destabilizing agent. The patterns observed in stochastic Turing systems correspond

to the slowest decaying mode of the fluctuations. Similar noise stabilization phenomena can be observed in other sys-

tems that are out of equilibrium. For example, in predator-prey systems, fluctuations can drive temporal oscillations

of populations [56, 57]. Noise-driven stabilization has also been recently discovered in the clustering of molecules

on biological membranes [58, 59] and in models that exhibit Turing-like pattern formation [5]. In particular, whereas

spatial symmetry breaking and pattern formation via the original Turing design requires two morphogens with diffu-

sion rates that differ by a large factor on the order of ten or a hundred [19], the requirements to form stochastic Turing

patterns are less stringent. For example, in a pattern-forming plankton-herbivore ecosystem, the noise associated with

discrete random birth and death processes reduces the required ratio of diffusion constants for pattern formation from

a threshold of 27.8 for normal Turing patterns to a threshold of 2.48 for stochastic Turing patterns [3, 4, 5, 29].

To determine whether noise in the chemical reactions underlying gene expression and morphogen diffusion in

our system can cause the emergence of patterns over a wider range of parameters than a deterministic model, we

constructed a stochastic spatiotemporal model employing the same diffusion and rate constants used in our determin-

istic model. The patterning process is modeled with exactly the same biochemical reactions used in our deterministic

model but simulated stochastically using an efficient tau-leaping stochastic algorithm[60, 61]. To speed up this large

scale spatiotemporal simulation, we employ a hybrid technique where all intracellular chemical reactions are stochas-

tic but signal diffusion is deterministic since the diffusion time scales are typically much faster than the intracellular

reactions considered in our model. This model captures stochastic effects in the production and degradation of the

proteins and morphogens in our system, yet approximates diffusion as deterministic. Simulations of the stochas-

tic model generically produce patterns with large variability in spot size, shape, intensity, and intervals, which are

similar to the patterns observed in our experiments, and different from those predicted for the deterministic model

(Fig. 3.8f). We have compared the experimental patterns with stochastic simulations, in both real space and in two-

dimensional Fourier transform (2DFT) space (Fig. 3.15). Neither the experimental 2DFT nor the simulated 2DFT

contains pronounced peaks that would be present in a deterministic honeycomb Turing pattern. Moreover, as the

IPTG concentration is increased, both experimental and simulated patterns become more regular (Fig. 3.8g).

To illustrate the behavior of each species in our pattern formation system (Table 3.1), we performed a spatial

stochastic simulation using the parameters depicted in Tables 3.2-3.3. The top of Figure 3.9 shows A3OC12HSL and

IC4HSL patterns produced in our stochastic simulation using the parameters given in tables Tables 3.2-3.3. The red

line indicates the location of the cross-section used for all other dynamic variables. The bottom of Figure 3.9 shows

cross-sectional slices of variables U (A3OC12HSL), V (IC4HSL), Iu (LasI), Iv (RhlI), C (CI), Ru (LasR), Rv (RhlR), L (free

LacI), X1 (LasR-A3OC12HSL complex), and X2 (RhlR-IC4HSL complex).
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Figure 3.9: A3OC12HSL and IC4HSL patterns produced in our stochastic simulation using the parameters given in Ta-

bles 3.2-3.3. The red line indicates the location of the cross-section used for all other dynamic variables. Cross-

sectional slices of variables U (A3OC12HSL), V (IC4HSL), Iu (LasI), Iv (RhlI), C (CI), Ru (LasR), Rv (RhlR), L (free
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Figure 3.10: Spectral analysis and parameter analysis. (a) Pattern forming regimes in parameter space and esti-
mated parameters for our system. Parameters above the green surface of neutral stochastic stability can form stochastic
patterns and parameters above the blue surface of deterministic neutral stability can form deterministic Turing patterns.
The ratio of the diffusion coefficients ν /µ , ratio of degradation rate to production rate d/p, and the ratio of production
rates are estimated for our system by yellow ellipsoid. The parameters for our system are mostly in the regime where
stochastic patterns form and outside the region where deterministic Turing patterns form. Example stochastic simula-
tions are shown for parameters drawn from a deterministic parameter region with Dν/Dµ = 100 (top) and a stochastic
region with Dν/Dµ = 21.6 (bottom). (b) Radial power spectrum of green fluorescence and best fit power law tail with
an exponent of −2.3± 0.2. (c) Radial power spectrum for 8 trials of our stochastic simulation, their mean, and the
best fit power law tail.

As seen in Figure 3.9, the concentrations of LasI, RhlI, and LasR are proportional to the A3OC12HSL activator.

This is due to the fact that these proteins are expressed from the A3OC12HSL activated PLas−OR1 promoter. Likewise,

the LasR-A3OC12HSL complex is directly proportional to A3OC12HSL concentrations. In addition, since RhlI catalyzes

IC4HSL synthesis, IC4HSL is also directly proportional to A3OC12HSL concentrations. However, since IC4HSL diffuses

faster than A3OC12HSL, relatively high concentrations of IC4HSL are also found in between the A3OC12HSL activation

domains.

Interestingly, the RhlR-IC4HSL complex is inversely proportional to A3OC12HSL. In regions of high A3OC12HSL,

A3OC12HSL competitively binds RhlR, lowering the concentration of the RhlR-IC4HSL complex. However, as men-

tioned, IC4HSL concentrations remain relatively high outside of the A3OC12HSL activation domains. Thus, RhlR-IC4HSL

is highest in between the activation domains. Collectively, this behavior results in green fluorescence (following the

RhlR-IC4HSL complex concentration) surrounding red fluorescent activation domains (following the LasR-A3OC12HSL

complex concentration).

To characterize the stochastic simulation we calculated the distribution of spot sizes and spacing. We binarized

the simulation data shown in Figure 3.18 and determined locations of the centroids of spots and the areas of the spots.

The spacing is calculated by finding the distance to the nearest neighboring centroid. The distribution of spot sizes and

spacing is shown in Figure 3.19. As the IPTG concentration is increased spot sizes decrease and have more variance.

Similarly the spacing between spots decreases as the IPTG concentrations is increased.

Our analysis of the stochastic Turing model predicts that stochastic patterns form over a wide range of parameters.
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Indeed, our stochastic model predicts that stochastic Turing patterns are possible at the measured ratio of diffusion

rates for A3OC12HSL and IC4HSL (Fig. 3.10a, Fig. 3.8f). To determine the sensitivity of the stochastic model to the

parameters chosen and the range in which stochastic patterns will form, we individually varied parameters from half

their nominal value to 1.5x their nominal value while keeping all other parameters fixed at their best estimated value.

(Fig. 3.12) For each set of parameters we calculate the analytical power spectrum and the eigenvalues of the Jacobian

(linear stability matrix) of the stochastic model evaluated at a fixed point found numerically. In this analysis, we

classify each set of parameters as either producing an unstable homogeneous state at wavenumber k = 0, a stable

homogeneous state, a stochastic Turing pattern, or a deterministic Turing pattern. Specifically, we classify a set of

parameters as producing a pattern if they produce a peak in the calculated power spectrum at a nonzero wavenumber.

To distinguish between stochastic Turing patterns and deterministic Turing patterns we examine the eigenvalues of

the corresponding Jacobian. If the real part of all the eigenvalues is negative for all wavenumbers then the pattern

must be due to stochasticity. If there is any range of wavenumbers that have corresponding positive real parts of their

eigenvalues then the pattern is produced by the traditional Turing mechanism.

The results of this analysis are shown in Figure 3.11 and illustrate the significant ranges for each parameter that

can lead to stochastic Turing patterns. Indeed, the estimated parameter values yield stochastic Turing patterns and

variation of Du, Dv and IPTG, as well as several other parameters, never produce deterministic patterns. So our results

are very insensitive to estimation error of these important parameters. Overall, varying the parameters one at a time,

68% of the values yield stochastic Turing patterns. In addition to calculating the phase diagram we quantified the

sensitivity of the pattern to each parameter by calculating the change to the maximum eigenvalue (Fig. 3.12).

To attempt to quantify the way in which stochasticity enlarges the pattern forming regime of parameter space, we

simultaneously varied all model parameters and performed the classification used above. Specifically, we used Latin

hypercube sampling to randomly generate 500 parameter sets where all of the parameters were allowed to vary between

half their nominal value and 1.5x their nominal value. For this analysis we found that 24.8% of parameters produced

unstable fixed points, 43.2% produced stable homogeneous states, 13.2% produced stochastic Turing patterns, and

18.8% produced Turing patterns. Thus, over this arbitrarily large range of parameters, pattern formation occurs only

18.8% of the time in the absence of stochasticity, but 32% of the time when stochasticity is included. Accordingly, by

including stochasticity, the range in which patterns can form has been increased by 70%.
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Figure 3.11: Phase Diagram showing the type of phase as each parameter is varied from half of its nominal value
to 1.5x its nominal value while keeping all other parameters fixed. Red indicates an unstable fixed point, magenta a
stable homogeneous state, blue a stochastic pattern, and green a deterministic Turing pattern.
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Figure 3.12: Sensitivity of a phase to a parameter is indicated by plotting the difference in eigenvalues between 1.5x
the nominal value of a parameter and half of the nominal value. Red indicates a parameter that when increased
promotes traditional Turing patterns and blue indicates a parameter promoting stochastic patterns.
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To calculate the analytic power spectrum we used a method similar to that described in section 3.4. We wrote down

the transition probabilities for the stochastic model directly from our deterministic model. For example, the transition

probability for U gaining a particle is T (U →U + 1) = αuIu and the transition probability for U losing a particle is

T (U →U −1) = γuU . Using a system size expansion one can derive Langevin equations governing the fluctuations

of the form

∂tx = Ax+ξ where
〈
ξ (t)ξ †(t ′)

〉
= Bδ (t− t ′), (3.14)

where in the case of this model

A = J−diag([Duk2,Dvk2,0,0,0]) (3.15)

B = diag([αuIu + γuU +Duk2U,αvIv + γvV +Dvk2V,

αiuF1(X1,C)+ γiuIu,αivF1(X1,C)+ γivIv,

αcF2(X2,L)+ γcC]) (3.16)

x† = [δU,δV,δ Iu,δ Iv,δC], (3.17)

and J is the Jacobian of the model evaluated at the fixed point. Using these equations the power spectrum is calculated

to be P(k,w = 0) = 〈xx†〉 = A−1B(A−1)†. The fixed point, Jacobian, and power spectrum are numerically calculated

using a custom Matlab script. Figure 3.13 shows the calculated power spectrum corresponding to the parameters listed

in Table 3.2. In this figure the full model produces power spectrum with a power law tail of −2 for the inhibitor and

an initial power law tail of −4 for the activator before undergoing a crossover to a −2 power law. The eigenvalues of

the spatially extended Jacobian, A, are plotted in Figure 3.14 showing that all eigenvalues are negative. This indicates

that the set of parameters in Table 3.2 produces a stochastic Turing pattern.
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Figure 3.13: The Analytic power spectrum calculated for the parameter set given in Tables 3.2-3.3.
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Figure 3.14: The real part of the eigenvalues of the Jacobian for the parameter set given in Tables 3.2-3.3 plotted as a

funtion of k. All the eigenvalues are negative indicating that the pattern formed is stochastic.

3.3.3 Power Spectra Analysis of Experimental Observations

To further test the hypothesis that we are observing stochastic Turing patterns, we measured the power spectrum for

both of our fluorescent reporters. Theory predicts that the power spectrum will have a power-law tail as a function

of wavenumber, k, for large wavenumbers, with an exponent characteristic of the noise source [56, 5]. The exponent

value is -2 and -4 respectively for stochastic Turing patterns and deterministic Turing patterns with additive noise, and

can be interpreted simply as follows. The -2 arises because, at small frequency or wavenumber, the random variable

(i.e., concentration) is simply diffusing and so follows the behavior of a random walk, whose power spectrum exhibits

a -2 power law. The -4 arises because for a system that is executing deterministic damped periodic motion but driven

by additive white noise, the response of the random variable is a Lorentzian, with an asymptotic behavior for the

power spectrum that exhibits a -4 exponent.

We converted the pictures of red and green fluorescent proteins into gray scale images and subtracted off the mean

intensity to obtain data corresponding to the fluctuations. We then conducted a discrete two-dimensional (2D) Fourier

transform of the data, finding its amplitude squared. Since it is clear from the resulting Fourier transforms that the
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patterns are isotropic, we perform an angular average (Figures 3.6a, 3.15). For the GFP channel, we observe a power-

law tail, with an exponent of −2.3±0.4 (Fig. 3.10b), consistent with predictions for demographic noise. It is possible

to obtain anomalous power law tails in the power spectrum due to discontinuities in the boundaries of the picture,

but these artifacts are distinguishable by their lack of noise, and we are confident that such spectral leakage is not

being observed in these data. For the RFP channel, we also observe a power-law tail with an exponent of −3.9±0.4.

(Fig. 3.6b,d).

To better understand the implications of these tails, we examined our detailed stochastic model of the genetic

systems and also developed a reduced stochastic model that explicitly includes only the morphogens (see section 3.4).

Both models predict that our experimental parameters will produce a stochastic pattern with a power law tail of−2 for

both the activator and inhibitor at asymptotically large wavenumbers (Fig 3.10c, and sections 3.4, 3.4.1). However, in

the range of parameters likely to correspond to the experiments ( Fig. 3.10a), the detailed stochastic model predicts

that the exponent of the power-law tail for the activator will be −4 over a large range of intermediate wave-numbers

before it eventually undergoes a crossover to a power-law with an exponent−2 at high wave-numbers (Fig. 3.13). This

behavior once again agrees with our experimental data and supports our identification of stochastic Turing patterns. In

summary, spectral analysis of the patterns of activator and inhibitor is consistent with a model in which fluctuations in

the amount of signalling morphogens drive stochastic Turing patterns. Radial power spectra were also calculated for

other concentrations of IPTG as shown in Figures 3.16 and 3.17.
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Figure 3.15: 2D power spectrum and radial power spectrum for 30C12HSL produced in our stochastic simulation

using Dv/Du = 21.6 for three different values of IPTG.

39



Figure 3.16: RFP images and their corresponding Radial Power spectrums with powerlaw tail fits of -2.5, -2.5, -2.9

for IPTG concentrations of 10−3 M, 10−2.5 M, and 10−2 M, respectively.
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Figure 3.17: GFP images and corresponding Radial Power spectrums with powerlaw tail fits of -2.1, -2.2, -2.2 for

IPTG concentrations of 10−3 M, 10−2.5 M, and 10−2 M, respectively. At IPTG concentrations smaller than 10−4 M

the green channel begins to look spatially homogeneous as the signal is not strong enough to show-up beyond the

background camera noise.
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3.4 Reduced Model for Stochastic Turing Patterns

The traditional Turing mechanism usually consists of at least two chemicals. One of the chemicals is a slowly diffusing

activator, activating the synthesis of itself and the inhibitor. The other chemical is a fast diffusing inhibitor, inhibit-

ing synthesis of the activator and itself. The Turing mechanism can be explained by a simple qualitative argument

consisting of three steps. Initially, activator and inhibitor are distributed randomly. Areas with local concentrations

of activator will autocatalytically grow, forming dense clumps of activator. Inhibitor will also be produced near these

clumps of activator. The rapidly diffusing inhibitor will suppress the spread of the clumps of activator. This simple

picture of activator-inhibitor dynamics does not require large separation of diffusion rates or depend on details of rates.

When this system is considered classically, however, it is found to either require fine tuning of reaction rates or have

a large separation of diffusion rates. We will see shortly that the stochastic treatment solves this fine tuning problem.

Our synthetic system is designed to implement an activator-inhibitor system with A3OC12HSL as an activator of its

own synthesis and that of IC4HSL, while IC4HSL is an inhibitor of both chemicals. To develop a simplified model of

the activator-inhibitor circuit, one can write down reaction diffusion equations for this system that are mathematically

equivalent to the Levin-Segel model of herbivore-plankton interaction [16].

∂tφ =µ∇
2
φ +bφ + eφ

2− pψφ (3.18)

∂tψ =ν∇
2
ψ + pψφ −dψ

2 (3.19)

Here φ is the concentration of activator (A3OC12HSL), ψ is the concentration of inhibitor (IC4HSL), µ and ν are the

the diffusion constants of the activator and inhibitor, respectively. The term pψφ is a competition term, eφ 2 is a

nonlinear activation term, and −dψ2 is a nonlinear self inhibition term for the inhibitor. These equations exhibit a

Turing instability when [16]:

ν

µ
>

(
1√

p/d−
√

p/d− e/p

)2

. (3.20)

To consider the effects of extrinsic noise we can simply add white noise ξ to the system of equations above.

Then we can construct the Fourier transformed stability matrix and solve for the power spectrum P̂(k,w) where k

is the wave-number and w is frequency. When this is done it is found that the power spectrum has a power law tail,

P̂(k,w = 0) = kσ

ν2 〈ξ ξ 〉 ,k� km with an exponent σ =−4 [5]. In addition, the condition for pattern formation becomes

ν

µ
> p

e .

Intrinsic noise, represented for example by copy number fluctuations arising from stochastic gene expression, can

be studied by writing down an individual level model for the activator and inhibitor [5]. The following set of chemical
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reactions describe the effective activator-inhibitor system that we engineered:

A b−→ A+A AI
p1/V−−−→ I I + I

d/V−−→ I

A+A
e/V−−→ A+A+A AI

p2/V−−−→ I + I (3.21)

Here A is the activator (A3OC12HSL) and I is the inhibitor (IC4HSL) and V is the well-mixed patch size setting the

strength of the fluctuations. From these first order reactions one can derive a Master Equation governing the probability

of having m molecules of I and n molecules of A at a given time:

∂ tP(m,n) =b[(n−1)P(m,n−1)−nP(m,n)]+
e
V
[(n−1)(n−2)P(m,n−1)−n(n−1)P(m,n)]

+
p1

V
[m(n+1)P(m,n+1)−mnP(m,n)]+

p2

V
[(m−1)(n+1)P(m−1,n+1)−mnP(m,n)]

+
d
V
[(m+1)mP(m+1,n)−m(m−1)P(m,n)] (3.22)

To introduce spatial variations, the master equation can be conveniently represented as a path integral, from which

mean-field equations and Langevin equations with multiplicative noise governing the fluctuations are obtained by Van

Kampen expansion [5]. We calculate the power spectrum P̂(k,w) as a function of frequency w and wave-number k,

obtaining a power spectrum tail (k� km): P̂(k,w = 0)≈ ψ

ν
kσ (inhibitor), P̂(k,w = 0)≈ φ

µ
kσ (activator) with σ =−2.

Patterns arise when
ν

µ
>
( p

e

) 5+7(de/p2)

4+5(de/p2)+3(de/p2)2 . (3.23)

Additionally the wavelength, λ , or characteristic spacing of the pattern turns out to be the same as that for a classical

Turing pattern [5] and is found to be

λ = 2π

√
2
φ

µν

eν− pµ
. (3.24)

3.4.1 Stochastic Model Power Spectra Analysis

We now discuss the origin of the exponent discussed above, from the standpoint of two models that we have con-

structed to analyze the data. The first model is a coarse-grained phenomenological or minimal model for the mor-

phogens. The second model is a detailed stochastic model, described in section 3.3.2. We will see that there are two

factors contributing to the -2 exponent in the inhibitor channel and the -4 exponent in the activator channel, in the

context of intrinsic noise. Note that extrinsic noise, if present, would lead to an exponent of -4, but in both channels.

The first explanation is that the activator channel had a very sharp threshold for expressing the red fluorescence and

the pictures were overexposed. This overexposure can suppress the small-scale correlations in the patterns. This idea
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is supported by taking data from simulations of demographic-noise induced patterns and performing image operations

on the data to simulate this effect. We ran the simulated data through an image dilation morphological operator with

a disk structural element 1px in radius. The resulting power spectra have power law tails with σ = −4, even though

the original data were intrinsic noise-induced, having a power law tail with σ =−2. Thus, an asymptotic power-law

tail of -2 in the power spectrum appears as an effective exponent of -4 in the presence of overexposure. This is further

supported by looking at the spectra in Figures 3.16 and 3.17. These images, taken at other IPTG concentrations, were

not overexposed and their spectra have power law tails with exponents closer to -2.

The second explanation uses the detailed stochastic model described in section 3.3.2. This model also predicts

power-law tails with σ = −2 for both the activator and inhibitor, at asymptotically large values of k, because, when

coarse-grained, the model should be well-described by the phenomenological model for the morphogens alone. But for

the range of parameters that we estimate are consistent with the experimental data, the detailed model also predicts that

for a wide range of intermediate wavenumbers, there is an effective power-law with σ = −4 for the activator, before

undergoing a crossover to a power law with σ =−2 at high wave-numbers. Our interpretation is that the experiment is

indeed well-described by the detailed model, and that we are observing the behavior before the crossover point in the

power spectrum of the RFP channel. Overexposure does not cause any additional change to the effective -4 exponent.

The measured diffusion ratio of ν

µ
= 21.6 is too small to produce classical Turing patterns. In fact, to produce

patterns qualitatively similar to the ones observed, the diffusion constants must be separated by a factor on the order

of 100 in our non-stochastic simulation (see Fig. 3.8f). We can also plot the estimated range of parameters for our

effective model and compare them to regimes where normal Turing patterns form and stochastic Turing patterns

form (Fig. 3.6e). We see from this plot that the estimated parameters fall mainly in the regime where stochastic

patterns form, but not where normal Turing patterns can form. Any parameters above the blue surface will form

classical Turing patterns. Any parameters above the green surface can form stochastic Turing patterns. The yellow

oval representing our estimated range of effective parameters falls mainly below the blue surface but is above the

green surface, indicating most of the parameters fall within the regime of stochastic patterns. We estimated the values

and ranges of the ratios ν

µ
, e

p , and d
p which solely control pattern formation in the reduced model. In our analysis we

used the the experimentally measured ratio of diffusion constants ν

µ
= 21.6±10 and we estimated e

p < 1 by using the

knowledge that for any pattern to form, either classical or stochastic, the homogeneous state must first be stable so

p > e. Finally, since the degradation rate is always smaller than the rate of production of our molecules we estimated

d
p < 1. Even at our measured values of diffusion constants our stochastic simulation continued to produce patterns

similar to the ones observed in our experiment and produced a power spectrum power law tail with σ −2.4 consistent

with our experiment.
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3.5 Discussion

3.5.1 Alternative Hypotheses

Now we consider alternative hypotheses to our claim that the theory of stochastic Turing patterns explains our exper-

imental observations. First, we consider the duration and dynamics of our pattern formation experiments. One may

expect to observe early events in Turing pattern formation such as splitting of clusters or increases in inter-cluster dis-

tances. These processes may be in fact be taking place, but may be difficult to observe due to weak reporter expression

in the earlier stages. In addition, we must consider the limited duration of our experiments and the possibility that,

theoretically, longer observations may result in different patterns if nonlinear processes eventually began to dominate

dynamics. Indeed, we do not feed fresh nutrients to sustain the system for extremely long durations. However, as

confirmed by analysis of the dynamics in Fig. 3.5, cluster size growth and spacing between clusters appears to be

stabilizing towards the end of the experiment. In addition, domains are neither created nor destroyed in the later time

periods. Essentially, it appears that the patterns are close to stabilizing within the 32 hour observation period.

Another alternative hypothesis is that cell growth dynamics primarily drive the observed pattern formation. Our

control experiments with mixtures of red and green cell populations (Fig. 3.2), along with our bistable switch control

(Fig. 3.3), suggest that cell growth does not explain our patterns. Moreover, our ability to tune pattern characteristics

offers support for the fact that our patterns are not a simple consequence of natural biofilm growth morphologies, but

are rather driven by our genetic circuit. However, growth may indeed impact regularity and may likely explain the

fact that our experimental patterns are less regular than those observed in our stochastic models (Fig. 3.8f). Indeed,

future experiments to demonstrate different classes of patterns, e.g., labyrinth patterns, would offer further support, but

collectively, our experiments strongly support our hypothesis that a Turing mechanism driven by our genetic circuit

explains our observed patterns.

3.5.2 Summary of Evidence for Stochastic Turing Patterns

We summarize our evidence for having demonstrated stochastic Turing patterns and not amplification of random noise

as follows. Our control experiments with mixtures of red and green cells (Fig. 3.7b, Fig. 3.2), along with a bistable

switch (Fig. 3.3), did not produce the patterns that we observe with our genetic circuit (Fig. 3.7a). Our ability to tune

pattern characteristics offers further support that pattern formation is driven by our genetic circuit. In addition to our

experimental controls, we identify patterns in the stochastic model, but not the deterministic model of our system for

the experimentally observed ratio of diffusion rates (Fig. 3.8f). These model patterns resemble the experimentally

observed patterns in real space, exhibit no peaks in the 2DFT (Figs. 3.6 + 3.15), and recapitulate the observed trend

with IPTG variation. Analysis of our experimental data is also in accord with the theory of stochastic Turing patterns.
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The exponents in the tails of the experimental radial power spectra agree with theoretical predictions (Fig. 3.10b,

Fig. 3.6). In addition, although spatial regularity is weak, we observe a radial spectral peak for our experimental

patterns (Fig. 3.10b, Fig. 3.6), indicating a characteristic length scale. Furthermore, exploration of the large parameter

space of the stochastic model indicates that the experimental parameters are most likely to be in the regime where only

stochastic patterns can form (section 3.3.2). Collectively, this body of evidence suggests that our experiments indeed

exhibit stochastic Turing pattern formation.
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3.6 Supplement: Tables and Figures

Table 3.1: Variables used in the model.

Symbol Molecule
U 3OC12HSL
V C4HSL
Iu LasI
Iv RhlI
C CI
Ru LasR
Rv RhlR
L free LacI
X1 LasR-3OC12HSL complex
X2 RhlR-C4HSL complex

Table 3.2: Definitions and values for the rate constants used in our mathematical model.

Parameter Description Value Unit
αu A3OC12HSL production rate 3.0×101 hr−1

γu A3OC12HSL degradation rate 1.0 hr−1

Du A3OC12HSL diffusion coefficient 5.0×10−1 grid2/hr
αv IC4HSL production rate 3.0×101 hr−1

γv IC4HSL degradation rate 1.0 hr−1

Dv IC4HSL diffusion coefficient 10.8 or 50∗ grid2/hr
αiu Basal production rate of LasI 1.0×101 molecules/hr
γiu Degradation rate of LasI 1.0 hr−1

αiv Basal production rate of RhlI 0.3 molecules/hr
γiv Degradation rate of RhlI 1.0 hr−1

αc Basal production rate of CI 1.0×101 molecules/hr
γc CI degradation rate 1.0 hr−1

λu Ratio between LasR and LasI 1.0 �
λv Steady state level of RhlR by λP(R−O1) w/o CI regulation 1.0×103 molecules
λl Steady state level of LacI from placq expression 1.5×102 molecules
Kc3 A3OC12HSL-RhlR dissociation constant 1.5×102 molecules
I IPTG concentration 1.0×10−6∼−2 M
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Table 3.3: Additional definitions and values for the rate constants used in our mathematical model.

Parameter Description Value Unit
θ1 Hill coeff. for LasR-A3OC12HSL complex activation of PLas−OR1 1.0 �
Kd1 Disso. constant of LasR-A3OC12HSL complex with PLas−OR1 1.0×103 molecules
f1 Fold change for full induction of PLas−OR1 1.0×103 �
θ2 Hill coeff. for CI repression of PLas−OR1 2.0 �
Kd2 Disso. constant of CI with PLas−OR1 1.0×101 molecules
f2 Fold change for full inhibition of PLas−OR1 1.0×105 �
θ3 Hill coeff. for RhlR-IC4HSL complex activation of PLas−OR1 1.0 �
Kd3 Disso. constant of RhlR-IC4HSL complex with pRhl-lacO 1.0×105 molecules
f3 Fold change for full induction of pRhl-lacO 1.0×103 �
θ4 Hill coeff. for the LacI activation of pRhl-lacO 4.0 �
Kd4 Disso. constant of LacI with pRhl-lacO 1.0×102 molecules
f4 Fold change for full inhibition of pRhl-lacO 1.0×103 �
θ5 Hill coeff. for the CI activation of λP(R−O1) 2.0 �
Kd5 Disso. constant of CI with λP(R−O1) 1.0×103 molecules
f5 Fold change for full induction of λP(R−O1) 1.0×105 �
θ6 Hill coeff. for the IPTG binding to LacI 1.0 �
Kd6 Disso. constant of IPTG with LacI 1.0×10−3 M
f6 Fold change of LacI activity for IPTG full induction 1.0×105 �
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Figure 3.18: A3OC12HSL patterns produced in our stochastic simulation using Dv/Du = 100 and the parameters given

in Tables 3.2-3.3 for three different concentrations of IPTG.
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Figure 3.19: Spot size and spacing distributions for 30C12HSL produced in our stochastic simulation with Dv/Du =

100 for three different values of IPTG.
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Figure 3.20: A3OC12HSL patterns produced in our stochastic simulation using the measured diffusion ratio of Dv/Du =

21.6 and the parameters given in Tables 3.2-3.3 for three different concentrations of IPTG.
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Figure 3.21: Spot size and spacing distributions for 30C12HSL produced in our stochastic simulation using Dv/Du =

21.6 for three different values of IPTG.
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Transposable Elements
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Chapter 4

Background Chapter on Transposons and
Evolution: An Introduction to DNA
Transposons and Retrotransposons
The modern understanding of evolution includes three main elements: phenotypic and genomic variation, selection

acting on this variation, and inheritance. Some of the key questions are: How does this variation occur? Is the

variation completely random? Is the variation impacted by environmental factors? Luria and Delbruck [62] attempted

to answer these questions in 1943. Their experiment was designed to test two hypotheses: (1) mutations result as a

response to stress and are then passed on to future generations, or (2) mutations are pre-existing and then selected by

the environment.

In the original experiment multiple clonal colonies were grown and then exposed to a phage. By counting the

number of surviving bacteria it is possible to distinguish between the two hypotheses. If the mutations arose due to the

stressor, then roughly the same number of bacteria should survive in each replicate. If the mutations occurred randomly

in previous generations then the number of surviving bacteria depends strongly on when the mutation occurred in the

past because the number of cells with a mutation grows exponentially with time after the mutation. Thus, if the

distribution of bacteria that survived was heavy tailed (and followed a distribution first estimated by Luria-Delbruck),

it would be good evidence for selection on pre-existing mutations [62]. The outcome of this experiment in 1943 is

responsible for the widely accepted understanding that most mutations are pre-existing and are subsequently selected

for by the environment.

Recently, there has been evidence for a more nuanced picture of when mutations occur. There have been reports of

stress induced mutagenesis in bacteria and plants [63]. Additionally, it is known that the DNA repair mechanisms can

be down-regulated due to stress on the cell [64, 65]. In addition, Luria and Delbruck’s experimental data were recently

reanalyzed by Nemenman’s group and found to not preclude a mixed hypothesis [66]. The original experiment may

not have been able to distinguish some of these effects because the stressor used was binary and very strong. The

phage either kills the bacteria or the bacteria survive.

In the following chapters we examine one way in which variation arises in the genome. There are three main

sources of genomic variation including point mutations, transposition, and horizontal gene transfer. Point mutations

are where a single base pair can switch its identity, transposition occurs when genetic material is moved to another

location within the same genome, and horizontal gene transfer is the movement of genetic material between genomes.
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In this part of the thesis, we will be examining transposition. We will examine how DNA transposons and retrotrans-

posons behave in real time in living cells. Specifically, we will show that DNA transposons have transposition rates

that depend on the growth state and these transposition rates are heritable. This contributes to our understanding of

the randomness of variation and how it occurs.

Transposons are colloquially known as “jumping genes.” There are two main types of transposons, DNA trans-

posons which use a “cut and paste mechanism” of transposition, and retrotransposons which utilize a “copy and paste”

mechanism.

DNA transposons encode a protein called transposase which is responsible for their excision. One example of a

DNA transposon is IS608. This transposable element is flanked by two palindromic imperfect repeats. While in single

stranded form these form hair pin structures that serve as recognition sites for the transposase protein. The transposase

that this element codes for is called TnpA. TnpA forms a homodimer that binds to the recognition sites, excises the

transposon, and rejoins the single stranded DNA. The element then can reintegrate at another location [7].

Retrotransposons use a RNA intermediary to accomplish their copy and paste mechanism. They often encode their

own reverse transcriptase. Retrotranposons are first transcribed from DNA to RNA. Once in RNA form, the RNA is

reverse transcribed and integrated into a new location. One example of a retrotransposon is LINE1, which stands

for “Long interspersed nuclear elements.” Human-Line1 makes up 17% of the human genome and retroelements in

general make up 45% of the human genome [67, 68]. Interestingly, the abundance of retroelements in bacteria is very

small compared to that found in Eukaryotes. This will be discussed in chapter 6, where we develop a theory for their

abundance based on measurements of their lethality in live cells.
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Chapter 5

Watching Mutations and Evolutionary
Dynamics in Real Time

5.1 DNA Transposons - Real Time Transposable Element Activity in

Individual Live Cells

This chapter reports on experimental and theoretical work undertaken in collaboration with Thomas E. Kuhlman and

members of his group, namely, Neil H. Kim, Gloria Lee and Nicholas Sherer. The experimental work is described

for completeness and is the work of my collaborators. I, however, was deeply involved with the experimental data

analysis and direction. I developed the software used to extract the excision events from the raw microscope pictures. I

measured the spatial correlation function of these events and also developed a simulation for comparison. I also plotted

the rate distribution of events per colony that lead us to the hypothesis of it being a Luria Delbruck-like process. The

theoretical and computational analyses are primarily my work. This chapter is a modified version of our publication

“Real Time Transposable Element Activity in Individual Live Cells” [15].

5.2 Introduction

A transposable element (TE) is a mobile genetic element that propagates within its host genome by self-catalyzed

copying or excision followed by genomic reintegration [69]. TEs exist in all domains of life, and the activity of TEs

necessarily generates mutations in the host genome. Consequently, TEs are major contributors to disease [70, 71, 72,

73, 74, 75, 76], development [77, 78], and evolution [6, 79]. They are also utilized as molecular tools in synthetic

biology and bioengineering [80].

Despite their ubiquity and importance, surprisingly little is known about the behavior and dynamics of TE activity

in living cells. TE propagation rates can be inferred from comparative phylogenetic analyses of related organisms

[9, 10, 81, 82, 83, 84, 85] or endpoint analyses of TE abundance within populations [6, 7, 86, 87]. By making

assumptions about the mechanisms of TE proliferation, models can be constructed to describe the distribution of TEs

within genomes over evolutionary time scales, and sequenced genomes can be analyzed and fit to TE proliferation

models to infer phylogeny of TE copies and estimate their rates of propagation [8]. However, most sequencing
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techniques require bulk sampling of cells to provide genetic material, and sequencing is therefore generally an average

over many cells. As a result, without extremely deep or single-cell sequencing techniques, most current methods are

sufficient to detect only those TE events that have occurred in the germline and therefore appear in every somatic cell

in the body [88].

TE rates can also be estimated by measuring relative abundances in populations that have been allowed to mutate

over laboratory time scales. One of the first examples of this approach was that by Paquin and Williamson to study the

effects of temperature on the rate of integration of Ty retrotransposons in Saccharomyces cerevisiae after growth for

6–8 generations, resulting in yeast resistant to the antibiotic antimycin A [87]; they estimated a rate of transposition

of 10−7 – 10−10 insertions into a particular region of the yeast genome per cell per generation. As another example,

sequencing of Escherichia coli (E. coli) at intervals in Lenski’s long-term evolution experiments also provided a means

to estimate transposition frequency, which they estimate to be on the order of 10−6 per cell per hour [6]. However,

such measurements yield information on only the relative abundance of extant TE-affected cells in the population, and

dynamic rates must again be inferred through models of population growth that may or may not be accurate.

The limitations described above mean that there is a dearth of information regarding TE behavior in individual

living cells in vivo and the effects of TE activity on those cells. Additionally, estimation of transposition frequency

from either phylogenetic comparisons or population endpoint analyses both suffer from the same serious and funda-

mental limitation: they are only able to detect those events that have not gone to extinction in the population, and

therefore these methods almost certainly underestimate the actual rates of transposition. An analogous situation pre-

viously existed in the case of the dynamics of horizontal gene transfer: phylogenetically inferred rates of horizontal

gene transfer are typically 1 per 100,000 years, whereas direct visual observation in experiments [89] has shown that

the actual transfer rate is many orders of magnitude faster, about 1 per generation time.

To quantitatively study the dynamics of TE activity and its controlling factors in real time and in individual cells,

we have constructed a TE system based on the bacterial TE IS608 in Escherichia coli. IS608 is a representative of

the IS200/IS605 family of transposable elements, which all transpose through similar mechanisms. The IS200/IS605

family is widely distributed, with 153 distinct members spread over 45 genera and 61 species of eubacteria and archaea

[90]. Transposition occurs by exact excision from a single DNA strand [7, 91, 92, 93, 94, 95]. Imperfect palindromic

sequences flanking the ends of the TE form unique structures that are recognized by transposase protein, TnpA, which

can act as a homodimer to excise the TE. The excised TE-TnpA complex can locate and integrate the TE adjacent to

a short, specific sequence (TTAC). Our construct exploits the structure and regulation of the TE to allow the direct

detection and quantification of TE activity in live cells using a suite of novel fluorescent reporters.
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Figure 5.1: Design and validation of the TE system. (A) The promoter for mCerulean3 is interrupted by the trans-
posable element, the ends of which are demarcated by left end and right end imperfect palindromic sequences (LE
IP and RE IP). The transposase, tnpA (gray), is expressed from the promoter PLtetO1, which is inducible with anhy-
drotetracycline (aTc). The sequences of the Promoter/TE junction and -10 and -35 sequences (red boxes) are shown
below the diagram, and the sites cleaved by transposase are indicated by arrows. (B) Upon excision, the promoter for
mCerulean3 is reconstituted and the cell fluoresces blue. The sequence of the reconstituted promoter is shown below
the diagram. A primer designed to bind to the unique sequence formed after promoter reconstitution (blue arrow) was
used to verify excision by PCR, generating an 858 bp amplicon. (C) PCR amplification using these primers only gen-
erates the 858 bp product upon induction, thus verifying excision. (D-F) Colony morphology after growth on agarose
pads. Uninduced TE-carrying cells (D) and wild-type cells exposed to 20 ng/ml aTc (F) show homogeneous, low blue
autofluorescence. Conversely, TE-carrying cells induced with 20 ng/ml aTc (E) show bright, inhomogeneous blue
fluorescence. The brightness scale for all three images is identical. The borders of the colonies are outlined in white.
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5.3 TE Observation System

A diagram illustrating the TE system is shown in Fig. 5.1A. The TE is composed of the transposase coding sequence,

tnpA, flanked by a left end imperfect palindromic sequence (LE IP) and right end imperfect palindromic sequence (RE

IP), which are the recognition and cleavage sites for TnpA. tnpA is expressed using the promoter PLTetO1, which is

repressed by tet repressor. PLTetO1 is derived from the E. coli transposable element Tn10 and titratable over a ∼100x

range with anhydrotetracycline (aTc) [96]. The use of this inducible promoter allows for simple and precise control of

TnpA levels within individual cells. The TE splits the -10 and -35 sequences of a strong constitutive PlacIQ1 promoter

[97] for the expression of the blue reporter mCerulean3 [98]. As shown in Fig. 5.1B, when transposase production is

induced, the TE can be excised, leading to reconstitution of the promoter. The resulting cell expresses mCerulean and

fluoresces blue, indicating that an excision event has occurred. The N-terminus of TnpA is translationally fused to the

bright yellow reporter Venus [99], and the cells constitutively express the red reporter mCherry [100] to aid in image

segmentation. Measurements of blue, yellow, and red fluorescence of controls demonstrate no crosstalk in our optical

setup. The TE is hosted in the low copy number plasmid pJK14 with a pSC101 replication origin [101].

5.3.1 Verification of TE Observation System

Our experimental collaborators first confirmed that the TE excises upon induction of transposase production. PCR

was performed using primers that bind to the unique sequence formed upon excision, and cells containing the TE

and induced with aTc yielded product with amplicons of the expected length (Fig. 5.1C). Our collaborators next

verified that transposase induction results in expected patterns of fluorescence corresponding to TE excision. When

TE-carrying E. coli are grown on agarose pads with aTc, the resulting microcolonies exhibit spatially distinct bright

and dark regions of blue fluorescence (Fig. 5.1E). This is expected from plasmids expressing blue fluorescent proteins

after some have undergone TE excision, followed by plasmid inheritance by daughter cells. This will be discussed

in more detail below. Conversely, microcolonies arising from an identically treated wild-type negative control strain

carrying no plasmids and uninduced TE strains are fluorescently dim and homogeneous (Fig. 5.1 D and F).

5.4 Quantification of Excision Response to Transposase Concentration

Our experimental collaborators constructed two versions of the TE, one with the imperfect palindromic sequence

encoded in the leading strand (ISLEAD) and the other with the imperfect palindromic sequence encoded in the lagging

strand (ISLAG). Cells carrying these two constructs were grown and titrated with aTc concentrations ranging from

0-1000ng/ml. The cells were imaged after 12-13 doublings. By measuring the yellow fluorescence and the blue

fluorescence for individual cells they were able to construct a TE response function of excision to transposase level
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Figure 5.2: TE excision response function. Scatter plots of blue versus yellow total cellular fluorescence divided by
cell area for TE encoded in the (A) lagging (Ncells = 192,965) and (B) leading (Ncells = 101,709) strand of the host
plasmid. Colors indicate number of counts in each bin of a 500 x 500 grid covering the data. (C) The same data as
in (A) and (B) with absolute axes. The y-axis is expressed in terms of the absolute number of excised plasmids and
the x-axis is scaled to absolute number of transposase molecules per cell. Light red and blue points are lagging and
leading strand data from (A) and (B) respectively. Red and blue lines are excised plasmid number averaged according
to transposase molecules binned as integer quantities. Large red points indicate the number of excised plasmids as
measured by qPCR; error bars are the standard error of the mean of three experimental replicates.
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in vivo. Figure 5.2 shows scatter plots of blue fluorescence versus yellow fluorescence for individual cells carrying

ISLAG (Fig. 5.2A) or ISLEAD (Fig. 5.2B). The response functions for ISLAG and ISLEAD are qualitatively different,

with the ISLAG construct responding more quickly at low aTc concentrations and the ISLEAD construct responding

at higher aTc concentrations. They verified that that the Venus fusion to the transposase did not affect transposase

function.

They then calibrated the fluorescence intensity of the yellow and blue reporters to the numbers of transposase

molecules and the number of excisions, respectively. This result is shown in Fig. 5.2C, where the response functions

for ISLAG and ISLEAD are shown as the red and blue lines. The calibration for the number of transposase molecules

was accomplished by measuring the bleaching kinetics of Venus-TnpA using a theoretical technique developed by

Nayk and Rutenberg[102]. To calibrate the blue fluorescence intensity to excision numbers, they measured the fluo-

rescence of a wild-type negative control with no plasmids, and a control in which every plasmid expresses mCerulean.

These two reference intensities are show by the lines labeled “Excision 0” and “MAX” in Fig. 5.2. Finally, using

qPCR they were able to determine the average number of plasmids per cell.

5.5 Observing Real Time Kinetics

By growing TE-carrying cells on agarose pads including aTc under the microscope, TE excision events can be detected

in real time and their rates and statistics determined through direct observation. We find that TE activity changes as

cells undergo different phases of growth, and that TE activity correlates to where cells are located within a colony.

Images consisting of 40 – 80 adjacent fields of view of the TE-carrying cells were taken every 20 minutes in each of

three fluorescent channels: mCherry, Venus, and mCerulean3.

I performed image analysis using custom image segmentation and analysis algorithms that I had implemented in

MATLAB (MathWorks) (see Fig. 5.3). Images of the same field of view at different time points in the mCerulean

channel are aligned using an image registration subroutine from Matlab’s computer vision toolbox. Subsequently, the

difference between images three frames apart is calculated. Only changes to the brightness show up on these difference

pictures. Specifically, if an excision event occurrs, the difference picture will show a bright spot at the location of the

cell that has become brighter due to an excision event. Cells that have not had an excision event will remain roughly the

same brightness and will not show up on the difference image. The difference image is then thresholded to determine

the exact location of the cell undergoing excision. Since cells take multiple frames to brighten and later photobleach,

multiple detections of the same event will occur in consecutive processed images. It is thus important to associate only

one event with all these detections. Since the cells are not moving it is sufficient to record the event location. Any

subsequent detections at that location are counted as part of the original event. As long as detections are within a cell
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Figure 5.3: Automatic detection of events in Matlab. Upper left is the experimental image; upper right is the
difference between the current frame and three frames previous; lower left is currently identified fashing cells; lower
right displays the history of the location of prevoius events.
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radius (3px) of the original detection they are counted as part of that event. Additionally, the boundaries of the colony

are detected by using a different threshold on mCerulean channel. This is later used when calculating event rates for

single colonies and the event densities as a function of distance from the edge of the colony.

My program recorded a time series of the intensities of the mCerulean and Venus channels at the location where

events were detected by finding the average intensity for pixels involved in the event. Each individual time series is

aligned by the peak of its intensity in the mCerulean channel. These time series are then averaged to produce the

profile of an average event (see Fig 5.4D).

5.5.1 Excision Rates Depend on Growth State of Cells

At high inducer concentrations (> 10 ng/ml aTc, e.g., Fig. 5.1E), a large fraction of cells immediately experiences

TE events and fluoresces blue. At low inducer and transposase concentrations (< 10 ng/ml aTc), we can observe

individual excision events as bright flashes of blue fluorescence whose rate depends upon the growth state of the

cells. As cells initially adapt to the pad, some fraction rapidly fluoresce blue, indicating TE excision. Once cells

enter exponential growth, the frequency of cells becoming fluorescent drops to nearly zero; the fluorescence patterns

observed in mature microcolonies at low inducer concentrations (Fig. 5.4A) arise primarily from inheritance of the

initial excision events. However, upon entering final growth arrest, some cells begin to emit bright blue fluorescence

(Fig. 5.4 A-C) accompanied by an increase in yellow fluorescence (Fig. 5.4D). Note in Fig. 5.4D that the excision

event (blue line) is preceded by a weak increase in transposase levels (yellow fluorescence), indicating transposase-

induced excision. Control strains, including a wild-type TE-less strain exposed to aTc, TE-carrying cells not exposed

to aTc, and cells constitutively expressing mCerulean3, do not show similar bursts of fluorescence.

5.5.2 Excision Event Rate is Constant Once Initiated

Automated identification of TE fluorescence events within each colony reveals that events begin occurring with the

onset of growth arrest and continue at a rate that remains approximately constant for > 35 hours (Fig. 5.4E). The

average event rate for this experiment, consisting of 12 colonies and∼5,000 cells, was 6.3±2.6×10−3 events/cell/hr.

The temporal statistics are consistent with events, once initiated upon growth arrest, occurring randomly in time as

described by Poisson statistics (Fig. 5.4F).

5.5.3 Excision Events are Spatially Correlated

Events are not uniformly random in space and are instead spatially clustered and dependent upon the location in the

colony. Events are less common within∼3 µm (∼5 cell widths) of the colony edge compared to the center (Fig. 5.4G).
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Figure 5.4: Real time TE kinetics. Colony induced with 5 ng/ml aTc undergoing excision events at (A) t = 0 (time
of first detected events, after ∼10 hours of growth), (B) t = 40 min, and (C) t = 60 min. New events are indicated
by white arrows. (D) mCerulean3 and Venus-TnpA traces for an average event. TE events were aligned with peak
mCerulean3 intensity at t = 0. Shown is the mean mCerulean3 (blue, left y-axis) and Venus-TnpA (yellow, right y-axis)
fluorescence/cell area as a function of time averaged over 773 events. Inset: decay of mCerulean3 fluorescence as a
function of time. Red line is a fit to an exponential , with A = 589 and b = -0.006 min-1, consistent with photobleaching.
(E) Raster plot of all events in a single experiment (red lines, left y-axis) with t = 0; Ncolonies = 12, Ncells = 4,858, Nevents
= 1114. The average rate was 6.3±2.6×10−3 events/cell/hr. Red shaded region shows the average rates during 100
minute intervals (right y-axis). (F) Blue bars: frequency of the number of events per frame. Red line: distribution of
events per frame expected from a Poisson process with an average rate of 6.3×10−3 events/cell/hr. (G) Within each
colony, we determine the event densities within annuli of width 0.8 µm at various distances from the colony edge.
We then took an ensemble average over all colonies, where the density in each colony is normalized by the mean
event density over the entire colony. Blue line: mean normalized density of events in 0.8 µm wide annuli versus the
distance of the center of each annulus from the colony edge, shaded blue region is the SD. Red line: mean normalized
density obtained from simulations of randomly spaced events, shaded red region is the SD. (H) Blue line: mean pair
correlation function, g(r), of events, shaded blue region is the SD. Red line: g(r)of randomly spaced events obtained
from simulations, shaded red region is the SD.
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Figure 5.5: Event density as a function of distance from colony edge. Within each colony, I determined the number
of events (green plus signs) lying within annuli of width 0.8 µm at various distances from the colony edge. The density
of events in colony i within an annulus at radius r, ρi(r), is calculated as the number of events within that annulus,
Ni(r), divided by the area of the annulus, Ai(r),ρi(r) = Ni(r)/Ai(r). The data shown in Fig. 5.4G of the main text
is the ensemble average over all colonies, where the density in each colony is normalized by the mean event density
over the entire colony. In this image, the edges of each annulus are shown, and the color indicates the distance from
the edge of the colony as given by the color bar at right.

The mean pair radial correlation, g(r), also shows that events are clustered together (blue line, Fig. 5.4H; see section

5.5.4).

I performed simulations of E. coli growth into microcolonies combined with random distributions of TE events

to determine the expected properties of g(r) arising from randomly spaced TE events within an E. coli colony. Sim-

ulations were used to generate 200 different microcolony morphologies, each starting from a single cell and ending

upon reaching a size representative of those we observe in our experiments (∼300 cells with a diameter of ∼15 – 16

µm). After growth arrest, 15% of the cells within each colony morphology were chosen at random to undergo TE

events, a rate representative of the average final number of affected cells in each colony we observe experimentally.

By comparing g(r) between experiment and simulation, I found that the density of events in adjacent cells in our

experiment is ∼1.4x greater than expected compared to the simulation of events randomly distributed in space (red

line, Fig. 5.4H, Fig. 5.6).

5.5.4 Pair correlation function, g(r)

The pair correlation function, g(r), is a measure of the probability of finding an event (i.e., a blue fluorescent burst)

at a distance r away from any other event. The event density at a distance r from any given reference event can be

calculated as ρ(r) = ρg(r), where ρ = N/A is the average event number density in an entire colony of area A. For a

random, homogeneous distribution of ideal particles, with no hard cores, g(r) = 1.

To calculate g(r) for a colony, each event in the colony is taken in turn as a reference particle. For each reference
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Figure 5.6: Simulated colony growth. Simulations of colony growth starting from a single cell. Used for calculating
reference g(r) values.

particle I calculate the pair correlation function gi(r) for all r,

gi(r) =
1
ρ
· Nr

2πr · fr ·∆r
(5.1)

where Nr is the number of events between two rings a distance r and r +∆r away from the reference particle. For

the data presented in Fig. 5.4H, take ∆r = 0.32µm. To correct for edge effects, fr is the fraction of the ring area that

intersects the colony. I then calculate the colony pair correlation function g(r) as the ensemble average of gi(r),

g(r) = 〈gi(r)〉 . (5.2)

5.5.5 Colony and g(r) Simulations

Deviations of g(r) from that of a random distribution of ideal particles can arise from mundane physical sources. For

example, g(r) for a random distribution of hard spheres in a low-density gas shows a peak at short distances, very simi-

lar to that we observe in Fig. 5.4H purely as a consequence of entropic volume exclusion effects. However, an explicit

theoretical calculation of g(r) for unusually shaped particles, such as highly dense and polydisperse spherocylinders

representing an E. coli colony, is extremely difficult. Consequently, I performed simulations of E. coli growth into

microcolonies combined with random distributions of TE events to determine the expected properties of g(r) arising

from randomly spaced TE events within an E. coli colony.
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These simulations are a modified version of DiSCUS, an agent-based model by Goni-Moreno et al. to study hori-

zontal gene transfer in E. coli [103, 104]. DiSCUS models each cell individually as a spherocylinder. The simulation

is written in the python scripting language and uses the 2D physics engine pymunk as a wrapper for the physics library

chipmunk (Howling Moon Software), which handles the semi-rigid body dynamics of the cells. The physics engine

handles updating the forces and positions of the individual cells that arise from the environment and interactions

with other cells. All the cells are non-motile but can be pushed around due to the growth of other neighboring cells.

For the results discussed here, DiSCUS has been modified to remove horizontal gene transfer mechanisms and add

transposable element events.

During each time-iteration the program first checks each spherocylinder to see if it is larger than a critical size. At

the critical size the spherocylinder divides into two smaller spherocylinders. After the cell division step the sphero-

cylinders are elongated. If there is too much pressure on an individual cell it will stop growing until the pressure is

reduced. Finally, the physics engine resolves the forces on the cells and updates the spherocylinder positions accord-

ingly, following standard classical mechanics.

These simulations were used to generate 200 different microcolony morphologies, each starting from a single cell

and ending upon reaching a size representative of those observed in our experiments (∼ 300 cells with a diameter of

∼15 – 16 µm). After growth arrest, 15% of the cells within each colony morphology were chosen at random to undergo

TE events, a rate representative of the average final number of affected cells in each colony we observe experimentally.

I calculated g(r) resulting from each such random distribution of events within the 200 different colony morphologies,

and repeated this process 3 times. Finally, the mean g(r) expected from a completely random distribution of TE events

was calculated as the ensemble average of each such calculated g(r).

To see if the cluster of events in cells was due to relatedness I performed another set of simulations using this

framework. In this secondary set of simulations I allowed the cells upon cell division to have some sort of heritable

change occur with some fixed probability ph. Then upon growth arrest these cells with that heritable change were

allowed to have an excision event with probability pe. This was able to recover clustering in the g(r) similar to that

produced in experiment. However, I could not produce simulations of the same shape and size as we measured exper-

imentally, which made interpretation of the simulated g(r) difficult. I came up with the idea to measure distribution

rates per colony and expected that if the spatial clustering was due to a heritable event that this rate would follow Luria

Delbrück-like statistics and have a power law tail. Indeed upon measuring this distribution it had a power law tail

(see Fig. 5.7A). Nicholas Sherer then had the idea to simulated binary trees of the same size as the colonies that were

measured experimentally and was able to reproduce the same functional form as we observed.
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Figure 5.7: Event Rates are Determined by a Stochastic Heritable Change. (A) Blue bars: distribution of average
event rates for individual colonies with [aTc] = 5 ng/ml; Ncolonies = 984. The mean rate of this distribution is 11.8±
12× 10−3 events/cell/hr/colony. Red line: result of a two-step process simulated using the experimental distribution
of colony sizes. Green line: result of a Poisson process with the mean rate of the experimental distribution. Inset:
same data with logarithmic y-axis. (B) Cartoon picture illustrating the Luria-Delbrück process used in our simulation
where some fraction of cells inherit a trait that predisposes them to TE activity (red outline), and of those cells some
fraction fluoresce blue indicating TE activity (blue fill).

5.5.6 Distribution of Rates is Consistent with Additional Control by a Heritable

Luria-Delbrück Process

As previously stated the non-uniform event distributions in space suggests that local environmental differences and/or

a hereditary process are influencing TE activity. A distribution of event rates determined from 984 colonies is shown

in Fig. 5.7A, with a mean rate of 11.8± 12× 10−3 events/cell/hr/colony. This is compatible with overall number

of events per frame following a Poisson distribution (Fig. 5.4F). To explain the distribution of colony event rates

shown in Fig. 5.7A, we simulated a two-step process [105, 106]. First, in a Luria-Delbrück process after cells are

placed on the pad, some stochastic heritable change can occur with constant probability during exponential growth

that predisposes cells to TE activity (Fig. 5.7B). In the simulation, 10,000 cell colonies were simulated to grow until

they reached colony sizes drawn from the colony size distribution observed in the experiment. While in growth, a

heritable change occurs in a daughter cell after each division with probability ph. From the affected cell, the change

is inherited by all of its descendants. In growth arrest, any cell that has inherited the change can then experience a TE

excision with probability pe. A good fit of event densities was found (red line, Fig. 5.7A) by searching through the

two parameters with a goodness criterion (see next section). This analysis and the quality of the fit strongly suggest

that the average event rate in each colony is determined by some stochastic, heritable change occurring in the lineage,

for example, expression bursts, or lack thereof, of long-lived tet repressor protein.
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5.5.7 Luria-Delbrück Modeling

To explain the data in Fig. 5.7A, we made a model of a two-step process. This model is itself stochastic and we do not

attempt to solve it exactly but instead simulate the distribution it produces and compare it to the experimental distribu-

tion in Fig. 5.7A. Before we can model the excision process, it is necessary to consider the distribution of colony sizes

(cells per colony). We generate a new dataset of colony sizes by sampling with replacement (bootstrapping) from the

experimental colony size data.

In the first step of the model, we construct a family tree for each colony in the bootstrapped dataset. We assume

each colony starts from one individual which grows and divides until it reaches the final size of the colony, and we

assume that the growth rate is constant over time. Thus, the family tree for a colony is the shallowest one possible.

After each division, daughter cells have a heritable change occur with probability ph. All descendants of a cell with

this heritable change will also have it, and two sister cells from the same mother do not affect each other. The model

makes no assumptions about the biophysical nature of this heritable change.

In the experiment, the blue flashes indicating transposon excision occur after growth stops. Therefore, in the

second step of the model, after growth and division, any cells with the heritable change have excisions occur with a

probability pe.

To find the values of the parameters of the model that best explain the experiment we simulated the model for

parameter values in a small grid. The summary statistics of the standard error of the mean and standard error of the

standard deviation were used to compare the mean event densities and standard deviation of event densities between

theory and data; the fit was considered good if the theory was within the standard error of both the mean and the

standard deviation, and acceptable if within two times the standard error for both. The results shown as the red line in

Fig. 5.7A are simulations of the model withph = 0.045 per division and pe = 0.65.

Notice that if ph = 1, the model collapses to the simplest model you might consider, which is that all events are

independent of each other in space and time and obey a Poisson process. The distribution of event rates is not that of a

Poisson process for a fixed colony size, however, since colony size varies. The distribution of event rates for a Poisson

process with a rate equal to the experimental rate is shown in Fig. 5.7A in green. This distribution is transparently

incorrect.

One can also consider the possibility that pe = 1, which would correspond to a regular Luria-Delbrück process.

Although visually this fit is less accurate than the two step model (not shown), it is not obviously incorrect. Conse-

quently, we compare the two models using the Akaike Information Criterion (AIC). We approximate the probability

of the data given a model from a histogram generated by the model using 20 bins of the same size over the range

of values generated. Note that since we are simulating the models, the histograms will vary slightly from simulation

to simulation. 100,000 colonies were simulated to generate the histograms. Comparing the two models’ fits, we
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find ∆AIC = −80 which corresponds to a probability of the two step model being the correct choice over a purely

Luria-Delbrück process equal to ∼ 1 (within floating point error).

5.6 Discussion

Our goal is to begin the quantitative understanding of how TEs fundamentally function and behave in single live

cells before understanding more complex systems. Placing the TE under an inducible promoter allows us to precisely

control and determine how TE excisions respond to transposase concentration. Examining the bleaching kinetics of

Venus-TnpA allows us to estimate absolute numbers of transposase proteins within individual cells, which improves

upon previous studies that could only infer mean TnpA levels from the applied inducer concentrations. While we use a

synthetic tet promoter derived from an E. coli TE to express TnpA instead of the natural tnpA promoter, the transposase

levels in any wild-type system will still sample from the same response function. That even this simple system exhibits

complex dynamic behavior illustrates the necessity of using real time single-cell measurements rather than population

and time-averaged estimates of TE kinetics, a parallel to the way in which real time single-molecule measurements

have revolutionized our understanding of the rich dynamics hidden by population-averaged ensemble measurements

[107]. This quantification of genome plasticity in real time permits the development of a precise narrative of the role

of TE activity in evolution and even epidemiology.

The single-cell response curves shown in Fig. 5.2 are consistent with existing molecular models of how TnpA

binds to and excises the TE from the host DNA molecule [7]. The response function displays qualitatively distinct

behavior in the leading versus lagging strand. Because the lagging strand of DNA is discontinuously replicated, the

lagging strand leaves single-stranded DNA exposed while synthesis of Okazaki fragments is completed. Hence, it

is more energetically favorable for the folded imperfect palindromic sequences recognized by TnpA to form in the

lagging strand than the leading strand, where the energetically favored state is canonically base-paired double-stranded

DNA [7]. Consequently, the TE in the lagging strand is extremely sensitive to TnpA, with the first excisions occurring

in the presence of only 1 – 2 TnpA dimers. Conversely, ∼10x higher TnpA numbers are required to initiate excision

from the leading strand.

Real-time imaging allows us to track how TE activity varies from one cell to another within different colonies

over time. We found that upon growth arrest, excision events are distributed non-uniformly within each colony.

This non-uniformity can be described with a Luria-Delbrück process, suggesting that some stochastic, heritable trait

predisposes a fraction of cells to TE activity. Additionally, the relative lack of excision activities observed near the

edges of colonies may arise from local environmental variation, such as nutrient availability, between the edge and

center of a colony. Together, these results demonstrate that the rate of TE excision is highly dynamic and depends
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upon the amount of transposase in the cell, the TE’s orientation within the genome, the growth state and life history

of the host cell, and the cell’s local environment.

While here we focus solely on excision, we note that since excision of a TE is required before reintegration, it is

likely that integrations and the mutations they generate will occur with a rate that is dependent upon the excision rate

measured here. Previous studies detecting transposition in vivo using time-averaged population-level methods have

estimated the convolved transposition rates, i.e., the combined rates of both excision and integration, as a result of

experimental or conceptual limitations in separating the two processes. Mating-out assays, for example, detect TE

integration only into a conjugative plasmid which is then transferred to a virgin recipient strain for detection [108].

These methods therefore only measure the combined rate of excision, integration to the plasmid, and conjugation

of the plasmid merged together. From a mechanistic standpoint, excision and integration are two separate processes

that should be understood independently. It is necessary to know excision rates independently of reintegration to

understand how stable transposable elements are in the genome. Furthermore, an excision itself is a mutation carrying

biological significance. Any genes carried by the TE will be lost, and if the TE has silenced a gene by interrupting it,

then excision may restore its function.

One of the primary results of this work is the observed heterogeneity of TE activity rates in both space and time. In

a sense, this is surprising; the design of the synthetic TE employed here is extremely simple, and yet it shows complex

spatial and temporal dynamics. Furthermore, since the fundamental experiments of Luria and Delbrück, the uniform

randomness and homogeneity of mutation rates is frequently taken as a starting point for descriptions and models of

mutation and evolution. However, as shown in Fig. 5.2, the activity of the TE is a direct function of the intracellular

numbers of TnpA protein. Since it is well known that intracellular protein levels are strongly influenced by the cellular

growth state [109], cell-to-cell and temporal heterogeneity in intracellular TnpA amounts and the resulting TE activity

levels should perhaps be anticipated. Similar arguments can readily be made about any other mutational process that

relies upon the activity of an expressed protein for its generation or repair, for example, the repair of nascent point

mutations by the proteinaceous Mismatch Repair System [110].

It is difficult to draw direct and meaningful comparisons between our measurements of TE excision rates and

previous measurements. Previously measured transposition rates (i.e., excision followed by reintegration) are on the

order of 10−6 – 10−10 transpositions/cell/doubling [87] [or transpositions/cell/hour [6]], while the excision rates that

we measure are several orders of magnitude greater. A variety of hypotheses can be proposed to reconcile these

results. For example, it is possible that reintegration is extremely inefficient and only successful for a small fraction

of excisions. However, we have observed that expression levels of Venus-TnpA in these and other longer time-scale

measurements do not decrease over time, which suggests this is not the case (data not shown). It is also possible that

previous experiments underestimate TE activity rates as a result of insufficiently deep sampling, or the deleterious
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physiological effects of the TE leading to extinction of affected cells within the population. The reason for this

discrepancy remains unclear and is a subject for future work.
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Chapter 6

Characterizing Evolutionary Pressures of
Retrotransposons

6.1 Role of Non-homologous End-joining in the Proliferation of LINE-1

Retrotransposons and Group II Introns in Bacteria

The work described in this chapter was done in collaboration with Gloria Lee, Nicholas A. Sherer, Neil H. Kim,

Ema Rajic, Davneet Kaur, Niko Urriola, Chi Xue, Nigel Goldenfeld, and Thomas E. Kuhlman. The experimental

work is included for completeness and was conducted by members of Thomas Kuhlman’s lab. I created the model

for the exponential birth defect, the stochastic models based on the Moran model to estimate extinction time of cells

containing retrotransposons, and I helped develop and simulate the model for more detailed dynamics of transposon

copy number in a population of cells. These models are discussed in detail in sections 6.6, 6.7.1, and 6.7.2. This

chapter is a modified version of a paper that is about to be submitted to PNAS. I have modified it to concentrate on my

contributions.

6.2 Introduction

In Eukaryotes, such as humans, retrotransposons are common. For example, retrotransposons together with introns

make up ∼ 45% of the human genome and constitute the majority of so-called junk DNA [67, 68]. The human

retroelement LINE-1 (or L1) alone makes up ∼ 17% of the genome, with ∼ 500,000 total integrants and ∼ 80 – 100

complete and active copies per individual [111, 112]. In contrast to retroelements in Eukaryotes, retroelements found

in bacteria and archaea, known as group II introns, are rare. Group II introns are found in only ∼ 30% of sequenced

bacterial species and are generally present in low copy numbers of∼ 1−10 per individual [13]. The primary question

of our collaboration was what limits retroelement propagation in bacteria and archaea, but allows the vast number of

retrotransposons found in eukaryotes?

To answer this question our experimental collaborators created genetic constructs allowing for the controllable

expression of the human retrotransposon LINE-1 and the bacterial group II intron L1.LtrB in Escherichia coli (E.

coli) and Bacillus subtilis (B. subtilis). They found that the retroelements successfully integrate into both species and
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that the expression of the retroelements is detrimental to growth. Surprisingly, when the human L1 was introduced to

B. subtilis it was lethal. One of the main differences been B. subtlis and E. coli is the presence of nonhomologous end

joining (NHEJ) repair of DNA double strand breaks. This suggested that the NHEJ system increased retrotransposon

integration efficacy. Our experimental collaborators tested this with knockouts of NHEJ in B. subtilis and other

experiments. Our collaborators also measured the growth rate of the bacteria at different expression levels of the

retroelement and quantified the fitness cost of a retroelement in bacteria. I developed a model for the growth rate of

bacteria as a function of the expression level of retroelements. This successfully explained the measured functional

form of growth rate vs L1 RNA. I also used the measured fitness cost in the modeling section to determine how long

it would take bacteria containing these retroelements to lose the retroelements. This was to check whether this time

scale was consistent with the non-observation of retrotransposons in bacteria.

The model that I developed shows that at low copy number and at the measured fitness cost retroelements can

persist. This corresponds to group II introns. The model also shows that retroelements can persist at high copy

number and low fitness cost, presumably corresponding to retrotransposons in Eukaryotes. This low fitness cost is

considerably smaller than what we measured in bacteria. So Eukaryotes must have other methods of reducing the

fitness cost of having retroelements. One way Euykaryotes can reduce this pressure is via the spliceosome. The

spliceosome removes introns. Introns are intervening sequences that disrupt the coding regions of eukaryotic genes

and make up ∼ 24 – 37% of the human genome [68].

There are many similarities between bacterial group II introns, the spliceosome, eukaryotic spliceosome introns,

and retrotransposons. These structural and and mechanic similarities have led Belfort and others [13, 14] to hypoth-

esize that an invasion of group II introns originating from an endosymbiotic bacterial organelle contributed to the

proliferation of introns within eukaryotic genomes prior to the last eukaryotic common ancestor. They hypothesized

that the spliceosome allowed the proliferation of retroelements by limiting the retroelements fitness cost impact.

The following experimental and theoretical models measure the impact that retroelements have on bacteria as a

way of testing part of the proliferation of group II intron hypothesis.

6.3 Description of Mechanism

Human L1 and bacterial Ll.LtrB are both target-primed retroelements. L1 encodes two primary ORFs: ORF1, which

encodes a protein (ORF1p) that binds to L1 RNA to reduce degradation, and ORF2, which encodes a protein (ORF2p)

with endonuclease and reverse transcriptase domains [113]. Most L1H elements include a ∼ 100 bp DNA-encoded

3’ poly(A) tract that enhances retrotransposition efficiency [114]. After transcription and translation, ORF1p and

ORF2p bind in cis to their encoding RNA. The resulting ribonucleoprotein particle can then bind to and cut a target

74



DNA molecule using the ORF2p endonuclease domain. The L1 RNA 3’ end hybridizes with the cut DNA, which

ORF2p reverse transcriptase uses as a primer for target-primed reverse transcription (TPRT). This generates a new

cDNA copy of L1 in the genome, starting from the 3’ end. Reverse transcription typically aborts prior to completion,

and most L1 integrations result in 5’ end truncations [115]. LINE-1 contains multiple RNA splicing signals such

that retrotransposition and integration into native genes leads to exonization and novel alternative splicing variants

[116, 117, 118]. The function of a third ORF, ORF0 [119], and the mechanisms driving nuclear import/export, LINE-

1 truncation, second strand target-site DNA cleavage, and second strand cDNA synthesis remain poorly understood

[120, 112].

Similarly, the bacterial group II intron Ll.LtrB, originally from Lactococcus lactis, encodes a protein, LtrA, with

maturase, endonuclease, and reverse transcriptase domains. After transcription, LtrA binds in cis to its encoding RNA,

with the maturase domain stabilizing RNA secondary structures necessary for enhancement of intron splicing from

the host RNA [14]. The spliced Ll.LtrB-LtrA complex can then reintegrate into the genome with ∼ 100% efficiency

through retrohoming, wherein the LtrA endonuclease domain binds to and cleaves a specific sequence within the ltrB

gene of the L. lactis genome and Ll.LtrB is reverse transcribed from the 3’ end via TPRT [121]. Alternatively, in

organisms lacking ltrB and the specific retrohoming target site, such as E. coli, Ll.LtrB can nonspecifically retrotrans-

pose via TPRT into ectopic sites with marginal homology to the retrohoming site at low efficiencies of approximately

one retrotransposition event per 109 exposed cells [121, 122, 123].

6.4 Description of Constructs

To construct a controllable, bacteria-expressible L1 retroelement, Thomas Kuhlman amplified from his genome a pre-

viously identified highly active L1H element [#4-35 ([111])] and modified this amplicon by PCR to employ a bacterial

T7lac promoter [124] with a consensus Shine-Dalgarno ribosomal binding site (RBS) driving ORF1 expression. The

resulting bacteria-expressible L1 element (TL1H) was then ligated into the medium copy number plasmid pTKIP-neo

[125, 126]. The strength of expression is tunable by titration with isopropyl -D-1-thiogalactopyranoside (IPTG) in

bacterial strains engineered to express T7 polymerase.

TL1H exhibits characteristics that may limit its activity in bacteria. Its human codon bias may influence its

expression efficiency. Additionally its ORF2 has no bacterial RBS and TL1H has no 3’ poly(A) tract. For these

reasons our experimental collaborators synthesized a bacterial “optimized” L1 (GENEWIZ), based on the sequence of

L1 #4-35 ([111]), they called EL1H. The synthesized EL1H is codon-optimized for E. coli, includes RBS sequences

for both ORFs, and has the same poly(A) tract as L1 #4-35 (Fig. 6.7A, bottom). EL1H is driven by the same T7lac

promoter and was cloned into the same pTKIP vector as TL1H. Our experimental collaborators also subcloned EL1H

75



into the B. subtilis vector pHCMC05 under the IPTG-inducible hyper-spank promoter [127].

For experiments with Ll.LtrB, our experimental collaborators employed the construct pET-TORF/RIG (Fig. 6.8A),

the kind gift of the Marlene Belfort lab [128, 121]. The pET-TORF/RIG plasmid uses the same pBR322 plasmid

backbone as pTKIP, and Ll.LtrB is expressed from the same T7lac promoter as we employed for L1 expression.

Hence, expression levels of both L1 and Ll.LtrB are directly comparable between experiments. For experiments in

B. subtilis, they subcloned TORF/RIG into the same sites of pHCMC05 as EL1H under control of the hyper-spank

promoter.

6.5 Effects of Retroelement Expression on Growth

A brief summary of our collaborator’s experiments follows. For a more detailed description see appendix 6.9.

Our experimental collaborators transformed the constructs described above into E. coli. They found a decrease

in growth rate in response to L1 expression as the cultures were titrated with IPTG. This was measured by taking

periodic measurements of the optical density in a variety of growth media. Furthermore, they conducted calibration

experiments to find out how many L1 RNA are produced for a given dose of IPTG. Combining the results from both

these experiments they were able to produce graphs showing the normalized growth rate of E. coli as a function of L1

RNAs per cell (see figure 6.1A). By fitting an exponential function to this graph they found that, on average, each L1

transcript yields a decrease in E. coli’s growth rate of ∼ 0.83±0.06% (TL1H) or 1.9±0.6% (EL1H).

Our experimental collaborators conducted the same type of titration experiments in E. coli for the bacterial group

II intron L1.LtrB, see Fig 6.1B. They measured the growth defect resulting from Ll.LtrB to be weaker than that from

L1, with each Ll.LtrB transcript reducing growth rate by 0.11±0.02%.

We hypothesized that B. subtlis would be more resistant to L1 and better able to survive cleavage of DNA than

E. coli. We thought this because B. subtilis is able to repair DNA double strand breaks through nonhomologous end

joining (NHEJ) in a manner similar to eukaryotes. The experiments, however, showed the opposite. Wildtype B.

subtilis cannot survive transformation with pHCMC05-EL1H. But when they knocked out the function of NHEJ and

tried again they were successful. They next cloned and expressed a subset of the NHEJ repair mechanism into E. coli

and observed the same enhanced lethality of L1. Similarly, they observed an enhanced lethality of L1.LtrB when they

expressed L1.LtrB at the same time as NHEJ enzymes.

Our experimental collaborators also conducted experiments that strongly suggest that L1 successfully integrates

into E. coli’s chromosome and NHEJ enhances the retrotranposition efficiency of L1 and L1.LtrB (see appendix 6.9).
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Figure 6.1: Quantification of physiological effects of retroelement expression. (A) Normalized growth rate as a
function of LINE-1 expression on E. coli growth in a variety of media. •: RDM glucose; �: RDM glycerol; ♦: cAA
glucose; N: M63 glucose; H: M63 glycerol. Blue points: TL1H; red points: EL1H; black points: EL1H and TL1H +
NHEJ. Each point corresponds to the mean of three growth and four qRT-PCR measurements; error bars: SEM. Solid
lines: fits to exp[−b ·L] , yielding b = 0.0083± 0.0006 (TL1H), b = 0.019± 0.006 (EL1H), and b = 0.600± 0.031
(TL1H and EL1H +NHEJ). Fit errors are 95% CI (shaded regions). Inset: same, with log y-axis. (B) Same as (A),
quantifying effects of pET-TORF/RIG pZA31-tetR (red) and pET-TORF/RIG pZA31-NHEJ (black). Inset scales are
identical to (A). Exponential fits yield b = 0.0011±0.0002 (-NHEJ), b = 0.0082±0.0011 (+NHEJ).
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6.6 Modeling of Physiological Effects

I developed the following model in collaboration with Chi Xue and Nicholas Sherer. I did the final calculations.

The observed exponential decay in normalized growth rate can be explained by a simple model where we consider

the effect that integrations will have by disrupting essential chromosomal genes and thus cell function. In the simplest

model of this kind, we consider that there are two sub-populations of cells: those that grow normally, and those with

retroelement integrations disrupting all growth. In this binary model, there are L transcripts, each with a probability w

of integrating and disrupting growth, and the probability q of a cell having no integrations affecting growth during a

cell cycle given by a binomial distribution evaluated at zero:

q =

(
L
0

)
w0(1−w)L = exp

[
− ln

(
1

1−w

)
L
]
. (6.1)

In our growth experiments, cells are continuously growing in exponential phase. An individual cell, in the absence

of integrations, will produce g0dt new individuals in a time interval dt. This leads to a simple model of exponential

growth of the form dx
dt = g0x. If we consider a binary model with a population x of normal cells and a population y of

cells with no growth due to integrations, an individual of x will still produce g0dt new individuals but only a fraction

q of these will be able to grow. This leads to the population model [129]:

dx
dt

= qg0x,
dy
dt

= (1−q)g0x (6.2)

The total population of cells in this model grows as x0 + y0 +
x0
y0
[exp(qg0t)− 1] . Thus the growth rate measured

in a plate reader would be qg0 and the normalized growth rate is just q. We fit eq. 6.1 to the form exp[−bL] and make

the identification b =− ln[1−w] , which means b≈ w for w� 1 . That is, b is approximately equal to the probability

of a retroelement transcript integrating and disrupting growth. In summary, this simple binary model recapitulates the

exponential dependence of the growth rate on the number of transcripts.

More complex models of the impact of transposable element integration can be developed, with more than two

sub-populations and more nuanced assumptions about the physiological effects. But we find that the dynamics of

these models reduce to that of the two rate model presented above, with renormalized parameters. An example of

one such model is as follows. Let the number of cells with no chromosomal integrations harming their growth be

N0, the population of cells with one integrant be N1, and so forth. Then a set of differential equations describing the

population dynamics in exponential growth with growth rate g0 is

dNx

dt
= g0 f (x)(1−µ)Nx +g0 f (x−1)µNx−1, (6.3)
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where f (x) is a monotonically decreasing function describing the inhibition of cell growth due to gene disruption by

integrations, µ is the mutation rate, and the index x runs from 0 to some integer xmax where the number of integrants

is so high the cell cannot function and dies. Making the substitution (1−µ) = q ,

dNx

dt
= g0 f (x)qNx +g0 f (x−1)(1−q)Nx−1 (6.4)

This is a lower triangular system of equations whose eigenvalues are the diagonals. After many generations,

the largest eigenvalue will dominate and correspond approximately to the measured growth rate. Since f (x) is a

monotonically decreasing function, this means the growth rate is g0 f (0)q. f (0) = 1 and thus the growth rate is qg0

and the normalized growth rate is q. This is the same result as the binary model discussed above.

6.7 Modeling of Retrotransposon Dynamics

6.7.1 Moran Model of Extinction of Transposons

The following models and calculations were all developed and performed by me.

We calculated the extinction time for cells containing retrotransposons to determine if the timescale for extinction

was short enough to explain the limited number of retrotransposable elements and types found in bacteria. We calcu-

lated the extinction time for cells containing retrotransposons using the fitness cost we measured in experiment. We

modeled two distinct possibilities. In the first possibility, we modeled how long it would take for a single cell without

a retrotransposon to become fixed in a population of cells that initially have retrotransposons. This would correspond

to a situation where there is a direct competition between cells. The second situation we modeled was how long it

would take the retrotransposon to go extinct if we started with a population of cells all containing retrotransposons. In

this situation we model how long it takes for a random mutation to knock out the function of the retrotransposon and

then become fixed in the population.

For the first situation, we used a Moran model [130] with a population A of retrotransposons which grow with

rate qg0 and a population B of cells without the retrotransposon which grow with a rate g0. Where q is the normalized

growth rate measured in our experiments. The Moran model requires that the population size, N, remain fixed. To meet

this requirement for every birth at least one other cell must die. This process can be characterized by the following set

of reactions:

A+B
qg0−−→ 2A,A+B

g0−→ 2B (6.5)

This set of reactions is typically written with qg0 set to 1 to measure everything in terms of generations of the first

species. Additionally, the second reaction rate is usually written as 1+ s where s is fitness advantage population B has
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over A. We follow this convention and in our case s thus becomes s = 1/q−1:

A+B 1−→ 2A,A+B
1+s=1/q−−−−−→ 2B (6.6)

From this set of reactions we can write down the corresponding Master Equation for probability, P(x1,x2) , of hav-

ing number density x1 of A and number density x2 of B. The transfer rates can be written as T1
(
x1 +

1
N ,x2− 1

N |x1,x2
)
=

x1x2 and T2
(
x1− 1

N ,x2 +
1
N |x1,x2

)
= (1+ s)x1x2 . We define the operators ε+ and ε− so that ε+ f (x) = f (x+ 1/N)

and ε− f (x) = f (x−1/N) . Using these operators we can write the Master Equation as

∂P(x1,x2)

∂ t
= N(

(
ε
+
x2

ε
−
x1
−1
)

T1P+
(
ε
+
x1

ε
−
x2
−1
)

T2P) (6.7)

We can now perform a Kramers-Moyal system size expansion in 1/N and truncate the expansion after second

order [131, 132, 133]. Notice that the operators as defined above follow the Taylor expansion: ε+x f (x) = f
(
x+ 1

N

)
=(

1+ 1
N

∂

∂x +
1

2N2
∂ 2

∂x2

)
f (x) . This will produce the following Fokker-Planck equation for the probability:

∂P(x1,x2)

∂ t
= (− ∂

∂x1
(T1−T2)−

∂

∂x2
(T2−T1)+

1
2N

(
∂

∂x1
− ∂

∂x2

)2

(T1 +T2))P (6.8)

If we make the change of variables p = x2 and c = x1 + x2 we obtain an equation only depending on p since c is

the total number density, which is a constant and set equal to unity:

∂P(p, t)
∂ t

= (− ∂

∂ p
(s(1− p) p)+

1
2N

∂ 2

∂ p2 (2+ s)(1− p) p)P(p, t) (6.9)

From this Forward Fokker-Planck equation we see that the mean rate of change in frequency of B per generation is

M(p) = s(1− p)p and the variance is V (p) = (2+s)(1− p)p/N. Note that this result for the variance is different from

the formula quoted by Kimura and Ohta to find mean fixation time in genic selection [134]. Our variance includes

a dependence on the selection coefficient s and describes a haploid population as opposed to the diploid population

Kimura and Ohta modeled. Using our results for the mean and variance, we can use Kimura and Ohta’s general

solution[134] for the mean fixation time and probability of fixation of population B.

The probability of fixation u(p) is given by

u(p) =
∫ p

0
G(x)dx/

∫ 1

0
G(x)dx (6.10)

where

G(x) = exp
[
−
∫ 2M (x)

V (x)
dx
]
. (6.11)
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For our system the fixation probability is

u(p) =
1− e−

2sN p
2+s

1− e−
2sN
2+s

(6.12)

and the fixation probability of one cell without a retrotransposon is

p f = u
(

1
N

)
=

1− e−
2s

2+s

1− e−
2sN
2+s

(6.13)

The fixation time is

t f (p) =
∫ 1

p
Ψ(x)u(x)(1−u(x))dx+

1−u(p)
u(p)

∫ p

0
Ψ(x)u2 (x)dx, (6.14)

where

Ψ(x) = 2
∫ 1

0
G(z)dz/V (x)G(x) (6.15)

We are interested in the fixation time when only one individual initially has no retrotransposon, i.e., p = 1/N. We

can numerically evaluate the above expression to obtain the fixation time t f (1/N) .

We can also derive the scaling behavior t f (1/N) with N. Since N is usually large, t f (1/N) can be approximated

by t f (0) , which is explicitly given by the following expression

t f (0) =
1

s
(

1− e−
2sN
2+s

) ∫ 1

0

(
1− e−

2sN
2+s x
)(

1− e−
2sN
2+s (1−x)

)
x(1− x)

dx. (6.16)

The integral in the above equation can be calculated on three intervals, with a≡ 2sN
2+s ,

I1 (a,θ)≡
∫

θ

0

(1− e−ax)
(

1− e−a(1−x)
)

x(1− x)
dx,

I2 (a,θ)≡
∫ 1−θ

θ

(1− e−ax)
(

1− e−a(1−x)
)

x(1− x)
dx,

I3 (a,θ)≡
∫ 1

1−θ

(1− e−ax)
(

1− e−a(1−x)
)

x(1− x)
dx,

So t1 (0) = 1

s
(

1−e−
2sN
2+s

) (I1 + I2 + I3) .

For small θ , the factor 1−e−a(1−x)

1−x in the integrand of I1(a,θ) can be approximated as (1− e−a) , so that

I1 (a, θ)≈
(
1− e−a)∫ θ

0

1− e−ax

x
dx≡

(
1− e−a)h1 (a,θ) .
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Figure 6.2: Moran model of the fixation time of a single cell without the retrotransposon in population of 999 cells
with retrotransposons. The cell without the retrotransposon have selective advantage s = exp(0.019L)− 1 for the E.
coli optimized retrotransposons and s = exp(0.0083L)−1 for human retrotransposons where L is number of mRNA.
Blue dots correspond to Gillespie simulations of how long it takes the E. coli optimized retrotransposon to go extinct
and the green line is the corresponding theory. Red dots correspond to Gillespie simulation of how long it takes the
human L1 to go extinct in E. coli.

where h1 (a,θ) =
∫

θ

0
1−e−ax

x dx, and ∂ah(a,θ) =
∫

θ

0 ∂a

(
1−e−ax

x

)
dx =

∫
θ

0 e−axdx = 1
a

(
1− e−aθ

)
. At large N, a = 2sN

2+s

is also large and the leading term in ∂ah(a,θ) is 1
a . Therefore h(a,θ)∼ ln(a) , and we further have

I1 (a,θ)∼ ln(a) .

Observe that I3 (a,θ) = I1(a,θ) , and that I2 (a,θ) does not contribute to the asymptotic leading term. We obtain

the asymptotic behavior of t f (0) at large N, as follows,

t f (0)∼
1
s

2ln(a) +C =

(
2
s

)
ln
(

2Ns
2+ s

)
+C,

where C stands for higher order terms. The fixation time scales as 2 ln(N)/s up to a higher order difference.

We ran a stochastic simulation of the Moran model as defined above using Gillespie’s algorithm [17] . We found

the results of the simulation were in excellent agreement with the analytic approximation for fixation time. We ran

simulations to see how the fixation time depended on number cells and on number of mRNA. For our system, we have

s = exp(0.019L)−1 for the E. coli optimized retrotransposon EL1H and s = exp(0.0083L)−1 for the human-derived
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Figure 6.3: Moran model of the fixation time of a single cell without a retrotransposon in a population of N−1 cells
with retrotransposons. Simulations and theory are calculated for cells with 10mRNA corresponding to a selective
advantage s = 0.21 of the nontransposon over the E. coli optimized retrotransposons and s = 0.087 over the human L1
in E. coli. Blue dots correspond to Gillespie simulations of E. coli optimized retrotransposons and green dots human
L1 in E. coli. Solid lines correspond to the analytic theory.
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retrotransposon TL1H, where L is number of mRNA. Figure 6.2 shows how the fixation time scales with mRNA at

fixed population size of 1000. Figure 6.3 shows how the fixation time scales with population size at fixed number of

mRNA. We assumed that 10 mRNA was present on average in each cell, which corresponds to what we expect if the

cells are not being induced with IPTG and is the amount produced by our leaky promotor. The fixation amount does

indeed scale as ln(N) and 1/s , agreeing with the theoretical asymptotic behavior.

To model the fixation time starting with a population of all retrotransposons, we modify our original Moran model

slightly by adding one additional reaction.

AB 1→2A, AB
1+s=1/q−→ 2B, A ∆−→B

We have added the reaction, A ∆−→B to model a random mutation knocking out the function of the retrotransposon.

We use an estimate of ∆ = 10−6 /generation/cell. As before, we can find the mean and variance of the rate of change in

frequency of B per generation by using a system size expansion of the Master Equation. We find M = s(1−x)x+∆(1−

x) and V = [(2+ s)(1− x)x+∆(1− x)]/N . We can again use the formal solution provided by Ohta and Kimura[134]

to find the fixation time.

To get a better sense of how the solution should scale with N we can assume that there is a separation in time scales

between the time needed to wait for a random mutation to knockout the function of the retrotransposon and the time

it takes for that mutation to be fixed in the population. Define T as the average time it takes to get one cell that has

the retrotransposon knocked out. Then the population will have the same dynamics as the Moran model and will go

to fixation with probability p f = u
( 1

N

)
= 1−e−

2s
2+s

1−e−
2sN
2+s

and in a time much shorter than T . If the cell doesn’t go to fixation

we will need to wait on average another period of T and again have a probability p f of fixation. We can thus write

down an infinite series for the average time to fixation as follows:

〈
t f 0
〉
= p f T + p f

(
1− p f

)
2T + p f

(
1− p f

)23T + · · ·=
∞

∑
n=0

p f
(
1− p f

)n
(n+1)T =

T
p f

We can make the further assumption that the average time it takes one cell in a population of size N to have

the retrotransposon knocked out should scale as T = 1/(∆N)+D where D is the average time it takes to go extinct

and 1/(N∆) is the average time it takes to have at least one cell knock out the retrotransposon. We can see from

Figure 6.4 that when N << 1/∆ = 106 this approximation works very well. So the average fixation time scales as

(1/(∆N)+D)/p f .

When the population size is on the same order as 1/∆ or larger, then the timescale T is of order unity or smaller.

This means that there is no longer a separation in timescales between the time needed to wait for a mutation to knock

out the function of a retrotransposon and the time it takes for that mutation to go to fixation. In this case we can
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Figure 6.4: Simulation of the extended Moran model. Initially all cells are retrotransposons and have rate ∆ = 10−6

/generation/cell to lose functionality. The nontransposon has a selective advantage s = 0.087 over the human L1 in E.
coli. The green curve corresponds to the theory curve (1/(∆N))/ps = 106/N/0.172.
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arrive at an upper bound for the fixation time by using our estimate for the Moran model without the mutation and

starting with a population fraction of 1/N of cells with transpsosons knocked out. The additional reaction of mutation

strictly makes the fixation time faster and the time scale for the first cell with its retrotransposon knocked out for this

initial condition is order unity or smaller. Thus, for larger population size the upper bound for fixation time scales as

s ln(N)/s.

Using the conservative estimate from literature for ∆ = 10−8 [135] and assuming a population size of 10 million

bacteria, a population size comparable to the number of bacteria found in the stomach, our scaling theory for small

populations predicts that it will take approximately 1/N∆

p f
= 1/(10−8·107)

0.172 = 58 generations for the extinction of all

bacteria containing retrotransposons with fitness costs similar to EL1H. Similarly, using a larger values of ∆ will

relax the population size needed for short extinction time scales. If we consider larger population sizes such as the

1014 bacteria found in the colon, we can use our scaling argument for the upper bound of fixation time for large

populations and find 2ln(N)
s = 2·1014

0.21 = 310 generations till extinction for bacteria containing retrotransposons with

a similar fitness cost to EL1H. A calculation for bacteria containing retrotransposons with fitness costs similar to

TL1H gives 745 generations till extinction. Most likely the extinction time would be even faster as subpopulations

would form in a spatial environment leading to lower effective population sizes. Even if the populations are much

larger the extinction time would be short on evolutionary time scales since at worst the extinction time for bacteria

containing retrotransposons scales as the logarithm of the population size. These results show that the timescale for

the extinction of retrotransposons in bacteria, with fitness costs close to those measured in experiment, is short enough

on evolutionary timescales to explain the limited number of retrotransposable elements found in bacteria.

6.7.2 Mean Field Models Containing More Dynamics

I developed the model presented in this section in collaboration with Thomas Kuhlman.

In the previous section we only considered the simple dynamics between two populations of cells, those containing

retroelements and those that do not. In this section we consider a more detailed dynamical model that tracks the

population of cells with multiple copies of retrotransposons. This model more accurately reflects the reality that

cells can contain multiple copies of retroelements. We use this more detailed mean field model to understand how

retrotransposons will proliferate within a host genome with the experimentally measured integration rates and growth

defects. We construct a model of retroelement activity and analyze its dynamics. We find that retrohoming generally

will lead to low but stable numbers of retroelements, while the parameters with which retrotransposition occurs must

be finely tuned in order to get long-lived states with significant proliferation of retrotransposons in the host.

First, to introduce direct competition for resources such that extinction is a possible outcome, we construct the

model with a limited system size Ω. Within the system, we place Nx cells carrying x copies of the retrotransposon,

86



leaving E empty space. Normalizing by Ω, the mean behavior of the system is described by the equations

1 = ε +
∞

∑
x=0

Ψx, ε =
E
Ω
, Ψx =

Nx

Ω

∂Ψx

∂τ
= εe−bx

Ψx−β (1− ε)Ψx +µ(x−1)Ψx−1−µxΨx +∆(x+1)Ψx+1−∆xΨx

∂ε

∂τ
= β (1− ε)

∞

∑
x=0

Ψx− ε

∞

∑
x=0

e−bx
Ψx (6.17)

where τ is the generation time, β is the death rate per generation [∼ 10−2−10−3 cell-1 generation-1 [136]], δ is the

mutation rate per retrotransposon per cell per generation resulting in inactivation of a copy of the retroelement [∼ 10−8

retrotransposon-1 cell-1 generation-1 [135]], b is the growth defect, and µ is the transposition rate per retrotransposon

per cell per generation. As we have demonstrated above, the values of µ and b will depend on the retroelement

in question and the presence or absence of NHEJ, with µ ∼ 10−2 − 1 and b ∼ 10−2 − 0.6 for LINE-1, and µ ∼

10−9−10−6 and b∼ 10−3−10−2 for Ll.LtrB.

To determine non-trivial stationary states, we set time derivatives to zero, and the Ψx equations yield a set of

recursion relations:

Ψ
∗
x =

β +(µ +∆)(x−1)− ε∗(β + e−b(x−1))

∆x
Ψ
∗
x−1−

µ

∆

x−2
x

Ψ
∗
x−2 (6.18)

For example,

Ψ
∗
1 =

β − ε∗(β +1)
∆

Ψ
∗
0, (6.19)

which is only non-negative when

ε
∗ ≤ β

β +1
(6.20)

Inspecting the equation for ε , we find

ε
∗ =

β

β +∑
∞
x=0 e−bxΨ∗x/∑

∞
x=0 Ψ∗x

≥ β

β +1
, (6.21)

with equivalence only for b = 0. Hence, the only internally consistent nontrivial stationary state is

ε
∗ =

β

β +1

Ψ
∗
0 = 1− β

β +1
(6.22)

Ψ
∗
x = 0 ∀x > 0, (6.23)
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i.e., extinction of the retrotransposon. It should be noted that extinction as the sole stationary state is a consequence

of the absorbing nature of the wildtype state, Ψ0 . Once cells lose all retrotransposons and enter Ψ0 , there is no way

to leave. One possible way to avoid this is by including the possibility of horizontal transfer. However, because the

cells in our experiments do not undergo horizontal transfer and the rates of horizontal transfer in the wild are poorly

quantified, we do not include this possibility in our modeling.

It is possible there exist interesting non-stationary states or other states that, while not truly stationary, are ex-

tremely long lived. We therefore simulated the model equations (6.17) to determine the phase portrait of possible

states as a function of b and µ for the initial conditions beginning with one copy of retrotransposon per cell (Ψ1 = 0.1

and ε = 0.9 ). For the simulations to be tractable, we set a boundary at some maximum number of retrotransposons

per cell, xmax. We consider setting such a boundary in two ways. First, we set a small fixed number of available

insertion sites; once occupied, no further insertions are possible (i.e., reflecting boundary conditions). We suggest that

such conditions would correspond to the retrohoming of group II introns. Next, from our experimental data, [Figs.

6.7, 6.8, 6.1], we find that when the growth rate has decreased below∼ 10% of the nominal value, cells cannot survive

and cease to grow. Hence, as a second approach in our simulations we set a dynamic boundary by xmax =− ln(0.1)/b,

where insertions beyond this maximum number result in cell death (i.e., absorbing boundary conditions). We suggest

that these conditions would correspond to the nonspecific retrotransposition and amplification of retroelements.

Phase diagrams of simulations with populations of cells allowed to evolve over 10,000 generations are shown

in Fig. 6.5A and Fig. 6.5B for reflecting and absorbing boundary conditions, respectively. For both conditions,

the majority of parameter values quickly lead to extinction. With reflecting boundary conditions, Fig. 6.5A, a high

insertion rate allows saturation of all available integration locations. This corresponds to retrohoming, where insertion

rates correspond to ∼ 1 per intron per cell per generation [121], but with low growth defect. As we now demonstrate,

this saturated regime is approximately stable and will persist for extremely long times. With a boundary set at xmax,

the model becomes

1 = ε +
∞

∑
x=0

Ψx, ε =
E
Ω
, Ψx =

Nx

Ω

∂Ψx<xmax

∂τ
= εe−bx

Ψx−β (1− ε)Ψx +µ(x−1)Ψx−1−µxΨx +∆(x+1)Ψx+1−∆xΨx

∂Ψxmax

∂τ
= εe−bxmax Ψxmax −β (1− ε)Ψxmax +µ(xmax−1)Ψxmax−1−∆xmaxΨxmax − [µxmaxΨxmax ]

∂ε

∂τ
= β (1− ε)

∞

∑
x=0

Ψx− ε

∞

∑
x=0

e−bx
Ψx +[µxmaxΨxmax ] (6.24)

with the terms in square brackets present only for absorbing boundary conditions. In this case, the Ψx equations can
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Figure 6.5: Phase diagram of retrotransposon dynamics. We simulated the model of retrotransposon dynamics,
equations 6.24, using a total system size of Ω = 109, with an initial population of Ψ1 = 0.1 and all other states empty.
This initial state was allowed to evolve for 10,000 generations with ∆ = 10−8 retrotransposon-1 cell-1 generation-1 and
β = 10−2cell-1 generation-1, at the conclusion of which we calculated the average number of retrotransposons per cell
over the extant population. Results are shown for (A) reflecting boundary conditions with xmax = 4 and (B) absorbing
boundary conditions with xmax =−ln(0.1)/b.
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be manipulated to yield recursion relations in terms of the Ψxmax state. In particular, for reflecting boundary conditions

we find

Ψ
∗
xmax−1 =

β − ε∗
(
β + e−bxmax

)
+∆xmax

µ(xmax−1)
Ψ
∗
xmax , (6.25)

similar to the condition eq. 6.19 above. To avoid populating lower states and again running afoul of the conditions

eqs. 6.20 and 6.21, we demand eq. 6.25 equal zero:

ε
∗ =

β +∆xmax

β + e−bxmax
≈ β

β + e−bxmax
(6.26)

since ∆xmax is small and approximately negligible. Therefore, only if ∆xmax is negligible, a meta-stable and extremely

long-lived state similar to eq. 6.22 and consistent with eq. 6.21 is possible,

ε
∗ =

β

β + e−bxmax
(6.27)

Ψ
∗
xmax = 1− β

β + e−bxmax
(6.28)

Ψ
∗
x = 0 ∀x < xmax, (6.29)

This demonstrates that the retrohoming strategy allows for low numbers of retrotransposons that are approximately

stable and can persist for extremely long times. For absorbing boundary conditions, the appropriate recursion relation

relative to the state with the maximum number of retrotransposons is

Ψ
∗
xmax−1 =

β − ε∗
(
β + e−bxmax

)
+(∆+µ)xmax

µ(xmax−1)
Ψ
∗
xmax . (6.30)

In contrast with the argument for retrohoming, the non-negligible factor of µxmax in the numerator renders the

Ψxmax state and other states with large retrotransposon numbers unstable. Hence, while the phase portrait Fig. 6.5B

shows that there exists a small set of parameter values (b < 0.01 and µ ∼ 10−3 retrotransposon-1 cell-1 generation-1)

where the retroelement is able to proliferate to high numbers, these states will eventually go extinct. Thus, the phase

portrait with absorbing boundary conditions rapidly changes with time, and the result shown in Fig. 6.5B depends

upon the interval over which the simulation is allowed to run. To determine the lifetime of these states, we performed

simulations using absorbing boundary conditions for a variety of values of b and µ , where we recorded the number

of generations required for the retrotransposon to go extinct. The result is shown in Fig. 6.6. From this analysis, we

see that the time required for a retrotransposon to go extinct can vary over ∼ 7 orders of magnitude, depending upon
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Figure 6.6: Time to extinction of retrotransposons in a bacterial population. Simulations of the model eqs. 6.24,
with absorbing boundary condition at xmax = − ln(0.1)/b , system size of Ω = 1030, ∆ = 10−8 retrotransposon-1

cell-1 generation-1, β = 10−2 cell-1 generation-1 and initial population of Ψ1 = 0.1 with all other states empty. Color
indicates the number of generations required for the average number of retrotransposons per cell to drop below 1

Ω
.

Solid contour lines indicate major decade divisions, dashed contour lines indicate half-decade divisions.

its dynamics and effects. For those parameter regimes corresponding to the aggressive autonomous retrotransposon

LINE-1 (b ≥ 10−2, µ ≥ 10−2 retrotransposon-1 cell-1 generation-1), extinction is rapid, occurring in ∼ 100 – 10,000

generations. Conversely, parameter regimes corresponding to the group II intron Ll.LtrB (10−3 ≤ b ≤ 10−2, 10−9 ≤

µ10−6 retrotransposon-1 cell-1 generation-1) can persist in low copy numbers (∼ 1 per cell) for millions to tens of

millions of generations. We additionally see that the small parameter regime where retrotransposons can proliferate

to high copy numbers (b ≤ 10−2, µ ∼ 10−3 − 10−4 retrotransposon-1 cell-1 generation-1) persists for hundreds of

thousands to millions of generations, and could be maintained longer with the inclusion of horizontal gene transfer.

6.8 Discussion

Our experimental collaborators found that NHEJ enhances the efficiency of LINE-1 integration and thus its lethality.

They also found the same result for the group II intron L1.LtrB.

Additionally, our experimental collaborators found that both human L1H and bacterial L1.Ltrb expression results
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in an exponential decrease in growth rate. I explained this observation by developing a simple model that assumes

each transcript has a probability of integrating and disrupting essential genes affecting cell growth. The cell will

survive as long as no essential genes are interrupted; this leads to the exponential growth defect. The measured

growth defect of the retrotransposon ELH1 in the simple Moran model show the retrotransposon should go extinct

within a couple hundred generations. These relatively short extinction times are consistent with the non-observation

of retrotransposons in bacteria.

In the more detailed model I developed with Thomas Kuhlman, aggressive retrotransposons with parameters sim-

ilar to the ones we measured for L1 would go extinct within 100 to 10000 generations. For parameter regimes

corresponding to group II introns, the group II introns can persist in low copy numbers for millions of generations.

Furthermore, retrotransposons can persist in high copy numbers if the growth defect is decoupled from the integra-

tion rate. In particular this requires suppression of the growth defect below b ∼ 10−2. Many of the features unique

to eukaryotes, including alternative RNA splicings enabled by the spliceosome, spatial and temporal decoupling of

transcription and translation by the nuclear membrane, or utilizing existing junk DNA already present in the genome

as a large, non-vital target in which to sink integrations have been hypothesized to have arisen specifically to mitigate

the physiological effects of retroelements in eukaryotes [13, 14, 12].

6.9 Supplement: Experimental Details

The following supplement provides experimental details conducted by Thomas Kuhlman and his lab.

6.9.1 Effects of Retroelement Expression on Growth

To assess the effects of L1 expression on bacteria, we first transformed pTKIP-TL1H/EL1H constructs into E. coli

BL21(DE3), a strain that expresses T7 polymerase [137]. A decrease in growth rate in response to increasing L1

expression is immediately apparent in cultures titrated with IPTG (Fig. 6.7B-C). To test the generality of this effect,

we next assessed the effects of L1 expression on Bacillus subtilis. In contrast to E. coli, B. subtilis is a Gram-positive

bacterium able to repair DNA double strand breaks through nonhomologous end joining (NHEJ) in a manner similar

to eukaryotes [138]. Hence, we hypothesized that B. subtilis would be more resistant to L1 and cleavage of DNA as

a result of ORF2p endonuclease than E. coli, which lacks capacity for NHEJ repair. Instead, we find the opposite:

wildtype B. subtilis cannot survive transformation with pHCMC05-EL1H (Fig. 6.7D). Conversely, we obtain high

yield transformation of EL1H into B. subtilis strains with NHEJ repair enzymes Ku (ykoV), LigD (ykoU), and both

Ku and LigD knocked out [139]. A Miller assay of expression level from the positive control plasmid pHCMC05-

lacZYAX expressing E. coli’s metabolic lac enzymes from the hyper-spank promoter shows that expression is weak
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Figure 6.7: Bacterial L1 elements and effects on growth. (A) LINE-1 constructs used in this study. Top: TL1H
has human codon bias (indicated by red), and was modified for expression in E. coli using a bacterial T7lac promoter
and a consensus Shine Dalgarno ribosomal binding site driving ORF1 (RBS, purple box). Bottom: EL1H is driven
by PT7lac and has consensus RBS for ORF1 and ORF2. EL1H has a 100 bp 3’ poly(A) tract and has E. coli codon
bias (indicated by black). (B) L1 is detrimental to E. coli growth. Example growth curves for BL21(DE3) pTKIP-
TL1H growing in M63 glucose medium including 0 (magenta), 10 µM (blue), 20 µM (green), and 35 µM (yellow)
IPTG. (C) Growth response as a function of [IPTG] for BL21(DE3) pTKIP-TL1H (top) and pTKIP-EL1H (bottom)
in various media; magenta - RDM glucose, blue - RDM glycerol, green – cAA glucose, yellow – M63 glucose, red –
M63 glycerol. Growth rates were determined using the slope of the best fit regression of the initial linear portion of
Log2(OD600) versus time, as in (B). Points are the average of three independent replicates, and shaded regions indicate
the standard deviation. (D) Wildtype B. subtilis cannot survive transformation with EL1H (first column), while NHEJ
knockouts relieve sensitivity (second column: ∆ykoU; third column ∆ykoV; fourth column ∆ykoU ∆ykoV). First row:
negative control (TE buffer only); second row: positive control (pHCMC05-lacZYAX).; third row: pHCMC05-EL1H.
We performed transformations in four independent replicates with identical results. (E) Example E. coli BL21(DE3)
cultures in RDM glucose grown for 20 hours. Left - pTKIP, pUC57-NHEJ; middle – pTKIP-EL1H, pUC57; right –
pTKIP-EL1H, pUC57-NHEJ. All cultures contain no IPTG and 100 ng/ml aTc.
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Figure 6.8: Effects of Ll.LtrB on bacterial growth. (A) The Ll.LtrB construct TORF/RIG. TORF/RIG drives the
expression of the Ll.LtrB group II intron, with the ltrA coding sequence towards the 3’ end of the intron driven by
a strong RBS. TORF/RIG includes a kanamycin resistance gene encoded in the opposite orientation whose coding
sequence is disrupted by the group I intron td∆1-3 for determination of retrotransposition frequencies. (B) Expression
of TORF/RIG is detrimental to E. coli growth. Example growth curves for BL21(DE3) pET-TORF/RIG growing in
M63 glucose medium including 0 (magenta), 10 µM (blue), 20 µM (green), 35 µM (yellow), 50 µM (red), and 100
µM (cyan) IPTG. (C) Growth response as a function of [IPTG] for BL21(DE3) pET-TORF/RIG pZA31-tetR (top)
and pET-TORF/RIG pZA31-NHEJ (bottom) in various media; magenta - RDM glucose, blue - RDM glycerol, green
– cAA glucose, yellow – M63 glucose, red – M63 glycerol. Growth rates were determined using the slope of the
best fit linear regression line of Log2(OD600) versus time, as in (B). Points are the average of three independent
replicates, and shaded regions indicate the standard deviation. (D) Wildtype B. subtilis cannot survive transformation
with pHCMC05-TORF/RIG (first column), while NHEJ knockouts somewhat relieve sensitivity (second column:
∆ykoU; third column ∆ykoV; fourth column ∆ykoU ∆ykoV). First row: negative control (TE buffer only); second row:
positive control (pHCMC05-lacZYAX).; third row: pHCMC05-TORF/RIG. We performed transformations in four
independent replicates with identical results.
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Figure 6.9: Expression from the hyper-spank promoter of pHCMC05 in Bacillus subtilis. LacZ activity of unin-
duced (left) and induced (right) B. subtilis 168 transformed with pHCMC05-lacZYAX was measured with a Miller
assay.[140] Bars are the mean of six independent replicates and error bars are the standard deviation

but leaky in B. subtilis (Fig. 6.9). We conclude that wildtype B. subtilis is extremely sensitive to very low levels of

L1H expression, and that this growth defect is enhanced by NHEJ repair.

We next cloned and expressed the B. subtilis NHEJ enzymes (BsKu and BsLigD) in E. coli under the control

of the aTc inducible PLtet01 promoter [96]. We first verified that BsKu and BsLigD were functional in E. coli by

ensuring their ability to rescue strains where we induced the homing endonuclease I-SceI to create double stranded

chromosomal breaks at chromosomally integrated I-SceI recognition sites[141, 125, 126] [Fig. 6.10]. We then verified

the enhancement of lethality of LINE-1 by NHEJ by cotransformation of BL21(DE3) with plasmids expressing LINE-

1 and NHEJ enzymes. We find that even low leakage expression of EL1H without addition of IPTG is lethal to E. coli

with concomitant induction of expression of NHEJ enzymes with 100 ng/ml aTc (Figure 6.7E).

To quantify the effect of L1 expression on E. coli growth, we measured the growth rate as a function of expression

level by titration with IPTG and periodic measurement of optical density in a variety of growth media (Fig. 6.7B-

C). Even with no induction, leaky expression of L1 significantly reduces the growth rate relative to the parent strain

carrying an empty plasmid, and complete growth arrest occurs at IPTG concentrations of 35 – 50 µM (Fig. 6.7C).

We measured the transcriptional response function of the T7lac promoter by quantitative reverse transcription PCR

(qRT-PCR, Fig. 6.11A-D) of L1 mRNA extracted from bacteria grown at those IPTG concentrations where cultures

survive. This yielded the response function shown in Fig. 6.11E. The resulting dose-response as a function of L1

RNAs per cell is shown in Fig. 6.1A, with data from TL1H as blue points, EL1H as red points, and EL1H + NHEJ as

black points. The normalized growth rate decreases exponentially with increasing numbers of L1 RNAs, and growth

conditions do not affect this response. Solid lines in Fig. 6.1A correspond to fits to the exponential function , where

L is the average number of L1 RNAs per cell and the parameter b quantifies the growth defect and sensitivity to L1
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Figure 6.10: B. subtilis NHEJ enzymes function in E. coli. Turbidity of cultures grown for ∼ 36 hours at 30oC after
inoculation with identical amounts of cells. Bacterial strains are MG1655 ∆lac carrying the plasmid pTKRED, which
expresses the homing endonuclease I-SceI when induced with L-arabinose. Additional plasmids and modifications are,
from top to bottom - first row: pUC57-kan; second row: pUC57-kan-NHEJ; third row: pUC57-kan with I-SceI sites
integrated at the atpI chromosomal locus [141, 125, 126]; fourth row: pUC57-kan-NHEJ with I-SceI sites integrated at
the atpI chromosomal locus. Columns correspond to different inducer conditions – first column: 0 aTc, 0 L-arabinose;
second column: 100 ng/ml aTc, 0 L-arabinose; third row: 0 aTc, 0.4% w/v L-arabinose; fourth row: 100 ng/ml aTc,
0.4% L-arabinose. Lack of turbidity in row 3, columns 3 and 4 demonstrate that I-SceI double strand breaks are lethal
to E. coli [125]. Recovery of turbidity in row 4, columns 3 and 4 demonstrate that even low, leakage expression of B.
subtilis NHEJ enzymes rescue E. coli growth.
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expression. We find that, on average, each L1 transcript yields a decrease in E. coli’s growth rate of ∼ 0.83±0.06%

(TL1H) or 1.9±0.6% (EL1H) in the absence of NHEJ, and ≥ 45±1.6% with NHEJ.

We find that Ll.LtrB also yields a growth defect as a function of expression level, as qualitatively reported by

Coros, et al. 2005 [121]. Using Ll.LtrB expressed from pET-TORF/RIG in E. coli, we measured the growth rate

as a function of expression level by titration with IPTG and periodic measurement of optical density in a variety of

growth media (Fig. 6.8B-C), yielding the dose response shown in Fig. 6.1B as red points. As with L1, simultaneous

expression of B. subtilis NHEJ enzymes significantly enhances the lethality of Ll.LtrB to E. coli (Fig. 6.1B, black

points). As might be expected due to the ability of LtrA maturase to excise Ll.LtrB from interrupted genes, the

growth defect resulting from Ll.LtrB is weaker than that from L1, with each Ll.LtrB transcript reducing growth rate

by 0.11±0.02% in the absence of NHEJ and 0.82±0.11% with NHEJ. The Ll.LtrB growth defect is also evident in

plating assays to determine retrotransposition efficiency (described below). Induction of Ll.LtrB expression with 100

µM IPTG reduces the number of viable colony forming units (cfus) per milliliter per OD by ∼ 10x. Simultaneous

induction of Ll.LtrB with 100 µM IPTG and induction of NHEJ enzymes with 100 ng/ml anhydrotetracycline reduces

viable cfus/OD/ml by ∼ 100x, while induction of expression of NHEJ enzymes alone has no detectable effect.

Finally, we attempted to transform Ll.LtrB into B. subtilis as the plasmid pHCMC05-TORF/RIG, with Ll.LtrB

under control of the lacI-regulated hyper-spank promoter. As with LINE-1, we find that wildtype B. subtilis 168

cannot survive transformation with Ll.LtrB, while knockouts for the NHEJ genes ykoU, ykoV, and both ykoU and

ykoV are transformed with high yield (Fig. 6.8D). However, NHEJ knockouts do not alleviate the grow defect as

significantly as with LINE-1, with Ll.LtrB transformants growing slowly to form very small colonies after∼ 24 hours

of growth at 37oC.

6.9.2 L1 Successfully Integrates into E. coli’s Chromosome

We next addressed the question of how L1 is functioning in bacteria and the molecular mechanisms causing growth

defects. Since both ORF2p and LtrA contain an endonuclease domain, expression of these proteins alone may damage

genomic DNA and halt growth without being accompanied by successful retrotransposition. However, the hypothesis

that DNA damage by endonucleases is primarily responsible for growth defects appears inconsistent with observation

of NHEJ enhancing the growth defect. We now report multiple lines of evidence indicating that L1 successfully

integrates into E. coli’s chromosome, and that NHEJ enhances the efficiency of retrotransposition of both L1 and

Ll.LtrB.

First, we grew cultures carrying EL1H with 30 µM IPTG for ∼ 48 hours. Surviving bacteria were collected and

transformed with the plasmid pTKRED, which expresses the homing endonuclease I-SceI [141, 125, 126] resulting

in in vivo digestion and curing of pTKIP-EL1H. After screening of the resulting cultures for appropriate antibiotic
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Figure 6.11: Quantitative RT-PCR to determine T7lac promoter response function. (A) Amplification curves of
reverse transcribed serial 10x dilutions of in vitro transcribed TL1H RNA as an absolute standard (black), along with
reverse transcribed RNA extracted from BL21(DE3) pTKIP-TL1H grown in M63 glucose medium with 0 (red), 10 µM
(yellow), 20 µM (green), and 50 µM (blue) IPTG. (B) Absolute quantification of TL1H RNA numbers. Black circles
are critical cycle numbers (Cq) of the in vitro standards from (A), colored crosses are Cqs of BL21(DE3) pTKIP-TL1H
RNA with the threshold at ∼ 200 AU. PCR efficiency was 90.5%. (C) Melting curves and their unimodal derivatives
(D) resulting from qRT-PCR, demonstrating clean amplification of TL1H cDNA. Melting temp of the amplicon was
84.5 oC. (E) RNA was extracted from BL21(DE3) pTKIP-TL1H grown in RDM glucose (magenta), RDM glycerol
(blue), M63 glucose (yellow), cAA glucose (green), or M63 glycerol (red) with 0, 10, 20, 35, or 50 µM IPTG and
quantified through qRT-PCR (Figure 6.11). Concentrations of IPTG higher than 50 µM were nonviable in all media
except M63 glycerol, where concentrations higher than 20-35 µM were generally nonviable. The number of RNAs
determined by qRT-PCR was divided by the number of cells added to the reaction, determined by measurement of
OD600 and plating performed at the time of harvest. Shaded magenta region shows the standard error of the mean of
four experimental replicates for samples prepared in RDM glucose. The standard errors of other samples are similar,
but not shown for clarity. The number of LINE-1 RNAs per cell obtained for each growth and induction condition
thus obtained were used as the x-axis in Figure 6.1.
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Figure 6.12: L1 integrates into the E. coli genome. (A) Non-clonal colony PCR to detect EL1H (LINE-1 lanes)
and pTKIP (Plasmid lanes). Left: BL21(DE3) negative control. Middle: BL21(DE3) pTKIP-EL1H positive control.
Right: Strain post EL1H exposure and plasmid curing. (B) EL1HID, a construct for detecting successful retrotranspo-
sition of EL1H in individual cells by fluorescence. The integration detection cassette (ID) consists of mTFP1 with con-
sensus σ70 promoter and RBS. -10 and -35 core promoter sequences are split by the group I intron td∆1-3 (sequences
shown below). Upon successful retrotransposition the cell fluoresces blue. (C) Induced BL21(DE3) pTKIP-EL1HID
are visibly fluorescent with UV illumination. (D-F) Phase contrast (top) and fluorescence microscopy (bottom) of
induced (20 µM IPTG) (D) BL21(DE3) pTKIP-neo negative control, (E) BL21(DE3) pTKIP-EL1H, (F) BL21(DE3)
pTKIP-EL1HID, and (G) BL21(DE3) pTKIP-EL1HID pUC57-NHEJ (0 IPTG, 5 ng/ml aTc).
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Figure 6.13: Detection of full-length EL1H genomic integrants. Representative 2% agarose gel electrophoresis of
colony PCR of eight isolated colonies of BL21(DE3) that had been exposed to EL1H and cured of pTKIP-EL1H using
primers that anneal to the 5’ end of EL1H and produce a 500 bp amplicon. BL21(DE3) was used as a negative control,
and BL21(DE3) pTKIP-EL1H as a positive control. The large fluorescent smear near the positive control band was a
result of excess ethidium bromide staining. Since EL1H RNA is reverse transcribed and integrated starting from the
3’ end, presence of the 5’ end indicates complete integration. Out of 80 colonies tested, we found 3 colonies yielding
this 500 bp product indicating complete integration of EL1H.

resistances, we performed colony PCR to verify plasmid loss and to attempt to amplify L1 from genomic DNA. An

example obtained from exposed cultures is shown in Fig. 6.12A. Post-curing strains generate no product corresponding

to presence of the pTKIP plasmid, yet we were able to amplify EL1H from non-clonal samples. We subsequently

isolated single, clonal colonies of EL1H-exposed E. coli and attempted to amplify a 500 bp segment containing the 5’

end of ORF1 by colony PCR. We detected a positive signal in 3 out of 80 colonies screened (Fig.6.13).

As an additional phenotypic test for successful retrotransposition, we modified EL1H by inserting a cassette be-

tween the 3’ end of ORF2 and the poly(A) tract for detecting integration in individual live cells by fluorescence (Fig.

6.1) [122, 15, 142]. This cassette consists of a gene encoding mTFP1 [143], a bright teal fluorescent protein, driven

by a consensus E. coli σ70 promoter and RBS. The -10 and -35 sequences of the mTFP1 promoter are split by the

group I intron td∆1− 3 [144], preventing transcription of mTFP1 from the σ70 promoter in the original construct.

Upon transcription of EL1H, the td∆1− 3 intron catalyzes its own excision, reconstituting the mTFP1 promoter in

the EL1H RNA. Finally, if this part of EL1H RNA is successfully reverse transcribed and integrated into the genome,

individual cells undergoing successful retrotransposition can be detected by fluorescence microscopy.

We transformed this construct, EL1HID, into BL21(DE3) and grew cultures with weak induction of L1 expression.

We have previously observed that dead E. coli produce stronger autofluorescence than live cells, raising the possibility

that any observed fluorescence is simply due to a higher proportion of dead cells. However, fluorescence microscopy

shows that cultures carrying EL1HID contain a subpopulation of cells (-NHEJ: ∼ 1%; +NHEJ: ∼ 80%) whose total

fluorescence is >10x brighter than cells in any control strains.

pET-TORF/RIG contains a retromobility indicator gene (RIG) that functions similarly to the mTFP1 cassette em-

ployed in EL1HID [121], in that the coding sequence of a kanamycin resistance gene carried by Ll.LtrB is interrupted

by the td∆1-3 group I intron. Consequently, the frequency of successful ectopic retrotransposition can be determined
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by plating cultures on selective medium containing kanamycin. We performed retrotransposition plating assays with

BL21(DE3) pET-TORF/RIG cells carrying pUC57-cat-NHEJ, a chloramphenicol-resistant high copy number plasmid

with a pUC origin of replication. To prevent confounding effects from possible incompatibility between pUC57’s

pUC origin and pET-TORF/RIG’s pBR322 origin, we also performed retrotransposition assays using pZA31-NHEJ, a

medium copy number plasmid with a p15A origin of replication [96]. We find the efficiency of Ll.LtrB retrotransposi-

tion in BL21(DE3) pET-TORF/RIG cells carrying empty pUC57-cat or pZA3-tetR plasmids as negative controls to be

3.0±0.9×10−9, consistent with measurements by Coros et al. [121]. In contrast, the efficiency of retrotransposition

of cells carrying pUC57-cat-NHEJ was 4.6± 0.4× 10−6, while those carrying pZA31-NHEJ was 1.5± 0.3× 10−7.

Hence, we find that bacterial NHEJ increases the efficiency of Ll.LtrB retrotransposition by 2 – 3 orders of magnitude.
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Part III

Stochastic Dynamics of Ants
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Chapter 7

Stochastic Dynamics of Ants

Bistability is ubiquitous. It has been used to describe flip-flop circuits in electronics, regulation motifs in cellular

signaling, and a particle in a double well potential in mechanics. Perhaps the most familiar mechanism for bistability

is that of a particle executing a Brownian walk in a double well potential. In the absence of noise the particle will tend

to settle to a fixed point of one of the potential wells. If the noise or temperature of the system is increased the particle

can be kicked out of one well and settle into the other. For this type of bistability scientists have asked and answered

questions such as: What is the stationary probability distribution of the particle? What is the mean switching time of

the particle? And how stable are the states relative to one another[145]? In this section I will describe another type of

bistability, where surprisingly the bistability is created by multiplicative noise.

This alternative type of bistability is created by multiplicative noise, such as that which arises from intrinsic

demographic stochasticity. For example, a particle sits in a potential well with one fixed point, but the multiplicative

noise is greatest at the fixed point and vanishes at the boundaries of the well. So one can imagine the dynamics

of a particle in such a system will be such that as the particle relaxes towards the bottom of the potential well it is

immediately kicked out and experiences less kicks as it gets closer to a boundary. These boundary states are metastable

and the particle can switch between them. This kind of bistability was first observed in the Togashi-Kaneko reaction

scheme [146] and later understood to be caused by multiplicative noise by Ohkubo et al. [147]. The characteristic

equation of this type of bistability is given by ż = −z+ s
√

1− z2η , where η is Gaussian noise, z is the bi-stable

quantity switching between -1 and 1, and s is a quantity controlling the strength of the noise. Notice that when the

noise vanishes, s = 0, the system is deterministic with a fixed point at 0. This hints at a phase transition unique to this

type of bistability. When the noise is small, the bistability vanishes and the system relaxes to its fixed point. Figure 7.1

displays the stationary probability distribution for systems that have this type of multiplicative noise-induced bistability

for different strengths of noise.

This kind of bistability can arise from systems with autocatalytic reaction networks [148]. Instead of introducing

the noise by hand, the noise comes about as a consequence of the underlying individual level model and the discrete-

ness of the chemical copy numbers. The form of the noise is derived by expanding the Master Equation with respect

to system size using the Kramers-Moyal expansion. This type of bistability has been shown to occur in systems with
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Figure 7.1: The stationary probability distribution for bistability characterized by multiplicative noise. The distribution
is plotted for different strengths of niose, s=0.5, 1.0, and 2.0

recruitment, such as ants foraging from two food sources spaced equally away from a nest [1].

7.1 Direct Recruitment Model

In previous work by Tommaso Biancalani, a simple model of ant foraging from two identical food sources was pro-

posed. In this proposed model there are two types of ants, ants foraging from food source 1, denoted by x1, and ants

that forage from food source 2, denoted by x2. There is a total fixed number of ants, N, foraging at all times. Ants can

directly recruit one another to forage from their food source. For example, an ant x1 could recruit an ant x2 to start to

forage from food source one. In this case the ant x2 would become an x1. This recruitment of ants is autocatalytic.

Finally, in Biancalani’s model there is a small chance that an ant can spontaneously start to forage from the other food

source. The set of reactions describing this model is as follows:

x1 + x2
r−→ 2x2, x2 + x1

r−→ 2x1

x1
ε−→ x2, x2

ε−→ x1 (7.1)

Since the total number of ants is a conserved quantity, the behavior of this system can be completely described by

one variable z = x1− x2, the difference in number densities of ants foraging from source one and source two. Writing

down the Master Equation for this set of reactions and using a Kramers-Moyal expansion in system size, Biancalani

found that z obeyed the following stochastic differential equation:

ż =−z+

√
Nc

N

√
1+2ε− z2ητ (7.2)
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Where Nc = 1/ε . This equation has a stationary probability solution of:

P(z) =
C0

(1+2ε− z2)1−N/Nc
(7.3)

As can be seen from this stationary solution when N < Nc the system is mainly in z = 1 or z =−1. Observations of

trajectories of z in this steady state show the system is switching between the states z = 1 and z =−1; that is, the ants

are all foraging from one food source then foraging from the other food source. This corresponds to the autocatalytic

process being much more important than the random spontaneous decisions of individual ants. When there are enough

ants, N > Nc, then the ants will start to forage equally from both food sources. In this system the strength of the noise

in the stochastic pde is controlled by the population size: at small populations the strength of the fluctuations is large

and at large population sizes the strength is small. In this model there exists a critical population size above which

bistability vanishes.

Biancalani’s model would predict that if the population size is small enough, then the ants would bistably forage

first from one and then the other food source. However, this does not seem to be experimentally the case. Experiments

by Beckers et al. examined ants foraging from two food sources placed equidistant from an ant colony. The ants

foraged preferentially from one of the food sources with roughly 80% of the ants foraging from that food source

[149]. Switching was not observed but perhaps this could be due to the duration of the experiment being too short.

Biancalani’s original model exhibits bistability but leaves out many of the important details of foraging ants. Ants

have three main types of recruitment: tandem recruitment, group recruitment, and trail recruitment (mass recruitment).

In tandem recruitment, a scout guides one recruit to the source. In group recruitment, a scout guides a group of ants to

the food source. In trail recruitment, a trail of pheromones is laid by the scout on the way back to the nest after finding

a food source. Subsequent ants can reinforce the trail. Tandem recruitment and group recruitment usually occur along

with trail recruitment. One of the most important details that was ignored in Biancalani’s model was that some ants

do recruitment through pheromones.

Inspired by an ant foraging model in Netlogo, I further modified that model to exhibit similar behavoirs as observed

in Biancalani’s model (see Fig.7.2). In this modified Netlogo model, I was able to observe bistable foraging of ants

when the population size was small enough. I also saw that I could modify the critical population size above which

ants will forage equally from both food sources simply by modifying the evaporation rate of the pheromones. This led

me to create a simple extension of Biancalani’s model to include pheromones which I describe in the next section.
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Figure 7.2: Netlogo simulations of ants foraging from two food sources. The food sources are indicated by the
numbers 1 and 2, the purple circle in the center is the location of the ant colony. The green color gradient shows the
amount and location of the pheromones. The figures on the left show ants bistably foraging when their population size
is small, N < Nc. The figure on the right shows ants foraging equally from both food sources when their population is
large, N > Nc.

7.2 Stochastic Model for Ant Foraging with Pheromones

By considering pheromones I am able to examine the role of memory (how long the pheromones last on a surface)

and to examine if the pheromones have an effect on the critical population size and thus, the switching time. I derive

experimental predictions for how the critical switching size depends on the evaporation rate of the pheromones and

the rate at which the pheromones are created. This theory is rich enough that it can be systematically compared with

experiment. It would also be possible to compare our predictions with earlier theoretical work[150, 151] which does

not correctly represent stochasticity but does model phenomenologically the pheromone memory effect. These models

do not seem to predict bistability for small colony sizes, but instead predict that large colonies are more effective at

exploiting a single source.

The following individual level model of ant foraging consists of ants foraging from two food souces labeled 1 and

2. Ants foraging from food source one are x1 and those foraging from food source are x2. The pheromones produced

by ants x1 are called a1 and those produced by x2 are labelled a2.

x1 +a2
r−→ x2 +a2, x1

b−→ x1 +a1, a1
d−→ /0

x2 +a1
r−→ x1 +a1, x2

b−→ x2 +a2, a2
d−→ /0

x1
ε←→ x2 (7.4)

The parameter ε represents the small rate at which ants spontaneously start to forage from the other source and N is

the total number of ants foraging. The rate r is the rate at which pheromones recruit ants from the other source, b is the

rate at which pheromones are produced by ants and d is the rate at which pheromones evaporate. This set of reactions
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produces the following transition rates:

T1(x1 +
1
N
,x2−

1
N
,a1,a2|x1,x2,a1,a2) = ra1x2 + εx2 T3(x1,x2,a1 +

1
N
,a2|x1,x2,a1,a2) = bx1

T2(x1−
1
N
,x2 +

1
N
,a1,a2|x1,x2,a1,a2) = ra2x1 + εx1 T4(x1,x2,a1,a2 +

1
N
|x1,x2,a1,a2) = bx2

T5(x1,x2,a1−
1
N
,a2|x1,x2,a1,a2) = da1 T6(x1,x2,a1,a2−

1
N
|x1,x2,a1,a2) = da2 (7.5)

Using these transition rates the general Master Equation can be written using raising and lowering operators as

∂tP = [(ε−x1
ε
+
x2
−1)T1 +(ε+x1

ε
−
x2
−1)T2 +(ε−a1

−1)T3 +(ε−a2
−1)T4 +(ε+a1

−1)T5 +(ε+a2
−1)T6]P

≈ 1
N
[−∂x1(T1−T2)−∂x2(T2−T1)−∂a1(T5−T3)−∂a2(T6−T4)

+
1

2N2 (∂x1 −∂x2)
2(T1 +T2)+

1
2N2 ∂

2
a1
(T2 +T5)+

1
2N2 ∂

2
a2
(T4 +T6)]P, (7.6)

where the raising and lowering operators are ε±x f (x) = f (x± 1
N ) ≈ (1± 1

N ∂x +
1

2N2 ∂ 2
x + ...) f (x). Using the Taylor

expansion in system size and dropping terms O( 1
N3 ) and higher, yields a Fokker-Planck equation. We can rescale time

to t/N→ t and obtain the Fokker-Planck equation in the form

∂tP(x, t) = [−∂xiAi +
1

2N
∂xi∂x j Bi j]P(x, t) (7.7)

with

Ai =



T1−T2

T2−T1

T3−T5

T4−T6



Bi j =



(T1 +T2) −(T1 +T2) 0 0

−(T1 +T2) (T1 +T2) 0 0

0 0 T3 +T5 0

0 0 0 T4 +T6


.

The corresponding Langevin equations (with zero mean noise) are ∂txi =Ai+
1√
N

ξi where
〈
ξi(t)ξ j(t ′)

〉
=Bi jδ (t−
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t ′). The noise can be decoupled by making the transformation ξi = Gi jη j, where GGT = B. We choose

Gi j =



−
√

T1+T2
2

√
T1+T2

2 0 0√
T1+T2

2 −
√

T1+T2
2 0 0

0 0
√

T3 +T5 0

0 0 0
√

T4 +T6


.

so that
〈
η(t)ηT (t ′)

〉
= G−1

〈
ξ (t)ξ T (t ′)

〉
(G−1)T = G−1Bδ (t− t ′)(G−1)T = G−1GGT (G−1)T δ (t− t ′) = Iδ (t− t ′)

showing that the noise is now delta correlated.

After decoupling the noise and making the change of variables w = x1 + x2, z = x1− x2, c1 = a1 + a2, and c2 =

a1−a2 we rescale time so that d× t→ t. To simplify the equations we can use the Gaussian sum rule for white noise

to obtain:

∂tw = 0 ∂tc1 =
b
d

w− c1 +

√
bw
d + c1

N
ηc1

∂tz =
r
d
(c2w− c1z)− 2εz

d
+

√
r(c1w− c2z)+2εw

dN/2
ηz ∂tc2 =

b
d

z− c2 +

√
bw
d + c1

N
ηc2 (7.8)

These equations show that total number of ants w is conserved. From the equation for c1, the total amount of

pheromones decouples from the rest of the system. The stationary probability distribution for c1 is obtained by

solving the corresponding Fokker-Planck equation with ∂tP(c1, t) = 0 and a zero probability current. We obtain

P(c1) =C0e−2N(K+c1)(K + c1)
4KN−1 (7.9)

where C0 is the normalization constant and K = b
d w. Note that the peak of this probability distribution is given

by c1 = K− 1
2N . This exact result can be intuitively understood by comparing it to the outcome of a linear noise

approximation, where we obtain a Gaussian centered around K with variance K
N .

To solve for the stationary distribution for z, we assume that the noise for c1 and c2 is small, so that their corre-

sponding equations are deterministic. Additionally let us assume that the dynamics for c1 and c2 are sufficiently fast

compared to z that they can be approximated by their fixed points c1 =
bw
d and c2 =

b
d z. This leads to

∂tz =−
2εz
d

+

√
b
d r(w2− z2)+2εw

dN/2
ηz. (7.10)
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Figure 7.3: Comparison of Gillespie simulations to theory for ε = .002, r = 1, and b = d = 1. Also plotted is the
measured critical system size and an example time series of a simulation.

This equation can be solved for its stationary distribution in the same way as before and has a solution:

P(z) =
Cz0

(w2− z2 +2 εwd
rb )1− N

Nc

(7.11)

where Nc = br/dε . From the distribution for z, we obtain the stationary probability distribution for c2, by relaxing our

criterion that c2 is deterministic and using the linear noise approximation: c2 =
b
d z+

√
2 bw

d
N ηc2 . This implies that the

probability distribution for c2 is the probability distribution for z convolved with a Gaussian.

P(c2) =

∞∫
−∞

Pz(z)
1√

2πK/N
e
−(c2−

b
d z)

2

2K/N dz =
1∫
−1

Pz(z)
1√

2πK/N
e
−(c2−

b
d z)

2

2K/N dz (7.12)
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Figure 7.4: Comparison of Gillespie simulations to theory for ε = .002, r = 1, and b = d = 1 for z, c1 and c2.

7.3 Simulations and Discussion

The results of these approximate analytic calculations were tested by performing a Gillespie simulation. From the

simulation the stationary probability distribution and switching times of the ant population were measured for various

parameters. I found that when b/d = 1 the simulation and the analytical formula agree remarkably well (See Fig. 7.4).

For other values of b/d there are systematic deviations as shown in Figure 7.3c. The critical system size as measured

from the simulations differs from that predicted by the approximate theory. But the functional form of the stationary

probability distribution is accurate as long as the measured critical system size Nc is used in equation 7.11. This is

probably due to the simplifying assumptions made, for example, making the pheromone deterministic and assuming
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that the pheromone instantly goes to its fixed point.

As can be seen from the simulation and the analytical theory, the critical system size depends on both the rate

of pheromone deposition and evaporation. Specifically, we found that the critical system size depends on the ratio

of the deposition rate to the evaporation rate, b/d. Analytically, we found the critical system size should behave as

br/dε . From simulation, however, it appears that the critical system size behaves more as (r/ε) ·(tanh(b/d)/ tanh(1)).

These predictions for the critical system size potentially give experimentalists more opportunities to test multiplicative

noise theories. Biancalani’s theory is problematic to study experimentally because the number of ants foraging is not

controllable by experimentalists. In my new theory, the evaporation rate and deposition rate of the pheromone could

be controlled to effectively change the critical system size and observe the switch from bistable foraging to foraging

equally between two food sources. One could imagine controlling the evaporation rate of the pheromone by the type

of material the ants are allowed to forage on in addition to blowing a fan or heating the surface. This suggests that this

model could be ripe for experimental testing.

7.4 Extensions

There are various possible extensions to this model that are of biological and experimental significance. The first

extension is considering this model with asymmetric rates. By considering asymmetric rates we can answer questions

such as what happens when ants forage from food sources of different quality. For example, in experiments by Beckers

et al., ants were allowed to forage from two food sources, one which had 1M sugar water and the other with 0.1M

sugar water. There is evidence that ants will put down more pheromones on trails corresponding to higher quality food

[152]. Additionally, asymmetric rates will allow us to model food sources placed at unequal distances from the ant

colony.

The ant model can also be extended spatially. We can model the spatial distribution of pheromone and ants. This

will allow us to study additional effects such as when the pheromone trail evaporates faster than the ants can place it.

Experiments indicate the existence of a phase transition as a function of number of foragers and a transition between

disordered foraging and ordered foraging [153].
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