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Abstract

In this dissertation, I present analytical and numerical work regarding the scaling

behavior of three physical systems, with increasing levels of complexity.

I begin by analyzing the scaling behavior of Griffiths ferromagnets near the Griffiths-

paramagnetic transition point. By deriving the asymptotic behavior of the magneti-

zation of the system using an ansatz for the Yang-Lee zero density, which is a generic

form of the density with the presence of disorder, I find that the scaling behav-

ior of Griffiths ferromagnet is completely different from that of conventional (pure)

ferromagnets—the scaling is dominated by an essential singularity in the external

magnetic field, due to the ferromagnetic response of arbitrarily large pure (disorder

free) ferromagnetic islands in the system. Excellent agreement is found by comparing

this prediction to the experimental data on La0.7Ca0.3MnO3, from which I also extract

the critical exponents.

Next I report on studies of landscape formation due to carbonate precipitation

near geothermal hot springs. This system forms complex patterns due to coupling

between the fluid flow, precipitation kinematics and landscape dynamics. I formulate

a mathematical framework to describe this complex geological process. I derive an-

alytically the shape and stability of the spherically symmetric domes. The solution

agrees with field observations and simulation results, up to a point at which surface

tension becomes important and the fluid breaks into rivulets. Although our theory

does not take into account surface tension, it does describe its own failure and predicts

a scaling behavior about the angle at which rivulets begin. This scaling behavior is
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confirmed by computer simulations.

In addition, I apply a similar conceptual framework to study the formation and

stability of stalactites in limestone caves. The shape of stalactites is calculated and

the solution is found to be unconditionally stable, as opposite to the unstable dome

solutions. We attributed this difference in stability to the difference roles of surface

tension in the two systems. By studying the linear stability of a uniform sheet of

fluid flowing down a constant slope, moreover, I show that our theory gives results

that are consistent with the scale-free terraced landscapes observed.

In the final project, I study complex, multiscale patterns in polycrystalline mate-

rials, with the phase field crystal (PFC) model. I first show that the PFC model can

be rewritten in terms of complex amplitudes, using renormalization group concepts.

Such a representation incorporates the correct form of nonlinear elasticity. I then

analyze the plastic properties of the model by applying a shearing force. Dislocation

creation, annihilation and avalanches are observed, resembling the scaling behavior

in driven ferromagnetic systems and other dislocation avalanching systems. Critical

exponents are extracted from power laws extending over 5 decades.

I extend the PFC model to accommodate actual atomic configurations and va-

cancies by forbidding the order parameter to be negative. In so doing, the PFC

model becomes a molecular dynamics simulation machine. I use the PFC model to

simulate a liquid and reproduce the correct form of the two-point correlation func-

tions. Finally, I extend the PFC model to describing binary systems. The resulting

theory describes both atomic hopping events on microscopic scales and diffusion on

macroscopic scales. It also reproduces the activated Arrhenius form of the diffusion

coefficient. These developments indicate that the PFC model is a flexible and reliable

approach to study multiscale phenomena in polycrystalline materials.
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To my parents
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The eternal mystery of the world is its comprehensibility.

—Albert Einstein (1879-1955)
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Chapter 1

Introduction

In this dissertation, we discuss research problems ranging from the scaling properties

of disordered ferromagnets, to geophysical precipitation pattern formation, to multiple

scale, non-equilibrium phenomena in materials. The overarching theme that unifies

these topics is that they all exhibit scaling behavior[1] in certain regimes. The first

project concerns the scaling behavior of a disordered system, while the other two

concern the scaling behavior in non-equilibrium systems.

When a system exhibits scaling behavior, the physical observable, or the func-

tion that defines the system, such as the free energy of a thermodynamic system,

becomes a generalized homogeneous function[2], i.e., if we change the overall scale

of the function, the effect is the same as scaling all the variables in a specific way.

Mathematically, for a function of two variables f(x, y), we have

bf(x, y) = f(bαx, bβy), (1.1)

where b is an arbitrary positive number, α and β are constants called the critical

exponents. There are at least four implications to this relation. First, because f(x, y)

scales, all its derivatives satisfy similar scaling relations. For example, for the deriva-

tive fx(x, y) ≡ ∂xf(x, y), we have

bfx(x, y) = bαfx(b
αx, bβy), (1.2)
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which can be written as

b̄fx(x, y) = fx(b̄
ᾱx, b̄β̄y), (1.3)

where we defined b̄ ≡ b1−α, ᾱ ≡ α/(1 − α) and β̄ ≡ β/(1 − α). Second, the critical

exponents that characterize those derivatives are not independent, because they are

all derived from f(x, y). The relations between these derived critical exponents are

called the scaling laws. In our example, we note that all the critical exponents for the

derivatives, such as ᾱ and β̄, are functions of α and β. Third, if all but one variable

are set to zero, then the function becomes a power law in the remaining variable.

If x = 0, for example, then the function f(x, y) becomes a power law in y. This is

because we can make the choice b = y−1/β, and Eq. (1.1) becomes

f(0, y) = y1/βf(0, 1). (1.4)

Fourth, if we do not set any of the variables to zero and make the choice b = y−1/β

again, then Eq. (1.1) becomes

f(x, y)

y1/β
= f

(
x

yα/β
, 1

)
≡ F

(
x

yα/β

)
, (1.5)

which is essentially a function of one variable, instead of two. This striking phe-

nomenon of the reduction of the number of independent variables is called data col-

lapse, because by plotting y−1/βf(x, y) against x/yα/β, the originally two dimensional

data will collapse onto a single one-dimensional curve y = F(x). These four properties

of generalized homogeneous functions are the fingerprint of scaling behavior, and this

is why scaling behavior is always associated with scaling laws, power law functions

and data collapse.

The Ising model is among the first systems where scaling behavior was discovered.

The free energy of the system, F , in general depends on both the temperature, T , and

the external magnetic field, H, i.e., F = F (H, T ). When the system is sufficiently

close to the critical point, T = Tc and H = 0, however, the system exhibits a scaling
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behavior and the free energy is, instead of a function of two variables, a function of

a single variable,

F

tβ+βδ
= F±

(
H

tβδ

)
, (1.6)

where t ≡ (T−Tc)/Tc is a reduced temperature, which measures how far the system is

from the critical point, β and δ are two critical exponents and F±(x) are two scaling

functions for t > 0 and t < 0 respectively. All the thermodynamic observables, such

as the magnetization, the specific heat capacity and the susceptibility, then follow

similar relations with their critical exponents related by various scaling laws.

Scaling behavior is very important. In fact, it is reasonable to say that the discov-

ery of such phenomena and the development of the associated theory was one of the

most significant advancements in theoretical condensed matter physics in the last 50

years. It took physicists about 30 years of research to discover the beautiful structures

behind such phenomenology as power laws, scaling laws and data collapse. It triggered

the development of the Renormalization Group[1], which forms the basis of many

important concepts, such as universality, universality classes, relevant and irrelevant

variables and minimal modeling. Beside providing a theoretical explanation for the ex-

istence of scaling behavior and universality, these ideas have penetrated many different

domains of science, including high energy physics[3], condensed matter physics[1; 4],

cosmology[5–8], fluid mechanics[9–11], solid mechanics[12; 13], non-equilibrium sta-

tistical mechanics[14–18], asymptotic methods in applied mathematics[1; 19; 20] and

even quantitative finance[21; 22]. They have changed the way we do physics, or

modeling in general, as we will see in the follow sections.

1.1 Universality

Why is scaling behavior important? There are two answers to this question. Histori-

cally, scaling behavior was important because even in principle, we did not know why
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it arose, or how we could calculate the scaling functions and critical exponents. It

posed a serious problem to theoretical physics. In retrospect, however, we know that

scaling behavior is important because it is a manifestation of universal features of the

system in question.

Scaling behavior is universal in three ways. First, unlike, say, the critical tempera-

ture of a ferromagnet, which depends on all sorts of microscopic details of the sample,

such as crystal defects and the amount of impurities1, scaling behavior is universal

and does not depend on those microscopic details. A multi-crystalline ferromagnet

with point defects, dislocations and irregular surfaces, for example, exhibits exactly

the same scaling behavior as a perfectly periodic, defect free ferromagnet. Second,

it does not depend on the kind of material. Properties of ferromagnets, such as the

magnetic susceptibility, electric conductivity and thermal conductivity, are different

for different materials, but the scaling behavior they exhibit are exactly the same,

i.e., they are characterized by the same critical exponents and scaling functions.2 It

is similar to the fact that a single ideal gas law can describe a variety of gases, and a

single Navier-Stokes equation can describe all fluids. Third, scaling behavior is uni-

versal across physical systems. It is known that scaling behavior depends only on the

dimensionality, symmetry and phenomenology of the system, but does not depend on

how these are represented physically. Here, by using the term phenomenology, we are

not referring to all the properties or behaviors of the system, but the essential ones.

It is difficult to define which properties are essential independent of the context. In

the context of statistical mechanical systems, however, phenomenology refers to the

range of interaction of the spins or atoms, and any conservation laws. We will see

other types of essential properties that we will also call phenomenology later, when

we discuss turbulent fluid flow.

1If the amount of disorder and impurity is too large, they do play a role in determining the scaling

behavior of ferromagnets. This is, in fact, the subject of the first project (see Chapter 2).
2For simplicity, we are here ignoring other classes of ferromagnets, such as the Heisenberg class.
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A prime example of the last meaning of universality is the equivalence of the

ferromagnetic-paramagnetic transition and the solid-liquid transition[1]. Although

these two physical systems seem completely different, they have the same symmetry

and phenomenology; they can both be described by a lattice model, with a local

two-state order parameter at each site dictating the state of the atom, either spin

up or down for the former system, or solid or liquid for the latter. And the ranges

of interaction are the same in the two systems: the spins, or atoms, only interact

with close neighbors. As a result, the two transitions have exactly the same set of

critical exponents and scaling functions. These two systems are said to be in the same

universality class.

In other words, scaling behavior depends only on the dimensionality, symmetry

and phenomenology of the system; scaling is a robust and universal characteristic of

a physical system.

1.2 Spherical Cows

Universality saves our life as physicists. Imagine if nature were detail-sensitive: we

would have to include all the details into our model in order to describe any phe-

nomenon. Any realistic model would then become incomprehensibly complicated,

and we could hardly make any progress. But now, by the grace of universality, we

can predict important and universal features of real systems using such simple models

as the Ising model, which only captures the essential features in the system.

There is a saying, ‘If physicists were to study a cow, they would first approximate

it as a spherical cow.’ This effectively captures how physicists study nature; we study

idealized systems and ignore non-essential details. Now, universality allows physicists

to do an even better, and yet simpler, job. In order to understand a cow, we could

study a spherical chicken! (as long as the latter is easier to understand, of course.)
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This is justified if the cow and the chicken share the same dimensionality, symmetry

and phenomenology, i.e., they are in the same universality class, and if we are only

interested in universal features of the cow. It is vital to note that this is not an

approximation of reality due to our limited computational ability, but an abstraction

of the essence of reality because those features are the only determining factors for

universal behavior. By doing this correctly, we are not making approximations and we

can still obtain exact results, such as the scaling functions and the critical exponents.

The use of the lattice model to predict the scaling functions and critical exponents of

solid-liquid transition is one example, the use of simple cellular algorithms to study

the critical dynamics in binary alloys[23; 24] and liquid crystals[25; 26] are others.

This is remarkable. Instead of writing down a faithful and detailed representation

of a physical system, which is what scientists often try to do, we can now choose to

study a simple model that shares the same essential features as the physical system.

This is very powerful when we study systems that are complex, and results in the

technique we call minimal modeling. Minimal models are models that only capture the

essential features of the system. They are not faithful representations of the system,

and in many cases, they may seem too simple to describe complicated phenomena. An

example is when we study turbulent fluid flow, we can always proceed by solving the

Navier-Stokes equation faithfully. But if we are not interested in the detailed velocity

profile but in the overall pattern of the flow, we can model the water transport by

a simple cellular model, which only captures the basic fact that water spreads in all

direction, and that the flow is proportional to the square root of the local slope[27; 28].

It is important to notice that this approach does not work in every system. It

only works in systems that exhibit universal features. If the system, or the quantity

we are interested in, is sensitive to microscopic details, there is no way we can make a

minimal model for it. If one is interested in the detailed velocity profile of a turbulent

fluid, the only way to get that is to solve the Navier-Stokes equation faithfully.
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The idea that we can model complex systems with minimal models is completely

different from the traditional approach of reductionism. In a reductionist point of

view, it is essential to take into account every interaction between every element of

a complex system, in order to understand the system as a whole. This approach

analyzes the system by first studying its components, and by understanding the com-

ponents, hopefully the behavior of the whole can be understood. This is called the

bottom-up approach. By doing minimal modeling, however, we are following the top-

down approach. We analyze the system as a whole. Essential features are extracted

and put into the models. In this method, the detailed interactions of the elements of

the system are not captured, but the hope is to capture the universal features of the

system.[29]

It is fair to say that both approaches are valuable, and that they are good for dif-

ferent problems. However, it is interesting to point out that while the reductionistic

approach is traditional, intuitive and systematic, minimal modeling is new and excit-

ing. There are, in some cases, artistic flavors in choosing what essential features to

put in and how they should be implemented in the minimal models. Its development

even attracts the attention of philosophers of science[30]. One of the open questions,

and one which Nigel Goldenfeld’s group is intensively studying, is the extent to which

minimal modeling can be appropriate and useful in biology[31–33].

To conclude, we are interested in studying the scaling behavior in various systems

because they are universal. This universality allows us to make simple, minimal

models to describe complicated systems.

1.3 Backgrounds, Goals and Main Findings

As stated in the beginning of this chapter, three projects are presented in this dis-

sertation and the overarching theme is the scaling behavior observed in each of the
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systems. The goal of all the projects is to extract universal features of some compli-

cated systems, by building minimal models, as necessary. The first project concerns

the scaling behavior of disordered ferromagnets. The second project concerns pattern

formation far from equilibrium in carbonate precipitating systems, where scaling be-

havior is also observed. The third project involves developing a minimal model that

describes polycrystalline materials, both pure and alloyed. We also applied the model

to study the scaling behavior of dislocation avalanches in the plastic regime.

1.3.1 Griffiths Ferromagnets

In previous sections, we mentioned that weak disorder and impurities do not change

the universal features of a Ising ferromagnet, in the renormalization-group sense,

i.e., small amount of disorder and impurities are irrelevant to the ferromagnetic-

paramagnetic transition. When the disorder is strong, however, the Harris criterion

tells us that disorder and impurities are relevant. The aim of this project is to study

the effect of such relevant disorder on the scaling behavior of ferromagnets.

The effect of disorder on ferromagnetic systems is highly non-trivial and poorly

understood. In pure ferromagnetic systems, it is well known that the behavior is

described by a single critical point T = Tc, separating the paramagnetic and fer-

romagnetic phases. One would suspect, then, that the only effect of disorder is a

decreased value of Tc, because disorder reduces the probability of finding a perco-

lating pathway throughout the entire system, and this interferes with the collective

ferromagnetic behavior. Griffiths, however, showed that this is not the case. In the

thermodynamic limit, and for Tc < T < TG (Tc and TG are the critical temperatures

for the disordered and the pure ferromagnets respectively), although the system is

not a ferromagnet in the conventional sense, there can exist arbitrarily large volumes

in the system that are devoid of disorder, with the probability being exponentially

sensitive to the volume. As a result, the free energy is non-analytic in the external
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field h across this temperature range; this is called the Griffiths phase[34].

The scaling behavior of Griffiths ferromagnets is still controversial, despite much

theoretical and experimental effort. A scaling theory near the Griffiths-paramagnetic

transition is lacking. Using the usual scaling form of ferromagnets, unrealistically

large exponents are fitted[35]. However, we discovered the first clear experimental

signature of a Griffiths phase in La0.7Ca0.3MnO3[36]. We derived the thermodynam-

ics of such systems from the distribution of grand partition function zeros: the so

called Yang-Lee approach[37]. Using an argument due to Bray[38], we showed that

the density of such zeros exhibits an essential singularity in the complex magnetic

field plan, and derived the scaling function, the associated critical exponent and the

asymptotic behaviors for T → Tc; we also derived the non-analyticity of magnetiza-

tion in h in the Griffiths phase. Our calculations gave an excellent account of the

experimental data.

1.3.2 Geophysical Pattern Formation

Fig. 1.1 and Fig. 1.2 show respectively terraced landscapes and a circularly symmetric

dome observed in Angel Terrace, Mammoth Hot Springs, WY. Hot carbonate-charged

spring water comes out of the vent, flows over the pre-existing terrain, releases CO2

and precipitates CaCO3 in the form of travertine. The surface, as a result, grows

and changes the flow path of the spring water, which in turn changes how CaCO3

is precipitated. This dynamic interplay between spring water flow, precipitation and

surface growth gives rise to the beautiful patterns showed in the figures.

Both the complexity of the terraces and the regularity of the domes draw us to

model the precipitation process and to understand how these structures can be formed

in a highly fluctuating environment. We used two approaches to model this process.

First, we modeled this process by solving the Navier-Stokes equation, the surface

growth kinematics and an empirical formula describing the precipitation rate. In the
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Figure 1.1: (Color online) Travertine formation at Angel Terrace, Mammoth Hot
Springs, WY. (a) a large pond, of order 1 meter in diameter, and smaller features.
(b) a portion of the flow system about 25 meters from the vent, on the scale of
centimeters.
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Figure 1.2: A spherically symmetric dome observed in Angel Terrace, Mammoth
Hot Springs, WY.
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language of the previous sections, this is the reductionist or bottom-up approach to

the problem, where details of the fluid flow and precipitation dynamics are described

by partial differential equations. In fact, there are three coupled nonlinear partial

differential equations, which are in general difficult to analyze. We showed that,

however, in cases of spherically symmetric domes, where the geometry is simple,

analytical solutions that describe the dome shapes can be obtained. We obtained

such a solution and compared it with field observations. The solution fits well to the

observation except near the bottom of the dome, where a fluting pattern is observed.

We showed that this departure from the theory is due to the absence of surface

tension in our model, which has a more and more important influence as the fluid

flows down the dome and thins out. Ultimately contact lines form, and the water

trickles down as rivulets. Although our theory does not take surface tension into

account, it predicts the onset of contact line formation and we were able to make a

scaling theory about this departure point. This behavior was verified by John Veysey

and Nigel Goldenfeld[28] using a cell dynamical system (CDS) model, which is our

second modeling approach.

The CDS model is a minimal model for fluid flow and precipitation dynamics.

It complements the first method in two ways. First, the CDS model verifies that

the departure from the analytical theory in the fluting region is indeed due to the

lack of surface tension in the description. By switching the surface tension on and

off, the CDS model reproduces the field observations and the theoretical prediction

respectively. This, by the way, verifies that the minimal model is modeling the same

physics as the partial differential equations. Second, the CDS model provides a plat-

form to study the fully nonlinear, non-equilibrium aspects of the problem. It is shown

that this CDS model is capable of predicting the statistical properties of the striking

terraced landscapes observed in the field.[28]

We also calculated the stability of various solutions. We found that the dome so-
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lution is not stable; in fact, there are infinitely many unstable modes. We argued that

this instability is, again, due to the absence of surface tension in our analysis. We also

calculated the stability of stalactites, which are formed by a very similar geophysical

process. We found that, on the contrary, stalactites are stable to perturbations of all

scales. We proposed that the difference of stability between the two structures is due

to the way fluid is transported along the growth forms.

Although our analytical theory cannot describe the terraced landscape, by calcu-

lating the stability spectrum of a turbulent flow over a constant slope and showing

that such a flow is unstable for perturbation of all scales, we showed that a seemingly

scale-free structure is consistent with our theory. Our field data and the work of John

Veysey and Nigel Goldenfeld[28] document this scale invariance and other statistical

aspects of hot spring landscapes.

1.3.3 Multiscale Modeling of Materials using the Phase Field

Crystal Model

Elasticity, plasticity and fracture are common features of real materials. Although

of fundamental and tremendous industrial significance, a complete understanding of

these phenomena is still elusive, even after more than a century of intensive research

by scientists and engineers. The main obstacle is that a full solution requires un-

derstanding of the dynamics on both mesoscopic and microscopic scales rather than

merely on macroscopic scales. Plasticity, for example, is caused by interactions be-

tween different crystal defects under external forces. These defects, such as grain

boundaries and dislocations, are mesoscopic objects. As a result, understanding and

manipulating the plastic properties of materials require modeling the system across

many scales, i.e., from nanometers up to millimeters. What makes the situation

worse is that most of these phenomena occur on diffusive, rather than atomic vibra-

tional, time scales. This poses a challenge, because none of the traditional tools of
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material science, including continuum models, Monte Carlo methods[39; 40], molecu-

lar dynamics simulations[41; 42] and density functional methods[43–46], can address

such a broad spectrum of scales. As a result, there has been substantial interest in

developing multiscale computational methods recently[47–49].

A number of multiscale modeling techniques, including quasi-continuum methods[50–

53], the heterogeneous multiscale method[54; 55] and multiscale molecular dynamics[56–

59], have been proposed. Although they serve as unified descriptions of phenomena

on multiple scales, some of them involve non-systematic ways of bridging descriptions

of different scales, potentially introducing artificial excitations and interactions into

the systems.

We attempted to tackle this multiscale problem by using the recently proposed

phase field crystal (PFC) model[60; 61]. The PFC model is a minimal density func-

tional theory that respects rotational and translational symmetries of the crystal and

captures elasticity and crystallography of the materials. Depending on the reduced

temperature and the mean density, liquid, stripe or crystalline phases can be ob-

tained. With diffusive and conservative relaxation dynamics, the model describes the

evolution of atomic density on diffusive time scales. The model is shown to be capable

of describing processes such as polycrystalline solidification, crack formation, disloca-

tion glide and climb, grain boundary dynamics and epitaxial growth. Recent applica-

tions of renormalization group techniques and adaptive mesh refinement[12; 13; 62],

moreover, allow a grid size much larger than the atomic spacing, which reduces the

computational time by orders of magnitude. Using these methods, the dynamics of

a two dimensional sample of millimeter scales over diffusive time scales (sec), with

spatial atomic resolution, can be computed within several days on a single processor

desktop machine.

We further developed and applied the PFC model to study several multiscale

phenomena in materials. We showed that the free energy in the PFC model can be
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rewritten merely in terms of complex amplitudes—the spatially varying envelope of

the order parameter. The Renormalization Group equations, or the complex ampli-

tude equations, can then be written down as conservative and relaxational dynamics

of the free energy, similar to the original dynamical equation in the model. From

this complex amplitude representation, we analytically derived a theory of nonlinear

elasticity. This shows that the PFC model contains the correct form of nonlinear

elasticity. We also studied the plastic properties of the PFC model. By shearing

a PFC crystal, we observed creation, annihilation and interactions of dislocations.

Depending on the shearing rate, these dislocations interact with each other and form

avalanches of all sizes, manifested in a noise spectrum, which resembles the crackling

noise in driven ferromagnetic systems[17; 63–65]. The statistics of such avalanches

follows a power law and is quantitatively similar to the dislocation avalanches in other

systems[66; 67]. These results show that while the PFC model describes solidifica-

tion and individual dislocation interactions on microscopic scales, it also captures

the correct nonlinear elastic and even plastic properties of real materials. The PFC

model puts different scales on equal footing and serves as an excellent framework for

studying multiscale phenomena in materials.

Although the PFC model contains the crystallographic, elastic and plastic proper-

ties of a crystal, one of its shortcomings is that it actually does not convey information

about the actual atomic configurations. The notion of ‘atoms’ is ill-defined in the PFC

framework because the order parameter can form many peaks (‘atoms’) as long as

that helps reducing the total energy of the system. Moreover, the order parameter is

a continuous field that can extend to negative—it is not a physical density. Vacancies,

as a result, are not stable in the PFC model. Any vacancies created would soon be

filled up by the surrounding field. This makes the model inappropriate for studying

phenomena that involve vacancy diffusion. In Chapter 7, however, we show that we

can modify the PFC model to accommodate the actual atomic configurations by for-
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bidding the order parameter to take on negative values. By doing so, we promote the

order parameter from an abstract continuous field to a physical density that directly

dictates the atomic configuration. In this modified PFC model, we can control the

number of atoms, the interaction between the atoms and the temperature. By lower-

ing the mean density, we succeeded in simulating a liquid using the PFC model and

reproducing the standard two-point correlation function of a liquid. This modified

PFC model, in essence, is a molecular dynamics simulation. The only difference is

that we are solving a partial differential equation instead.

Finally, by putting together two PFC models and adding an interaction term

between the two order parameters, we extended the PFC model to binary systems. We

showed that the resulting model of binary alloy describes diffusion on multiple scales.

On atomic scales, we observed individual atomic hopping events; on macroscopic

scales, the model reproduced diffusion profiles that agree with the standard diffusion

equation. By varying the temperature in the system, we also recovered the activated

Arrhenius form of the diffusion coefficient, D(T ) = D(0)e−Eact/kBT .

To conclude, we modified the PFC model to accommodate vacancy structures

and extended the model to binary systems. We also applied the PFC model to study

multiscale phenomena in materials, ranging from nonlinear elasticity and plasticity

in pure systems, to atomic hopping and diffusion in binary alloys.

1.4 Dissertation Outline

This dissertation is organized as follows. In chapter 2, we discuss the novel scaling

behavior of Griffiths ferromagnets and compare our theory with experimental data.

We then discuss the mathematical formulation we used to describe geophysical precip-

itation pattern formation in chapter 3. This formulation is applied to the formation

and stability of domes and stalactites, as well as the damming instability that gives
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rise to scale-free terraced landscapes. Chapter 4 is an introduction to the phase field

crystal (PFC) model, in which detailed discussions of the rationale behind the model

and some recent developments can be found. We derive the nonlinear elastic property

of the complex amplitude representation of the PFC model in chapter 5. Numerical

studies of the model’s plastic properties and analysis of the avalanches statistics are

presented in chapter 6. In chapter 7, we modify the PFC model to accommodate the

actual atomic configurations and vacancies. We also derive the condition under which

vacancies are present. The PFC model is extended to binary systems in chapter 8, in

which we also show that the model describes both microscopic atomic hopping and

macroscopic diffusion. We conclude in Chapter 9.

1.5 My Role in Interdisciplinary Collaborations

Most of the projects I worked on involved close collaborations with researchers from

multiple disciplines. In the Yellowstone project, I worked closely with Prof. Bruce

Fouke and Dr. Michael Kandianis from the Department of Geology, as well as Dr.

John Veysey from the Department of Physics. I have contributed to field trip prepa-

ration work (Pitot tube building and calibration, as well as sample preparation) and

post-trip data processing—most notably the extraction of terraces shapes from graph-

ical data sets. I have also helped in comparing and benchmarking the minimal model

on precipitation developed by Dr. Veysey with the analytical framework. More

importantly, I have built the mathematical framework that describes geophysical

precipitation pattern formation and derived the shapes and stabilities of domes and

stalactites, as well as the damming instability. I have also compared the theoretical

predictions with field observations.

On the multiscale modeling project, I have been working closely with Prof. Jonathan

Dantzig, Dr. Badrinarayan Athreya and Mr. Zhi Huang from the Department of Me-
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chanical Engineering, as well as Prof. Karin Dahmen and Mr. Georgios Tsekenis

from the Department of Physics. I was responsible for developing the nonlinear elas-

ticity theory from the PFC model, simulating the dislocation avalanches under plastic

deformation and analyzing the resulting statistics. I also modified the PFC model

to accommodate vacancies, extended the model to binary systems and simulated the

diffusion process in binary systems.

I worked with Dr. Myron Salamon, who was Professor of Physics and associate

Dean of the College of Engineering in the University of Illinois at Urbana-Champaign

then and now is the Dean of natural sciences and mathematics at the University

of Texas at Dallas. I contributed to relating the scaling behavior of magnetization

and that of the Yang-Lee zero density, as well as deriving the asymptotic behaviors of

the magnetization, heat capacity and zero-field susceptibility of Griffiths ferromagnets

from Bray’s ansatz for the Yang-Lee zero density. I was also responsible for comparing

the theory with experimental data provided by Dr. Salamon and extracting from it

the universal scaling functions and critical exponents.

1.6 Publications

Parts of this dissertation have already been published. Chapter 2 and part of chapter

3 have appeared in Physical Review Letters as two separate articles[36; 68]. The rest of

chapter 3 is submitted to Physical Review E and has been accepted for publication[69].

Chapters 5 and 7 will soon be submitted to Physical Review Letters separately. We

also anticipate submitting chapters 6 and 8 to Physical Review E.
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Chapter 2

Griffiths Singularity

2.1 Introduction

The influence of disorder on ferromagnets remains, after more than 30 years of effort,

a complex and poorly-understood phenomenon. In its simplest form, disorder can

be represented as a random spatial variation of the exchange interaction J in the

bonds between neighbouring sites on a regular lattice. If a great enough fraction

p > pc of the bonds have J = 0, then one would expect that there is a vanishingly

small probability of finding a percolating pathway of bonds throughout the system,

and the cooperative ferromagnetic phase would cease to exist. For smaller values

of p, we would expect that the ferromagnetic phase will exist in a form weakened

by the shortage of percolating paths; hence thermal fluctuations will destroy the

ferromagnetic phase at a temperature Tc which is lower than the critical temperature

TG of the pure ferromagnet. However, as Griffiths showed[34] it is not the case that the

phase for Tc < T < TG is purely paramagnetic, because in the thermodynamic limit,

there can exist arbitrarily large volumes of the system that are devoid of disorder,

with a probability exponentially sensitive to the volume. As a result, the free energy

is non-analytic in external field, h, throughout the whole Griffiths phase. The effect of

disorder is to partition the pure system into small ferromagnetic clusters. Depending
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on the size, each cluster has a different value of Tc, so that the system as a whole

exhibits a spectrum of Tc, spanning from the critical temperature of the pure system,

TG, due to arbitrarily large clusters, to some value of Tc, contributed by smaller

clusters.

Here we are concerned with the phase transition between the ferromagnetic and

Griffith’s phases. Just as in the case of a pure ferromagnet, one would like to predict

the critical phenomena, but the non-analytic nature of the Griffith’s phase makes it

difficult to apply off-the-shelf renormalization group techniques[70–72] or to posit sim-

ple scaling laws, despite recent theoretical progress[38; 73–77]. Indeed, it is currently

controversial whether or not there is clear experimental evidence[78–81] supporting

the existence of the Griffiths phase. From the practical perspective, perhaps the most

unsatisfactory aspect of efforts to relate theory to experiment is that critical expo-

nents derived from conventional scaling laws are unrealistically large: for example,

the critical isotherm exponent was recently[35] estimated as δ = 17. The breakdown

of conventional scaling strongly suggests that the functional form of the scaling rela-

tions actually reflects the essential singularities intrinsic to the Griffiths phase, and

that some form of exponential scaling, rather than algebraic scaling, is appropriate.

The purpose of this chapter is to address these problems by exploring the expected

form of scaling relations that would follow from a leading essential singularity contri-

bution to the statistical mechanics in the Griffiths phase. Such a contribution can be

conveniently represented using the Yang-Lee theory of phase transitions[37] to derive

the scaling behavior in the Griffiths phase from a simple, physically-motivated ansatz

for the distribution of partition function zeros, following arguments originally due to

Bray and Huifang[38] for the case of long-ranged ferromagnets. We demonstrate that

the leading singularities in the thermodynamics can be deduced, and that our pre-

dictions consistently describe high quality magnetic and thermodynamic data[35; 78]

on the disordered Heisenberg ferromagnet La0.7Ca0.3MnO3. We emphasize that our
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purpose is only to identify the leading essential singularities, and that it is beyond

the scope of our work to provide a full description valid outside of the asymptotic

critical regime. Nevertheless, the experimental data have sufficient resolution that we

have strong support for our scaling predictions in this asymptotic regime.

Magnetic properties are well-accounted for by our approach, but heat capacity

data are not expected to follow a simple scaling form–and indeed do not–due to the

complex form of the theoretical predictions which arise from even the simplest Yang-

Lee zero distribution function that we use. The non-analyticity of magnetization in

external field - a signature of the Griffiths phase - is also explicitly demonstrated. Our

results provide strong evidence for a Griffiths singularity, and highlight the need for

a more systematic renormalization group approach to understanding the singularities

in such disordered systems.

2.2 Yang-Lee Zeroes and Critical Phenomena

In 1952, Lee and Yang[37] developed a theory of phase transitions based upon the den-

sity g of zeroes of the grand partition function as a function of the complex fugacity

and showed that the zeroes lie on a unit circle in the complex plane, parameter-

ized below in terms of the angle θ. The distribution g(θ) varies with temperature

T and dictates the functional form of thermodynamics. Near a critical point, it

is expected that g(θ, T ) exhibits behavior which reflects the non-analyticity of the

thermodynamics[82; 83], and we provide this connection explicitly here, for both the

case of conventional ferromagnetic critical point scaling, and then for the scaling near

the Griffiths point.

We begin with the scaling of the magnetization per spin, M(H, t), where H is the

external magnetic field and t ≡ (T −Tc)/Tc is the reduced temperature, for a regular

Ising ferromagnet. The exact relationship between M(H, t) and g(θ, t) can be written
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as[37]

M(H, t) = 2µ

∫ π

0

dθ
g(θ, t) tanh(µH/kBT )[1 + cot2(θ/2)]

1 + (tanh(µH/kBT ) cot(θ/2))2
, (2.1)

where µ is the magnetic moment of individual spins. To extract the scaling behavior,

we proceed by expanding around the critical point H = 0 and t = 0. Because the

singular behavior arises from the limit θ → 0, we also expand the integrand about

θ = 0, resulting in

M(H, t) = 2µ
µH

kBT

∫ π

0

dθ
g(θ, t)

(µH/kBT )2 + θ2/4
, (2.2)

which is valid near the critical point, up to corrections reflecting a smooth background.

A change of variables, θ = µHφ/kBT , gives

M(H, t) = 4µ

∫ πkBT/2µH

0

dφ
g(2µHφ/kBT, t)

1 + φ2
(2.3)

where the upper limit is replaced by ∞ as H → 0. This is the primary relation

between M(H, t) and g(θ, t) near the critical point. The scaling form of the magne-

tization,

M(H, t) = |t|βfM(H/|t|βδ), (2.4)

where fM(x) is an unknown scaling function, and β and δ are two critical exponents,

implies a scaling form for g(θ, t). Substituting Eqn. (2.4) into Eqn. (2.3), Mellin

transforming the expression and using the corresponding convolution relation, we

arrive at the scaling form of g(θ, t) as θ → 0

g(θ, t) = |t|βG(θ/|t|βδ), (2.5)

where G(x) is a scaling function for g(θ, t).

Apart from exhibiting the scaling form of g(θ, t) for normal ferromagnets, this

exercise also shows that knowledge of g(θ, t) can be gained by studying the scaling

form of M(H, t), and vice versa. In the following section, we study the scaling behavior

of M(H, t) in the Griffiths phase using a heuristically-derived form for g(θ). We will

see that the result is different from that of the pure case, reflecting the intrinsic

essential singularity that characterizes Griffiths phases.

22



2.3 Density of Zeros for a Disordered Ferromagnet

We start with the scaling form of g(θ, t) derived on the basis of heuristic arguments

by Bray and Huifang[38] for disordered ferromagnets with short-ranged interactions:

g(θ, t) =
1

π
<

∞∑
r=1

exp(−A(t)r) tanh [r(iθ + ε)] (2.6)

where ε → 0+ and A(T ) ∼ (T − Tc)
2−βr as T → Tc and A(T ) → ∞ as T →

TG. The exponent βr is the order parameter exponent for the random case, and its

value will reflect the universality class of the magnet, be it Ising, Heisenberg, O(n)

etc. In the limit that θ → 0 and A → 0, the summand is dominated by peaks at

values of r = (2n + 1)π/2θ for all non-negative values of n, whose height is given by

(2θ/ε(2n+1)π) exp(−(2n+1)πA/2θ). The width of these peaks therefore scales in the

same way as their separation, both being proportional to 1/θ. Thus, the expression

takes the form:

g(θ, t) = g0 exp(−A(t)/|θ|), (2.7)

where g0 is a constant. The essential singularity in Eqn. (2.7) reflects the Griffiths

phase of disordered ferromagnets, not present in the pure case. Disordered magnets

with long-range interactions have a power-law prefactor to the essential singularity

[38], but this is not present in the short-range case. A disordered ferromagnet can be

thought of as an ensemble of weakly interacting, finite-sized ferromagnetic clusters.

When T ∼ T−
G , only large clusters contribute to the overall magnetization. For each

large cluster of linear size L, the smallest Yang-Lee zero is of the order of θ ∼ 1/mLd,

where m ∼ (TG−T )β is the magnetization per spin of the cluster and d is the spatial

dimension of the system. The probability of a spin belonging to a cluster of size L

follows the Poisson distribution, i.e., prob ∼ exp(−cLd). As a result, large clusters

contribute to g(θ, t) in the form of Eqn. (2.7), where A(t) ∼ (TG − T )−β and β is the

usual exponent for pure ferromagnets.
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Figure 2.1: Data collapse of magnetization, M(h, t). Dots are experimental data and
the line is the theoretical prediction for the universal scaling function, with g0 = 0.5,
A0 = 0.5 and βr = 0.8. Data shown are in the range of t < 0.35 and h ≡ µH/kBTc <
0.39. The insert shows the data on logarithmic scales.
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For T < Tc, the system is in its ferromagnetic phase with nonzero magnetization,

implying a nonzero value of g(θ = 0, t)[37]. This requires A(t) = 0 at T = Tc to

counteract the essential singularity at θ = 0. For T ∼ T+
c , we can expand A(t) and

approximate it by A(t) ∼ t2−βr . This accounts for the asymptotic behavior of A(t).

With this form of g(θ, t), the scaling behavior of M(h, t) can be obtained by

substituting Eqn. (2.7) into Eqn. (2.2) and making a change of variables, y = A(t)/θ,

yielding

M(h, t)

µ
=

g0A(t)

2h

∫ ∞

A(t)/π

dy
exp(−y)

y2 + (A(t)/2h)2
, (2.8)

where we defined h ≡ µH/kBTc. Eqn. (2.8) can be written in terms of the exponential

integral, E1(x) ≡
∫∞

x
e−t/t dt, as

M(h, t)

µ
= −g0=[exp(iA(t)/2h)E1(A(t)/π + iA(t)/2h)]. (2.9)

We expand Eqn. (2.9) about A = 0, because A(t) = A0t
2−βr is asymptotically small

in the critical region, resulting in

M(h, t)

µ
= −g0e

−A(t)/π ×=[eiA(t)/2hE1(iA(t)/2h)]. (2.10)

This implies an approximate scaling form

M(h, t)

µ
= exp(−A(t)/π) [fM(A(t)/h) + O(h)] , (2.11)

where

fM(x) = −g0=[exp(ix/2)E1(ix/2)], (2.12)

and the corrections of O(h) involve exponential integrals of A/h. This scaling pre-

diction is valid in the limits A → 0, h → 0, but the ratio A/h has not been fixed by

the analysis so far.

2.4 Analysis of Magnetization Data

We now analyze the experimental data on La0.7Ca0.3MnO3 [35; 78], using the above

results, to see if the data are consistent with the presence of a Griffiths phase. Fig.
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(2.1) shows the predicted data collapse of the magnetization with fitted values Tc =

218K, g0 = 0.5 ± 0.05, A0 = 0.5 ± 0.05 and βr = 0.8 ± 0.05. The error bars were

obtained by estimating the best fit visually. The figure also shows the agreement

between the theoretically-predicted universal scaling function and the collapsed data.

Overall, the data scale quite well, and the scaling function of the collapsed data

are close to that of the theory, except near the turning point of the curve, where

corrections to the leading order ansatz we have used for Eqn. (2.11) become important,

and the data are no longer in the asymptotic limits A → 0 and h → 0. In order to

show this clearly, we calculate the asymptotics of the scaling function, in the limits

A/h → 0 and A/h → ∞, where the leading terms in the magnetization can be

calculated systematically.

2.5 Asymptotic Behavior

From Eqn. (2.9), the asymptotic behavior of M(h, t), in the limit A/h →∞, is given

by

M(h, t)

µg0

→ 2h

A
e−A/π

[
1− 4h2

π2
− 8h2

πA
+ O

(
h2

A2

)]
. (2.13)

showing that the small field susceptibility, M/h, in the limit A/h → ∞, depends

linearly on exp(−A/π)/A. This prediction recovers Curie-Weiss-like behavior, as

verified by the experimental data shown in Fig. (2.2). The experimental data shows

a slope of 0.93, consistent with the fitted range of values for 0.9 < 2g0 < 1.1.

A profound difference between conventional and Griffiths ferromagnets is found

in the limit A/h → 0. It is well understood, for conventional ferromagnets, that

M(h, t) ∼ h1/δ → 0 as h → 0; this is, however, not true in Griffiths ferromagnets, as

we can see by calculating the asymptotic behavior of M(h, t):

M(h, t)

µg0

∼ π

2
+

(
ln

(
A

2h

)
+ γ − 1

)
A

2h
− 2h

π
+

Ah

π2
+ O

(
A2

h2

)
(2.14)
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Figure 2.2: Experimental verification of the asymptotic behavior of the magnetiza-
tion for A/h → ∞. The data show a linear dependence of M/h on exp(−A/π)/A
with slope 0.93 as predicted by Eqn. (2.13). The range of values of A plotted is
0.05 < A < 0.155. Legend: · h = 0.0006, × h = 0.0011, ◦ h = 0.0017, 4 h = 0.0023,
5 h = 0.0028, + h = 0.0034, ∗ h = 0.0045, � h = 0.0057, � h = 0.0072, / h = 0.0090,
. h = 0.0122, ? h = 0.0141 and the solid line shows the linear prediction of Eqn.
(2.13).
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as A/h → 0, where γ ∼ 0.57722 . . . is the Euler-Mascheroni constant. This implies

that M(h, t) → µg0π/2 as h, A/h → 0, i.e., a discontinuity of M(h, t) at h = 0

on the critical isotherm. Experimental support for this surprising result is present

in Fig. 3 of Ref. ([35]), which documents the increase of the exponent δ fitted

to data assuming the conventional scaling applies. As the transition temperature

is lowered by increasing disorder, the inferred value of δ rises to as much as 16.9,

inconsistent with any known universality class, but indicative of a very rapid and

dramatic rise in magnetization. In order to test the precise predictions made here,

we show in Fig. (2.3) the experimental verification of Eqn. (2.14), where the function

M/µg0 + 2h/π − Ah/π2 is plotted against A/2h. The data points satisfying the

criteria h < 0.0072 and A/h < 0.3 are shown in Fig. (2.3). All the parameters were

determined previously according to the data collapse in Fig. (2.1), so that we have

not made any additional fitting. The experimental data approach the theoretical

curve as A/h → 0, and moreover tend to the universal number π/2 as dictated by

Eqn. (2.14). We conclude that the data are consistent with the prediction that M(h, t)

is discontinuous at h = 0 in the limit A/h � 1, a prediction which follows from the

essential singularity characterizing the Griffiths transition[34].

2.6 Heat Capacity

We conclude with a brief discussion of the heat capacity, C(h, t). We can integrate

Eqn. (2.11) to obtain the free energy, F (h, t) and thence an expression for C(h, t).

There is no prediction of data collapse, due to the interference from the exponential

terms, in agreement with our failure to obtain data collapse from the data. This form

contains singular terms of the form∫
dθ e−A/θ ln(4h2 + θ2) ∼ exp(−A/h) (2.15)
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Figure 2.3: Asymptotic behavior of the magnetization for A/h → 0, showing that
the data follow Eq. (2.14), and exhibit a discontinuity M → µg0π/2 in the limit
h → 0. The data shown here are within the limit A/h < 0.3 and h < 0.0072. Legend:
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where the integral is restricted to the neighborhood of the origin where Eqn. (2.7)

is valid and the upper limit is assumed to scale with h, leading to the estimate of

the essential singularity. Similar terms have also been predicted in Ref. ([77]), but

more than the leading term must be retained in order to consistently compute the

magnetization.

In conclusion, we have argued that the essential singularity of the Griffiths phase

leads to novel features in the critical behavior, including a discontinuity of magne-

tization in external field. These features are reproduced to the accuracy expected

from our lowest order theoretical predictions by high quality experimental data from

La0.7Ca0.3MnO3, and lead to a consistent description of its critical behavior, support-

ing the identification of this material as a Griffiths ferromagnet.

2.7 Conclusion

By using Bray’s ansatz for the Yang-Lee zero density for short-ranged disordered

ferromagnets, we derived the scaling behavior of Griffiths ferromagnets near the

Griffiths-paramagnetic transition point. We also derived the asymptotic behavior

of the magnetization and found excellent agreement between our theory and high

quailty experimental data on disordered Heisenberg ferromagnet La0.7Ca0.3MnO3,

from which we also extracted the critical exponent. This is the first clear direct

experimental evidence supporting the existence of the Griffiths phase.

Although we succeeded in deriving the scaling behavior of Griffiths ferromagnets,

a systematic Renormalization Group approach to the scaling problem is still lacking,

due to the essential singularity in the external magnetic field. We anticipate such

an approach, together with a more rigorous derivation of the Bray’s ansatz, in the

future.

30



Chapter 3

Geophysical Precipitation Pattern

Formation

3.1 Introduction

Geophysical pattern formation concerns how geological patterns and landscapes are

formed as a result of the underlying physical and chemical dynamics. The aim is

to predict the static, dynamical and statistical properties of the variety of geologi-

cal structures formed. Recently studied examples include travertine motifs, namely

dams[84], domes[68] and terraces[68; 85–87], stalactites[88; 89], as well as that of

other patterns such as sand dunes[90; 91], black smoker chimneys at hydrothermal

vents[92], columnar joints[93] and braided river networks[94].

This chapter focuses on the formation of travertine structures near geothermal

hot springs. In such systems, hot spring water emerges from a vent, and deposits

calcium carbonate as a mineral generally termed travertine as it degasses carbon

dioxide[68; 84–86]. The formation of stalactites in limestone caves, which are also

caused by carbonate precipitation, will also be briefly discussed.

The majority of the work done on the subject has focused on the microscopic

aspects of the problem, such as the role of biomineralization due to thermophilic
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Figure 3.1: (Color online) Travertine formation at Angel Terrace, Mammoth Hot
Springs, WY, showing a large pond, of order 1 meter in diameter, and smaller features.
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microbes[85; 86], the CO2 degassing mechanisms[95; 96], mineral compositions[97; 98]

and crystal structure[99; 100]. Here we are interested in the formation of macroscopic

structures and motifs, such as domes, stalactites, and terraces[68], which are universal,

i.e., independent of microscopic details. In addition, we are interested in the resulting

patterns and their correlations, rather than absolute rates of growth; accordingly,

microscopic mechanisms that contribute to kinetics, including nucleation processes

and potential biomineralization effects, are present in our work through the choice of

time scale. There are no extra terms in the equations of motion whose presence can

be attributed specially to any one of these microscopic processes.

There are two principal mathematical difficulties encountered in studying these

macroscopic structures. First, the problem is highly nonlinear. As the carbonate is

precipitated onto the surface, the surface evolves, which then changes the flow path

of the fluid, thus affecting how precipitation takes place. This interplay between fluid

flow and surface growth leads to a moving-boundary problem, which is mathematically

difficult to solve. Second, the problem involves a variety of depositional processes,

including solute advection, a complex sequence of chemical reactions, CO2 degassing,

as well as mass transfer between a solid and a liquid. Given that each of these

processes is complicated and non-trivial to model on its own, a holistic approach

capturing all of them would not be mathematically tractable.

The purpose of this chapter is to explore a simplified mathematical formulation

of this problem that captures the essential large-scale dynamics. Because of the

complexity of the problem, the resulting equations are very complicated, making it

difficult, if not impossible, to understand the whole flow system using this approach.

It turns out, however, that the equations can be solved analytically under some simple

situations, where symmetry can be exploited and simplifications can be made. The

formations of domes[68] and stalactites[88; 89] are examples of such situations, as is

the pioneering work of Wooding on travertine dams[84]. In these systems, there is a
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thin film of fluid flowing over the motif in a laminar fashion (in the case of domes and

stalactites, for example). We will see that these simple motifs are straightforward to

calculate in the case that capillary forces can be neglected. If the fluid film becomes

too thin, due to its spreading over the surface, contact lines can be formed, resulting

in rivulets and the breaking of pure rotational symmetry. In the case of domes, this

is manifested in a fluting pattern near the base of the dome[68]. Such effects are

difficult to include analytically, although we have previously shown that they can be

captured correctly using a cell dynamical system model[68], and this is discussed in

more detail below.

Although we cannot use this analytical theory to study the detailed shapes of the

complex landscape of ponds and terraces, we are able to expose the dynamical linear

instabilities, whose evolution into the nonlinear regime give rise to the landscape.

We will see that the linear stability spectrum, in the absence of capillarity effects,

always predicts a positive growth rate. The absence of a length scale arising in this

calculation suggests that the actual landscapes might be scale invariant, a conclusion

that is reinforced by our studies of the statistical properties of these landscapes using

our cell dynamical system model and photographic evidence[68; 101]

The study reported here is a complement to our simulation work[28; 68; 101]

implemented as a cell dynamical system. This model has been shown to be capable

of describing the actual dynamics[68], not only in the simple cases where the analytical

approach is successful, but also in the fully nonlinear regime. For example, it has been

shown that this cellular model generically gives rise to a complex, terraced landscape,

which is similar to the one observed in the field. The cellular model also makes

detailed predictions for the landscape statistics, including the pond area distribution

and the distribution of pond anisotropy. In addition, the model successfully predicts

that the main mode of pond or terrace growth is uphill pond inundation, a result

confirmed by time-lapse photographic studies.
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Although seemingly different, both the analytical approach and the cell dynamical

system approach incorporate the same physics, and so should be expected to yield

identical predictions. In [68] this was tested, by using the cellular model to solve

the problem of dome formation. The analytical theory in the absence of surface

tension cannot account for the fluting seen away from the vent of domes, because the

fluting arises from contact line formation. The analytical theory for domes, as we will

discuss in detail below, contains one parameter that sets the scale for the patterns:

this scale factor r0 is a combination of the upward growth velocity, the mass transfer

coefficient describing how material is incorporated into the growing substrate, the

flux of water emerging from the vent, the gravitational acceleration and the fluid

viscosity. When surface tension effects are included, the capillary length d0 must

also be included. Thus, our theory is a two parameter theory for the entire range of

travertine depositional phenomena. The analytical theory can be used to predict the

position on the dome at which capillary effects become important: this must occur at

a location that is independent of the ratio r0/d0, and hence this critical angle has a

prescribed dependence on the underlying parameters which enter into the formula for

r0. This prediction, arising from the analytical theory, was verified to occur also in

the computer simulations of the cellular model[68]. As a result, we conclude that the

two formulations are indeed equivalent, and may be used interchangeably depending

on which is more suited to the problem at hand.

This chapter is organized as follows. In Section 3.2, we derive the equations gov-

erning the dynamics of fluid flow coupled to the moving boundary problem describing

travertine precipitation. Section 3.3 describes the circularly symmetric solutions of

these equations, and presents the linear stability analysis of the steady state uniformly

translating solutions. We compare our analysis to a similar one[88; 89] that describes

the shapes of stalactites in Section 3.4 and compute the linear stability spectrum of

these structures too. We turn in Section 3.6 to a study of turbulent flow down an
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inclined plane, and calculate the linear stability spectrum for the coupled flow and

moving boundary problem, exposing the linear instability that is at the heart of the

terraced landscape architecture. We conclude in Section 3.7.

3.2 Model for Precipitation Pattern Formation

We consider a stream of water flowing over a terrain, from which calcium carbonate

is then, due to geochemical processes to be discussed below, precipitated onto the

landscape. The landscape is thus constantly changing in response to the fluid flow.

This change of landscape, in turn, affects the flow path of the fluid, which then influ-

ences how subsequent precipitation takes place. We derive the governing equations

describing both fluid flow and surface growth. We first focus on the surface growth,

and related precipitation dynamics, and then move onto the fluid flow. These two

aspects will be combined to provide the complete description of the system.

3.2.1 Surface Growth

A surface can generally be characterized by the local curvature, κ. In one dimension,

or in cases where symmetry reduces the system to be effectively one dimensional, κ

is defined by

κ =
∂θ

∂s
, (3.1)

where θ is an angle between the local tangent of the curve and a fixed axis, and s is

the arc length measured from some fixed point on the curve, as shown in Fig. (3.2).

If the normal velocity vn of the surface is prescribed everywhere, then the evolution

of the curvature follows the kinematic equation[102–104]:

∂κ

∂t

∣∣∣∣
θ

= −κ2

(
1 +

∂2

∂θ2

)
vn, (3.2)

The time derivative in the equation is defined with respect to fixed θ. The first term

in Eq. (3.2) describes the change in κ due to the change in the overall scale of the
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object, whereas the second term describes the change in κ at a point due to the

difference in growth rates in the neighborhood of that point.

Eq. (3.2) is purely geometrical; for any given function vn, the evolution of κ is de-

termined. So, physics enters in constructing a realistic and mathematically tractable

model for vn, which, in the case considered here, depends on water chemistry, surface

kinematics, chemical advection and fluid flow state. In carbonate systems, in ad-

ditional to the CaCO3 concentration, precipitation is mainly controlled by the CO2

concentration (partially reflected in the measured pH), which is also influenced by

its temperature-dependent solubility in the fluid. As the pH increases or the temper-

ature decreases, the solvability of CaCO3 decreases and supersaturated CaCO3 will

be precipitated onto the surface. While the decrease in temperature is mainly due

to heat loss to the environment, the increase in pH is due to the loss of CO2 by a

variety of outgassing mechanisms[95; 96]. Although the detailed water chemistry and

depositional processes are quite complicated, for the purposes of the present work, it

suffices to use a simplification of the governing chemical reactions: Ca2+ + 2HCO−
3 


CaCO3(s) + H2O + CO2(g). In summary, the system tends to produce more CaCO3

as CO2 concentration decreases through outgassing.

Mass transfer between a fluid and a solid is a complicated problem[84; 105; 106];

these nontrivial chemical processes only make it harder. A complete description

of the precipitation dynamics, which will give us the normal growth velocity vn,

involves writing down, in addition to the fluid dynamics equations, advection-reaction-

diffusion equations for each chemical and appropriate boundary conditions. Short et

al.[88; 89] followed this approach in the study of stalactite formation. What they

found, after solving all these equations and taking limits appropriate for the timescales

of interest to them, is that vn is proportional to the local fluid thickness, h, with all

the chemistry entering only into the proportionality constant.

A simple interpretation of this result can be obtained by studying the scales of
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processes involved in stalactite formation, using parameter values from Ref. [89]. The

fluid flow is a laminar flow, with Reynold’s number about 0.01− 1 . The thickness of

the flow, h, is typically on the order of 10µm. The time scale for the concentration of

CaCO3 to equilibrate across the layer is thus h2/D ∼ 0.1s, where D is the diffusion

constant. Next, the traversal time, the time for a parcel of fluid to flow along the sta-

lactites, is about 100s. Because only 1 percent of the total CaCO3 mass is precipitated

throughout the flow, we can assume that the CaCO3 concentration, and thus the pH,

are uniform both across the fluid layer and along the stalactite. The temperature can

also be assumed to be constant since the fluid is so thin. The precipitation rate is

then controlled only by the CaCO3 available, which is proportional to the thickness

of the fluid.

In other carbonate systems, such as at travertine-forming hot springs, this relation

between vn and h does not hold simply due to the fact that the fluid thickness is larger,

and the velocity is larger; as a result a turbulent boundary layer is formed near the

precipitation front. What happens outside the boundary layer is too distant to affect

precipitation near the boundary. In a turbulent flow, instead of depending on h, the

precipitation front velocity vn depends on the fluid velocity[105; 106]. Wooding[84],

in the study of steady-state dam formation, took this into consideration and arrived

at the conclusion that vn is directly proportional to the depth-averaged tangential

fluid velocity, U , i.e.

vn = GU, (3.3)

where G is a mass transfer coefficient depending on water chemistry and spectral

features of the turbulent flow[105; 106]. For present purposes, the functional form of

G is not of interest: we shall treat it as a phenomenological parameter, and as we

shall see, its role in the theory developed here is to contribute to the characteristic

length scale r0 of patterns.

To summarize: all the details of water chemistry, including supersaturation, out-
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Figure 3.2: The coordinate system for the model of fluid flow coupled to precipita-
tion moving boundary dynamics.

gassing, solute diffusion, fluid turbulence, temperature and pH, which on their own

are complicated processes and are nontrivial to model, enter into the picture only

through a mass transfer coefficient, G. In principle, G may exhibit spatial fluctu-

ations; however, we shall assume that these are on a scale small compared to the

features we are describing, and thus we will consider G to be a constant locally along

the flow path. Over the entire geothermal spring system, it is possible that there will

be a small spatial variation in the mean value of G, but the weak dependence of G

on governing parameters[84; 105; 106] strongly suggests that this can reasonably be

neglected.
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3.2.2 Fluid Dynamics

A complete description of incompressible fluid dynamics is given by the Navier-Stokes

equation

∂~u

∂t
+ ~u · ∇~u =

−1

ρ
∇P + ν∇2~u + ~g, (3.4)

with ~∇ · ~u = 0 for incompressibility, no-slip and stress-free boundary conditions

at the solid-liquid and liquid-gas interfaces, respectively, where ~u, ρ, P , ν and g

are the fluid velocity, density, pressure, viscosity and gravitational acceleration. We

will use the Poiseuille solutions of the Navier-Stokes equations for domes, where the

flow is laminar, but for turbulent flows, such as those which form the travertine

terraces, we will employ a depth-averaging approximation, in conjunction with the

Chézy approximation[107] for hydraulic friction.

Since the spatial scale over which the landscape changes is usually much larger

than the fluid thickness, i.e. hκ � 1, we can make use of the shallow water approxi-

mation and expand Eq. (3.4) in powers of hκ. If we take κ to be zero, we arrive at

the de Saint-Venant equation[108]

∂(Uh)

∂t
+

∂(U2h)

∂s
= −gh

∂h

∂s
+ gh sin θ − CfU

2

h
(3.5)

with equation of continuity

∂h

∂t
+

∂(Uh)

∂s
= 0 (3.6)

where Cf is the Chézy coefficient[107], which empirically describes the energy lost

due to turbulence, in a manner consistent with Kolmogorov’s 1941 scaling theory of

turbulence (K41)[109; 110], and s is the arc length measure from a reference point at

the top, as shown in Fig. (3.2).

The de Saint-Venant equation only holds on flat surfaces. When the surface grows,

flow instabilities trigger various patterns to form; and the de Saint-Venant equation

is no longer valid. For a general curved surface, the Dressler equation[111; 112] has
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to be used:

1

g

∂u0

∂t
+

∂E

∂s
=

−Cfu
2

gh(1− κh/2)
(3.7)

(1− κh)
∂h

∂t
+

∂q

∂s
= 0 (3.8)

where

u(s, n, t) =
u0(s, t)

1− κn
, (3.9)

E(s, t) = ζ + h cos θ +
ph

ρg
+

u2
0

2g(1− κh)2
, (3.10)

q(s, t) = −u0

κ
log(1− κh). (3.11)

where ζ is the height of the underlying surface measured from a fixed horizontal axis,

as shown in Fig. (3.2), ph is the pressure head at the fluid surface, ρ is the fluid

density, E is the energy density and q is the local flux. When κ is set to zero and θ

is small, the Dressler equations reduce to those of de Saint-Venant.

As we have seen, the way fluid flows depends on the landscape it is flowing over,

which itself is evolving over time. Now, Eq. (3.7)-(3.11) (or Eq. (3.4)) and Eq. (3.3)

describe these two dynamics, respectively. However, we do not have to consider both

dynamics on the same footing because there is a separation of time scales; the rate

of fluid flow is on the order of cm/sec, but the rate of precipitation is on much slower

geological scales. The latter is on the order of 1 mm/day and 1 cm/century in the cases

of Yellowstone travertines[85; 113; 114] and stalactites[89], respectively. Accordingly

the fluid flow responds quickly to the landscape, but the landscape responds extremely

slowly to the fluid flow. We can then assume that the fluid flow is in its steady state

when we discuss the landscape evolution; i.e., we can drop all the time derivatives in

the fluid flow equations. This quasi-stationary model will now be used to study the

steady states of a variety of geological motifs and their stabilities.
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3.3 Travertine Domes

3.3.1 Steady State

Our first example is the circularly symmetrical domes found in Yellowstone National

Park, as shown in Fig. (3.3.1a). A number of approximations and simplifications can

be made before we proceed. First, the growth rate of these domes is on the order of

1−5mm/day and the fluid flow rate is on the order of 1mm/s, so we have a separation

of time scales. Second, our field observations indicate that the thickness of the fluid

film flowing over the domes is very small compared to the curvature of the surface;

thus, we make the approximation that the fluid is flowing down a (locally) constant

slope. Third, as suggested by the field observations, the domes have a high degree of

circular symmetry, so we can assume the solution to be circularly symmetrical and

focus only on the radial part of the solution, which is effectively one dimensional.

Fourth, the flow is apparently laminar, so we can use the Poiseuille-Hagen profile for

the velocity in thin film:

u(y) =
gh2 sin θ

2ν

[
2
y

h
−
(y

h

)2
]

, (3.12)

where θ is the slope of the surface and y is the transverse coordinate, as shown in

Fig. (3.2). By assuming circular symmetry, h can be related to the axial distance

from the vent, r, by the conservation of fluid volume:

Q = 2πr

∫ h

0

u(y)dy =
2πgrh3 sin θ

3ν
, (3.13)

where Q is the total volumetric flux coming out of the vent. Eq. (3.12) and (3.13)

can be combined to give

U ≡ 1

h

∫ h

0

u(y)dy =

(
α sin θ

r2

)1/3

, (3.14)
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where α ≡ gQ2/12πν. We will see later that the assumption of laminar flow is

self-consistently verified. Putting Eq. (3.14) into Eq. (3.2) and using Eq. (3.3), gives

∂κ

∂t

∣∣∣∣
θ

= −κ2

[
1 +

∂2

∂θ2

]
G

(
α sin θ

r2

)1/3

. (3.15)

This is the governing equation for the dome profile. Suggested by the shape of the

dome, we seek a solution which steadily translates upwards without a change of shape,

i.e., ∂tκ|θ = 0, with velocity vt. Eq. (3.15) gives

G

(
α sin θ

r2

)1/3

= vt cos θ, (3.16)

Rearranging terms gives the shape of the dome as a one-parameter family of curves

r(θ)

r0

=

√
sin θ

cos3 θ
, (3.17)

where the scale factor r0 ≡
√

G3α/v3
t . Eq. (3.17) is plotted in Fig. (3.3.1b). Good

agreement is obtained between our theory and the observations below a critical angle

θc. From the fit, and the typical parameter values G ∼ 10−8, vt ∼ 1mm/day and

Q ∼ 1cm3/sec, we obtain U ∼ 25mm/sec and h ∼ 1 − 10mm, and a Reynolds

number, Re ≡ Uh/ν ∼ 10− 100. The assumption of laminar flow is self-consistently

verified.

The agreement between this analysis and observation shows that the growth of

the dome is mainly determined by the geometry, because the only r dependence

enters through the mass conservation, which is determined by geometry. To see this,

suppose that the dome was a one dimensional object. Then, the mass conservation

equation, Eq. (3.13), would become Uh = q0, for some constant flux q0, without any

r dependence. Under the same approximation of local flatness, the final equation

for U , Eq. (3.14), would thus be independent of r. We would then not be able to

solve for r by substituting U into Eq. (3.2). In this case, we would have to solve the

equations without using the locally-flat approximation. In other words, the fact that

we can ignore the details of the flow, by assuming local flatness, to obtain the shape
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observation
theory prediction
simulation
with surface tension
simulation
without surface tension

Fluting

(b)

Figure 3.3: (Color online) Travertine dome at Mammoth Hot Springs, WY. (a)
Dome whose central pond is 50.3cm in diameter. (b) Dome profile compared with
theory and simulation of Ref. [68]. The black curve is the analytical prediction from
Eq. (3.17), using the value r0 = 43cm. The red filled circles show the profile of a
simulated dome, including the effects of surface tension. The blue dashed line is a
consensus dome profile generated by averaging the dome shown with one other field
observation. The blue filled squares show the profile of a simulated dome without
surface tension[68]. 44



of the domes implies that geometry plays a more important role than fluid flow in

the formation of domes.

For angles θ > θc, the analytical profile deviates from our field photograph. The

point of deviation is associated with an apparent change in the dome morphology,

with a fluting pattern superimposed on the dome profile. This is due to the effects

of surface tension at the air-water-travertine interface[68]. Instead of covering the

whole surface uniformly, the fluid separates and covers only a fraction of the surface.

Along the wetted surface, the regular growth law still applies and thus the surface

grows, until a point at which the difference in heights between the wetted and dry

surfaces is so large that the flow changes its path to flow along the dry surface. This

process repeats itself and, on average, results in a slower growth when compared with

a uniformly-wetted dome, so the theoretical prediction should be higher than the

observation for θ > θc, as seen in Fig. (3.3.1b). The analytical solution for the dome

profile neglects surface tension, but leads to a prediction for the scaling dependence

of the critical angle on the model parameters[68].

It is not trivial to include surface tension in our analytical model, but its effect

can be examined by using the cellular model, in which one can switch on and off

surface tension. Fig. (3.3.1b), reproduced from Ref. [68] shows the prediction of

dome shapes from the cellular model with and without surface tension. It is clear

that by appropriate choice of d0 the simulation result coincides with the observation

when surface tension is present, and agrees with the analytical prediction otherwise.

This is direct evidence for the effect of surface tension near fluting.

For completeness, we mention that this is not an artifact of having “enough fitting

parameters to fit an elephant”. In Ref. [68] was presented a scaling argument for the

critical angle at which capillary effects become important. The inclusion of surface

tension introduces an additional length scale, namely, the capillary length, dc, into

the problem. Now, the only other length scale in the problem is r0 =
√

gG3Q2/νv3
t .
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Figure 3.4: (Color online) Critical angle for the contact line formation on a travertine
dome, plotted according to Eq. (3.18), showing data collapse, as predicted by theory.
Inset: raw data.

Since θc is dimensionless, it can only depend on the ratio r0/dc and G. For a given

chemical environment, G is fixed and we are left with the prediction, derived from

our analytical solution, that

θc = f̂

(√
gQ2/νv3

t

dc

)
, (3.18)

where f̂(x) is a scaling function. This data collapse, which predicts θ depends not on

the parameters separately, but only on the combination
√

(gQ2/νv3
t )/dc, was verified

using our discrete cellular model[68], wherein the form of f̂(x) was calculated. It is

shown in fig. 3.4.
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3.3.2 Linear Stability Analysis

To complete the analysis, we study the stability of the solution, Eq. (3.17). By

following the approach Liu and Goldenfeld used in studying the linear stability of

dendritic solidification[115], we consider a perturbed solution, r(θ) = r̄(θ) + δr(θ)eλt,

where r̄(θ) is the solution in Eq. (3.17) and δr is a perturbation. Substituting this

into the governing equation, Eq. (3.15), and expanding in δr, we obtain

λ
dδr

dθ
+

2Gα1/3 cos θ

3

[
1 +

d2

dθ2

]
δr sin1/3 θ

r̄5/3
= 0, (3.19)

where the boundary conditions are

δr(0) = 0, δr
(π

2

)
= 0, (3.20)

for symmetric modes and,

d(δr(0))

dθ
= 0, δr

(π

2

)
= 0, (3.21)

for antisymmetric modes. This is an eigenvalue problem and the spectrum tells us the

stability of the solution. It is sufficient to examine the asymptotic behaviors of δr for

different values of λ to extract sufficient information about the stability. Expanding

Eq. (3.19) in small θ gives

d2δr

dθ2
− 1

θ

dδr

dθ
+

3

4θ2
δr = 0, (3.22)

which is independent of λ and which possesses power-law solutions of the form δr ∼

θ1/2, θ3/2. These correspond to the symmetric and antisymmetric modes respectively.

The asymptotic behavior in the opposite limit can be studied by making the

transformations g(θ) = δr(θ)
√

cot θ and x = tan θ, which results in

d2g(x)

dx2
+ p(x)

dg(x)

dx
+ q(x)g(x) = 0, (3.23)

where

p(x) = λ′
√

x(1 + x2)− 2x

1 + x2
, (3.24)

47



q(x) =
λ′
√

1 + x2

2
√

x
+

2x2 − 1

(1 + x2)2
, (3.25)

and,

λ′ ≡ 3α1/6G3/2λ

2v
5/2
t

. (3.26)

The asymptotic behaviors of these functions, as x → +∞, are

p(x) ∼ λ′x3/2 +
λ′

2x1/2
− 2

x
+ O

(
1

x5/2

)
, (3.27)

and,

q(x) ∼ λ′x1/2

2
+

λ′

4x3/2
+

2

x2
+ O

(
1

x7/2

)
. (3.28)

The asymptotic behavior of g(x) as x → +∞, for positive values of λ′, can be com-

puted by defining g(x) ≡ exp(S(x)), where S(x) satisfies

d2S

dx2
+

(
dS

dx

)2

+ p(x)
dS

dx
+ q(x) = 0. (3.29)

Using the eikonal approximation that S ′′(x) � (S ′(x))2, which is valid for x → +∞,

Eq. (3.29) can be solved asymptotically to give the two linearly independent solutions

S1(x) ∼ −2λ′

5
x5/2 − λ′x1/2 + ln(x), (3.30)

and,

S2(x) ∼ −1

2
ln(x), (3.31)

which are equivalent to,

g1(x) ∼ 1

x
exp

(
−2λ′

5
x5/2 − λ′x1/2

)
, (3.32)

and,

g2(x) ∼ 1√
x

+
3

2λx3
− 7

4λx5
+ O

(
1

x11/2

)
, (3.33)

where a series expansion in the form of,

g2(x) =
1√
x

∞∑
n=0

an

xn/2
, (3.34)
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Figure 3.5: The eigenfunctions of Eq. (3.19) for λ′ = 0.1, 0.5, 1.0 and 3.0. (a) The
first eigenfunction satisfies the boundary conditions for symmetric modes, implying
the instability of the dome solution. (b) The second eigenfunction does not satisfy
the boundary condition at infinity. 49



is performed to arrive at Eq. (3.33).

We see from the asymptotic formula, Eq. (3.33), that,

δr2(x) ≡
√

xg2(x) ∼ 1 + O

(
1

x5/2

)
, (3.35)

as x → ∞ or θ → π/2. This means that δr2(θ) does not satisfy the boundary

condition, δr(θ = π/2) = 0. The solution, δr1(θ), is the only solution that satisfies

the boundary conditions, Eq. (3.20).

To obtain the full eigenfunctions, we use the asymptotic formula, Eq. (3.32) and

(3.33), as initial conditions and integrate numerically from a large value of x = c

(c = 10 in this case) back to x = 0. The Gram-Schmidt orthonormalization proce-

dure is employed to ensure the linear independence of the two eigenfunctions. The

eigenfunctions are normalized such that∫ c

0

δri(x)δrj(x)dx = δij. (3.36)

Fig. 3.5 shows δr1(θ) and δr2(θ) for λ′ = 0.1, 0.5, 1.0 and 3.0. From the graph, we

confirm that δr1(θ) satisfies the boundary conditions, Eq.(3.20), while δr2(θ) does

not.

Note that δr1(θ) satisfies only the boundary conditions for the symmetric modes,

but not the anti-symmetric modes. We need a linear combination of δr1(θ) and

δr2(θ) to form a solution that satisfies the latter. But since δr2(θ) does not satisfy

the boundary condition at θ = π/2, such a linear combination would not satisfy it

either.

To conclude, there are always solutions to Eq. (3.19) satisfying the boundary

conditions for the symmetric modes for every positive value of λ, i.e., the domes are

unconditionally linearly unstable. This seems to be a contradiction with the field

observation of domes, which are presumably stable. We will postpone the discussion

of this issue to the end of the next section, after we have discussed stalactite formation.
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3.4 Stalactites

In studying the formations of travertine domes near geothermal hot springs, it helps

to study a similar geophysical process, namely, the formation of stalactites, which

are cylindrical structures formed by precipitation of calcium carbonate in limestone

caves. Here, we will summarize the results Short et al.[88; 89] obtained and apply

our formulation to study the stability of stalactites.

3.4.1 Steady State

As discussed earlier, the growth rate of stalactites is directly proportional to the local

fluid thickness, h. From the field observation, stalactite formation shares the following

features with dome formation: They both are circularly symmetrical, formed under

a shallow water laminar flow, and can be assumed to be locally flat. So, by using the

analysis of dome formation, in particular, from Eq. (3.13), we have

h =

(
β

r sin θ

)1/3

, (3.37)

where β ≡ 3νQ/2πg is a constant. The dynamical equation, Eq. (3.2), then becomes

∂κ

∂t

∣∣∣∣
θ

= −κ2

(
1 +

∂2

∂θ2

)[
G

(
β

r sin θ

)1/3
]

, (3.38)

where G depends on water chemistry and the input flux[88; 89]. Following the same

strategy employed in the case of travertine domes, we obtain a uniformly translating

solution,

r(θ) =
r0

sin θ cos3 θ
, (3.39)

where the tip velocity vt comes in as an integration constant, and the scale r0 ≡

β(G/vt)
3. By defining ρ ≡ r/r0, z ≡ ζ/r0 and using the trigonometric relation

tan θ = −dz/dρ, we obtain

z′

(1 + z′)2
+

1

ρ
= 0, (3.40)

which is the result derived in Refs. [88; 89].
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3.4.2 Linear Stability Analysis

We study the stability of solution Eq. (3.39) by introducing a perturbation:

r(θ) = r̄(θ) + δr(θ)eλt, (3.41)

where r̄ is the unperturbed solution given by Eq. (3.39) and δr is the perturbation.

Substituting Eq. (3.41) into Eq. (3.38) and expanding the resulting equation in δr

gives

λ′
dδr

dθ
+ cos θ

[
1 +

d2

dθ2

] (
δr sin θ cos4 θ

)
= 0, (3.42)

where λ′ ≡ 3G3λ/v4
t . We follow the same approach as in the case of the dome and

study the asymptotic behaviors of the solutions of Eq. (3.42). For θ → 0, we expand

Eq. (3.42) in θ and obtain

λ′
dδr

dθ
+

[
1 +

d2

dθ2

]
θδr = 0, (3.43)

whose solution is given by r ∼ θσ, where σ = −1 − λ. Because σ < 0 for all λ > 0,

the solution diverges as θ → 0. This shows that there are no eigenmodes for λ > 0.

As a result, we conclude that the steady-state solution Eq. (3.39) is linearly stable

against the class of perturbations considered here.

Let us also look at the asymptotics as x → ∞ for completeness. Following the

strategy employed in the study of dome stability, we make the transformation g(θ) =

tan θδr(θ) and x = tan θ. Eq. (3.42) then becomes

d2g

dx2
+ u(x)

dg

dx
+ v(x)g(x) = 0, (3.44)

where

u(x) =
−8x

1 + x2
+

λ′(1 + x2)3/2

x
, (3.45)

and,

v(x) =
λ′(1 + x2)3/2

x2
+

20x2 − 5

(1 + x2)2
+

1

(1 + x2)5/2
. (3.46)
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As x →∞,

u(x) ∼ λ′x2 +
3λ′

2
− 8

x
+

3λ′

8x2
+

8

x3
+ O

(
1

x4

)
, (3.47)

and,

v(x) ∼ λ′x +
3λ′

2x
+

20

x2
+ +

3λ′

8x3
+ O

(
1

x4

)
. (3.48)

By following the same asymptotic analysis as we did in the last section, we get,

g1(x) ∼ exp

(
−λ′x3

3
− 3λ′x

2

)
, (3.49)

and

g2(x) ∼ 1

x
+

10

λ′x4
− 98

5λ′x6
+ O

(
1

x7

)
. (3.50)

These can be used as the initial conditions to integrate numerically from a large

value of x, giving the full eigenfunctions. Again, the Gram-Schmidt orthonormaliza-

tion procedure is employed. The two branches of solutions, δr1,2(θ), are plotted in

Fig. 3.6. They do not satisfy the boundary conditions as they both diverge at θ = 0.

So the stalactite solution is stable.

3.5 Comparison Between Domes and Stalactites

We have shown that there is a continuous spectrum of unstable modes for traver-

tine domes, but stalactites, which are formed by an apparently similar process, are

predicted to be linearly stable. We need to (a) explain why it is that domes can be

observed in the field, and (b) interpret the source of the difference in stability be-

tween the two seemingly-related growth motifs. We initially found it surprising that

there is a qualitative difference in stability, even though the dynamics of domes and

stalactites seem to differ in only relatively minor ways: the growth of domes depends

on the depth-averaged fluid velocity whereas the growth of stalactites depends on the

fluid thickness. In both cases, the approximation of local flatness is used, so this is

unlikely to be the source of the difference.
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Figure 3.6: The eigenfunctions of Eq. (3.42) for λ′ = 0.1, 0.5, 1.0 and 3.0. These
solutions do not satisfy the boundary conditions, as they all diverges at θ = 0.
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Our interpretation is that the difference in stability arises from the direction of

growth, and as a result, the manner in which surface tension effects correct the zeroth

order solutions we have discussed. The direction of growth is important, because it

dictates the way in which shape perturbations propagate. For domes growing with

sufficiently large vt, shape perturbations are advected away from the vent down the

body of the dome, in a manner reminiscent of the way in which shape perturbations

are advected down the body of a growing dendrite[116]. These perturbations may

also grow during this process, but the development of this instability is in practice

regularized by any non-zero surface tension, leading to contact line formation, film

break-up and the formation of rivulets. This heuristic argument is supported by the

shape of the linear stability eigenfunctions shown in Fig. 3.5. For stalactites, on

the other hand, the fluid becomes increasingly thick as it flows down towards the

tip, and perturbations only increase the growth velocity of the tip, rather than cause

growing instabilities away from the tip. Thus, the only place where surface tension

is significant is at the tip of the stalactite, where the surface tension holds a water

droplet until the droplet becomes too heavy and drops. This dynamics, we believe,

mainly contributes to the precipitation rate at the tip, which affects only the growth

rate of the whole stalactite. In other words, it only renormalizes the value of vt,

which, in any case, is a fitting parameter. Surface tension is, therefore, not important

in the dynamics of stalactite formation and it should not affect its stability.

Returning now to the case of travertine domes, we conclude that the unstable

modes are small near the vent and grow in amplitude near the tail of the dome.

This, however, is precisely the region where the film becomes thin and contact line

formation can occur, leading to the fluting pattern observed in the real systems. The

precipitation rate in this region is also lower, due to the depleted Ca2+ concentration,

and this helps stabilizing the domes too. It is possible that the growth of the instabili-

ties predicted here triggers the formation of contact lines and film break-up. Thus, we
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conclude that the dome is in some sense similar to the problem of dendritic growth,

where a smooth tip is followed by a train of sidebranches, widely interpreted to be

due to a noise-induced instability[117; 118]. It is possible that the full inclusion of

surface tension in the model would have as important a role in selection and stability

as it does in dendritic growth[119; 120].

3.6 Damming Instability

Having studied the formation of domes and stalactites, we now try to understand

some aspects of the large scale morphology of hot spring landscapes. We see in

Fig. 3.1b that the pattern formed is complicated, with ponds of similar shapes but

different sizes. Empirical data shows that the distribution of pond sizes indeed follows

a power law[28]. This scale-invariant pattern hints at an underlying scale-invariant

precipitation dynamics, i.e., a dynamics without a characteristic length scale.

It is difficult to predict analytically the statistical properties of the landscape, such

as the pond size distribution, due to the mathematical complexity of the equations

involved. We can, nevertheless, study a simple case of precipitation over a planar

slope. By studying the linear stability of this dynamics, we should be able to expose

the essential physics of the formation of these scale-invariant patterns. The nonlinear

regime of the modeling can be studied using the cellular model we introduced ear-

lier. In this section, we consider a one-dimensional flow down an inclined plane, and

evaluate the linear stability spectrum.

The fluid flow in travertine systems is, unlike in the cases of dome and stalactite

formations, generally turbulent. It is therefore necessary to use the formulation of

Eq. (3.7)-(3.11). The turbulent drag leads to a steady flow regime, about which we

linearize. Since the angle θ is the same along a constant slope, it is more convenient

to use the arc length, s, as the independent variable in the growth equation, so the
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dynamics of local curvature, κ, is given by

∂κ

∂t

∣∣∣∣
n

= −
(

κ2 +
∂2

∂s2

)
Gu0, (3.51)

where the subscript n denotes a derivative taken at a point moving along the outward

normal of the curve. This, together with the Dressler equation, Eq. (3.7)-(3.11), gives

the complete description of the system.

We scale the independent variables to their natural units,

t′ =
U

R
t, s′ =

s

R
, ζ ′ =

ζ

R
, (3.52)

and define the following dimensionless variables,

u′0 =
u0

U
, h′ =

h

H
, κ′ = Rκ, σ ≡ H

R
, (3.53)

where U , H and R are the characteristic scales of the fluid velocity, fluid thickness

and the landscape respectively, and σ is the ratio between the H and R, which is

small in the regime of shallow water flow. The governing equations then become (we

drop all the primes on the variables for simplicity),

∂κ

∂t

∣∣∣∣
n

= −
(

κ2 +
∂2

∂s2

)
Gu0, (3.54)

σFm
∂u0

∂t
+

∂E

∂s
=

−CfFmu2
0

h
(
1− σκh

2

) , (3.55)

(1− σκh)σ
∂h

∂t
+

∂q

∂s
= 0, (3.56)

with

E = ζ + σh cos θ +
ph

ρg
+

σFmu2
0

2(1− σκh)2
, (3.57)

q =
−u0

κ
ln(1− σκh), (3.58)

where we defined the Froude number, Fm ≡ U2/gR.

The uniform solution of this set of equations is given by

ū0 =

√
sin θ

CfFm

, (3.59)
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h̄ = 1, (3.60)

θ̄ = θ0 (3.61)

κ̄ = 0, (3.62)

where θ0 is the initial inclination of the slope. The linear stability analysis is performed

by adding harmonic perturbations to the solution,

u0 = ū0 + δu0e
ips+λt, (3.63)

h = 1 + δheips+λt, (3.64)

θ = θ̄ + δθeips+λt, (3.65)

κ ≡ ∂θ

∂s
= ipδθeips+λt, (3.66)

and linearizing the resultant equations to the first order in the perturbations, resulting

in three equations for δu0, δh and δθ,

ipλδθ = p2Gδu0 (3.67)

(λ + ipū0)δh + ipδu0 −
σu0p

2

2
δθ = 0, (3.68)

σFmλδu0 = δθ(cos θ̄ + ipσ sin θ̄ + p2σ2ū2
0Fm)

−δθ
CfFmū2

0σip

2

+δh(−ipσ cos θ̄ + CfFmū2
0)

+δu0(−ipσFmu0 − 2CfFmū0) (3.69)

A single dispersion relation can be obtained by combining all three equations and

eliminating δu0, δh and δθ. The result is a cubic equation in λ,

λ3 + a2(p)λ2 + a1(p)λ + a0(p) = 0, (3.70)

where

a2(p) = 2iū0p +
2Cf ū0

σ
, (3.71)

58



0 20 40 60 80 100
p

0

0.5

1

1.5

2

R
e[

λ 1(p
)]

(a)

0 20 40 60 80 100
p

-16

-15.5

-15

-14.5

-14

R
e[

λ 2(p
)]

(b)

0 20 40 60 80 100
p

-8

-6

-4

-2

0

10
7 R

e[
λ 3(p

)]

(c)

0 20 40 60 80 100
p

-150

-100

-50

0

Im
[λ

i(p
)]

Im[λ
1
(p)]

Im[λ
2
(p)]

10
8
Im[λ

3
(p)]

(d)

Figure 3.7: The damming instability spectrum with parameters (θ0, G, Fm, Cf , σ) =
(π/6, 10−8, 10, 0.1, 0.01). (a)-(c) The real parts of the three branches of solutions.
The first branch, λ1, is positive for all p, implying that the solution is unconditionally
linearly unstable. (d) The imaginary parts of the solutions.
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a1(p) = p3iσū2
0G

+p2

(
G sin θ

Fm

+
Cf ū

2
0G

2
+

cos θ̄

Fm

− ū2
0

)
+p

(
iG cos θ̄

σFm

+
3iCf ū

2
0

σ

)
, (3.72)

a0(p) = p4

(
−σū3

0G +
σū0G cos θ̄

2Fm

)
+p3

(
−iGū0

sin
θ̄Fm + iGCf ū

3
0

)
+p2

(
−Gū0 cos θ̄

σFm

)
. (3.73)

For the parameter set (θ0, G, Fm, Cf , σ) = (π/6, 10−8, 10, 0.1, 0.01), the three roots

of the Eq. (3.70), λi, are computed numerically and are plotted in Fig. 3.7. From the

graph, we see the first branch of the solutions is always unstable, while the remaining

two branches are always stable, implying that the solution is unconditionally linearly

unstable. This is the damming instability.

To conclude, we found that the trivial flow down a constant inclined plane is

unstable towards all length scales, suggesting that when fully developed into the

nonlinear regime, the landscape would have no selected length scale - a surmise in

accord with field observations and our cell dynamical system simulations.

3.7 Conclusion

By combining fluid dynamics and surface growth kinematics, we formulated a math-

ematical framework to study geological pattern formation due to carbonate precipi-

tation and applied it to study the formation and stability of a variety of motifs. The

theory successfully predicted the shape of observed spherically symmetric domes for

angle θ less than a critical angle θc. By comparing with results from a cellular model,

we showed that the departure of our theoretical prediction from observation for θ > θc

is due to the neglect of surface tension. We also showed that domes are linearly un-
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stable towards axisymmetric perturbations, but the instability is manifested in the

tail of the dome away from the vent. The instability is masked by the thinning of

the fluid film and ultimately the formation of contact lines due to surface tension.

This contrasted with the case of stalactites, whose growth forms are linearly stable

to axisymmetric perturbations. The difference between the stabilities of the dome

and stalactite solutions is attributed to the different geometries and the different role

surface tension plays in these two systems.

This formulation cannot predict the complex landscape formed in the fully non-

linear regime, but a linear stability analysis for a one-dimensional flow showed that

the apparent scale-invariant landscape is consistent with our equations. In future

work, we hope to examine the full two-dimensional instability problem, in order to

investigate the dynamics of pond formation, possibly as a transverse morphological

instability, akin to meandering in step-flow processes on vicinal surfaces[121].
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Chapter 4

The Phase Field Crystal Model

4.1 Introduction

On macroscopic scales, material structures and properties are homogeneous and

smooth; they are often characterized by such macroscopic averaged measures as den-

sity, Young modulus, shear modulus, heat and electric conductivity and magnetic

permeability. On microscopic scales, however, materials are not smooth and contin-

uous, but are composed of many different inhomogeneous domains. There may be

domains with different grain orientations, domains with different electric and magnetic

polarizations, precipitates with different compositions or crystal structures, as well as

a variety of defects, including vacancies, dislocations, disclinations, grain boundaries

and disorder. The response of these microstructures to external disturbances and the

interactions between them give rise to emergent macroscopic properties. As a result,

microstructures are crucial in understanding the physical properties of materials. An

efficient way to simulate these structures in macroscopic samples, then, is vital to

understand, predict and control material processing[49].

The goal of the work in this and succeeding chapters is to present a theory that

describes both the microscopic and macroscopic scales of materials. This, at first

glance, is difficult to achieve due to the presence of the inhomogeneous domains.
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Fortunately, the following insight leads a way out: Because the structure within each

domain is homogeneous (e.g., the grain orientation is the same within any particular

grain), there is almost no dynamics within each domain. As a result, one way of

describing the system is to focus not on the dynamics within domains, but only on

that of the interfaces that separate different domains.

There are at least two methods to accomplish this task. The first method is to

write down the dynamics of the interface, by providing the normal growth velocity, vn.

This is the approach we followed in the study of dome and stalactite formations in the

last chapter and relies on the concept of there being a sharp interface. It is intuitive,

but as we have discussed in the previous chapter, it is only useful when the geometry

is simply. For more complicated situations, this approach often results in a system of

coupled nonlinear partial differential equations with moving boundary conditions at

the interfaces, which are difficult to analyze both analytically and numerically. It is

thus of limited use and our discussion will only focus on the second approach.

The second approach is called phase field modeling[122]. In phase field modeling,

different material phases are represented by different values of one or more continu-

ous field(s); the interfaces that separate the phases are then represented by smooth

transition regions of the fields. The interfaces, thus, are diffuse and are much sim-

pler to analyze than the moving boundaries in the sharp interface models. Moreover

because there is no sharp interface, there are no boundary conditions to impose:

instead the dynamics of the phase fields is specially constructed to reproduce the

sharp interface behavior in the limit that the width of the transition region becomes

vanishingly small. Phase field modeling has proven to be a broadly applicable, an

accurate and efficient description of many non-equilibrium systems. These include

spinodal decomposition[123; 124], order-disorder transition kinetics[125–127], solidi-

fication of both pure and binary systems[128–133], crack propagation[134; 135], pre-

cipitate microstructures[136] and grain growth[137–140]. A detailed review of phase
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field modeling and its recent applications can be found in Ref. [122].

Although the sharp interface and the phase field approaches are very different,

they essentially model the same physics. It can be shown that by taking the limit

properly, the phase field model can be reduced to the sharp interface model, and the

parameters of the two models can be identified[135; 141–143]. This is analogous to

the fact that the analytical and the CDS approaches to the geophysical precipitation

pattern formation problem presented in the last chapter are the same. This echoes the

idea of universality we discussed in Ch. 1—these models are in the same universality

class and they describe the same dynamics.

Although the phase field model has been successfully used to study interface dy-

namics, there is a major drawback: it preserves no information about the bulk, i.e., all

the bulk properties are ignored. In the context of modeling material microstructures,

the phase field model only captures the motion of the grain boundaries, and thus

the associated coarsening behavior, but not the elastic and crystallographic proper-

ties of the material in question. This renders the phase field model inappropriate

to describe many phenomena, including dislocation interaction, grain rotation and

polycrystalline solidification.

To overcome this limitation, several extensions and modifications to the phase field

model has been proposed. Warren et al. [144–147], for example, proposed a phase

field model with two phase fields, one describes the phase of the material (solid or

liquid) and the other describes the grain orientation to account for the different grain

orientations. This model incorporates crystallography and is capable of describing

phenomena such as grain boundary formation and coarsening.1 Onuki coupled an

elastic free energy to the phase field model.[148] By doing so, the model is able to

describe the elastic effect on various phase transition dynamics.

While many of these extensions of the phase field model are successful, the coupling

1Readers are referred to Ref. [62] for a more detailed discussion on this model.

64



of the elastic field and the phase field, in most of the cases, is unnatural. After all,

elasticity, crystallography and interface structures are all emergent properties of the

underlying lattice. A natural, and desirable, way to describe the system would be to

associate elasticity and crystallography directly with the phase field. This is one of

the reasons why the phase field crystal (PFC) model was developed.

In 2002, Elder et al.[60] went beyond the phase field model and proposed the

phase field crystal (PFC) model, in which elasticity and crystallography are naturally

incorporated. In essence, the PFC model is a density functional model. The order

parameter, which is uniform except near defects and interfaces in the phase field

model, is, in equilibrium, spatially periodic; the ground state of the PFC model is

a perfectly triangular lattice or any other desired structure. Crystallography is then

naturally captured by the orientation of the lattice, and as we will see, elasticity is

also captured by this periodic ground state.

In this chapter, the PFC model is introduced. The basic properties and some of

the recent developments of the model are also discussed.

4.2 From Phase Fields to Phase Field Crystals

We begin our discussion by briefly reviewing some basics of phase field modeling.

Phase field modeling was originally developed to model systems with multiple states

or phases separated by some interfaces. Examples are the liquid-solid interface in

dendritic growth, as well as phase interfaces in spinodal decomposition and eutectic

growth[122]. Phase field models take advantage of the fact that the phases (solid or

liquid) are almost homogeneous within each domain, so that the dynamics of the bulk

can be well captured by the dynamics of interfaces. Mathematically, a phase field,

φ(~x), is introduced. The value of the φ(~x) is constant within each domain and varies

only near interfaces and defects. A free energy of φ(~x) is then posited, based on the
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symmetry, dimensionality and phenomenology of the system. The dynamics of the

system is given by the relaxation to the equilibrium state. The phase field model,

thus, is essentially a minimal model for describing interface dynamics.

Let us take spinodal decomposition in A-B alloys as an example. If a high temper-

ature homogeneous mixture of A-B alloy is quenched below the critical temperature

and above the spinodal line, the system is unstable towards forming small zones of

A-rich and B-rich phases. These small zones coarsen in time. To describe this transi-

tion, it is sufficient to capture the fact that there are two ground states and that any

interface between the two phases costs energy. This intuition is captured by the free

energy

F =

∫
ddx

(
1

2
|∇φ(x)|2 + f(φ(x))

)
, (4.1)

where φ(x) is the difference in concentrations of the two phases. The first term in

this free energy models the interface energy between different domains of phases; the

second term, on which the only requirement is to exhibit a double-well potential,

forces the field to choose between two ground states (two phases). The dynamics is

assumed to be dissipative and conservative: it drives the system to a lower energy

state by imposing the dynamical equation

∂φ

∂t
= Γ∇2 δF

δφ
+ ζ, (4.2)

where the Laplacian operator on the right imposes the conservation law and ζ is a

conservative thermal noise satisfying the fluctuation-dissipation theorems

〈ζ(~x, t)ζ(~x′, t′)〉 = −ΓkBT∇2δ(~x− ~x′)δ(t− t′). (4.3)

This model is capable of describing the coarsening dynamics of spinodal decompo-

sition; it predicts, for example, the correct dynamical scaling exponent and the spatial

correlation function of the transition. A variety of non-equilibrium phenomena, as

listed in the beginning of this section, can be modeled by this approach. Readers are

referred to [149] for a more in-depth discussion.
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In retrospect, the essence of phase field modeling is to model by ignoring the

small scale, irrelevant details of the system and to focus only on the dynamics of the

interfaces. It homogenizes, both spatially and temporally, all the atomic-scale details

(local compositions of the alloy phases, crystallographic structures, atomic vibrations,

...) while retaining the mesoscopic interface structures. This is successful because the

interface dynamics controls how patterns in these systems evolve.

In many phenomena, however, the spatial atomic structures are important and

cannot be neglected. It is essential, for example, to include crystallography when

studying dislocation dynamics, or when studying how grains respond under external

stress. An extension of the phase field model to include the atomic spatial structure

is needed. In fact, the motivation behind the PFC model is to incorporate elasticity

and crystallography into the model.

The PFC model can be motivated as follows. A natural way to incorporate crys-

tallography into the model is to have a periodic ground state, instead of a uniform

one, because the crystallographic information will then be given by the spatial orien-

tation of the state. Thus, instead of penalizing any spatial variation, as the gradient

term in Eq. (4.1) does, we would like to encourage spatial periodicity in the ground

state. This can be done by penalizing density configurations that do not satisfy

(∇2 + q2
0)ρ(~x) = 0. (4.4)

Thus, the lowest order analytic form for the coarse-grained free energy is

F [ρ(x)] =

∫
ddx

[
λ

2
ρ(x)(∇2 + q2

0)
2ρ(x) +

r

2
ρ(x)2 +

u

4
ρ(x)4

]
, (4.5)

where we have used a double well potential in f(ρ), i.e., f(ρ) = (r+λq4
0)ρ

2/2+uρ4/4.

By assuming dissipative and conservative dynamics, as in Eq. (4.2), the dynamical

equation for ρ can be written as

∂ρ

∂t
= Γ∇2

[
(r + λ(∇2 + q2

0)
2)ρ + uρ3

]
+ ζ. (4.6)
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Eq. (4.6) is the phase field crystal (PFC) equation, and its solution describes the

evolution of materials microstructure, as we shall see below.

If we rescale all variables to their natural units by defining new variables,

x′ = xq0, (4.7)

ρ′ = ρ

√
u

λq4
0

, (4.8)

r′ =
r

λq4
0

, (4.9)

t′ = Γλq6
0t, (4.10)

and neglect the primes on the new variables for brevity, we arrive at the dimensionless

free energy

F [ρ(x)] =

∫
ddx

[
ρ(x)

2
(r + (1 +∇2)2)ρ(x) +

ρ(x)4

4

]
, (4.11)

with the dynamical equation

∂ρ

∂t
= ∇2

[
(r + (∇2 + 1)2)ρ + ρ3

]
+ ζ, (4.12)

where ζ is a conserved noise defined by

〈ζ(~x, t)〉 = 0, (4.13)

and,

〈ζ(~x, t), ζ(~x′, t′)〉 =

(
−ukBTqd−4

0

λ2

)
∇2δ(~x− ~x′)δ(t− t′). (4.14)

Note that there is no restriction on the value of ρ(x), it can be positive or negative.

This forbids us from naively interpreting ρ(x) as a physical density. We will come

back to this point in later chapters, when we introduce vacancies into the model in

Chapter 7.

Eq. (4.12) is the phase field crystal (PFC) model proposed by Elder et al. [60; 61].

In their original paper, they followed a related approach. To describe solidification of

crystals, they proposed the free energy functional

F [ρ(x)] =

∫
ddx

[
f(ρ) +

ρ

2
G(∇2)ρ

]
, (4.15)
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where f(ρ) is the double well potential and G(∇2) is an unknown function. By

calculating the structure factor of the liquid phase of this free energy, they found that

Ĝ(~q) =
kBT

Seq
liq(~q)

− d2f

dρ2

∣∣∣∣
ρ=0

, (4.16)

where Ĝ(~q) is the Fourier transform of G(∇2) and Seq
liq(~q) is the equilibrium liquid-

state structure factor. Eq. (4.16) implies that we can simulate any kind of pure

material using the phase field crystal model. The only input is Seq
liq(~q), which can be

obtained experimentally. Thus the PFC model is connected to the physical world and

the physical meanings of the model parameters can be readily extracted.

For most of materials, the dominant feature of Seq
liq(~q) is its first peak at q = q0,

where q0 is the magnitude of the reciprocal lattice vectors. The inverse of Seq
liq(~q) can

then be modeled by a single well. By fitting the experimental structure factor of 36Ar,

Elder et al. used the Ornstein-Zernicke form

G(∇2) = λ(q2
0 +∇2)2. (4.17)

which when substituted into Eq. (4.15), yields the free energy, Eq. (4.11).

4.3 Basic Properties of the PFC Model

Many basic properties of the phase field crystal model have already been reported.

The phase diagram of the model has been calculated. The model has been shown to

be able to describe polycrystalline solidification, vacancy diffusion, grain growth(Fig.

4.1), grain boundary energetics(Fig. 4.2 - 4.3), epitaxial growth(Fig. 4.4), fracture[61](Fig.

4.5), grain coarsening[150], elasticity[151], dislocation annihilation, glides and climb[152].

The model has been applied to the commensurate-incommensurate transition[153].

The model has also been recently related the density functional theory and extended

to the case of binary alloys[154]. We discuss some of these developments in the fol-

lowing subsections.
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Figure 4.1: The free energy density during grain growth using the PFC model. (a),
(b), (c), (d), (e), and (f) correspond to times 50, 200, 1000, 3000, 15000, and 50000,
respectively. After Ref. [61].
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Figure 4.2: Grain boundaries with the PFC model. The density of grain boundaries
with mismatch angle θ = 5.8 and 34.2 are showed in (a) and (b) respectively. In (a)
squares have been placed at defect sites. After Ref. [61].
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Figure 4.3: (Color online) The PFC model describe the energetics of grain boundary.
This graph shows that the grain boundary energy predicted by the PFC model, the
amplitude equations and the Read-Shockley theory agree with each other. After Ref.
[62].
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Figure 4.4: Epitaxial growth with the PFC model. The field plotted is the local
free energy of the system. The black dots are misfit dislocations. (a), (b), (c), (d),
and (e) correspond to times t = 150, 300, 450, 600, and 750, respectively. After Ref.
[61].
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Figure 4.5: Fracture growth with the PFC model. The field plotted is the local
free energy of the system. (a) and (b) are at times t = 25000 and 65000, respectively.
After Ref. [61].
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4.3.1 Phase Diagram

Let us first discuss the phase diagram of the PFC model. There are two parameters

in the model, namely r and the mean density, ρ0. The parameter r controls the

symmetry breaking of the system; there is only one minimum in the potential energy

for r > 0, but there are two for r < 0. In fact, r is the parameter t ≡ (T−Tc)/Tc in the

theory of critical phenomena. For r > 0, which corresponds to a high temperature,

we expect that there is only the liquid phase; for r < 0, however, we expect the

translational symmetry to be broken and periodic structures, which make use of the

energy benefit from the 1 +∇2 operator, to emerge. We can quantitatively calculate

the phase diagram by using the one-mode approximation[61]. There are three possible

ground states for a two dimensional crystal:

1. the uniform (liquid) phase, which can be described by

ρliq = ρ0, (4.18)

2. the stripe phase, which can be described approximately by

ρstr = Aei~k·~x + c.c. + ρ0, (4.19)

where A is the amplitude of the phase and ~k is the reciprocal lattice vector

associated with it, and,

3. the triangular phase, which can be described approximately by

ρtri = A
3∑

j=1

ei ~kj ·~x + c.c. + ρ0, (4.20)

where

k1 = k0ŷ (4.21)

k2 =

√
3

2
k0x̂−

1

2
k0ŷ (4.22)

k3 = −
√

3

2
k0x̂−

1

2
k0ŷ (4.23)
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are the three reciprocal lattice vectors and A is the amplitude associated with

the mode.

The energy of these ground states can be calculated as follows. We first put the

ansatz into the free energy functional, Eq. (4.11), and integrate it over space, then

we minimize the resulting free energy with respect to both the amplitudes A and the

magnitude of the reciprocal lattice vectors, k0. The calculation can be found in [61]

and it will not be reproduced here. After calculating the energies of various ground

states, the phase diagram can be constructed using the Maxwell construction. The

phase diagram is shown in Fig. 4.6.

From now on, we focus on the properties of the triangular phase, which serves as

a model of a periodic crystal. Different crystal structures can be formed by putting a

different nonlinear term in the free energy. It is proposed, for example, that a cubic

lattice can be formed by including a term in the free energy proportional to |∇ρ|4[61].

4.3.2 Linear Elasticity

We can show that the elastic property of the triangular ground state of the PFC

model is consistent with Hooke’s law by the following argument: Because there are

two parameters in the ansatz of the ground state, namely, the amplitude, A, and

the magnitude of the reciprocal lattice vectors, k0, one can always solve for the A by

minimizing the free energy with respect to it, which gives A as a function of k0, i.e.,

A = A(k0). The total free energy, as a result, depends only on k0, or equivalently on

the lattice spacing a ≡ 2π/k0. By expanding the free energy in Taylor series about

a = a0 ≡ 2π, we get

F = F0 +
1

2

d2F

da2

∣∣∣∣
a=a0

(a− a0)
2 + · · · , (4.24)

where F0 is the ground state energy and the first derivative is zero because the free

energy attains its minimum at a = a0. This shows that due the periodicity of the
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Figure 4.6: The phase diagram of the phase field crystal model, calculated by the
one-mode approximation. The hatched sections are the coexistence regions. After
Ref. [61].
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ground state, Hooke’s law is guaranteed. In addition, higher order terms are also

captured in this formalism.

This discussion only deal with the elastic energy under bulk stress. Elder et al.[61],

in addition to this, also calculated the elastic constants of a triangular ground state

under shear and deviatoric stresses. They found that the elastic constants, Cij, satisfy

the relation C11 = C12 + 2C44, which is consistent with the triangular symmetry of

the lattice. This verifies that linear elasticity is correctly incorporated in the PFC

model.

Another very important feature of the PFC model is that it captures not only

linear elasticity, where a linearized strain tensor is used, but also nonlinear elasticity.

We will describe this important point in the next chapter.

4.3.3 Elastic Interactions

The PFC model described by Eq. (4.12) describes only the dissipative dynamics; it

captures the long time scale diffusive and solidifying processes. It does not, however,

allow any collective atomic oscillations, which are on a much faster time scale. This

omission of the elastic interactions in the model prevents us from studying many

important aspects, such as the deformation dynamics of nanocrystalline solids[151].

To tackle this problem, Stefanovic et al. [151] introduced a modified phase field

crystal (MPFC) model that includes both diffusive dynamics and elastic interactions.

This is done by adding a second order time derivative to the equation:

∂2ρ

∂t
+ β

∂ρ

∂t
= α2∇2

(
δF

δρ

)
, (4.25)

where α and β are phenomenological constants related to the effective sound speed

and vacancy diffusion coefficient. The physical meaning of the addition is straight

forward. By writing down a second order partial differential equation, the PFC

model is now a damped wave equation, and so it supports two density propagating
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solutions. These solutions act as the phonon excitations in the solid, which transmit

elastic interactions throughout the medium. As a result, the early time dynamics

is governed by the propagative solutions, while the late time dynamics is mainly

diffusive.

The relation between the parameters α and β to the effective sound speed and

phonon lifetime is presented in Ref. [151].

4.3.4 Renormalization Group Reduction of PFC

The PFC model describes matter at the atomic level, but in order to get a description

valid on larger scales, it is necessary to perform some homogenization or renormal-

ization.

Renormalization group (RG) theory is well-known for extracting universal features

of statistical mechanical systems near a critical point[1]. About 15 years ago, Gold-

enfeld and collaborators realized that one could also use RG techniques to extract

universal behavior of spatially-extended dynamical systems[1; 155–159]. An early

example is a system whose long-time behavior is dominated by a similarity solution

(fixed point), f(x, t) = tαg(xtβ). Universality, in this case, corresponds to the fact

that a wide class of initial conditions converge to solutions of the same form.

By 1996, the relation between RG, intermediate asymptotics and singular pertur-

bation theory became clear[1; 19]. RG can be regarded as a unified and general way

to approach asymptotic problems [19; 20]. It is superior in practice to conventional

methods, including multiple scales analysis, boundary layer theory, matched asymp-

totic expansions and dynamical system reduction[160], in that it is systematic and

requires no ad hoc assumption about the perturbation series or coefficient matching.

Chen et al. showed that the RG equations are actually the amplitude equations in

pattern forming systems[20]. This is where RG meets the PFC model.

The idea can be illustrated by considering a perfectly periodic field. There are two
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ways to describe this field. We can describe the field by a continuous rapidly-varying

function, e.g., Φ(~x) = A exp(i~k · ~x + iφ), or, for a specific band of k, we can focus

on the slowly-varying real amplitude A and its phase φ. Generally we consider A to

be a complex number, and φ to be its phase. For a multicrystalline crystal, although

the field is not periodic globally, it is almost perfectly periodic within each domain,

so one can specify the system by slowly varying the complex amplitude A(~x, t). The

slow variation in A(~x, t) reflects the imperfection of periodicity in the configuration.

RG then allows one to write down differential equations for the slowly varying field A

rather than one rapidly varying field Φ. The partial differential equations governing

A are sometimes called the renormalization group equations[20] or the amplitude

equations[161].

For example, for the two-dimensional PFC model, the triangular phase solution

is represented by,

ρ(~x) =
3∑

j=1

(
Aj(~x, t)ei~kj ·~x + c.c.

)
+ ρ̄ (4.26)

where Aj are the complex amplitude functions. This is a generalization of the trian-

gular ground state given by Eq. (4.20), where the constant amplitude A is promoted

to 3 slowly varying amplitudes Aj(~x, t). After doing the RG calculation from Eq.

(4.12), the amplitude equations are[12; 13; 62]

dA1

dt
= (1− L1)(Γ− L2

1)− 3A1(|A1|2 + 2|A2|2 + 2|A3|2)− 6ρ0A
∗
2A

∗
3 + · · · (4.27)

dA2

dt
= (1− L2)(Γ− L2

2)− 3A2(2|A1|2 + |A2|2 + 2|A3|2)− 6ρ0A
∗
1A

∗
3 + · · · (4.28)

dA3

dt
= (1− L3)(Γ− L2

3)− 3A3(2|A1|2 + 2|A2|2 + |A3|2)− 6ρ0A
∗
2A

∗
1 + · · · (4.29)

where Γ ≡ −r − 3ρ2
0 and Lj ≡ ∇2 + 2i~kj · ∇ is a manifestly rotationally covariant

operator. Nonlinear gradient terms are not shown in the above equations. Eq. (4.27)-

(4.29) are the amplitude equations for the PFC model. By solving the amplitude

equations, one obtains the same dynamics as solving the original PFC equation (4.12),

as verified in Ref. [12].
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This provides us with a theory purely in terms of the amplitudes. There are at

least two applications of this picture. First, we can reformulate the theory merely in

terms of the amplitudes. In the next chapter we will see that the correct form of the

elasticity, both linear and nonlinear, is preserved in the amplitude picture, and we

will find that the amplitudes is a natural bridge between the microscopic PFC theory

and the macroscopic elasticity theory. Second, since the amplitude varies slowly

over the atomic scales, a coarser mesh can be used when the equations are solved

numerically. This allows the model to be solved numerically using computationally

efficient approaches, to which we now turn.

4.3.5 Adaptive Mesh Refinement

Despite the long (diffusive) time scale offered by the PFC model, including a real-

istically large number of atoms in a simulation to predict behavior of macroscopic

samples will necessarily require huge simulation times. How can we resolve every

PFC atom, and at the same time simulate a large system? The RG equations, Eq.

(4.27) - (4.29), provide a solution to this problem.

Given that the amplitude Aj only changes rapidly near defects, and is slowly

varying in most part of the system, it is most efficient to solve Eq. (4.27) - (4.29)

using an adaptive mesh that is coarser when A is slowly varying and finer when

A changes rapidly. This saves computational resources by focusing the computation

only near defects (Fig. 4.7- 4.8 ). This technique of adaptive meshing has been shown

to be successful in the problem of dendritic growth using phase field model[162–164].

Instead of scaling as the volume(Ld) of the system, the computational time needed for

the adaptive mesh algorithm scales as the arc length of the dendrite, which scales as

Ld−1. Athreya et al.[62] applied this method to solve the RG equations for the PFC

model and found that this method is 1000 times faster than solving the PFC equation

on a uniform mesh (Fig. 4.9). The details of the derivation and the implementation
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Figure 4.7: Time evolution of the complex amplitudes, Aj, solved by the technique
of adaptive mesh refinement. Coarser meshes is used within each domain, and finer
meshes is used near defects and grain boundaries. The mesh is updated dynamically,
depending on the local gradient of Aj.

of the adaptive mesh refinement can be found in Ref. [62].

4.4 Conclusion

The use of phase field modeling allows us to understand systems with multiple mate-

rial phases, but it does not contain information about the elasticity and crystallogra-

phy of the material. A natural way to improve this is to put those features directly

into the phase field. This leads to the development of the phase field crystal (PFC)

model.

The PFC model represents the desired elastic and crystallographic properties of

materials. The model is capable of describing polycrystalline solidification, dislocation

interactions, grain coarsening, epitaxial growth, diffusion, fracture and many other
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Figure 4.8: This figure shows explicitly that the mesh gets finer only near defects.
This allows us to spend our computational power on the dynamics of the defects, but
not on the almost static interiors of the domains.
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84



fundamental phenomena. The application of the Renormalization Group technique

and adaptive mesh refinement to the model opens up the possibility of numerically

simulating macroscopically large systems on atomic length scales and diffusive time

scales.

In the following chapters, we are going to show that the PFC model contains the

correct form of nonlinear elasticity and also plasticity. We also modify the model to

accommodate vacancies and extend the model to binary alloys.
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Chapter 5

Nonlinear Elasticity

In the preceding chapter, we saw that the PFC model is a minimal model that coarsens

the microscopic dynamics of a crystal but retains its crystallographic and elastic prop-

erties. We saw that the model can describe a variety of phenomena, including mul-

ticrystalline solidification[61], elasticity[60; 61; 151], defect dynamics[61; 150; 152],

epitaxial growth, as well as crack and fracture dynamics[61]. Goldenfeld et al. then

applied the technique of Renormalization Group to the model and derived the com-

plex amplitude representation[12; 13], which is a coarsened version of the PFC model,

in which all the atomic structures are smeared out and the only structures left are

the crystal defects, such as dislocations and grain boundaries. By applying the tech-

nique of adaptive mesh refinement, this representation is about 1000 times faster

computationally than molecular dynamics[62].

In this chapter, we show that an additional level of coarse-graining can be per-

formed on the complex amplitude representation. The result is a theory of nonlinear

elasticity valid at system-wide or macroscopic scales. We also derive the strain energy

of the system—the free energy as a function of the strain tensor.

This result is significant. First, it shows that the PFC model and the complex am-

plitude representation describe not only linear, but also nonlinear elasticity; this ex-

tends the result of Elder et al.[61], where they derived the elastic property of the PFC
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model. Second, instead of postulating a form for the strain energy based on symmetry

and phenomenology, which is what is usually done in continuum mechanics[165; 166],

we derive it from a more microscopic model—the PFC model. This provides a theo-

retical connection to microscopic structures and opens up the possibility of deriving

other forms of strain energy by similar approaches. Third, by going from the PFC

model to the complex amplitude representation to the strain energy formulation, we

are going from microscopic, to mesoscopic, to macroscopic scales and we are captur-

ing multicrystalline structures, defect dynamics, as well as nonlinear elastic effects.

In other words, we have a multiple scale approach to materials properties, accessing

the realm of continuum mechanics from a density functional theory at atomic scales.

In the following, we first introduce the PFC model and the complex amplitude

representation, then we derive the free energy in that representation. The strain

energy is then derived. In the process, we also explain a quick way to obtain the

Renormalization Group, or amplitude, equations of motion.

5.1 The Model

The phase field crystal (PFC) model is defined by the free energy density[60; 61],

f =
ρ

2
(1 +∇2)2ρ +

r

2
ρ2 + ρ4, (5.1)

where ρ(~x, t) is the phase field, or the order parameter. The dynamics is conservative

and dissipative, given by

∂ρ

∂t
= ∇2

(
δF

δρ

)
(5.2)

where F =
∫

d2xf(x) is the total free energy of the system. Thermal noise is ignored

in our discussion here, but could be included if desired. Generally, it will not be

important at system scales. There are three phases in this model, namely uniform,

stripe and triangular. The ground state in the triangular phase can be written in the
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single-mode approximation by

ρtri(~x) = A

3∑
j=1

(
ei~kj ·~x + e−i~kj ·~x

)
+ ρ0, (5.3)

where ρ0 is the average density, A is the constant amplitude and

~k1 = ŷ, ~k2 =

√
3

2
x̂− 1

2
ŷ, ~k3 =

−
√

3

2
x̂− 1

2
ŷ (5.4)

are the three lattice vectors. Goldenfeld et al. showed[12; 13] that instead of using

ρ(~x, t) as the dynamical variable, it is more efficient to generalize Eq. (5.3) and pro-

mote the constant amplitudes A to 3 slowly varying complex amplitudes Aj(~x, t) and

treat the Aj(~x, t) as dynamical variables. By applying the technique of Renormaliza-

tion Group, they showed that the dynamical equation for A1(x, t) is given by[12; 13]

∂A1

∂t
= (1− L1)(Γ− L2

1)A1 − 6ρ0A
∗
2A

∗
3

−3A1(|A1|2 + 2|A2|2 + 2|A3|2) + · · · , (5.5)

where Γ ≡ −r − 3ρ2
0 and L1 ≡ ∇2 + 2i~k1 · ∇ is a rotationally covariant operator.

Nonlinear gradient terms[13] are not written out explicitly. Amplitude equations for

A2,3(x, t) can be written down by doing the appropriate permutations. This is the

complex amplitude representation.

5.2 Derivation of the Amplitude Equations with-

out using Renormalization Group

The first attempt to derive the free energy in this representation is to note that Eq.

(5.5), ignoring the nonlinear gradient terms, can be written as

∂Aj

∂t
= −δFdyn[Aj(x, t)]

δA∗
j

, (5.6)
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where the free energy Fdyn is given by the free energy density

fdyn = −
3∑

j=1

A∗
j(1− Lj)(Γ− L2

j)Aj + 3
3∑

j,k=1

|Aj|2|Ak|2

−3

2

3∑
j=1

|Aj|4 + 6ρ0(A1A2A3 + A∗
1A

∗
2A

∗
3). (5.7)

At first glance, this seems sensible and correct. We, however, observe that the dy-

namics given by Eq. (5.6) is purely dissipative, as oppose to the density-conserving

dynamics in the original PFC equation, Eq. (5.2). This is alarming. In fact, we

observe that the coefficient of the highest order gradient operator, ∇6, is negative,

which would destabilize the dynamics on small scales.

To resolve this conundrum, we note that Eq. (5.7) is derived from the dynamical

equations of Aj, which in turn, are derived from the PFC equation, Eq. (5.2), the

density-conserving information in the original PFC equation is propagated to the free

energy, Eq. (5.7). However, density conservation should only be exhibited in the

dynamical equation of motion and not be represented in the equilibrium free energy.

This can be seen in the original equations: density conservation appears only in the

dynamical equation, Eq. (5.2), but not in the free energy, Eq. (5.1).

Thus, the correct way to derive the free energy in the complex amplitude repre-

sentation is to derive it from the original PFC free energy, Eq. (5.1). The easiest way

to do that is to substitute the ansatz, Eq. (5.3), into the free energy, Eq. (5.1). The

first term of Eq. (5.1) can then be computed by using the identity

(1 +∇2)ρ =
3∑

j=1

(
ei ~kj ·~xLjAj + c.c.

)
+ ρ0, (5.8)

where c.c. stands for complex conjugate. By performing an integration by parts, we

find

ρ

2
(1 +∇2)2ρ =

1

2
[(1 +∇2)ρ]2 (5.9)

=
3∑

j=1

A∗
jL

2
jAj, (5.10)
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where in the last line constants and terms with the rapidly oscillating factor exp (i~kj · ~x)

are neglected. We can neglect the oscillating terms because the complex amplitudes,

Aj, are slowly varying on that scale, so the terms cancel themselves upon integration

over space. Other terms in the free energy can be transformed in a similar fashion.

The resulting free energy is given by

famp = −
3∑

j=1

A∗
j(Γ− L2

j)Aj + 3
3∑

j,l=1

|Aj|2|Al|2

−3

2

3∑
j=1

|Aj|4 + 6ρ0(A1A2A3 + A∗
1A

∗
2A

∗
3). (5.11)

Note that this free energy is different from Eq. (5.7). The 1 − Lj operator in the

first term in Eq. (5.7) is absent here. This is to be expected because this operator

arises from the conservative Laplacian in the dynamical equation, and according to

our discussion above, it should not appear in the free energy. The transformation of

the dynamical equation, Eq. (5.2), into the complex amplitude representation can be

performed by observing that for any function, f(x), the identity,∫ ∞

−∞
d2x[(Lj − 1)f(x)]ei~kj ·~x ≡ 0, (5.12)

holds. This resembles the identity,∫ ∞

−∞
d2x∇2g(x) = 0, (5.13)

for any function g(x). In fact, if we define g(x) = f(x)ei~kj ·~x, Eq. (5.13) implies Eq.

(5.12). This shows that when we make the change of variables from the density, ρ,

to the complex amplitudes, Aj, the Laplacian in the conservative dynamical equation

has also to be transformed to Lj − 1. We thus arrive at the equation of motion

dAj

dt
= (Lj − 1)

δFamp

δA∗
j

, (5.14)

which, when written out explicitly, is,

dA1

dt
= (1− L1)

[
(Γ− L2

1)A1 − 6ρ0A
∗
2A

∗
3,

−3A1(|A1|2 + 2|A2|2 + 2|A3|2)
]

(5.15)
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with appropriate permutations for A2,3(x, t). By construction, these equations con-

serve the density of the system.

Upon comparison, Eq. (5.15) is exactly the same as Eq. (5.5) with all the nonlinear

gradient terms included. Our derivation shows that the inclusion of the nonlinear

gradient terms is crucial for density conservation, and shows that all those terms can

actually be written in the condensed form of Eq. (5.15). Note, however, that our

derivation does not use any renormalization group argument, but follows from the

integral identity, Eq. (5.12). Of course, we did make a coarse-graining assumption

after Eq. (5.10), where we naively asserted that the rapid oscillation averages to zero.

With this correct free energy in the complex amplitude representation, we can

now proceed and derive the nonlinear elastic properties of the model.

5.3 Nonlinear Elasticity

The goal of this section is to derive the free energy as a function of the strain tensor,

when the PFC crystal is deformed under a general deformation

x′m = Fmnxn, (5.16)

where Fmn is the deformation gradient. Einstein’s summation convention is used

throughout, except for the index j in ~kj, Aj and Lj. In general, the deformation

gradient can be written as[166]

Fmn = RmpUpn (5.17)

where Rmp is a pure rotation matrix and Upn is a positive-definite, pure deformation

matrix. Since our system is rotationally covariant, we expect that the free energy

should only depend on the function UT U , where UT is the transpose of the matrix

U .
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Under the deformation, Eq. (5.16), the complex amplitudes transform as

Aj → A′
j = AeikjmDmnxn , (5.18)

where we defined Dmn ≡ RmkUkn− δmn and assumed that |Aj| = A for all j, where A

is a constant. kjm is the m-th component of the vector ~kj. Because the deformation

gradient only enter the complex amplitude through its phase, the only relevant terms

in the free energy are the gradient terms given by

E ≡
3∑

j=1

A∗
jL

2
jAj. (5.19)

Other terms in the free energy, Eq. (5.11), only contribute when we minimize the

free energy with respect to A at the end of the calculation. By using Eq. (5.18) and

differentiating, we obtain

LjAj = (−kjmkjnRmpRnaUpqUaq + 1)Aj. (5.20)

Apply Lj again and substitute the result into Eq. (5.19) to obtain

E = A2(E1 − 2E2 + 3), (5.21)

where

E1 =

(
3∑

j=1

kjmkjnkjukjv

)
FmqFnqFuwFvw, (5.22)

and,

E2 =

(
3∑

j=1

kjmkjn

)
FmqFnq. (5.23)

The rest of the derivation concerns the evaluation of E1 and E2. We first evaluate

E2. By using the definition of ~kj from Eq. (5.4), we obtain

k1mk1n = δmyδny = δmnδmy, (5.24)

k2mk2n =
3

4
δmxδnx +

1

4
δmy −

√
3

4
(δmxδny + δnx + δmy), (5.25)
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and,

k3mk3n =
3

4
δmxδnx +

1

4
δmy +

√
3

4
(δmxδny + δnx + δmy). (5.26)

Combining these three equations we have

3∑
j=1

kjmkjn =
3

2
δmn(δmx + δmy) =

3

2
δmn. (5.27)

Thus, E2 is given by

E2 =
3

2
FpqFpq =

3

2
UpqUpq =

3

2
Tr[UT U ], (5.28)

where we used the property of the rotation matrix, that RimRjm = RmiRmj = δij,

Tr[A] and AT are the trace and transpose of the matrix A respectively. The evaluation

of E1 is more involved. We note that

k1mk1nk1uk1v = δmnδnuδuvδmy, (5.29)

and observe that the term

k2mk2nk2uk2v + k3mk3nk3uk3v (5.30)

is equal to the term

2× [k2mk2nk2uk2v terms with positive coefficients]. (5.31)

By exploring this relation and using the definition of ~kj, Eq. (5.4), we obtain

3∑
j=1

kjmkjnkjukjv =
3

8
(∆xxyy + ∆yyxx + ∆xyxy)

+
3

8
(∆xyyx + ∆yxxy + ∆yxyx)

+
9

8
(∆xxxx + ∆yyyy), (5.32)
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where we defined ∆abcd ≡ δmaδnbδucδvd for convenience. By this, we have(
3∑

j=1

kjmkjnkjukjv

)
RmpRnaRusRvt

=
3

8
[RxpRxaRysRyt + RypRyaRxsRxt]

+
3

8
[RxpRyaRxsRyt + RypRxaRysRxt]

+
3

8
[RxpRyaRysRxt + RypRxaRxsRyt]

+
9

8
[RxpRxaRxsRxt + RypRyaRysRyt] (5.33)

To evaluate this expression, we note that we can combine terms appropriately. For

example, by using the property of the rotation matrix, we obtain

RxpRxaRysRyt + RxpRxaRxsRxt = RxpRxaδst, (5.34)

and,

RypRyaRxsRxt + RypRyaRysRyt = RypRyaδst. (5.35)

The sum of Eq. (5.34) and (5.35) then give

RxpRxaRysRyt + RxpRxaRxsRxt

+RypRyaRxsRxt + RypRyaRysRyt = δstδap (5.36)

Repeating this for all the terms in Eq. (5.33), we obtain(
3∑

j=1

kjmkjnkjukjv

)
RmpRnaRusRvt

=
3

8
[δapδst + δspδat + δasδpt]. (5.37)

Substituting into into Eq. (5.22), and then into Eq. (5.21), we obtain

E = 3A2∆, (5.38)

where

∆ =
1

8

{
[Tr(UT U)]2 + 2Tr(UT UUT U)

}
− Tr(UT U) + 1. (5.39)
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By using the relation

UT
mpUpn = δmn + 2umn, (5.40)

where uij ≡ (∂iuj + ∂jui + (∂kui)(∂kuj))/2 is the strain tensor, we obtain

∆ =

(
3

2
u2

xx +
3

2
u2

yy + u2
xy + u2

yx + uxxuyy

)
. (5.41)

.

Finally, we put this back into the free energy, Eq. (5.11), and minimize the whole

expression with respect to A to obtain

A(∆) =
1

5

(
−ρ± 1

3

√
9ρ2 + 15(Γ−∆)

)
, (5.42)

which gives the free energy density as

f(∆) =
45

2
A4(∆) + 12ρ0A

3(∆)− 3(Γ−∆)A2(∆). (5.43)

This formula completely defines the elastic properties of the PFC model, and pro-

vides a starting point for conventional continuum mechanical applications of nonlinear

elasticity theory.

By expanding the free energy around the ground state, we can write

f − f0 = 3A2
0∆ +

3ρ0A0 − Γ

6ρ2
0 + 10Γ

∆2 + O(∆3), (5.44)

where f0 is the ground state energy and the first order term of this equation is the

usual elastic energy of an isotropic medium.

To summarize, we have shown how the phase variation in the Renormalization

Group equation of the PFC model yields a complete derivation of nonlinear elasticity,

one whose parameters can be related to microscopic parameters present in the original

PFC equation.
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Chapter 6

Plasticity

In the last chapter, we showed that the phase field crystal (PFC) model captures the

correct form of nonlinear elasticity. In this chapter, we study the plastic properties of

the model by examining its response under external shearing. We observed dislocation

creation, annihilation and avalanches. We found that the resulting avalanche statistics

resembles that of the externally driven random field Ising model and other dislocation

avalanching systems, which can be described by a non-equilibrium critical point. By

scaling the avalanche distributions of different shearing rates, we obtained a data

collapse and extracted from it the critical exponents.

6.1 Introduction

Materials yield and deform plastically under large external stress. While the yield

surface and the plastic flow have been two important topics in material science, and

are well described by various continuum theories[167–169], what happens microscop-

ically during a plastic deformation is still not fully understood. On atomic scales,

external stress is not carried uniformly by a smooth deformation of the crystal struc-

ture, but is carried by localized crystal defects, such as dislocations and disclinations.

Under stress, crystal defects are created and they interact with each other. Al-
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though the properties of individual defects and the interaction between them are well

known[47; 170–172], their collective behavior under external stress is complicated and

often gives rise to scale invariant, power-law distributed, phenomena[66; 67; 173–177],

in strong resemblance to the scaling behavior near a critical point.

One prime example of such a non-equilibrium critical point can be found in the

random field Ising model (RFIM)[17; 63; 64; 178; 179]. As the external magnetic

field oscillates between a large negative and a large positive values, the magnetization

of the Ising ferromagnet oscillates accordingly. Hysteresis loops are then formed due

to the energy barrier of flipping clusters of spins. While these loops are smooth on

macroscopic scales, they are actually composed of many small steps, each of which

corresponds to flipping of a localized ferromagnetic cluster. The distribution of sizes

of such steps depends on the amount of disorder in the system. Dahmen and Sethna

showed that there is a non-equilibrium critical point around which the system exhibits

universal scaling behavior. By properly scaling the event size distributions, with

an event being the flipping of a ferromagnetic cluster, the distributions of different

amounts of disorder can be collapsed onto a single curve—a fingerprint of critical

phenomena. They also calculated the critical exponents by an epsilon expansion and

compared them with numerical studies[63].

The hysteresis loops, which can be thought of as ‘yielding’ of magnetization under

external magnetic field, are analogous to the yielding of a crystal under external

stress. Under external stress, the crystal creates many dislocations, which move and

interact with each other, creating dislocation avalanches of various sizes. In the light

of this analogy, there might be a similar nonequilibrium critical point in plastic flow.

The goal of this chapter is to study this critical point, by applying the knowledge and

techniques from the scaling of the RFIM.

There is currently a great interest in the existence of a non-equilibrium critical

point in plastic flow and its scaling behavior. Weiss et al. have measured the acoustic
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emission signal from creep deformation experiments on single crystal ice and found

that the event size distribution follows a power law over 4 decades[173; 174]. Miguel

et al. have conducted dislocation dynamics simulations in two dimensions and found

that the event size distribution also follows a power law, with a rate-dependent cutoff,

over approximately 2 decades[67]. In addition, Zapperi et al. have discovered a data

collapse of the event size distribution with different external stresses[66]. A review

on the subject can be found in Ref. [66; 173].

In this chapter, we study dislocation avalanches during plastic flows using the

phase field crystal (PFC) model[60; 61], which has been shown to capture the correct

form of nonlinear elasticity and dislocation interactions. We begin by adding an

advective term to the model as a shearing force. By adjusting the shearing force and

measuring the resulting avalanche statistics, a data collapse is obtained, in analogy to

the dynamics of RFIM. This is a strong indication of the presence of a non-equilibrium

critical point in the system. We also extracted the critical exponents and the scaling

function from the collapse.

6.2 The Model

We recall that the phase field crystal (PFC) model is given by the free energy

density[60; 61]

f =
ρ

2
(∇2 + 1)2ρ +

r

2
ρ2 +

ρ4

4
, (6.1)

where r is the undercooling and ρ(~x, t) is the order parameter. The dynamics asso-

ciated with this free energy is conservative, relaxational and diffusive. Because we

would like to study the plastic response of the PFC model under shearing, we add a

shearing term to the dynamical equation, resulting in

∂2ρ

∂t2
+ β

∂ρ

∂t
= α2∇2 δF

δρ
+ v(y)

∂ρ

∂x
+ η, (6.2)
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where

v(y) =

 v0e
−y/λ for 0 < y < Ly/2

−v0e
−(Ly−y)/λ for Ly/2 < y < Ly

(6.3)

is the shearing profile with v0 being the magnitude of the shearing, λ is the penetration

depth, α and β controls the range and time scale of elastic interactions (phonon

excitations) propagating through the medium[151], F ≡
∫

f(~x)ddx is the total free

energy and η is the thermal noise satisfying the fluctuation-dissipation theorems

〈η(~x, t)η(~x′, t′)〉 = −ε∇2δ(~x− ~x′)δ(t− t′), (6.4)

with ε being the noise amplitude, which is directly proportional to the temperature,

kBT . The value of v0 controls the magnitude of the shearing force, the penetration

depth, λ, controls how deep the shearing force goes into the material. In all of our

simulations, we set λ � Ly, so the actual value of λ does not affect our simulation

results.

One of the advantages of using the PFC model to simulate dislocation avalanches

is that we do not have to impose any ad hoc assumptions about the creation and

annihilation of dislocations. Recall that in dislocation dynamics simulations, dislo-

cations are treated as elementary particles and usually only the far field interaction

between dislocations is captured. When dislocations get too close to each other (a few

atomic spacings), the highly nonlinear interaction between them is not captured and

more importantly, the annihilation of dislocations is not accounted for. The standard

practice is then to impose some annihilation rules for dislocations—dislocations of

opposite topological charges will be destroyed together when they get too close to

each other[67]. The same is true for creation of dislocations, dislocations have to be

created by hand when the local strain is high. Although these rules are consistent

with our physical intuition, particular ways of implementing them are sometimes dif-

ficult to justify. However, because the model captures the nonlinear elastic behavior

of a crystal, the interaction between dislocations is completely captured. In addition,
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because the PFC model simulates the atoms in the lattice, but not the dislocations

themselves, creation and annihilation of them are also naturally captured as collective

excitations of the lattice. No ad hoc rules or assumptions have to be imposed.

We solved Eq. (6.2) in a 2D rectangular domain. The crystal under shear is

initially perfectly triangular. As the crystal is sheared, dislocations are created near

the boundaries and propagate into the bulk. They interact with each other and form

various kinds of avalanches. To quantify the avalanche activity, we calculate the total

speed of all dislocations in the domain,

Ṽ (t) =

Ndis(t)∑
i=1

|~ui|, (6.5)

where Ndis(t) is the number of dislocations in the system at time t and ~ui is the

velocity of the i-th dislocation. This is intended to be a measure similar to the

acoustic emission signal in Weiss et al.’s single crystal ice experiments. As dislocations

are generated and interact with each other in the domain, in additional to the fast

avalanching dynamics, quasi-static structures, such as grain boundaries, can form.

These slow dynamics should not be measured because they are really not part of

the avalanches. This leads to the distinction between fast-moving and slowly-moving

dislocations introduced by Miguel et al.[67]. In essence, they introduced a cutoff in

dislocation speed and measure only dislocations with speed higher than the cutoff.

In that way, they tried to retain only the avalanche activities in the acoustic emission

signals.

Another way to eliminate the slow dynamics is to study the power spectrum of the

signal, instead of studying the signal itself. The slow dynamics, which contributes to

a locally smooth background in the total signal then translates into the low frequency

end of the power spectrum, which can easily be eliminated. This method is employed

by Travesset et al. in their study of crackling noise in RFIM[65], in whose work the

scaling of the power spectrum is also derived.

We employed yet another method to tackle this problem. Instead of simulating a
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very large system, in which all sorts of dislocation activities are present, we simulated

a moderate size of system with approximately 10000 atoms. It is found that for

this system size, dislocation avalanches come and go, i.e., not many dislocations are

left in the system after every avalanche. As a result, no grain boundaries, or slow

dynamics, are present and we are able to obtain a very clean avalanche data. It is fair

to mention that this method severely limits the system size, and thus the resulting

avalanche sizes. The system size we chose contains approximately 100 dislocations in

the largest avalanche events. The tradeoff, which we exploit, is the cleanness of the

avalanche signal and the speed of the resulting simulations. Different methods, such

as those we mentioned above, would have to be employed if larger avalanche sizes are

desired.

The method we used to extract the motion of dislocations from the order param-

eter is described in Appendix B. In short, we count the number of nearest neigh-

bors of each atom, ni, using the Delaunay triangulation method in computational

geometry[180; 181]. Because we have ni = 6 for every atom in a perfectly triangular

crystal, and because there is no vacancies in the PFC model (see Chapter 7 for a

detailed discussion on vacancies), any atom having ni 6= 6 is sitting next to a dislo-

cation. So these ‘defect atoms’ are tracking the locations of dislocations. Instead of

measuring the total sum of dislocation speeds, Ṽ (t), then, we can measure the total

sum of speeds of these defect atoms,

V (t) =

N(t)∑
i=1

|~vi|, (6.6)

where N(t) is the number of defect atoms and ~vi is the velocity of defect atom i.

Note that the velocity of a defect atom is not the velocity of any atom in the system,

but the velocity of the dislocation it is tracking. Because the two measures, Ṽ (t)

and V (t) are proportional to each other with the proportionality constant being the

mean number of defect atoms sitting next to a dislocation, we can use the latter for

convenience.
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Fig. 6.1 shows the typical time dependence of N(t) from a simulation with pa-

rameters dx = 3π/8, dt = 0.025, Lx = Ly = 512, α2 = 255, β = 0.9, v = 1.581,

ρ0 = 0.3 and r = −0.5. N(t) changes as dislocations are being created and anni-

hilated. There are intermittent events of creation of dislocations, with number of

dislocations involved ranging from a few to 80.

Fig 6.2 shows the acoustic emission signal, V (t), in the same simulation. Similar

to N(t), the signal ranges from 0 to 400, with intermittent pulses of various sizes.

In order to measure the avalanche event size, we introduce a cutoff Vcut = 15 to

the signal. The signal is then partitioned into individual avalanche events. The

probability density of the event energy,

E =

∫ tend

tbegin

V 2(t)dt, (6.7)

where tbegin and tend are the starting and ending time of the event respectively, can

be measured. Different values of Vcut has been used and the result is found to be

insensitive to it because the cutoff, Vcut = 15, which corresponds to activities of

approximately 3− 4 dislocations in the system, is small compared with the signal.

Different shearing rates are applied. For each shearing rate, at least 10 different

realizations are run to obtain a statistically meaningful result. This results in about

8000 avalanche events for each shearing rate. Fig 6.3 shows the event size distribution

for different shearing rates. We found that the distribution follows a power law for

small event size and cuts off at larger sizes, with the cutoff size depending on the

shearing rate. The data is noisier towards the end of large event size because large

events are rare. This is analogous to the power-law distribution of crackling noise in

RFIM, with the cutoff event size depending on the amount of disorder in the system.
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Figure 6.1: The number of dislocations in a sheared PFC crystal. Intermittent
events with sizes differing in orders of magnitude is observed. Parameters are α2 =
255, β = 0.9, v = 1.581, ρ0 = 0.3 and r = −0.5.
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Figure 6.2: The total speed of defect atoms in a sheared PFC crystal. Intermittent
events with sizes differing in orders of magnitude is observed. Parameters are α2 =
255, β = 0.9, v = 1.581, ρ0 = 0.3 and r = −0.5.
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Figure 6.3: (Color online) The probability density of the event energy during
dislocation avalanches, for different values of the shearing rates. They follow a power
law with an exponent 1.65, with rate-dependent cutoffs.
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6.3 Scaling Behavior

We would like to study the scaling behavior of the avalanches. Analogous to the

scaling behavior in the RFIM, we propose that there should be a non-equilibrium

critical point, v = vc, in the system and we expect, as s → ∞, the data around the

critical point to collapse in the form

P (s, v̄) = s−αf(sβ v̄), (6.8)

where P (s, v̄) is the probability density of event energy, s, v̄ ≡ 1−v/vc is the reduced

shearing rate with v being the shearing rate and vc being the critical shearing rate.

α and β are two critical exponents. As v̄ → 0, P (s, v̄) tends to a power law

P (s, v̄) ∼ s−α. (6.9)

Fig. 6.4 shows an attempt to collapse the data in this way, with α = 1.65 ± 0.2,

β = 1.0 ± 0.3 and vc = 1.7595 ± 0.05. Logarithmic binning with about 100 bins

is performed and singletons are ignored to obtain P (s, v̄). We see that there is a

satisfactory data collapse over 4 decades, with v̄ ranging from 0.03 to 0.38. Note that

as s → 0, the curve tends to a constant, which agrees with Eq. (6.9). It should be

noted that the quality of the data collapse for large s is compromised by the fact that

large events are rarer and good statistics are difficult to obtain.

To the authors’ knowledge, this is the first attempt to examine the scaling behavior

of plastic flow under shearing. A related studies was carried out by Miguel et al..

They examined the 2D dislocation avalanches of a crystal under compression by

performing dislocation dynamics simulations and found that the probability density

follows a power law with exponent 1.8± 0.2[67], which is very close to the exponent

we obtained. The relation between the scaling behavior under shearing and under

compression is yet to be discovered.
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Figure 6.4: (Color online) Data collapse of the probability density of the event
energy during dislocation avalanches, with α = 1.65, β = 1.0 and vc = 1.7595.
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6.4 Conclusion

To conclude, by shearing a PFC crystal and measuring the resulting dislocation

avalanches, we found that there is a non-equilibrium critical point governing this dy-

namics, analogous to the critical dynamics of the random field Ising model (RFIM).

We obtained a data collapse and found the critical exponents and the scaling functions

associated with this critical point.

This is the first attempt to study the scaling behavior of plastic flow under shear-

ing. The data collapse of the event energy distribution is the chief indicator of the

non-equilibrium critical point. By analogy with the scaling behavior of the RFIM,

we anticipate a variety of other scaling phenomena. These include the scaling of the

power spectrum, event duration, time lapse between events, event shape and various

correlation functions.

Together with the last chapter, we have shown that by introducing a periodic

ground state, the PFC model not only captures the correct form of nonlinear elasticity,

it even captures microscopic dislocation avalanches and the resulting macroscopic

plastic properties of multicrystalline materials. The PFC model appears to be a

flexible and efficient way to model multiscale phenomena in materials.
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Chapter 7

Vacancies

7.1 Introduction

By encouraging the ground state to be spatially periodic and penalizing any deriva-

tion from it, the phase field crystal (PFC) model[60; 61] puts the microscopic and

macroscopic scales on equal footing and provides a theoretical framework to describe

both crystallography and elasticity of crystals. This enables us to study a variety of

phenomena including multicrystalline solidification, grain growth, dislocation dynam-

ics, linear and nonlinear elasticity, as well as plasticity, as we have seen in previous

chapters.

Although the PFC model contains such microscopic information, the model is

only a description of the collective, or emergent, properties of the crystal; it does not

attempt to describe the motion of each individual atom. For example, the number of

PFC ‘atoms’ is not well defined in the model because the order parameter, ρ(~x, t), can

form many peaks (‘atoms’) as long as that helps to minimize the total energy of the

system. This negligence of the actual atomic configuration and the resulting absence

of vacancies in the description prevent us from using the model to describe a range

of microscopic phenomena, such as those that involve vacancy diffusion and atomic

hopping. For this reason, we would like to modify the PFC model to accommodate
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the exact atomic configuration.

The goal of this chapter is carry out the above modification—to modify the PFC

model such that it not only describes the collective behavior, but also the motions of

individual atoms. We will see that this can be done by constraining the value of the

order parameter. By doing so, instead of being an abstract order parameter, ρ(~x, t)

becomes a physical density—the number of atoms in the model can be controlled by

adjusting the value of ρ0. The resulting theory is very much like molecular dynam-

ics: we can specify the temperature, number of atoms and the interaction potential

between atoms. We can even use the PFC model to simulate a simple liquid.

7.2 Inclusion of Vacancies

In real materials, vacancies are present when the local density is low, i.e., when there

are not enough atoms to fill up the space. In the PFC model, however, even if the

value of the order parameter is small, which is analogous to the low density situation,

a perfectly periodic configuration can still be formed because there is no constraint,

or energy penalty, for negative values of the order parameter. The system can always

‘borrow more field’ by going negative, and thus there is no such situation as ‘not

enough atoms.’ Therefore, as long as the system is in the triangular phase, any

uniform configuration would evolve to a spatially periodic one in equilibrium. The

notion of vacancies is not respected in this model. If a vacancy is created through a

special initial condition, the free volume will simply diffuse throughout the crystal.

We show below that we can stabilize vacancies by imposing a constraint on the

order parameter—we forbid the order parameter to be negative. In this case, if the

local order parameter is not high enough, instead of forming a periodic state that

extends to negative values, the system can form a periodic structure in some region,

while leaving a very low, or zero, density in another. The number of atoms in this
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case would then be conserved and these zero density regions are vacancies.

In order to justify the above intuition, we have to show mathematically that the

addition of the constraint, ρ(~x, t) > 0 for all ~x, does indeed allow vacancies in the

ground state. We will refer to this as the positivity of density constraint. We would

like also to identify the region of the phase diagram in which vacancies are present.

This can be done by calculating the energy of a state with vacancies.

We begin our investigation by reviewing the calculation of the ground state energy

in the original PFC model. In two dimension, if we put the ansatz for the triangular

state,

ρ(~x) = A

3∑
j=1

(
ei~kj ·~x + e−i~kj ·~x

)
+ ρ0, (7.1)

into the PFC free energy density,

f =
ρ

2

(
r + (1 +∇2)2

)
ρ +

ρ4

4
, (7.2)

and average over the whole system, we get the free energy density as a function of

the constant amplitude, A,

f0(ρ0, A) =
45

2
A4 − 12A3ρ0 +

ρ2
0

4
(2 + 2r + ρ2

0) + 3A2(r + 3ρ2
0). (7.3)

By minimizing f0(ρ0, A) with respect to A, we found that the two solutions for A are

A±(ρ0) =
1

15

(
3ρ0 ±

√
−15r − 36ρ2

0

)
, (7.4)

where the solution A = A+(A−) minimizes the energy for ρ0 > 0 (< 0).

Now, let us consider the effect of the positivity of density constraint. The only

additional consideration is the constraint that the order parameter, ρ(~x, t), has to

be non-negative in all space. By using the ansatz, Eq. (7.1), this is equivalent to

requiring |A| ≤ ρ0/6. However, we note that from Eq. (7.4) that |A+(ρ0)| > ρ0/6 for

all values of r and ρ0, so the original PFC ground state is forbidden by the constraint.

This is because ρ can become negative in some regions, independent of ρ0. The ground

state has to be given by some other configuration.
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There are at least two possible configurations for the ground state. First, the

ground state can still be perfectly periodic with an amplitude A 6= A+ satisfying |A| <

ρ0/6. Second, the ground state can partition itself into two domains—a perfectly

periodic domain with density ρ1 and amplitude A1 satisfying |A1| ≤ ρ1/6, and a

domain with ρ(~x) = 0. The second domain would then correspond to vacancies. We

have to calculate the energy of these two states and the ground state would be the

one with lower energy.

Let us first calculate the free energy density of a perfectly triangular state. Again,

we substitute the ansatz Eq. (7.1) into the free energy and minimize the resulting

energy with respect to A. As we have seen, the amplitude of the ground state is

given by A = A+(ρ0). But since A+(ρ0) > ρ0/6 for all r and ρ0, this amplitude is

actually forbidden. We are left with several options for A, namely, A = A−, which

is the other local minimum of the free energy, A = ρ0/6 and A = −ρ0/6. The

latter two are the boundary values satisfying the condition |A| ≤ ρ0/6. Because

f0(ρ0, ρ0/6) ≤ f0(ρ0,−ρ0/6), however, we can ignore the A = −ρ0/6 solution, the free

energy density in this case is then given by

fperiodic(ρ0) =

 f0 (ρ0, ρ0/6) if |A−(ρ0)| > ρ0

6

Min(f0(ρ0, A−(ρ0)), f0(ρ0, ρ0/6)) otherwise,

where Min(a, b) denotes the minimum of a and b. Explicitly, we have

f0(ρ0, A−(ρ0)) =
−13

500
ρ4

0 +
7r + 25

50
ρ2

0 −
20rρ0 + 48ρ3

375

√
−15r − 36ρ2

0 −
1

10
r2, (7.5)

and,

f0

(
ρ0,

ρ0

6

)
=

1

288
(133ρ4

0 + (144 + 168r)ρ2
0). (7.6)

Now, let us compare the energy of these two possible ground states. If the system

is perfectly periodic over the whole domain, the free energy is given by

fwhole(ρ0) = B0fperiodic(ρ0), (7.7)
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Figure 7.1: The plot f0(ρ0, A−(ρ0))/ρ0. It is an increasing function of ρ0, for various
values of r. The x-axis is plotted on logarithmic scale in order to resolve the curves.

where B0 is the area of the whole system. If the system partitions itself into a

domain with triangular phase and a domain with ρ = 0, the free energy is given by

(for simplicity, surface energy between the two phases is neglected in this calculation.)

fvac(ρ0) = b1fperiodic(ρ1) =
ρ0B0

ρ1

fperiodic(ρ1), (7.8)

where b1 is the area of the triangular domain and ρ1 is the averaged density within

that domain. The second equality is obtained by using the conservation of density

ρ0B0 = ρ1b1. The difference between these two free energies, ∆f ≡ fwhole − fvac, is

∆f = B0ρ0

(
fperiodic(ρ0)

ρ0

− fperiodic(ρ1)

ρ1

)
. (7.9)

It is important to note that ρ1 is a parameter we can choose to minimize the energy

of the second possible state; the only constraint is that ρ1 ≥ ρ0 because b1 ≤ B0.

For vacancies to exist, we require that ∆f > 0 for some values of ρ1 > ρ0. We note,

however, that for the solution A = A−, f0(ρ0, A−(ρ0))/ρ0 is an increasing function of
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Figure 7.2: The plot of f0(ρ0, ρ0/6)/ρ0. For r ≥ −72/84, it is an increasing function
of ρ0. For r < −72/84, there is a minimum, ρ1 =

√
(−48− 56r)/133.

ρ0 (see fig. 7.1) and so ∆f is positive for this branch of the solution. In other words,

no vacancy is present in this solution. In order to have vacancies in the ground state,

then, we require this branch of the solutions to be forbidden by the constraint; that

is, we require |A−(ρ)| > ρ/6, which is equivalent to requiring

ρ0, ρ1 <

√
−12r

53
. (7.10)

On the other hand, we note that,

f0(ρ0, ρ0/6)

ρ0

=
1

288
(133ρ3

0 + (144 + 168r)ρ0). (7.11)

There is a minimum at ρ0 =
√

(−48− 56r)/133 if r < −72/84 (see fig. 7.2). In other

words, if ρ0 <
√

(−48− 56r)/133 and r < −72/84, the system can minimize the free

energy by rolling down the energy landscape and arrive at the minimum

ρ1 =

√
−48− 56r

133
. (7.12)
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In this case, only part of the domain, whose area is given by

b1 =
B0ρ0

ρ1

=

√
133B0ρ0√
−48− 56r

(7.13)

would be composed of atoms; the remainder of the domain, whose area is B0 − b1,

would have zero density. This corresponds to the presence of vacancies. We also note

that the area of the triangular phase, b1, is directly proportional to the mean density,

ρ0. So by adjusting ρ0, we can control the number of atoms in the PFC model. This

shows that the addition of the constraint, ρ(~x) > 0 for all ~x, does indeed promote

the ρ(~x) from an abstract order parameter to a physical density, which dictates the

number of atoms in the system.

Together with the constraint on ρ1, Eq. (7.10), we have shown that for the region

ρ0 <

√
−48− 56r

133
and

−636

343
< r <

−72

84
, (7.14)

in the triangular phase, the ground state is composed of a triangular phase of area b1,

density ρ1 and amplitude A1 = ρ1/6. The rest of the domain, whose area is B0 − b1,

has zero density and thus are vacancies.

7.3 Implementation

Although the constraint does stabilize vacancies in the PFC model, it is mathemat-

ically difficult to solve the PFC dynamical equation with such a constraint. An

alternative method to mimic the effect of such a constraint is to add a vacancy term,

fvac(ρ), to the free energy functional,

F [ρ(x)] =

∫
ddx

[
ρ(x)

2
(r + (1 +∇2)2)ρ(x) +

ρ(x)4

4
+ fvac(ρ(x))

]
. (7.15)

The term fvac(ρ) penalizes any negative values of ρ(~x, t). If the penalty is large

enough, the vacancy term would serve the same purpose as the positivity of density

constraint. There are many possible choices for fvac(ρ), for example, we can simply
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choose it to be the step function

fvac(ρ) = HΘ(−ρ), (7.16)

where H is a real positive number, or,

fvac(ρ) = H(|ρ|n − ρn), (7.17)

for any odd number n, or we can choose,

fvac(ρ) = He−ρ/λvac , (7.18)

where λvac is the penetration depth of the field into negative values. The physical

meaning of fvac(ρ) is to add a chemical potential to ρ(x). As long as the repulsion

from negative values is strong enough to avoid ρ < 0, the result should not depend

on any particular choice of fvac(ρ). In the rest of this work, we will use Eq. (7.17)

with n = 3 and H = 1500 because this turns out to be numerically convenient and

stable.

With the vacancy term, Eq. (7.17), we can verify our analytical analysis about

the vacancy term by comparing it with our simulations. Fig. (7.3) shows simulations

with r = −0.9 and different values of ρ0, we see that the number of atoms increases

with ρ0. In addition, fig. (7.4) shows that the PFC atomic density (i.e., the number

of atoms per unit area) indeed increases linearly with ρ0, in agreement with Eq.

(7.13). However, the curve starts to saturate at around ρ0 = 0.15, as opposed to

the prediction ρ0 =
√

(−48− 56r)/133 ≈ 0.134 from Eq. (7.14). This discrepancy

is expected because, first, in the calculation, we have not taken into account the

surface energy between the triangular phase and the vacancies, and second, there are

thermal fluctuations present in the simulation, which help the system to equilibrate

faster; these were not accounted for in the analytic calculation.

Now, the PFC simulation looks very much like a molecular dynamics simulation!

But operating on diffusive time scales many orders of magnitude faster than pure
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molecular dynamics[61]. We can control the number of atoms and the temperature

in the system by adjusting ρ0 and the magnitude of thermal noise, ε, respectively.

The interaction potential between individual PFC atoms is specified by the PFC free

energy (specifically the gradient terms) and is controlled by the undercooling r. In

fact, by decreasing the value of ρ0 such that the system is dilute enough, we can

simulate a liquid using the PFC model! We simulated such a liquid with parameters

r = −0.9, ρ0 = 0.09, α = 15 and β = 0.9,and a typical result is shown in Fig.

(7.3b). Fig. (7.5) shows the two point correlation function, g(x), extracted from the

simulation. It resembles the two point correlation function of a liquid—a correlation

hole, a strong nearest neighbor correlation and a weak correlation with atoms one or

two atomic spacings away[182; 183].

It is important to note that although we have only added a single term to the PFC

model, the nature of the order parameter is completely changed. In the original PFC

model, ρ(~x, t) is not a physical density because it can be negative; it is only an abstract

mathematical construct, whose function is to keep track of the crystallographic and

elastic properties of the underlying crystal it represents. No association to atoms

or density should be made. The addition of the vacancy term, however, makes the

order parameter a physical density, whose value dictates the number of atoms in the

system and whose configuration is the actual atomic configuration. This makes the

two models very different.

To conclude, we have shown that with the constraint ρ(~x, t) > 0 in the free en-

ergy, vacancies in the PFC model are stabilized and the number of atoms is linearly

proportional to the mean value of the order parameter, ρ0. The effect of the con-

straint can be mimicked by a vacancy term that penalizes any negative value of the

order parameters. Instead of having an abstract order parameter containing only the

crystallographic and topological information, which is what we have in the original

PFC model, the order parameter is now proportional to the physical density and we
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Figure 7.3: PFC simulations with different values of ρ0 at r = −0.9. The number of
atoms increases with ρ0. Figures (a), (b), (c), (d), (e) and (f) correspond to ρ0 = 0.06,
0.08, 0.10, 0.12, 0.14 and 0.16.
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Figure 7.4: The PFC atomic density increases linearly with the order parameter,
ρ0, when the vacancy term is added to the model. r = −0.9 is used. The curve
starts to saturate at around ρ0 = 0.15, as opposed to the theoretical prediction
ρ0 =

√
(−48− 56r)/133 = 0.134.
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Figure 7.5: The two point correlation function of a liquid using the PFC model.
Parameters are r = −0.9, ρ0 = 0.09, α = 15 and β = 0.9.
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now are able to simulate the actual atomic configuration. The resulting PFC model,

in essence, is a molecular dynamics simulation from a partial differential equation,

and by varying ρ0, we can go from simulating a triangular crystal to a liquid.
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Chapter 8

Binary Alloys

8.1 Extension of the PFC model

We are now ready to extend the PFC model to binary alloys. Binary alloys are

composed of two kinds of atoms. The natural way to model a binary alloy is to put

together two PFC free energies for two density fields, ρA and ρB. But because each

individual PFC free energy only specify the interactions between atoms of the same

kind, an interaction energy between atoms A and B has to be added. We propose

that the interaction free energy density should be of the form

fAB
int (ρA, ρB) = λABρA(q2

AB +∇2)2ρB +
a

2
ρ2

Aρ2
B +

b

2
(∇δc)2 , (8.1)

where λAB, a, b are constants and

δc ≡ ρA − ρB

ρA0 + ρB0

, (8.2)

with ρA0 and ρB0 being the mean values of the order parameters, is the difference in

the two densities. The first term in Eq. (8.1) resembles the differential operator in

the PFC model; it encourages spatial periodicity among the A and B atoms and in

the language of molecular dynamics, specifies the interaction potential between them.

The second term imposes a hard core repulsion between the two densities and the
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third term avoids any sudden change in the difference in density, which might arise

from, say, a mixed atom. The second and third terms together ensure that there is

only one dominant field in each PFC atom, i.e., there is no atom with ‘mixed fields’,

i.e., a PFC atom that cannot be uniquely associated with either A or B. Putting all

the terms together, our PFC free energy density for binary alloys reads

f = fA
PFC(ρA) + fB

PFC(ρB) + fAB
int (ρA, ρB), (8.3)

where

fA
PFC(ρA) =

λA

2
ρA[rA + (q2

A +∇2)2]ρA +
uA

4
ρ4

A + H(|ρA|3 − ρ3
A). (8.4)

Eq. (8.4) is the pure PFC model with the vacancy term, where λA, uA and H are

constants, rA is the undercooling and qA controls the lattice spacing between A atoms.

fB
PFC is defined similarly.

The dynamics is imposed to be dissipative and conservative,

∂2ρA,B

∂t2
+ βA,B

∂ρA,B

∂t
= α2

A,B∇2

(
δf

δρA,B

)
+ ηA,B, (8.5)

where αA,B and βA,B are constants specifying the instantaneous elastic interactions

in the system[151], the Laplacian on the right conserves the total densities ρA,B and

ηA,B is the thermal noise satisfying the fluctuation-dissipation theorem

〈ηi(~x, t), ηj(~x
′, t′)〉 = −ε∇2δijδ(~x− ~x′)δ(t− t′), (8.6)

with ε being the noise amplitude proportional to the temperature kBT .

There are 17 parameters in this model. Just as with the pure PFC model, three

parameters, namely λA, qA and uA, can be absorbed into a rescaling of units. The

exact values of a, b and H are not important because their roles are to ensure,

respectively, that there are no mixed atoms and that vacancies are stable. λB, λAB,

uB control the relative strength of various terms and in doing so, control the energies

of the bonds between the atoms. A larger λB, for example, gives a stronger interaction
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between atoms B. rA and rB are the undercoolings. qB and qAB control the equilibrium

lattice spacing among atoms B, and that between atoms A and atoms B respectively.

Finally, αA,B and βA,B determine the propagation speed and lifetime of phonons[151].

In most of our simulations, we only change qB, qAB, rA, rB and the noise amplitude, ε.

Other parameters are fixed to be a = 200, b = 0.1, H = 1500, αA,B = 1, βA,B = 0.01

and λB = λAB = uB = 1. Fig. 8.1 shows examples of simulations with different

values of qB and qAB.

It is worthwhile to note that a similar model for binary alloys was recently pro-

posed by Elder et al.[154]. In their paper, they proposed a PFC model for binary

alloys by relating the PFC to density functional theory and regular solution theory.

They showed that the model is capable of describing binary alloy solidification, phase

segregation, grain growth, elasticity and plasticity. We note that their model and ours

are very similar. The two models both capture the microscopic crystallographic and

the macroscopic elastic properties of binary alloys. The only difference is that while

their model is a direct extension of the pure PFC model to binary alloys, ours is such

an extension with the vacancy terms, which makes studying vacancy dynamics and

atomic hopping possible. In other words, their model is coarse-grained in both time

and composition: time because any atomic vibration is coarsened and only diffusive

behavior is retained; composition because although their model retains the crystal

orientation, the local composition is averaged out. Our model, however, coarse-grains

only in time: we retain the diffusive behavior of the alloys, but we do not coarse-grain

in composition, instead, we keep the exact atomic configuration by enforcing the va-

cancy terms. Our model can be thought of as a more microscopic model, where the

actual atomic configurations is resolved, and Elder et al.’s coarsens out that configu-

ration. In fact, by coarse-graining the order parameters in our model, one can derive

Elder et al.’s model1.

1Zhi Huang and Jonathan Dantzig, private communication.
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Figure 8.1: (Color online) PFC simulations of binary alloys with different values of
qB and qAB. Blues (yellow) are A (B) atoms. The sizes of the atoms can be controlled
by varying qB and qAB. Figures (a), (b) and (c) corresponds to qB = qAB = 1, 0.9
and 0.8 respectively. rA = rB = −0.9, ρA0 = 0.075 and ρB0 = 0.06 are used in all
simulations.
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8.2 Diffusion

We benchmark our model with a standard diffusion problem. We prepare a rectangu-

lar domain with size Lx × Ly, with periodic boundary conditions in both directions.

We put atoms A on the left half of the box and atoms B on the right half, that is, we

specify the initial condition to be

ρA(~x, t = 0) =

 2ρA0 if x < Lx/2

0 if x ≤ Lx/2,
(8.7)

and,

ρB(~x, t = 0) =

 0 if x ≤ Lx/2

2ρB0 if x > Lx/2.
(8.8)

At the beginning of the simulation, the two uniform fields crystallize and form two

crystals with atoms A and B. Then, the two kinds of atoms start to diffuse into each

other. Fig. 8.2 shows snapshots of such a simulation with Lx = 1024, Ly = 512,

dx = 1, dt = 0.05, ρA0 = ρB0 = 0.08, rA = rB = −0.9 and ε = 1 × 10−4 for different

times. We observed that the initially separated atoms diffuse into each other. Both

the microscopic atomic hopping and macroscopic diffusive profile are captured in the

simulations.

To compare this result with a standard one-dimensional diffusion problem, we

define the averaged concentration

C(x, t) ≡ 1

2ρA0Ly

∫ Ly

0

ρA(Lxx, y, t)dy. (8.9)

The initial condition can then be written as

C(x, t = 0) =

 1 if x < 0.5

0 if x > 0.5,
(8.10)

with 0 ≤ x ≤ 1. Fig. 8.3 shows the plot of C(x, t) at different time.
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We can extract the diffusion coefficient from C(x, t). Recall that for a standard

diffusion equation,

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
, (8.11)

with the periodic boundary conditions u(0, t) = u(Lx, t), the solution is given by the

Fourier series expansion

u(x, t) =
∞∑

n=0

e−k2
nDt[an cos(knx) + bn sin(knx)], (8.12)

where kn ≡ 2πn/Lx, an and bn are constants determined by the initial condition. So,

we can extract the Fourier coefficient

Cn(t) =
2

Lx

∫ 1

0

C(x, t) sin(knx)dx (8.13)

from the diffusion profile of the simulation, and the diffusion coefficient can be ex-

tracted by fitting Cn(t) to

Cn(t) = Cn(0)e−k2
nDt, (8.14)

or,

k−2
n ln(Cn(t)) = −Dt + k−2

n ln(Cn(0)). (8.15)

We extracted C1(t) from the simulation. Fig. 8.4 shows that k−2
1 ln(C1(t)) does

indeed decrease linearly with time t. This confirms that the dynamics of the binary

alloy follows the diffusion equation on the macroscopic scale. The diffusion coefficient,

which is the magnitude of the slope of the line, is fitted to be D = 0.32 in this

particular case.

This recovery of the diffusive behavior is not trivial. Instead of having a smooth

diffusive field, which is what we would have in a standard diffusion equation, we have

the atomic configuration in the PFC model. In other words, the overall diffusive

behavior consists of individual events of atomic hopping. In fact, we can see from

the simulation that various diffusion mechanics, such as ring diffusion and diffusion
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Figure 8.2: (Color online) PFC simulations of a diffusion couple of size 512× 256.
Parameters values are ρA0 = ρB0 = 0.08, rA = rB = −0.9 and ε = 1× 10−4. Fig. (a),
(b), (c) and (d) correspond to t = 60, 300, 3000 and 15000 respectively.
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Figure 8.3: (Color online) The concentration profile of a diffusion couple. The
profile is smoothed by doing a local average with bin size 0.05. Parameters values are
ρA0 = ρB0 = 0.08, rA = rB = −0.9 and ε = 1× 10−4.
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Figure 8.4: The first Fourier coefficient of the concentration profile, C1(t), is fitted
to the theoretical prediction, Eq. (8.14). The diffusion coefficient, D, is fitted to be
0.32.
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along grain boundaries, are at work in the model. We are simulating the macroscopic

diffusion and the microscopic hopping at the same time.

The temperature dependence of the diffusion coefficient, D(ε), is also studied. We

run simulations with various values of the noise amplitude, ε. Because rA and rB are

the undercooling parameters

rA,B =
T − TA,B

c

TA,B
c

=
ε− εA,B

c

εA,B
c

, (8.16)

where TA,B
c or εA,B

c are the melting temperatures for solids A and B, they also have to

be varied consistently. Fig. 8.5 shows the temperature dependence of D(ε) over the

range 1×10−4 < ε < 1.6×10−4, with parameters εA,B
c = 1×10−3 and ρA0 = ρB0 = 0.08.

We found that D(ε) follows the activated Arrhenius form D(ε) = D0e
−Eact/ε[184], with

D0 = 682 and Eact = 3.3× 10−4.

8.3 Conclusion

We have extended the PFC model to binary systems. We have shown that the re-

sulting model not only describes microscopic crystallography, atomic hopping and va-

cancy diffusion, but also describes the macroscopic diffusive behavior. By varying the

noise amplitude in the simulation, we have shown that the diffusion coefficient implied

by the PFC model satisfies the standard Arrhenius form, D(T ) = D(0)e−Eact/kBT .
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Figure 8.5: Temperature dependence of the diffusion coefficient. The diffusion
coefficient follows the Arrhenius form, D(ε) = D0e

−Eact/ε, with D0 = 682 and Eact =
3.3× 10−4.
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Chapter 9

Conclusions

In this dissertation, I presented numerical and analytical work on three physical

systems, of increasing complexity. The overarching theme across these systems is

scaling behavior, which is universal and depends only on symmetry, dimensionality

and phenomenology of the systems.

I first discussed the peculiar scaling near the Griffiths-paramagnetic transition

point in Griffiths ferromagnets, i.e., ferromagnets with disorder. Because disorder is

present throughout the system and it partitions the whole ferromagnet, a Griffiths

ferromagnet, heuristically, can be thought of as an ensemble of weakly interacting

pure ferromagnetic islands, each of a different size, and thus, of a different critical

temperature, Tc. The scaling behavior of each ferromagnetic island is given by the

scaling behavior of a finite-size Ising model. Because the total magnetization is the

sum of the contributions from individual islands, and at T = Tc, the magnetization

of the island is singular in external field h, the total magnetization of the system is

singular in h at temperature T , for T equals to the critical temperature of one of the

ferromagnetic islands. As the distribution of the island sizes becomes continuous in

the thermodynamic limit, the total magnetization becomes (weakly) singular in h for

a range of temperature, Tc < T < TG, where Tc (TG) is the smallest (largest) critical

temperature among that of the islands. This is the Griffiths phase.
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The scaling behavior of Griffiths ferromagnets is qualitatively different from that

of conventional ferromagnets, due to the essential singularity in h. In fact, the scaling

behavior of Griffiths ferromagnets was not known and there was no clear experimental

evidence supporting the existence of such a phase in disordered ferromagnets, despite

decades of theoretical and experimental efforts. By using an ansatz for the Yang-

Lee zero density, however, we succeeded in deriving the scaling behavior and the

asymptotics of magnetization of Griffiths ferromagnets. We found excellent agreement

between our theory and the experimental data on La0.7Ca0.3MnO3, from which we

also extracted the critical exponent. This is the first direct experimental evidence of

the existence of the Griffiths phase.

We then studied geophysical precipitation pattern formation near geothermal hot

springs. As hot spring water flows out from the vent and then down the landscape,

spring water cools down and precipitates carbonates onto the surface. This changes

the surface, which in turn changes the flow path of the spring water. This dynamic

interplay between fluid flow, surface growth and precipitation dynamics give rises to

all sort of beautiful and interesting travertine patterns observed in the Yellowstone

National Park.

I introduced an analytical framework to study this complex pattern forming dy-

namics. It was composed of three nonlinear coupled partial differential equations,

describing the fluid flow, surface growth and precipitation dynamics. Although the

equations are complicated, I succeeded in solving them in cases of simple geometry

and found that the solutions agree with the shapes of spherically symmetric domes

and the stalactites observed near geothermal hot springs and in limestone caves re-

spectively. We also calculated the linear stability of the solutions and found that while

stalactites are unconditionally stable, domes are not. We attributed this difference

in stability to the different roles of surface tension in the system and the absence of

surface tension in our analysis.
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In the case of domes, I also found that our analytical theory deviates from the field

observations beyond a critical angle θc. This is because as the fluid flows down the

dome and covers more surface, it thins out and at some point, breaks into rivulets

due to surface tension. Although our theory does not take into account the effect

of surface tension, it does predict a scaling behavior of θc. We verified this scaling

behavior by using a CDS model.

It is not trivial to solve the analytical equations in complicated geometry, and thus

it is difficult to study the full nonlinear regime of the equations, but by calculating

the linear stability spectrum, we found that a turbulent flow down a constant slope

is unstable in all scales. This is consistent with the scale free terraced landscape

observed in the field.

This study is one of the first attempts to quantitatively model pattern formation in

carbonate precipitating systems, in the new and exciting research area of geophysical

pattern formation. We anticipate similar theoretical advances to be made on other

precipitation pattern forming systems, such as terraced landscapes found near silicious

springs.

In the last project we studied multiscale phenomena in materials using the phase

field crystal (PFC) model. The PFC model is essentially a density functional theory

describing the perioidic ground state of multicrystalline materials. It is already shown

that the model can describe a variety of material behaviors, including multicrystalline

solidification, linear elasticity, coarsening and defect dynamics. Together with Renor-

malization Group techniques and adaptive mesh refinement, the model can be used to

simulate macroscopically large (∼ mm) samples over diffusive timescales (sec) within

several days using a single core desktop computer. It is a promising tool to multiscale

modeling in materials and our work has mainly been to illustrate various fundamental

properties of the model.

We first showed that the PFC model can be rewritten in terms of the complex
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amplitudes—the spatially varying envelope of the density wave. We showed, in addi-

tion, that this complex amplitude representation does incorporate the correct form of

nonlinear elasticity. We then studied the plastic properties of the model by applying a

shearing force. Dislocation creation, annihilation and avalanches are observed, resem-

bling to the scaling behavior in driven ferromagnetic systems and other dislocation

avalanching systems. Critical exponents are extracted from data collapse extending

over 5 decades. This shows that the PFC model captures the nonlinear elastic and

even plastic properties of multicrystalline materials.

We then noticed that the notion of ‘atoms’ is not valid in the PFC approach,

because the order parameter is not a positive definite quantity and as a result it can

form many peaks (‘atoms’) from a constant field configuration(‘vacuum’). Because of

this, we modified the PFC model to accommodate the actual atomic configurations

and vacancies by forbidding the order parameter to be negative. We also calculated

the resulting phase diagram for vacancies. By this modification, the PFC model

becomes a molecular dynamics simulation machine. We succeeded in simulating a

liquid using the model and reproducing the two-point correlation function. Finally,

we extended the PFC model to binary systems. The resulting theory was shown

to describe both the atomic hopping events on microscopic scales and diffusion on

macroscopic scales. By varying the temperature, we also recovered the activated

Arrhenius form of the diffusion coefficient.

All these successes show that the PFC model is an excellent approach to study

multiscale phenomena in multicrystalline materials. It opens up a whole array of

possibilities to model materials across scales. While further applications of the model

to other multiscale problems, such as eutectic solidification and precipitation hard-

ening, as well as the extension of the model to three dimensions, are anticipated, the

application of the core idea of the PFC approach—to formulate a macroscopic theory

with a symmetry consistent with the microscopic phenomenology—to other systems,
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such as liquid crystal, complex liquid and even glassy systems, is also a potentially

interesting and rewarding direction.
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Appendix A

Numerical Implementations

The PFC equation is solved numerically using finite difference methods. A forward

Euler method is used to approximate the time derivative and second order central

difference method is used to approximate the spatial derivatives. This scheme follows

closely from the one Athreya et al. used in [62]. We describe the discretization of

various operators in this appendix.

A.1 Gradients

A uniform rectangular grid of grid spacing ∆x is used throughout all simulations.

To avoid any anisotropy introduced from the grid orientation, we approximate the

gradient of a function f(x, y) at a grid point (xi, yj) ≡ (i∆x, j∆x) as the average of

two central difference schemes—∇⊕f |i,j and ∇⊗f |i,j—which discretize the gradient

in two orthogonal directions. A similar discretization scheme is discussed in [185].

∇⊕f is the central difference scheme in the x = 0 and y = 0 directions. It is given

by

∇⊕fi,j ≡
(

fi+1,j − fi−1,j

2∆x

)
x̂ +

(
fi,j+1 − fi,j−1

2∆x

)
ŷ + O(∆x2), (A.1)

138



and ∇⊗f is the central difference scheme in the y = ±x directions. It is given by

∇⊗f |i,j =

(
fi+1,j+1 − fi−1,j−1

2
√

2∆x

)(
x̂ + ŷ√

2

)
+

(
fi−1,j+1 − fi+1,j−1

2
√

2∆x

)(
−x̂ + ŷ√

2

)
+ O(∆x2). (A.2)

By taking the average of these two schemes, the gradient is discretized as

∇f |i,j =
1

2
(∇⊗f |i,j +∇⊕f |i,j) + O(∆x2) (A.3)

=

(
fi+1,j+1 + 2fi+1,j − fi−1,j−1 − fi−1,j+1 − 2fi−1,j + fi+1,j−1

8∆x

)
x̂

+

(
fi+1,j+1 + 2fi,j+1 − fi−1,j−1 + fi−1,j+1 − 2fi,j−1 − fi+1,j−1

8∆x

)
ŷ

+O(∆x2). (A.4)

A.2 Laplacian

An isotropic discretization scheme for the Laplacian operator can also be obtained

by a similar procedure. The resulting discretization is

∇2f |i,j =
fi+1,j + fi−1,j + fi,j+1 + fi,j−1

2∆x2
+

fi+1,j+1 + fi−1,j−1 + fi−1,j+1 + fi+1,j−1

4∆x2

−3fi,j

∆x2
+ O(∆x2). (A.5)

The Fourier transform of this discretization is shown to be a very good approximation

of the exact operator, −k2[186].

A.3 Thermal Noise

Non-conserved Gaussian white noise can be generated numerically by the Box-Muller

transformation[187]: Suppose x1 and x2 are two independent random valuables that

are uniformly distributed in the interval (0, 1], then

z1 ≡
√
−2 ln x1 cos(2πx2), (A.6)
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and,

z2 ≡
√
−2 ln x1 sin(2πx2) (A.7)

are two independent random variables with standard normal distributions.

For conserved noise in a partial differential equation

∂u

∂t
= ∇2f(u) + η, (A.8)

where η is the conserved noise satisfying the fluctuation-dissipation theorems

〈η(~x, t)η(~x′, t′)〉 = −ε∇2δ(~x− ~x′)δ(t− t′), (A.9)

we can rewrite the equation as

∂u

∂t
= ∇ · (∇f(u)− ξ), (A.10)

where ξ is a vector whose components are independent Gaussian white noise, which

can be computed by the Box-Muller transformation described above. The same ap-

proach is employed in Ref. [141].
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Appendix B

Visualization

In this appendix, we discuss techniques of extracting the locations of PFC atoms,

those of defects and the local grain orientation from the order parameter, ρ(~x, t), of

the phase field crystal (PFC) model.

B.1 PFC Atoms

While a quick way to extract the locations of the PFC atoms is to find the maximum

(minimum) of the order parameter, ρ(~x, t), a more accurate method is to first put a

threshold in ρ(~x, t) and digitalize the order parameter by the transformation

ρbinary =

 1 if ρ(~x, t) > ρ̄

0 otherwise,
(B.1)

where ρ̄ is the threshold. After applying this transformation, all PFC atoms become

clusters of pixels with ρbinary = 1. We can then locate the atoms by finding the center

of each cluster.
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B.2 Grain Orientation

After extracting the positions of the PFC atoms, the local grain orientation can be

found by computing the angle

φi = θi mod
π

3
, (B.2)

where θi is the angle between a fixed axis and the line that joins atom i and its

nearest neighbor. This method is simple and can easily be implemented, but one has

to first find the nearest neighbor of each atom and the resulting orientation field is

only defined at the location of the atoms. Some sort of extrapolation has to be done

to obtain a continuous orientation field.

A more elaborated method to extract the orientation field is developed by Singer

and Singer[150]. They made use of the fact that the ground state of the PFC model is

a perfectly triangular state and introduced a two dimensional wavelet transformation

ρ̃(x, y) =

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
ρ(t, u)ws0(t− v, u− w)dtdu

)
G(v − x, w − y)dvdw,

(B.3)

where

ws0(x, y) = ws0(~x) =
1√
πσ

e−(x2+y2)/2σ(cos(~ks0 · ~x) + cos(~ks1 · ~x) + cos(~ks2 · ~x)), (B.4)

G(x, y) =
1

√
πσ2

e−(x2+y2)/2σ2 , (B.5)

and ~ks0 ,
~ks1 and ~ks2 are the three lattice vectors, σ and σ2 are two parameters. The

wavelet transformation with kernel ws0(x, y) transform the order parameter to an

orientation-dependent function by projecting out the relevant component from the

order parameter; the Gaussian transformation smoothes out the remaining atomic-

scales oscillations. The result, ρ̃(x, y), is a function that depends only on the local

grain orientation.
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B.3 Defects

Because topological defects distort the surrounding orientation field, we can pinpoint

the locations of defects by calculating the Laplacian of the orientation field. The

locations of defects are places where there is a high value of Laplacian. While this

method is fast, it does not work well when the defect density is high—when dislo-

cations are clustered together, for example on a grain boundary, instead of getting

distinct points with high Laplacian, one might end up getting a line. It might then

be difficult to resolve individual defects.

Another method to extract the defect locations is to count the number of nearest

neighbor, Ni, of each PFC atom. Recall that we have Ni = 6 for every atom on a

perfectly triangular lattice. If the atom is sitting right next to a defect, however, we

have Ni = 5 or Ni = 7. So a quick way to locate the defects is to measure Ni for each

atom and those with Ni 6= 6 are right next to the defects.

A quick way to measure the number of nearest neighbors is to employ the Delaunay

triangulation method in computational geometry[180; 181]. The same methodology

is used in [188; 189] in studying coarsening dynamics in 2D hexagonal systems.

It is tempting to try to reconstruct the exact locations of defects from the locations

of atoms right next to them. It turned out that this is a difficult task because there

are more than one atom sitting next to a single defect and if the defect density is

high, it is difficult to tell which atom is sitting next to which defect. Fortunately, in

the simulations we have presented in this thesis, the only signal we need is the total

speed of the dislocations in the system. This is directly proportional to the total

speed of the atoms sitting right next to the dislocations, with the proportionality

constant being the mean number of atoms next to the defects. So by simply counting

the number of atoms with Ni 6= 6 and measuring their speeds, we get the signal we

need.
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