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Abstract

In this dissertation, I devise computational approaches to model and understand two very different sys-

tems which exhibit stochastic behavior: quantum fluids with topological defects arising during quenches

and forcing, and complex microbial communities living and evolving withing the gastrointestinal tracts of

vertebrates. As such, this dissertation is organized into two parts.

In Part I, I create a model for quantum fluids, which incorporates a conservative and dissipative part,

and I also allow the fluid to be externally forced by a normal fluid. I use then this model to calculate scaling

laws arising from the stochastic interactions of the topological defects exhibited by the modeled fluid while

undergoing a quench.

In Chapter 2 I give a detailed description of this model of quantum fluids. Unlike more traditional

approaches, this model is based on Cell Dynamical Systems (CDS), an approach that captures relevant

physical features of the system and allows for long time steps during its evolution. I devise a two step

CDS model, implementing both conservative and dissipative dynamics present in quantum fluids. I also

couple the model with an external normal fluid field that drives the system. I then validate the results of the

model by measuring different scaling laws predicted for quantum fluids. I also propose an extension of the

model that also incorporates the excitations of the fluid and couples its dynamics with the dynamics of the

condensate.

In Chapter 3 I use the above model to calculate scaling laws predicted for the velocity of topological

defects undergoing a critical quench. To accomplish this, I numerically implement an algorithm that extracts

from the order parameter field the velocity components of the defects as they move during the quench
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process. This algorithm is robust and extensible to any system where defects are located by the zeros of the

order parameter. The algorithm is also applied to a sheared stripe-forming system, allowing the calculation

of the corresponding scaling laws.

In Part II, I investigate the evolutionary dynamics of communities of microbes living in the gastroin-

testinal tracts of vertebrates, and ask to what degree their evolution is niche-driven, where organisms fitter

to their environment become dominant, or if it is neutral, where the organisms evolve stochastically and

are otherwise functionally equivalent within their communities. To that end, a series of computational tools

were developed to pre-process, curate and reduce the data sets.

In Chapter 4, I analyze the raw data for this research, namely short reads of 16S ribosomal RNA, and

quantify how much of phylogenetic information is lost by using these short reads instead of full-length reads,

and show that for lengths spanning 300 to 400 base pairs, we can recover some meaningful phylogenetic

information.

In Chapter 5, I introduce a pipeline for pre-processing, alignment and curation of libraries of short

reads of rRNA. We show that this pipeline significantly reduces the artifacts usually associated with these

sequences, resulting in better clustering of the sequences, and better phylogenetic trees representing their

organismal relationships.

In Chapter 6 I use the data processed with the above tools to analyze communities of microbes living

in gastrointestinal tracts of vertebrates, and we ask to what extent the evolutionary dynamics of these com-

munities is dominated by niche-based evolution, or if the communities behave neutrally, where evolution

is random and all organisms are functionally equivalent. We conclude that there is evidence for strong

niche-based dynamics, though we cannot fully discard some degree of neutral evolution.

Finally, in Chapter 7 I propose a method to quantify the balance present in phylogenetic trees to compare

a large-scale molecular phylogeny to full organismal taxonomies. I show that there is considerable structure

in all of them, but direct comparison of both types of trees is difficult at the moment due to their different

intrinsic structure.
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Chapter 1

Introduction

This thesis is in two parts, one on superfluids and topological defects, the second concerning interacting

microbial communities. The work was performed in Nigel Goldenfeld’s group, which emphasizes train-

ing students in both the methods of theoretical condensed matter physics as well as introducing students

to appropriate problems in biology. My research has followed this pattern, developing my skills in quan-

titative and novel approaches to spatially-extended dynamical systems, followed by innovative approaches

to computational problems in evolutionary ecology. The sets of problems that I focused on are difficult in

their respective fields because they are dominated by collective effects. The goal of my research has been

to devise novel computational approaches to these problems, and as the reader will see, they are necessarily

very different; however, the unifying feature is the ab initio approach to modeling and analysis that I have

developed with my collaborators and mentors. In this chapter, I give an overview of the thesis, and describe

my specific contributions to the various projects in which I have participated.

1.1 Overview of projects

During the last two decades, there has been an ongoing effort by the condensed matter and fluid dynamics

communities to fully characterize complex and turbulent flow in quantum fluids. This effort has a strong

experimental component, where techniques originally developed for traditional fluid mechanics were being

applied to superfluids, and after the experimental realization of Bose-Einstein condensates, a whole new

avenue of study was opened with an unprecedented degree of control and at extremely low temperatures,

albeit in small sizes. Despite these advances, most of the interesting ranges for experiment are still away
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from realization. On the theoretical side of the coin, advances have also been made on understanding the

dynamics of topological defects in a tangle (which is a description of a turbulent superfluid). In a happy

coincidence, the the ascent of unprecedented computer power as a cheap commodity has enabled researchers

to simulate these fluids with previously unattainable degree of detail and complexity, allowing questions to

be asked in regimes still away from experimental realization. Both experimentalists and theoreticians are

asking the following questions about quantum-turbulent systems: what are the similarities and differences

between quantum turbulence and normal fluid turbulence? To what degree can we understand this quantum

turbulence state by only looking at its topological defects (vortices)? What is the role of excitations in this

state? Are there other defect-dominated systems (like crystal plasticity) that can inform about the dynamics

of quantum fluids (or vice versa)?

My contribution, detailed in Part I of this dissertation, falls firmly in the camp of numerical research

on quantum fluids. I propose an algorithm to efficiently simulate quantum fluids. Although inspired after

differential equation-based models, this algorithm is cellular (map-based), allowing us to fully include the

relevant physics and permitting a rapid time evolution of the system, which allows for measuring of scaling

laws present in the system. I validate this algorithm by calculating known scaling laws and showing dynam-

ics that quantum fluid motion should exhibit, such as quantized vortices, complex vortex structures under

external driving. Finally I propose an extension of this model to fully include and couple excitations to the

system.

Moving over to a different topic, there is nothing short of a revolution happening in microbiology. Long

gone are the days where microbes were only seen as a nuisance, no more than invisible disease vectors.

Also on the way out is the disturbing and egotistical thought that microbes are just relics of millennia past,

that gave way to superior forms of life such as ourselves, or are, at most, unremarkable and not worthy of

study. It was the work of physicists that allowed us, for the first time, to really have a look inside cells

and ask questions such as how do genes really work? Shortly thereafter, this approach had a resounding

success with the discovery of the Archaea by a physicist [2]: a different form of cellular life was hiding

within these “unremarkable” microbes. So different, that it can be considered closer to Eukaryotes (such as

ourselves) than to Bacteria, and had the consequence that the Tree of Life had to be redrawn. As technology

progressed, along came the dawn of the genomics era. This put in the spotlight the mind-boggling diversity

of metabolism and behavior present in microbes. The happy coincidence of the advances in computing
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permitted the study of not only single microbes but communities of them. We can now study the complex

interactions between them and with their environments, the extent that microbes affect the rest of life on

Earth, including ourselves. We can ask questions about their ecology. In this regard, the advantage lies

in the large samples we can actually study (millions of microbes as opposed to hundreds or thousands

of individuals, for example plants), and this plethora of data is a blessing for us researchers interesting in

modeling this behavior. It is also a curse, because it becomes a problem to handle this data, for both curation

and analysis.

My contributions described in Part II reflect the path taken from massive amounts of raw data to ques-

tions about the nature of evolution within a community of bacteria. My involvement in microbial ecology

came just as the field began the transition to massively high-throughput sequencing of communities using

metagenomics techniques, such as pyrosequencing. Thus much of my work was devoted to technique de-

velopment, but we also were able to address a fundamental question about evolutionary ecology. First, I

characterize the extent to which we can rely on short fragments of a gene for phylogeny analysis of com-

munities. Then we propose a pipeline to process this raw sequence data from an error-ridden set to clean,

curated and aligned sequence libraries. Finally, using this cleaned data we ask questions about evolution

models in communities of bacteria living inside the gastrointestinal tracts of vertebrates, to what extent

their evolutionary dynamics show specialization in niches, or if all organisms are otherwise functionally

equivalent in the community, and how much we can answer using the genomic data at hand.

1.2 Overview of superfluid hydrodynamics

One of the hurdles in the numerical study of quantum fluids is the sheer complexity of simulating a com-

plete, fully coupled fluid including both the condensate and excitations. Recent advances have allowed

detailed studies of zero-temperature fluids [3], which have moved from rather artificial and inefficient direct

simulation of the quantum vortices (either directly integrating the Biot-Savart model for vortex strings or

using a Local Induction Approximation), to fully pseudospectral integrations of the Gross-Pitaevskii equa-

tions [4]. All of these approaches lack a fully coupled model for the back-reaction from excitations, though

attempts have been made.
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1.2.1 Efficient algorithm for simulation of superfluids

In Chapter 2 I propose a model for the superfluid dynamics that can be efficiently integrated using off

the shelf computing equipment. This model uses a Cell Dynamical Systems (CDS) approach to account

for the physics of the condensate. As such, it is not an integration of differential equations representing

the dynamics of the condensate, but directly translates the symmetries and dynamics of the superfluid into

computationally-efficient coupled maps that replace those which would arise from a conventional discretiza-

tion of the governing partial differential equations. Such maps can yield results that give experimental pre-

dictions of universal quantities, such as scaling functions, with no adjustable parameters [5–7]. Moreover,

in some circumstances it has been possible to compare CDS methods with conventional numerics, and the

results clearly indicate that both are in the same universality class [8]. Although the model does not come

directly from a differential equation, it is inspired by the two-fluid model from Ginzburg and Pitaevskii [9,

10]. In this chapter I show validation as well as limitations of the model, in the form of scaling laws and

behavior of the vorices in the presence of external forcing. I also introduce a numerical implementation of

a topological defect tracking algorithm, based on a theoretical representation originally due to Halperin and

Mazenko [11, 12]. This algorithm extracts the velocity of topological defects described by zeros of the or-

der parameter, and also extracts their topological charge. This method allows us to calculate the probability

distribution of these velocities, helping further validation of the superfluid model. Finally, I propose a model

for the excitations, where they are described as a normal fluid modeled using a Lattice Boltzmann [13, 14]

approach. The condensate and the excitations are then coupled via advection of the condensate due to the

normal velocity field and the condensate affects the normal fluid through its pressure tensor.

1.2.2 Defect velocity distributions after a quench

As an example of the use of the numerical scheme, in Chapter 3 I perform a simulation of a critical quench of

an O(2) model in two and three dimensions. Using the defect tracking algorithm I extract the velocity of the

defects, as the quenches evolve in time, and compute their probability distribution function. The results show

that the high-speed tails of the distributions of velocity v follow a predicted power-law scaling of the form

v−3, with a Gaussian correction due to finite-size effects (the defect core has a non-zero size). This scaling

reflects the existence of long-range interactions between the individual vortices. A separate example is

studied for defects in a stripe-forming system, where defect motion is anisotropic, finding that one degree of
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freedom exhibits the power-law scaling, whereas the other degree of freedom shows a Gaussian distribution

of velocities. This work was performed in collaboration with Luiza Angheluta.

1.3 Overview on microbial ecology

In Part II, I tackle a problem on evolutionary dynamics where we ask if purely stochastic dynamics can

explain the species abundance patterns seen in microbial communities in vertebrates, or if niche selection

is still a preferred evolution mechanism. Along these chapters, I start with the preprocessing of raw data.

In this case, the raw data are sequences from the gene of the small subunit of ribosomal RNA, which for

Bacteria and Archaea is commonly referred as 16S rRNA. This gene has been a favorite tool as a tag for

microbial organisms due to its ease of sequencing, its seemingly consistent length, rate of evolution and

apparent lack of horizontal gene transfer that complicates phylogenies. I show that despite these ideal

qualities, real experimental data still has some problems that need to be attended to before using it to ask

relevant biological questions. I then proceed to introduce a pipeline to clean the sequences of these artifacts,

and then I proceed to use the data for analysis of evolutionary dynamics. Finally, I present the technical

aspects of a related problem, which shows methods for the quantification of the structure of trees as a

possible way to compare methods of systematization of phylogenetic and taxonomic data.

1.3.1 16S rRNA sequence data

During the research detailed in this dissertation, the starting point (at least for us in these collaborations) was

to process many libraries of 16S rRNA reads into usable information, either as a set of scores characterizing

its diversity and composition, or as phylogenetic trees describing its evolutionary relationships. However,

limitations arise due to the inaccuracies inherent in the contemporary sequencing platforms, which lead to

misreads and spurious data. Another strong limitation is that we were not dealing with a whole read of the

16S rRNA gene, but rather a subset of it (the short reads). Naturally, this leads to a bound in the amount of

information that we can in principle extract using these short reads. Previous studies have characterized the

effects of these short reads on the different diversity metrics, and also on the determination of taxonomic

composition as compared to full-length reads of the gene.

In Chapter 4, I extend the characterization to quantify the information loss on phylogenetic information

when short reads of 16S rRNA are used instead of full length reads. This kind of limitation is of high interest,
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given that the very rapid evolution of sequencing platforms and its use in environmental microbiology

have resulted in platforms with either very high throughput, high quality but even shorter read length (e.g.

Illumina HiSeq sequencers), or very long read length but high error rate (e.g. PacBio RS sequencers).

In Chapter 5, I introduce a pipeline, dubbed TORNADO, designed to process 16S rRNA libraries starting

from raw sequences into a state suitable for analysis. Developed together with Maksim Sipos and Nicholas

Chia, this pipeline takes raw 16S rRNA sequences, removes known artifacts resulting from the pyrosequenc-

ing process, leaving them ready to be aligned using both the NAST algorithm [15] and RDP’s [16] Infernal

aligner [17]. Then we combine both multiple sequence alignments, with the premise that we obtain the best

of both worlds by taking the good secondary structure-based alignments of conserved regions aligned using

Infernal, and the difficult to align hypervariable regions as aligned using NAST. TORNADO also provides

a tool set for semi-automated curation of the alignment to increase its quality. Finally, TORNADO provides

a complete linkage-based algorithm to cluster the sequence libraries into Operational Taxonomic Units.

1.3.2 Neutral versus niche evolution as seen with ribosomal RNA sequence data

As a direct application of the above chapters, in Chapter 6 we ask a more basic question in microbial ecology.

From an ecological snapshot of a community, as reflected in the abundance distributions of its constituents,

what can we infer about the dynamical processes that shaped the community? The two endmembers of such

processes are deterministic evolution of populations in response to environmental gradients and stochastic

evolution of populations where all species are regarded as functionally equivalent, and thus experience no

specific attraction to environmental niches. Our project was to generate high resolution surveys of complex

microbial communities, using metagenomics techniques to obtain vast libraries of environmental short reads

of 16S rRNA. We developed novel methods to extract process information from these metagenomic data.

Starting from libraries of microbial communities from the gastrointestinal tracts of three vertebrates, we

first fit the rank-abundance curves of these communities using the predicted curves from Hubbell’s neutral

theory. Then we contrast this information with evidence for niches as seen in the taxonomic composition of

these communities. Finally, we develop a model of niche-based and neutral evolution as we would expect

it to see in sequence space, and test this model with the actual sequence data. We conclude that although

the rank-abundance curves fit a neutral model of evolution, sequence data suggests a dominant niche-based

assembly process.
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1.3.3 Balance on phylogenetic trees

To conclude, in Chapter 7 I propose a method to quantify the balance present in phylogenetic trees to

compare a large-scale molecular phylogeny to full organismal taxonomies. I show that there is considerable

structure in all of them, but direct comparison of both types of trees is difficult at the moment due to their

different intrinsic structure.

1.4 My contributions

For the work in Chapter 2, I expanded on a model originally devised by Maurizio Mondello and Nigel

Goldenfeld by adding an explicit external driving velocity field (i.e. a normal fluid) using a simple advection

scheme. I also created a complementary model for the conservative part of a two-fluid superfluid model,

and performed validation of said models. I also proposed a method to fully couple this superfluid model

with another model for the normal fluid, via a Lattice Boltzmann model, with an appropriate pressure

tensor constraint which implements the back-reaction and closes the coupling between the condensate and

excitations. Together with Luiza Angheluta, I helped translate a topological defect tracking algorithm,

created by Halperin and Mazenko, from a purely analytical tool to a numerical scheme capable of extracting

the velocities of the defects.

For the work in Chapter 3, I performed the numerical simulations for the O(2) models in two and three

dimensions. Together with Luiza Angheluta, I performed the data reduction, analysis and interpretation of

the results. All the work on the dislocation model under shear flow was done by Luiza Angheluta.

In the work of Chapter 4, I wrote the script to extract randomized sequence data from the Greengenes

[18] database, I created the simulated pyrosequencing libraries, I performed the multiple sequence align-

ment of all libraries and calculated the phylogenetic trees using said alignments. I also coded the Pearson

Correlation (PC) comparison metrics and performed the analysis on the different trees using the PC metric,

and the two Robinson-Foulds metrics [19], interpreting the results in collaboration with Nicholas Chia.

For the work of Chapter 5, I wrote the script to merge the multiple sequence alignments and, together

with Maksim Sipos, we wrote the pre-processing scripts and the web interface for the TORNADO pipeline.

All the benchmarking and clustering work was performed by Maksim Sipos. Together with Ani Qu, I helped

create and curate the chicken caecum data used in this chapter.
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For the work of Chapter 6, together with Maksim Sipos we pre-processed the 16S rRNA sequence data.

Then I extracted the taxonomic information for all the different libraries. Together with Maksim Sipos,

Nigel Goldenfeld and Bryan White we interpreted the results of the distance model. The metric that allowed

us to distinguish niche and neutral dynamics was first suggested by Maksim Sipos after numerous other

metrics had been suggested and tried by Sipos, Chia, Nigel and me.

For the work on Chapter 7, I implemented and then applied the tree metrics on the phylogeny and the

taxonomies, and then processed the results to make them suitable for visualization.
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Part I

Dynamics of Topological Defects
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Chapter 2

Complex quantum vortex dynamics in

superfluids

We introduce a minimal model for the dynamics of a simple superfluid. This model contains two compo-

nents: (1) a cell dynamical systems model of the superfluid parameter, and (2) a Lattice Boltzmann scheme

for the conservation and evolution equations of the normal fluid component, which represents the excita-

tions of the order parameter field. The model features a natural inclusion of topological defects, annihilation

and reconnection of said defects, and strong coupling of the superfluid fraction with its normal counter-

part. Preliminary results include verification of the scaling law in vortex reconnection and reproduction of

instabilities in vortex line length due to normal flow vorticity. Finally, we propose studies on superfluid tur-

bulence which include detection of vortex reconnection avalanches and characterization of the interaction

between dissipation and the turbulent vortex tangle.

2.1 Introduction

Complex quantum flows have recently gained some attention, as longstanding problems are being tackled

thanks to developments in theoretical, experimental and numerical areas. In quantum fluids, a restriction on

the nature of their flows arises because of its coherent state: its flow must be irrotational on a simply con-

nected domain. Quantum vortices allow for the existence of rotation in superflows as they are a topological

defect. Moreover, the vortex core size is constant and fluid circulation about it is quantized. A complex
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superflow can be characterized by the state of its vortices.

In quantum turbulence, the quantum vortices form a tangle [20]. This tangle is a dynamic state, as the

vortices are stretched, undergo reconnections, and rings are created and destroyed. These quantum vortices

also interact with their environment. They interact with the gas of excitations (the normal fluid) by emitting

phonons when dissipating energy, and also get advected by this normal flow. Yet this interaction, and its

influence in quantum turbulence, is not completely understood.

For example, the striking similarities between the turbulent regimes of both classical and quantum fluids

have led to questions about the nature of energy dissipation in superfluids at very low temperature. Also

remarkable are turbulent phenomena unique to superfluids, namely counterflow turbulence, due to helium

II’s peculiar heat transport properties. This curiosity has trickled down to other related problems, such

as complex vortex structures in Bose-Einstein condensates (BEC), and even to more distant areas such as

neutron star hydrodynamics. It is interesting to see how far the analogy between classical and quantum

turbulence goes, as it is to know where to place the boundaries.

If we consider the problem of complex superflows from a more abstract perspective, we can frame it in

terms of the dynamics of topological defects, how they interact with external fields and amongst themselves.

We can now relate the problem of complex superflows to seemingly unrelated phenomena such as disloca-

tion avalanches in plastic deformation. And to go even further, the possibility of extending these studies to

the rich gamut of states present in superfluid 3He just adds momentum to the community of researchers.

The purpose of Part I of this dissertation is to study complex superflows, to obtain insight on the inner

workings of the energy dissipation mechanisms present in turbulent superflows, and how they affect the

dynamics of the quantum vortices, to characterize the transport of complex scalar fields in a statistically

turbulent flow and to probe for the existence of vortex reconnection avalanches in turbulent superflows,

analogous to their plastic flow counterparts. Also, in this Part, I develop and adapt numerical techniques to

permit the aforementioned studies, and understand their range of validity.

2.2 Background on superfluids

The goal of this section is to introduce a model of superfluid hydrodynamics that is a generalization of the

much better known Non Linear Schrödinger Equation (NLSE) model, but valid at T > 0. This model will

be related to the physics introduced in my own work in section 4. Before describing superfluid, or quantum,
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turbulence, it is necessary to do a brief survey on superfluids and the models used to describe them. An

ideal superfluid is characterized primarily by the lack of viscosity, entropy and irrotational flow on simply

connected domains, all characteristics being quantum in origin. The only way rotation can be achieved in

a superfluid is due to the presence of vortices, and circulation about these vortices is quantized. with the

quantum of circulation has the value κ = h/m, with m being the mass of the atom of the element in the

superfluid state.

2.2.1 Analytical models for superfluids

2.2.1.1 The nonlinear Schrödinger equation

In superfluid helium the non-superfluid fraction becomes negligible at temperatures below 1 K, and a rela-

tively simple qualitative model can be made. Such a model is the nonlinear Schrödinger equation (NLSE),

i∂tψ = −
1
2
∇2ψ −

(
1 − |ψ|2

)
ψ (2.1)

where ψ is a complex scalar order parameter. This order parameter can be related to physical quantities

through the Madelung transformation ψ = ρ1/2
s eiφ. Applying this transformation to equation 2.1 and defining

the superfluid velocity vs = ∇φ we find

∂tρs + ∂ j(ρsvs j) = 0 (2.2a)

ρs∂tvs j + ρsvsk∂kvs j = −∂ j p + ∂kS jk, (2.2b)

where p = 1
2ρs is the pressure and S jk =

ρs
4 ∂

2
jk ln ρs can be thought of a quantum stress. This set of

equations resembles the dynamics of a Euler fluid, except for the last term in equation 2.2b. The NSLE

equation, despite being valid only in the T → 0 limit, has been very successful at providing insight on

different phenomena in simple superfluids, including turbulence.

But, as the temperature is increased, the effect of the thermal excitations cannot be neglected anymore,

and a different framework must be used.
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2.2.1.2 Landau and Tisza’s two fluid model

At intermediate temperatures in between T = 0 and T = Tc, the superfluid is composed of the ideal

superfluid fraction and the gas of thermal excitations (phonons and rotons). Between late 1930s and early

1940s, Landau and Tisza proposed a two fluid model of superfluid helium [21]. In this model, the superfluid

is modeled as two interpenetrating fluids, one being the superfluid, which is inviscid, irrotational and carries

no entropy, the other one being an otherwise normal, classical fluid. Each of the fluids is described by its

own density and velocity fields. The equations for the two fluid model are

ρs
dvs

dt
= −

ρs

ρ
∇p + ρsS∇T +

ρnρs

2ρ
∇(vn − vs)2 − Fns (2.3a)

ρn
dvs

dt
= −

ρn

ρ
∇p + ρnS∇T −

ρnρs

2ρ
∇(vn − vs)2 + Fns + η∇2vn, (2.3b)

with the constraint ∇ × vs = 0 and the conservation laws

∂tρ + ∇ · j = 0 (2.3c)

∂t(ρS ) + ∇ · (ρS vn) = 0. (2.3d)

Here, ρs and ρn are the densities of the superfluid and normal fractions, respectively, vs and vn are the

corresponding velocity fields, ρ = ρs + ρn is the total density of the fluid, j = ρsvs + ρnvn is the total mass

current, T is the temperature and S is the entropy. It must be noted that equation 2.3d is valid only when

dissipation is small.

The two fluids are described by Navier-Stokes-like equations, but they are coupled via a mutual friction

force (the term Fns), a phenomenological parameter describing the interaction between the two components.

Its form, unfortunately, depends on the problem being analyzed. That said, the existence of this friction-like

interaction is related to the quantization of vorticity and the interaction of said vortices with the excitation

gas.

The two-fluid model was very successful at predicting second sound and thermal counterflow, and it is

possible to connect, with certain restrictions, to the NLSE equation [22]. It is, however, not suitable to the

study of complex vortex dynamics.
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2.2.1.3 The vortex filament model

In a less microscopic approach, for the study of superfluid vortex dynamics it is not necessary to be con-

cerned with the details of vortex nucleation, which can be investigated using the NLSE. A pure vortex dy-

namics model was developed by Schwarz [23], which relies on the interaction between the already existing

vortices.

A vortex reacts to an external flow due to a Magnus force, which depends on the circulation about the

vortex. If s = s(λ, t) is a curve representing a vortex line at time t, and λ is the arc length, then the Magnus

force is

FM = κρss′ × (v` − vT s), (2.4)

where v` = ds
dt is the velocity of the vortex line and vT s = vs + vi is the total superfluid velocity, consisting

in the external imposed superfluid velocity and the self-induced velocity vi. The self induced velocity of the

vortex depends on the its own curvature and is calculated through the Biot-Savart law,

vi(s) =
κ

4π

∫
(ζ − s) × dζ
|ζ − s|3

, (2.5)

where s = s(λ, t) is a curve representing a vortex line at time t, and λ is the arc length, An approximation to

this equation is usually used, known as the Local Induction Approximation (LIA),

vi(s) ≈ βs′ × s′′ (2.6)

with β = κ/(4π) ln(1/|s′′|a0) , and a0 is the vortex core radius. In the presence of a normal fluid component,

a drag force, related to the mutual friction term in the two-fluid model, must be considered. Near the core

of a vortex, this drag force can be written as

Fd = −
κρsρnB

2ρ
s′ ×

(
s′ × (vn − vT s)

)
−
κρsρnB′

2ρ
s′ × (vn − vT s), (2.7)

where B and B′ are the Hall and Vinen mutual friction coefficients. These coefficients are temperature

dependent, and their values are known experimentally. Now, using the argument that the sum of forces on
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the vortex line is zero, we obtain the Schwarz equation,

v` =
ds
dt

= vs + vi +
κρsρnB

2ρ
s′ × (vn − vs − vi) +

κρsρnB′

2ρ
(vn − vs − vi), (2.8)

This model has been very successful in simulations of complex vortex line geometries, with the cost of

expensive computations if the Biot-Savart law is used, or loss of accuracy in the case of LIA. Furthermore,

vortex reconnections must be handled explicitly in this model. The reconnection happens when the two vor-

tices are sufficiently close together. This assumption, although justified through microscopic calculations,

leads to an artificial component in the model. This dependence on the choice of model for the reconnection,

although not too critical for a full Biot-Savart calculation, results in artifactual effects when using the LIA

[24, 25], which might lead to misleading results.

2.2.1.4 The HVBK model

One way to model large amounts of vortices in a system is to consider a coarse-grained version of a su-

perfluid. This model, known as the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model [20], is written as

the two fluid model (eqs. 2.3) with additional terms to account for the effect of quantized vortices. The

equations are

dvs

dt
= −

1
ρ
∇p −

ρs

ρn
S∇T + νn∇

2vn + F (2.9a)

dvn

dt
= −

1
ρ
∇p + S∇T + T −

ρn

ρ
F, (2.9b)

with the definitions

ωs = ∇ × vs (2.10a)

ω̂s =
ωs

|ωs|
(2.10b)

F =
B
2
ω̂s × (ωs × (vn − vs − νs∇ × ω̂s)) +

B′

2
ωs × (vn − vs − νs∇ × ω̂s) (2.10c)

T = −νsωs × (∇ × ω̂s) (2.10d)

νs =
κ

4π
ln

(
b0
a0

)
, (2.10e)
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where F, T, νs and b0 are the friction, tension, vortex tension parameter and intervortex spacing respectively,

with b0 = (2ωs/κ)−1/2, and B and B′ are the Hall and Vinen coefficients. These equations assume that the

vortex lines are somewhat spatially ordered, and are therefore not applicable to disordered tangles. The

HVBK equations have been useful in describing the onset of complex superflows such as the Ekman to

Taylor vortex flow transition [26], but they are too coarse grained for our purposes: the vortices are invisible,

except for their collective effect.

2.2.2 The Ginzburg-Pitaevskii equations

Amongst all the successful models for superfluids, we have to single out a particular one, which is more

microscopic model and is valid at temperatures close to the λ transition point. In that region, more attention

must be paid to the normal fluid fraction if we are to consider a two-fluid model. This problem was tackled

by Ginzburg and Pitaevskii [9, 10, 27] and they devised a very complete phenomenological model.

2.2.2.1 Equilibrium Condition

They proceeded the following way. To obtain the equations of motion for the superfluid we need to under-

stand the equilibrium state the superfluid is relaxing to. To accomplish this we write its energy density

E = (ρ − |ψ|2)
v2

n

2
+

1
2
|∇ψ|2 + ε(ρ, S , |ψ|2) , (2.11)

where ρ is the density of the superfluid, ψ is the complex scalar order parameter describing the pure su-

perfluid part, vn is the velocity of the normal component of the superfluid, and ε is the potential energy, of

which we can specify the part dependent on the order parameter as the standard Landau-type energy, giving

as a result

E = (ρ − |ψ|2)
v2

n

2
+ |ψ|2 −

1
2

(
|ψ|2

)2
+

1
2
|∇ψ|2 + ε0(ρ, S ). (2.12)

To obtain the equilibrium condition this expression must be minimized with respect to vn and ψ or ψ∗.

But to do this properly we must also enforce the definition of the momentum of the superfluid,

j = (ρ − |ψ|2)vn + ρsvs (2.13)

where, using the Madelung transformation ψ = ρ1/2
s eiφ and defining vs = −∇φwe can rewrite the momentum
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expression as

j = (ρ − |ψ|2)vn +
i
2

(
ψ∇ψ∗ − ψ∗∇ψ

)
. (2.14)

Finally, using a Lagrange multiplier u we include this definition into the expression for the energy density,

yielding

E = (ρ − |ψ|2)
v2

n

2
+ |ψ|2 −

1
2

(
|ψ|2

)2
+

1
2
|∇ψ|2 + u ·

(
j − (ρ − |ψ|2)vn −

i
2

(
ψ∇ψ∗ − ψ∗∇ψ

))
+ ε0(ρ, S ). (2.15)

Now, minimizing with respect to ψ∗ and vn, eliminating u and assuming that the normal component of

the superfluid is incompressible we arrive at the equilibrium condition

1
2

(−i∇ − vn)2 ψ − (1 − |ψ|2)ψ = 0 (2.16)

2.2.2.2 Dynamical Equations

Given the expression for the energy we can expect ψ to obey a Schrödinger-like equation,

i∂tψ = L̂ψ (2.17)

where L̂ is a nonlinear operator. L̂ cannot be purely Hermitian because the equation must account for the

relaxation towards the equilibrium condition. We can readily specify the Hermitian part with the term

−
1
2
∇2ψ + Uψ (2.18)

where U is obtained from the expression for ε, giving

U =

(
−

v2
n

2
+ 1 − |ψ|2

)
− g (2.19)

where g will be determined from conservation laws. The anti-Hermitian part drives the system towards the

equilibrium condition specified in eq. 2.16. If the system is not too far from this equilibrium, then we can
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write the anti-Hermitian (dissipative) part as

− iΛ
{

1
2

(−i∇ − vn)2 ψ −
(
1 − |ψ|2

)
ψ

}
. (2.20)

Λ is a parameter proportional to the inverse of the relaxation time and it must be a real number. Then,

putting it all together, the equation of motion for the order parameter is

i∂tψ = −
1
2
∇2ψ −

(
1 −

1
2

v2
n − |ψ|

2
)
ψ − gψ − iΛ

{
1
2

(−i∇ − vn)2 ψ − (1 − |ψ|2)ψ
}

(2.21)

The mass conservation can be derived from the previous definitions, and is written

∂tρ + ∇ · j = 0. (2.22)

The conservation of momentum is of the form

∂t ji + ∂kΠik = 0 (2.23)

where Π is the pressure tensor,

Πik = pδik + ρnvnivnk − τik +
1
4

{
∂iψ∂kψ

∗ − ψ∗∂i∂kψ + c.c.
}
. (2.24)

Here, p is the pressure, τik is a symmetric tensor to be determined, and ∂i ≡
∂
∂xi

. The equation for the

entropy is

∂tS + ∇ · (S vn − q) =
R
T

, (2.25)

where q is the entropy flux, R is the dissipation function, and T is the temperature. Now, to get the still

unknown coefficients g, τik, q and R we must impose energy conservation in the form

∂tE + ∇ · Q = 0 (2.26)

where E is the energy density written in eq. 2.12. By expanding the ∂tE term, the unknown coefficients are
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chosen so they cancel out the terms that cannot be written as a divergence. Those terms become

R = 2Λ

∣∣∣∣∣∣
(
1
2

(−i∇ − vn)2 − (1 − |ψ|2)
)
ψ

∣∣∣∣∣∣2 +
κ

T
|∇T |2 +

1
2
η

(
∂kvni + ∂ivnk −

2
3
δik∇ · vn

)2

(2.27)

q =
κ

T
∇T (2.28)

τik = η

(
∂kvni + ∂ivnk −

2
3
δik∇ · vn

)
. (2.29)

The term g and the part of τik with non-zero trace have terms with the second viscosities not related to ρs,

and close to the λ point, where these equations are valid, the major contribution to second viscosities comes

from the relaxation of ρs. Thus g and the trace of τik are set to zero. The constants κ and η are identified

as the thermal conductivity and the first viscosity of the normal fluid, respectively. Finally we can write the

system of equations that govern the dynamics of the superfluid close to the λ point:

i∂tψ = −
1
2
∇2ψ −

(
1 −

1
2

v2
n − |ψ|

2
)
ψ − iΛ

{
1
2

(−i∇ − vn)2 ψ − (1 − |ψ|2)ψ
}

(2.30a)

∂tρ + ∇ · j = 0 (2.30b)

∂t ji + ∂kΠik = 0 (2.30c)

∂tS + ∇ · (S vn) =
1
T
∇ · (κ∇T ) +

R
T

, (2.30d)

with the following definitions of the pressure tensor Πik and the entropy source function R,

Πik = pδik + ρnvnivnk − η

(
∂kvni + ∂ivnk −

2
3
δik∇ · vn

)
+

1
4

{
∂iψ∂kψ

∗ − ψ∗∂i∂kψ + c.c.
}

(2.31a)

R = 2Λ

∣∣∣∣∣∣
(
1
2

(−i∇ − vn)2 − (1 − |ψ|2)
)
ψ

∣∣∣∣∣∣2 +
κ

T
|∇T |2 +

1
2
η

(
∂kvni + ∂ivnk −

2
3
δik∇ · vn

)2

, (2.31b)

and p = 1
2

(
|ψ|2

)2
is the pressure. Together, equations 2.30 are known as the Ginzburg-Pitaevskii Equations.

These equations are, in principle, only valid near the λ-point. But they can be seen as a generalized two-

fluid model, as they are asymptotically correct in both the low- and high-temperature limits: the dissipation

parameter Λ→ 0 as T → 0, and Λ ∼ (Tλ − T )−1/3 for T → Tλ.

We are particularly interested in this model because it provides a reasonable and straightforward mixture

of two very similar formalisms, namely the NLSE –the Hermitian component– and the Ginzburg Landau
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equation –the anti-Hermitian part. It is this line of thinking we are going to use to develop our model,

although using a different modeling approach.

There is little record in the literature about the application of this equation to study superfluid problems.

An interesting use is the numerical study of the spin-up problem in helium II made by Aranson & Steinberg

[28], in which they only used equation 2.21 to characterize the nucleation and arrangement of vortices in a

rotating container. There are a couple of studies by Aranson et al. [29] about vortex nucleation following a

thermal quench [29, 30]. Also worth mentioning is the fact that the Ginzburg-Pitaevskii equations happen

to be a special case of a very general framework for superfluid dynamics developed by Geurst [31].

To see how the order parameter equation 2.21 relates to Landau and Tisza’s two-fluid model (eq. 2.3, it

is useful to perform a Madelung transformation ψ = ρ1/2
s eiφ with vs = ∇φ. After some calculation, equation

2.21 now reads

∂tρs + ∇ · (ρsvs) = Λ
{
ρ1/2

s ∇
2ρ1/2

s − (vs − vn)2ρs + 2(1 − ρs)ρs
}

(2.32a)

∂tvs = ∇

[
ρ−1/2

s ∇2ρ1/2
s −

1
2

(
v2

s + v2
n

)
+ (1 − ρs) +

Λ

2ρs
∇ · (ρs(vs − vn))

]
. (2.32b)

It is evident from the above equations that in the dissipation-less limit (Λ → 0) they become the equa-

tions for a NLSE fluid. Also it is interesting to see that the counterflow velocity term vs − vn only appears in

the dissipative terms (containing the factor Λ).

2.2.2.3 Remarks on the Ginzburg-Pitaevskii equations

The Ginzburg-Pitaevskii equations are strongly nonlinear, and hence their behavior will differ from the

relatively simple NLSE dynamics. A useful check is to see how the motion of a 2D vortex is modified by

these nonlinearities. For the case vn � 1, and treating the nonlinearities in eq. 2.21 in a perturbative manner,

it is shown in Pismen [1] that the Magnus force is modified by the dissipative terms. (The equivalent of

equation 2.30a in Pismen [1] differs only by the simple scaling transformation ∇ −→ ∇/
√

2, vn −→ vn/
√

2.)

vs = v +
1

1 + Λ2

[
−Λ2(v − vn) +J(v − vn)NΛ ln

v0(1 + Λ2)
Λ(v − vn)

]
, (2.33)
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where v is the vortex velocity, v0 is a constant dependent on the vortex core structure, N is the winding

number and J is a fully anti-symmetric unit matrix,

J =

0 −1

1 0

 . (2.34)

In this form, for |N | = 1, v0 takes the value v0 ≈ 3.29. Compare this expression to equation 2.38 in Carlson

[32], which rewritten to our variables reads

vs = v + NαζJ(v − vn) , (2.35)

where K is the phase gradient, Q̇ is the vortex velocity, n is the winding number, α is a constant dependent

on core structure and ζ is the dissipation coefficient. Note that equations 2.33 and 2.35 both contain a

similar set of constants, but eq. 2.33 contains a logarithmic nonlinearity. This nonlinearity comes from the

asymptotic matching with the far region, on which, for Λ , 0, the phase obeys a Poisson equation instead

of a Laplace equation.

For illustrative purposes, we will rewrite equation 2.30a in amplitude (polar) form. By making the

substitution ψ = Ueiφ and defining vs = ∇φ we get

∂tU = −vs · ∇U −
1
2

U∇ · vs + Λ

(
1
2
∇2U −

1
2

U(vs − vn)2 +
(
1 − U2

)
U

)
(2.36a)

∂tvs = ∇

[
1

2U
∇2U −

1
2

(
v2

s + v2
n

)
+

(
1 − U2

)
+

1
2U

Λ ((vs − vn) · ∇U + ∇ · (U(vs − vn)))
]

(2.36b)

And if we identify U as U2 = ρs we can write the equations 2.36 in more physically meaningful notation:

∂tρs + ∇ · (ρsvs) = Λ
{
ρ1/2

s ∇
2ρ1/2

s − (vs − vn)2ρs + 2(1 − ρs)ρs
}

(2.37a)

∂tvs = ∇

[
ρ−1/2

s ∇2ρ1/2
s −

1
2

(
v2

s + v2
n

)
+ (1 − ρs) +

+
Λ

2ρs
∇ · (ρs(vs − vn))

]
(2.37b)
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First, it can be rearranged to

∂tψ + i2Λvn · ∇ψ = (i + Λ)
[
1
2
∇2ψ +

(
1 −

1
2

v2
n − |ψ|

2
)
ψ

]
. (2.38)

From here we make the substitution ψ = Ueiφ, and we then get the system

∂tU − 2ΛUvn · ∇φ = Λ

[
1
2
∇2U +

(
1 −

1
2

(v2
n + |∇φ|2) − U2

)
U

]
−

[
1
2

U∇2φ + ∇U · ∇φ
]

(2.39a)

U (∂tφ + 2Λvn · ∇U) = Λ

[
1
2

U∇2φ + ∇U · ∇φ
]

−

[
1
2
∇2U +

(
1 −

1
2

(v2
n + |∇φ|2) − U2

)
U

]
. (2.39b)

As a final remark, we must note that equation 2.30a is equation 8.12 in Geurst [31] (with appropriate

dimensions), where he also gives the corresponding kinetic coefficients (the matrix α) for the generalized

complex Ginzburg-Pitaevskii equations.

2.3 Cell dynamical systems

We now turn to the method that we use to implement a sensible model for superfluids that will try to include

all the relevant physics.

We are interested in the long-time behavior of superfluid systems, where macroscopic features dominate

the dynamics. Any tool that enables this kind of study must account for the symmetries, boundary conditions

and any essential features, while at the same time safely disregarding irrelevant microscopic dynamics.

To obtain a computationally efficient description we use cell-dynamical systems [33] (CDS) to simulate

the dynamics of the order parameter. A cell-dynamical system is a map from a set of discrete patterns

to itself. This definition also applies to other discrete systems such as cellular automata and coupled map

lattices. As an example, a finite difference map is a CDS, but not all CDS are finite difference discretizations.

In this sense, CDS gives us greater freedom in choosing a model and the relevant variables for the problem

to study. Another benefit of CDS modeling is that there is no great need for tuning of the system, as long as

the parameters describe a plausible physical situation.

22



CDS maps can be created in many ways. For instance, to model a Ginzburg–Landau equation, we note

that it has a Laplacian and a potential term. The Laplacian simply couples each cell with its neighbors,

therefore it can be implemented by subtracting from each cell value the mean around it, being careful to be

as isotropic as possible. In this way gradients are penalized. The potential term simply drives the system

towards an equilibrium value. In the CDS way of thinking, any map that has the correct fixed points for

the potential is in the same universality class as the physical problem, so the final choice depends on the

kind of control needed on the map, and also the numerical efficiency must be considered. Another example,

and the first success of the CDS approach, is a conservative spinodal decomposition CDS map [33], whose

dynamics are governed by the Laplacian of a functional derivative of the free energy, has nested averaging

and potential maps. And in a final example, the CDS maps used to model travertine terraces found in hot

springs [34] are just very simple rules governing the fluid dynamics and physicochemical dynamics of the

sedimentation process.

The CDS approach uses the following reasoning. One can model nature by differential equations, and

then discretize them to get a set of coupled maps. Or one can devise the coupled map description directly

from modeling nature. Both types of models extract from experience the key dynamics of the underlying

processes, but they express them in different ways. In principle, they should be equivalent, since they

are both abstractions and expressions of the same physics. This argument was quantitatively tested in the

example of a complex model for carbonate flow depositional patterns, as found in the vicinity of geothermal

hot springs. In this study, Goldenfeld et al. [8] solved a cylindrically-symmetric flow deposition problem

obtaining the shape of a travertine (calcium carbonate) dome by two methods. The first was a CDS method,

the second was a direct integration of the fluid dynamics equations for shallow-water flow coupled to the

moving boundary problem representing the growing calcium carbonate surface. The resulting patterns were

identical. Moreover, the partial differential equations yielded an analytical scaling prediction for a particular

morphological characteristic, and this scaling law was shown to be satisfied over 5 decades by the CDS

numerical solution. Thus, two logically independent representations of the same underlying physics were

demonstrated to yield the same predictions.

It may appear that CDS is a rather crude approach, but the truth is that we are considering only the

relevant dynamical processes needed to calculate universal scaling properties, and that has been enough to

deliver testable predictions. As an example, Nagaya et al. [7] experimentally measured vortex correlation
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functions in 2D liquid crystal films, and the universal scaling agreed with the CDS predictions with no

adjustable parameters. See Zapotocky et al. [35] for another example involving defect dynamics liquid

crystals, where the order parameter is not scalar, but matricial. CDS maps have been used to study spinodal

decomposition [36], coupled oscillators [37] and vortex string dynamics [5, 6]. It has also been successfully

used with more tangible results to understand ordering kinetics in liquid crystals [35] and to explain the

formation of travertine terraces in hot springs [34]. We choose to use a CDS map for our problem because

it allows us to capture the symmetries of the superfluid in a concise way, and also, since it gives us latitude

to choose any map satisfying the correct physics, it allows for very fast numerical simulation.

2.4 A CDS-based fast computational algorithm for superfluids

To construct the CDS map for our model we first must note the structure present in equation 2.21. By

construction, it has a conservative, Hermitian part and a dissipative, anti-Hermitian part. If we were only to

consider the dynamics of the Hermitian part, we would be dealing with the Gross-Pitaevskii equation with

a slightly modified chemical potential term. In an analogous way, the behavior of the anti-Hermitian part

follows the Ginzburg-Landau equation, with an extra term representing the advection of the order parameter

field due to the presence of the normal fluid with velocity vn.

For the first, conservative part we note that it is a set of coupled oscillators with an amplitude-dependent

frequency. The oscillator frequency is, in principle, dependent on the magnitude of the order parameter and

the normal component of the superfluid. Thus, this map will have the form

ψn+1 = exp
(
−iω(|ψ|2, vn)

)
ψn. (2.40)

This map is also the solution semigroup for the Gross-Pitaevskii equation, as usually obtained in CDS

models. By inspecting eq. 2.21, the frequency term ω(|ψ|2, vn) can be directly written as

ω(|ψ|2, vn) = 1 −
1
2

v2
n − |ψ|

2 (2.41)

To perform the spatial coupling, we note that equation 2.21 has only Laplacian terms, so it is sufficient
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to penalize gradients. Thus, the CDS map for the Hermitian operator is

ψn+1 = exp
(
−i

(
1 −

1
2

v2
n − |ψ|

2
))
ψn + iC

(
〈ψn〉 − ψn) (2.42)

where C sets the spatial coupling strength, and 〈. . .〉 denotes an isotropic spatial average.

Following the same reasoning, we turn to the dissipative part of equation 2.21. As this part includes an

advection term, it is useful to treat it separately. For this map, the complex order parameter here is no longer

viewed as an oscillator, but its magnitude is driven towards the superfluid fixed point. The CDS map is thus

written then as

ψn+1 = f (A, ψn, vn) + C
(〈
ψn〉 − ψn) (2.43)

The function f can be any function that satisfies the flow set by the double-well potential used in equation

(2.21). Explicitly, given a value of the parameter A, the fixed point at ψ = 0 is repulsive, together with the

attractive region |ψ| = 1, which represents the superfluid state or, for a different set of values for A, only a

single, attractive fixed point at ψ = 0. Note that the normal velocity vn enters in this part too, but to keep the

map simple we just write this term expliticly. Our choice for the function f is

f (A, ψ) =
Aψ√

1 + |ψ|2(A2 − 1)
. (2.44)

For A < 1 the fixed point at ψ = 0 is attractive, and repulsive for A > 1. This parameter sets the depth

of the quench, how fast the system evolves towards its fixed point. A practical reason to use this map is

the fact that the function 1/
√

x is implemented in hardware in modern CPUs, allowing for noticeably faster

computation (avoiding a division).

Putting everything together at this point, the algorithm works as follows:

ψn+1/3 = λ

{
exp

(
−i

(
1 −

1
2

v2
n − |ψ|

2
))
ψn + iC

(
〈ψn〉 − ψn)} (2.45a)

ψn+2/3 = Advection
(
ψn+1/2, vn

)
(2.45b)

ψn+1 =
Aψn+2/3√

1 + |ψn+2/3|2(A2 − 1)
+

1
2

v2
n + C

(〈
ψn+2/3

〉
− ψn+2/3

)
(2.45c)

where λ ∈ [0, 1] is a parameter quantifying the relative strength of the conservative and dissipative parts,

occupying a role similar to 1/Λ, where Λ is the dissipation parameter that appears in eq. 2.21.
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Now, the average 〈. . .〉 needs to be more isotropic [38] than the regular first order Laplacian traditionally

used in finite-difference calculations. The averages used are [6, 36]

〈ψ〉 ≡
1
6

∑
NN

ψ +
1
12

∑
NNN

ψ for 2D (2.46)

〈ψ〉 ≡
1
9

∑
NN

ψ +
1
36

∑
NNN

ψ for 3D, (2.47)

where “NN” means the nearest-neighbor cells, ans “NNN” means the next to nearest-neighbor cells.

The advection algorithm is, in our case, a simple scalar product of the first derivative of the order param-

eter with the normal velocity. Care must be placed, nonetheless, in the choice of numerical implementation

of this first derivative. Again, demanding a high degree of isotropy [38] and accurate representation in

Fourier space [39], we choose the first derivative as

∂xψ ≡
1
8

(
ψi+1, j+1 + 2ψi, j+1 − ψi−1, j+1 + ψi+1, j−1 − 2ψi, j−1 − ψi−1, j−1

)
(2.48)

for two dimensions, and

∂xψ =
1
8

(
ψi+1, j+1,k − ψi−1, j+1,k + ψi+1, j−1,k − ψi−1, j−1,k+

+ ψi+1, j,k+1 − ψi−1, j,k+1 + ψi+1, j,k−1 − ψi−1, j,k−1
)

+

+
1
4

(
ψi, j+1,k − ψi, j−1,k + ψi, j,k+1 − ψi, j,k−1

)
, (2.49)

for three dimensions, with the appropriate swapping of indices to obtain the other components of the gradi-

ent. Failure to use a highly isotropic derivative will result in artifacts in the simulation.

2.4.1 Remarks on the model

This model has many interesting features. First, vortices are emergent and not explicitly put in the model

and, as such, will naturally undergo reconnection. In presence of a normal flow, the vortices will move

according to a Magnus force.

The model, thanks to its cellular description, permits studying large numerical systems and should reach

the asymptotic regime faster that conventional realizations of superfluid simulations [40]. The model does

not need to care about microscopic details: the CDS maps are coarse-grained descriptions of the fluids.
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Although it was inspired by the Ginzburg-Pitaevskii equations, they are not a discretization for it. In the

same spirit as other cellular models, it is meant to be per se a model of simple quantum fluids.

So far the model has not explicitly included thermodynamical terms similar to the ones in the Ginzburg-

Pitaevskii equations. This means that we are operating in a regime not too far away from the λ transition

point. Also, there are no temperature gradients (and hence no thermal counterflow is possible). See Aranson

& Steinberg [28] for details. In principle, even when there are no external temperature gradients, there

exist flutuations due to the friction between the normal and superfluid parts. This also means that in the

approximation we are using, the normal fluid velocity should be much smaller than the speed of first sound.

It is possible to account for these thermodynamical effects by coupling the model of eqs. 2.45 to a reasonable

fluid model such as Lattice Boltzmann. More on this on Sec. 2.5. Another limitation is that the model does

not reveal the microscopic dynamics of the superfluid, but the model does not try to do that in the first place.

For most of our calculations, this will not be a problem.

2.5 Lattice Boltzmann

In the model written in eqs. 2.45 we do not explicitly account for the dynamics of the normal fluid, or

even less the thermodynamics of it. So far, this normal velocity vn is an external forcing field, much like an

external magnetic field acting on a superconductor. We can couple the CDS model to a comparatively simple

model for normal fluids through vn, as long as we can affect the normal fluid dynamics with the superfluid

order parameter. Here the task is apparently more difficult as we must dwell into the well-established realm

of computational fluid dynamics (CFD). CFD models have been very successful in simulating fluids, even

in multiple scales, but these successes are often backed by massive amounts of computational power. In

our case we are not interested in fluids at high or even moderately high Reynolds numbers, but this does

not mean we are discarding the interesting physics of complex superflows. One method that satisfies these

criteria, and which happens to be a very successful one too, is the Lattice Boltzmann equation.

The Lattice Boltzmann equation [13, 14] (LBE) is a discrete counterpart to the Boltzmann equation. It

can be expressed in a very simple form as

fα(x + eα, t + 1) − fα(x, t) = Ωα . (2.50)
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Here, f (x, t) is a particle distribution function, which contains the particles which, at time t and lattice site

x are moving along the discrete velocity vectors eα, and Ωα is the collisional operator. As with the case

of the continuous Boltzmann equation, the moments of the distribution function are related to macroscopic

physical quantities of the fluid:

ρ =
∑
α

fα j = ρu =
∑
α

eα fα . (2.51)

To use the LBE first one must make assumptions about the collisional operator. The simplest nontrivial

operator assumes that the particle distribution f relaxes to an equilibrium distribution f eq with a single

relaxation time. That is,

Ωα = −
1
τ

(
fα − f eq

α

)
. (2.52)

This is known as the Bhatnagar-Gross-Krook operator. Despite its apparent oversimplification, it captures

enough information which enables the system to simulate realistic fluid dynamics. The key lies in the

modeling of f eq. In most numerical studies, f eq is a simple polynomial on the fluid velocity and lattice

velocity vectors, whose coefficients are set through the reasonable requirement that the moments of f eq are

the same as those of f . The coefficients are not uniquely set, and they depend on the geometry of the lattice

being used.

There is previous work in the area of complex fluid models being simulated using LB methods. These

studies include phase separation in Cahn-Hilliard hydrodynamics and defect dynamics in liquid crystal

systems [41]. Most of the methods for the inclusion of the complex fluid dynamics were taken from these

studies. They used the pressure tensor Πik as an extra restriction on the equilibrium distribution, and only

then the correct fluid dynamics were recovered.

Taking the hint from those studies, we can model f eq by requiring

∑
α

f eq
α eαieαk = Πik. (2.53)

In the classical case, the fluid stress tensor is explicitly dependent on the fluid velocity, that is, with terms

linear in vivk, so the expansion for f eq must at least include terms up to second order in velocities.

In the Lattice Boltzmann formalism, to make the connection with hydrodynamic equations we must

perform a Chapman-Enskog expansion (valid for low Mach numbers) together with an appropriate choice of

the collision operator Ω, just like in the case for the Boltzmann equation. The choice we make (and probably
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the simplest choice) is the Bhatnagar-Gross-Krook operator. This operator drives the system toward an

equilibrium distribution specified by f eq with a relaxation time τ. Our task is to appropriately model f eq to

match our requirements.

Given the following equations for the fluid,

∂tρ + ∇ · j = 0 (2.54a)

∂t ji + ∂kΠik = 0 (2.54b)

one way to model f eq is to enforce that its moments satisfy the relations

∑
α

f eq
α = ρ (2.55a)∑

α

f eq
α eα = j (2.55b)∑

α

f eq
α eαieαk = Πik . (2.55c)

This is true as long as Πik is symmetric. If it’s not, then only the symmetric part enters into this equation,

and the anti-symmetric part will enter as a body force via an additional set of constraints.

2.5.1 The Chapman-Enskog expansion

As a check before using Lattice Boltzmann methods, I have to make sure the prescription above is actually

simulating the conservation equations. For this I perform a Chapman-Enskog expansion on equation 2.50.

This expansion takes the continuum limit of 2.50 and, after matching order by order, it is possible to obtain

the first few terms of the particle distribution function f as a function of the equilibrium distribution f eq.

From there, it is straightforward to obtain the evolution equations of the moments of f , up to the prescribed

order.

To proceed with the expansion, first I Taylor-expand the left-hand side of the Lattice Boltzmann equa-

tion:

f out
α − fα = fα + eαi∂i fα +

1
2

eαieα j∂i∂ j fα + ∂t fα + ∂teαi∂i fα +
1
2
∂2

t fα − fα , (2.56)
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where f out
α ≡ fα(x + eα, t + 1). We thus obtain the following expression for the LBGK equation:

eαi∂i fα +
1
2

eαieα j∂i∂ j fα + ∂t fα + ∂teαi∂i fα +
1
2
∂2

t fα = −
1
τ

(
fα − f eq

α

)
(2.57)

Now, I expand the distribution function up to order 2,

fα = f (0)
α + f (1)

α + f (2)
α + . . . (2.58)

and together with the assumption that the derivatives will increase by one the order of a term in the expan-

sion, it is found that

f (0)
α = f eq

α (2.59a)

f (1)
α = −τ (eαi + ∂i) f eq

α (2.59b)

f (2)
α = τ(1 −

1
2τ

) (eαi + ∂i)2 f eq
α . (2.59c)

We can now find the evolution equations for the moments. The relaxation time τ can take values greater or

equal than 1
2 . The case τ = 1

2 is the “non-viscous” limit, as it does not introduce terms into the evolution

equations resembling the viscous terms in the Navier-Stokes equation. These viscous terms, with careful

tuning of the value of τ, are usually an advantage in most Lattice Boltzmann simulations. However, given

the fields I am simulating in this calculation, I chose to include the correct viscous terms in the definition of

Πik and not to include the Lattice Boltzmann viscous terms up to second order in fα.

2.5.1.1 Non-viscous limit

After setting the value of τ to 1
2 , the right-hand side of equation (2.59c) vanishes, leaving us with the

following terms in equation 2.58, the expansion of f ,

fα = f eq
α −

1
2

(eαi + ∂i) f eq
α + h.o.t. (2.60)

Now, summing the above equation over α, using the definitions 2.51 and the constraints 2.55 we obtain

∂tρ + ∂i ji = 0 + h.o.t. , (2.61)
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that is, we recovered the continuity equation. To get the next equation we multiply eq. 2.60 by eαq and again

summing over α, and using the definitions and constraints, we find

∂t ji + ∂kΠik = 0 + h.o.t. , (2.62)

thus recovering the fluid equations I need to simulate.

2.5.1.2 Viscous limit

To show why I use the non-viscous LB prescription, and for the sake of completeness, I repeat the derivation

of the equations, this time with τ > 1
2 .

The expansion of f has the form

fα = f eq
α − τ (eαi + ∂i) f eq

α + τ(1 −
1
2τ

) (eαi + ∂i)2 f eq
α . (2.63)

By doing the same manipulations as before we obtain the following:

∂tρ + ∂i ji =

(
τ −

1
2

) {
∂t

[
∂tρ + ∂i ji

]
+ ∂i

[
∂t ji + ∂kΠik

]}
(2.64a)

∂t jk + ∂iΠik =

(
τ −

1
2

) {
∂t

[
∂t ji + ∂iΠik

]
+ ∂i

[
∂tΠik + ∂qMikq

]}
, (2.64b)

where Mikq =
∑
α f eq

α eαieαkeαq. In equation 2.64a we note that the first term in brackets is the same as

the right hand side, so it can be discarded based on the high order of that term. The same can be said for

equation 2.64b. Thus, to first order in derivatives, we have the following equations:

∂tρ + ∂i ji = 0 (2.65a)

∂t jk + ∂iΠik = 0. (2.65b)

Now, replacing 2.65b into the second term in brackets in equation 2.64a we can get rid of a yet higher order
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term. Thus, up to second order in derivatives, we get the final set of equations

∂tρ + ∂i ji = 0 + O(∂3) (2.66a)

∂t jk + ∂iΠik =

(
τ −

1
2

)
∂i

[
∂tΠik + ∂qMikq

]
+ O(∂3). (2.66b)

Now, from the definition of f eq and using identities for the lattice vectors, we can calculate ∂qMikq:

∂qMikq =
1
3

(
∂k ji + ∂i jk + ∂q jqδik

)
(2.67)

Finally, defining η = 1
3

(
τ − 1

2

)
we obtain the final evolution equations for the moments of f up to second

order in derivatives,

∂tρ + ∂i ji = 0 (2.68a)

∂t jk + ∂iΠik = ∂i
{
η
[
∂k ji + ∂i jk + ∂q jqδik

]
+ 3η∂tΠik

}
(2.68b)

It is easy to see from these equations the effect of the single relaxation time τ > 1/2: it creates the viscous

stress-like terms. This is useful for Navier-Stokes simulation of other types of fluids. Instead, given we are

simulating complex fluids, it is more appropriate to include the appropriate viscous terms in the definition

of Πik, and set τ = 1/2.

2.5.2 Coupling back to the order parameter equations: backreaction

Up to this point we have stated a model for the order parameter (in eqs. 2.45), which has a normal fluid term

forcing it, and a model for this normal fluid, written as a Lattice Boltzmann description. Now we need to

close the model by coupling this LB model back to the order parameter description.

To do this, we note that in treating complex fluids using LB, the pressure tensor Πik must be specified

explicitly. In other systems, the pressure tensor is defined naturally through a free energy [41]. In our case,

we look back at the Ginzburg-Pitaevskii equations in 2.21. We recall that, although this model does not

come from a free energy, it does have an explicit term for the pressure tensor that arises from conservation
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of momentum, which is written in eq, 2.31a. It reads

Πik =
1
2

(
|ψ|2

)2
δik + ρnvnivnk − η

(
∂kvni + ∂ivnk −

2
3
δik∇ · vn

)
+

1
4

{
∂iψ∂kψ

∗ − ψ∗∂i∂kψ + c.c.
}

(2.69)

In principle we can calculate this quantity and use it in the constraint equations for the LB model. There

are many things to note. First, the viscosity η in eq. 2.69 is not the same as the one inferred in the Chapman-

Enskog expansion, and it must be specified as another parameter of the model. Second, care must be taken

when justifying the Chapman-Enskog expansion when comparing the momentum term j from a regular fluid

description with the rather complex momentum in the Ginzburg-Pitaevskii equations.

Despite these caveats, it is a promising avenue worth exploring. There are thermodynamics implicit

in the Lattice Boltzmann description and, for example, a temperature gradient can be imposed as another

contraint equation.

2.6 Validation of the models

Presently, only the passive model in eqs. 2.45 are implemented, that is the cellular maps with the advection

routine and no backreaction. With this it is possible to test the model to see how well it reproduces known

features of superfluid hydrodynamics, namely reconnections and their reaction to the presence of a normal

velocity field. Also we can validate how well the model reproduce known results for defects in Ginzburg-

Landau systems.

2.6.1 Two- and three-dimensional quenches

The first most crucial feature that the model must satisfy is that it actually supports vortex solutions. We

already know that in a pure cellular XY model [5, 6], topological defects are created as a result of a critical

quench. What is left to see is what happens after adding the coupled oscillator map and the advection

routine.

In principle, the coupled oscillator map should allow for defects, as it was modeled after the NLSE. The

effect of the advection routine is more difficult to analyze on its own, as it depends on the actual form of the

external velocity field, as it will be seen in the section on kinematic simulations. Nevertheless, a simple test

case of uniform, constant velocity suffices to see if we were in the right track.
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Figure 2.1: Two-dimensional quench with external velocity field. The lightness indicates the phase and the color scale
indicates the density of the superfluid. The abrupt changes in lightness accounts for a 2π phase slip.

By looking at the equations of motion of the vortices, the external velocity field should manifest itself

as a externally imposed phase gradient, so a simple uniform field will look like a constant phase gradient,

modulo 2π along the direction of the velocity field. Also, the Magnus force should be evident as vortices

annihilate (in the 2D case) or reconnect (in the 3D case). To simulate the quench, we follow the recipe

outlined in Mondello & Goldenfeld [5, 6]. The simulations were initialized using random complex numbers,

whose phase φ ∈ [0, 2π) is uniformly distributed, and whose magnitude is |ψ| = 1 ± 0.1, also uniformly

distributed. That way we are starting close to the superfluid state but with a disordered initial condition. The

externally imposed velocity field is set to be vn = 0.5x̂.

In two dimensions the quench created a set of topological defects, which can be identified as the ampli-

tude zeros of the field. Also, the defects are quantized vortices: the flow circulates about them and there is

a phase discontinuity. In Figure 2.1, the density of the field |ψ|2 is plotted, with the color scale going from

minimum (blue) to maximum (red). The superimposed light/dark shade shows the phase field, with the

sharp transition from light to dark represents a 2π jump in the phase value. The defects are always located at

an extreme of a phase discontinuity, and about every vortex there is only one jump, indicating that they are

singly-quantized vortices. We cannot rule out the possibility of the existence of higher order singularities,

but in a simple superfluid these are unstable.

The vortices do annihilate as they come close together, and the actual annihilation dynamics vary de-
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Figure 2.2: Superfluid streamlines wrap around two line vortices and a ring vortex.

pending on the presence or not of the external field. Also, this simple external field has the expected effect

of creating an overall background of a constant phase gradient along the horizontal direction. From the

image in Figure 2.1 we can make our case for the analogy that the defects in superfluids are similar objects

to dislocations in a crystal lattice.

In three dimensions, the quench results in the creation of a tangle of one-dimensional defects, which,

like their two-dimensional siblings, are transported by the external field. These singularities undergo recon-

nection upon contact and once they form rings (see Figure 2.2), they shrink until disappearing.

2.6.2 Vortex reconnection scaling

One of the important features of superfluid hydrodynamics is the fact that, upon contact, quantum vortices

reconnect, and when doing so they dissipate some energy by locally giving off phonons, creating a rarefac-

tion wave [42]. In simulations based on vortex string models, in which the vortices are the only objects

being simulated, they interact through the Biot–Savart Law or the Local Induction Approximation [23] ,

but the reconnection event must be artificially added, with the consequence that this relevant dissipation

mechanism is neglected, and these results might be misleading. Also in the case of the LIA, the non-local
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effects are not accounted for, so the asymptotic dynamics of vortex tangles are not correct in that framework

[24].

In the case of our model, there is no need to add any artificial rule to implement reconnections: they

come naturally with our prescription. Given that they are topological defects, do they behave as they should?

This class of defects, which also include one-dimensional cosmic strings [1], has a very definite scaling

law: the distance between two reconnecting strings scales as (t0 − t)1/2 or (t − t0)1/2, depending if the

strings are closing in together or moving away from each other, respectively. In superfluid helium II, it was

confirmed experimentally that the superfluid vortices do obey this scaling law [43] although the distribution

of calculated exponents raised questions about the effect of the local medium in the neighborhood of the

event. Also, some corrections to this law might be needed due to intermittency effects [44]. It is a good test

to see if our model obeys this scaling law.

2.6.2.1 Measurement procedure and results

The following procedure was used to measure the exponent for the scale parameter. First we identify a

reconnection event, its position and approximate time. Then we isolate this region of interest from the

rest of the string tangle to aid in the visualization (see the isolated reconnection event snapshots in Fig.

2.3). To measure the distance we have to note that immediately after the reconnection event a plane can be

defined such that the reconnected strings will pass through this plane perpendicularly. The segment joining

the points defining the distance between the strings (the shortest possible distance between the strings)

should lie in this plane. With the visualization software we make a 2D slice of the density data, placing it

approximately where this ideal plane would be located (small deviations from the ideal position of the plane

are not relevant because the coefficients multiplying the position of the string cores will affect both of them

equally, thus the distance scaling will remain unaffected). The density data in this slice shows the location

of the string cores and therefore the distance is easily computed. A similar analysis can be made for the

instant previous to the reconnection.

As the pre-reconnection scale parameter obeys the power law `(t) = a(t0− t)β, and the post-reconnection

scale parameter obeys `(t) = a(t − t0)β , with β having a predicted value of 1/2,

We have to do an extra bit of work to deal with this scaling law’s dependence on the reconnection time

t0. Instead of performing multiple fits for the exponent using various values for t0 and then choosing the
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Figure 2.3: Frames extracted from the simulation showing the evolution of the reconnection event.
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Figure 2.4: Scaling for two reconnecting vortex strings. Inset: distance as a function of time, with its best power-law
fit.

best one, we proceed the following way [45]: we calculate the time derivative of `(t), and we plot it as a

function of `(t). If `(t) has a power law dependence as we expect, so will `′(`(t)). We only have to relate the

exponents. Assuming d`
dt = `α, and `(t) = a(t − t0)β, then it is straightforward to get the leading exponent

for `(t), ` ∝ t1/(1−α), finally obtaining β = 1/(1 − α).

From our current data we find the values listed in Table 2.1. In particular, we find α = −0.9 ± 0.2,

thus obtaining β = 0.53 ± 0.06, in good agreement with the prediction. Using these values we obtained

t0 = 1652.4 ± 0.2 and a = 1.78 ± 0.01 (see Fig. 2.4, inset). Note that although these quantities have

nonstandard units, these values can be useful for making comparisons of adimensionalized quantities.

Although this measuring method is cumbersome, and thus the data is scarece, these results indicate that

the topological defects displayed by our model seem to obey the same scaling laws as superfluid vortices.
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α ± δα β ± δβ type
−0.9 ± 0.2 0.53 ± 0.06 post
−1.0 ± 0.4 0.5 ± 0.1 pre
−1.0 ± 0.2 0.50 ± 0.05 pre
−0.9 ± 0.6 0.5 ± 0.2 post

Table 2.1: Values obtained for the scaling exponents for different reconnection events. For the reconnection type
column, pre means that the scaling parameter was measured immediately before the reconnection. Likewise, post
means that the measurement was performed immediately after the reconnection.

Later we will discuss some other much stronger scaling results that have the consequence that the exponent

β indeed has a value close to 0.5 for our CDS model.

2.6.3 Kinematic calculations

A series of studies were performed using the model, to replicate known results and verify that some mech-

anisms present in superflows are captured by the model. These particular simulations were kinematic in

nature, in the sense that an external normal flow is imposed, and then the superfluid fraction response was

observed.

2.6.3.1 Ostermeier-Glaberson Instability and the Arnold–Beltrami–Childress Flow

When the normal velocity component which is parallel to a vortex line exceeds a critical value, an instability

of the Kelvin waves takes place. This phenomenon is known as the Ostermeier-Glaberson (OG) instability

[46], and is responsible for the creation of vortex lines by using energy extracted from the normal fluid flow.

To test if our model can reproduce this phenomenon, we advect the superfluid with a Gaussian vortex

flow [47]:

vn(r) =
Γ

2πr

(
1 − exp(−r2/r2

c )
)
φ̂ (2.70)

This flow displays concentrated vorticity at its core, the expected behavior is that the vortex lines will

get trapped and stretched, increasing the line density.

The simulations were carried in a periodic cubic lattice with 643 cells, and the vortex centered in the

cube, with its axis parallel to the ẑ direction. The initial condition was a single ring inside the cube, a

remainder of a quench run, and various values for the circulation parameter Γ were used in different runs,

ranging from Γ = 4 to Γ = 12.

For a small value of Γ tried, there was already some behavior which corresponds to the sought after
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(a) Onset of the OG instability. Initial
twisting before the creation of the first
ring.

(b) A more developed tangle about the
Gaussian vortex

Figure 2.5: Different stages of the Ostermeier-Glaberson instability.

instability. The initial ring is trapped by the vortex. It is then stretched around the vortex core and twisted.

(see Fig. 2.5(a)). A ring is created once the quantum vortex lines reconnect, which also becomes transported

by the normal flow. This ring reconnects again with its parent, creating Kelvin waves. For this small Γ, the

normal flow is large enough to repeat the process. But for larger values, the Kelvin waves are rapidly

stretched by the normal flow, creating more rings as they become twisted. From this we see that the vortex

line length increases exponentially, as it is expected for this instability. These simulations also showed that

the vortex line length eventually saturated. This was predicted in Samuels [47], but the author could not

reach that regime.

One of the most important tests that applied to this model is advecting the superfluid flow with a normal

flow complex enough that it will be capable to induce chaotic, yet not turbulent, behavior of the vortex

strings, to test some statistical features that should be expected in any reasonable model for superfluids.

This particular flow is known as the Arnold–Beltrami–Childress (ABC) flow [48, 49].

vx = Cy cos
(
2π
λ

y
)

+ Cz sin
(
2π
λ

z
)

(2.71)

vy = Cz cos
(
2π
λ

z
)

+ Cx sin
(
2π
λ

x
)

(2.72)

vz = Cx cos
(
2π
λ

x
)

+ Cy sin
(
2π
λ

y
)

(2.73)

where the Ck are the flow’s parameters.
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Figure 2.6: Snapshot of vortex tangle under the ABC flow. Although the tangle is a complex object, it is definitely not
complex enough to say that it is a turbulent state.

The ABC flow has a number of desirable features. It displays staggered tubes of concentrated vorticity,

with strongly interacting fluid lines, allowing to explore, for some parameters, chaotic Lagrangian trajecto-

ries [48]. It also has non-zero helicity, h = v · ω. It is also a simple analytic solution of the NSE, which

allows for comparison of exact results with the data from simulations.

The simulations aim to reproduce two features. Namely, from a simple initial condition the line density

should increase exponentially until saturation, due to the Ostermeier-Glaberson instability. Also, the mean

vorticity of the superfluid should match the vorticity of the advecting ABC field.

The following results assume that the parameters Ck are identical, Ck = C. A simulation was performed

on a periodic lattice with 1283 cells. The initial condition was a pair of opposing vortex rings, described by

its Clebsch potentials [50]

λ(x) = cos
2
√

2
L
|y − y0|

 µ(x) = sin
(

8π
3L
|x − x0|

)
, (2.74)

and then, after a brief relaxation time, the system is left evolving under different values of C for 20000

iterations. Six values of C were explored, from 0.025 to 0.15 in steps of 0.025.

The RMS vorticity scales linearly with the line density in a fully turbulent regime [51]. As seen in
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Figure 2.7: RMS vorticity as a function of input velocity scale. In a turbulent state this dependence should be linear.
Inset: saturation of enstrophy as a function of time. The saturation level increases as the forcing of the normal fluid
increases. Note how the fluctuations also increase.

the in figure 2.7, we don’t see that linear dependence, probably indicating we are not in a fully developed

turbulent state. Inset in the same figure, the mean enstrophy 〈ω2〉 increases exponentially for all velocities,

except C = 0.025, which is likely below the threshold for the OG instability. Also noticeable is the increase

in fluctuations. But probably more remarkable is the saturation of the vorticity in itself. In the study by

Barenghi et al. [49], they cannot obtain the saturation of vorticity using the Local Induction Approximation,

as it discards the non-local effects needed. The saturation was expected because, in the framework of the

Biot–Savart law (BSL) , as the superfluid velocity approaches the normal velocity, the mutual friction,

which drives the superflow in the first place, diminishes. They also could not use the BSL directly as it

is computationally impractical. Their solution was to derive an ad hoc approximation by assuming that

the superflow was close in geometry to the normal flow (which is known analytically), and subsequently

informing this approximation by sparsely sampling the simulation field using the BSL. Only then the authors

could obtain the expected saturation. Although this approximation matches the BSL in the first stages,

where the LIA already lost validity, it requires that the normal advecting flow has a known functional form,

making it unsuitable for quasi-turbulent or turbulent flows. Our model includes non-local effects and vortex

reconnection in a natural way, and has the advantage that the computational effort scales only with system

size, not with vortex density. This allows for prolonged computation in complex, dense vortex tangles.
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Figure 2.8: Comparison between two different realizations of the CDS model in three dimensions forced with ABC
flow. In both situations, the external imposed flow has the same parameters. In the left frame, the CDS model is fully
dissipative (λ = 0 in eq. 2.45a), whereas on the right λ = 0.25. Comparing both situations, having a conservative
component makes the system more prone to the creation of the defect strings.

2.6.3.2 Comparison between fully dissipative and mixed models in ABC flow

To end this section, a natural question to ask is the extent of the effect of the conservative terms in the CDS

maps written in eqs. 2.45. The external flow adds an extra phase contribution to the order parameter, and

also the Magnus force between vortices changes direction as the value of Λ changes, as seen in eq. 2.33.

Thus, it would be expected both an increase in the number of vortices formed (due to the extra phase term)

and changes in the motion of the vortices in response to their interaction.

To explore these effects, I set up a simulation of a three-dimensional system subject to an ABC flow.

One of the simulations was fully dissipative, with λ = 0 in eq. 2.45a, and one with some conservative effect,

with λ = 0.25, keeping everything else identical. As seen in Fig. 2.8, both resulting fields show a similar

structure of the vortex tangle, following the vortex tube structure of the ABC flow. However, the simulation

on the right (with the conservative maps turned on) displays a higher density of strings, confirming that

this fluid is indeed more prone to creation of defects. Otherwise, both dynamics seem very similar, with

intermittent rearrangements of the vortex tangle due to the chaotic streamlines of the ABC flow.
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2.6.4 Spin-up of superfluids

A very particular experiment that can be performed on superfluids is the spin-up of the fluid [52]. The basic

setup of the problem consists in subjecting the superfluid to rotation, resulting in the formation of vortices

in its bulk. The big difference, compared to regular fluids, is that due to the quantization of circulation, a

lattice of vortices will be created, much like an Abrikosov lattice in superconductors, instead of a single

vortex representative of all the circulation of the fluid.

In the framework of numerical models, Aranson & Steinberg [28] used the Ginzburg-Pitaevskii model

of superfluids [9, 10, 27] to study the spin-up problem close to the superfluid transition. The setup of the

problem is very simple and easy to implement with the CDS model.

Instead of creating a circular boundary condition to represent the container, the authors used simple pe-

riodic boundary conditions. The container was represented by adding an attenuating factor to the Ginzburg-

Pitaevskii equation of the form

∂tΨ = d(r)Ψ, (2.75)

where the attenuating function d(r) has the form

d(r) =


0 d < R

− sinh(0.5
√

r2 − R2) d ≥ R,
(2.76)

where r is the distance to the center of the container, and R is the radius of the container. The effect of

this attenuation is that the superfluid inside is unaffected, there is attenuation at the wall (with a defined

penetration depth) and outside the container there is no superfluid at all.

Driving this superfluid is an external normal flow resulting from a rigidly rotating solution of the normal

fluid equations in the Ginzburg-Pitaevskii system, where the azimuthal velocity is described by

vn = Ωrφ̂ (2.77)

where Ω is the angular velocity of the rotating fluid.

I implemented this prescription for the problem in the CDS model, and compared the results with and

without the conservative term.
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Figure 2.9: Abrikosov-like lattice of quantized vortices inside a superfluid described by dissipative dynamics. The
lattice is very ordered, where vortices created from the wall move towards the center, then repelling each other as they
form the lattice and reach a stationary regime.

In the first experiment, the CDS model was run with the conservative maps turned off, that is λ = 0 in eq.

2.45a. As seen in Fig. 2.9, a lattice of vortices is indeed created. This lattice has crystal-like conformation,

which is stable once is reaches equilibrium. The vortices are created at the walls and move towards the

center, and as they get closer to each other, the effective repulsion between them becomes evident, creating

the resulting lattice. As expected the number of vortices increases as the value of Ω is increased. On an

existing lattice, if one slightly increases the velocity, another vortex is created and migrates towards the

lattice, and all vortices eventually rearrange to reach a new stable configuration. Compare to Fig. 3c in

Aranson & Steinberg [28].

In the second experiment, the conservative part of the CDS map was turned on, setting λ = 0.25. As

seen in Fig. 2.10, an arrangement of vortices is still formed, but it never reaches an ordered configuration.

Instead, vortices do not remain stationary and move around the container, avoiding each other and exhibit

density waves emanating from them as they move. Also, for the same value of Ω, the fluid is more prone to

create defects in the system.

To conclude, this simple model of spin-up exhibits the expected features of superfluids under rotation.

Simple extensions are possible, including cylindrical and Taylor-Couette geometries. Far from being a toy
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Figure 2.10: Vortex arrangement at the center of the superfluid, modeled with both a conservative and dissipative
components. The system does not reach an ordered state, and the vortices remain unsettled and move around the
container. With the same forcing angular velocity, the system is more prone to create defects

model, a simple spin-up system can give useful information about more complex geometries. For example,

a model of neutron stars is a rotating sphere of superfluid matter [52], and one of the unexplained features

of them, namely pulsar glitches, has been modeled with a very simple spin-up system similar to the one

described above, with an added external potential for pinning of vortices [53], exhibiting vortex arrangement

avalanches due to depinning of vortices, which is thought to cause these glitches.

2.6.5 Scaling results

CDS models have been very successful at modeling and predicting universal behavior, such as exponents

for asymptotic scalings. To validate our model, I show that our system exhibits scaling regimes consistent

with what we expect for a quantum fluid system.

In particular, when a system with O(n) symmetry undergoes a critical quench, its structure factor obeys

a scaling regime known as a generalized Porod’s law (see Bray & Humayun [54] and references therein).

This law states that, during a critical quench, the high-k tail of the structure factor scales [54] as

S (k, t) ∝ ρdef(t)k−(d+n), (2.78)
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Figure 2.11: Scaling plot of the structure factor for an O(2) system in two dimensions, expecting a k−4 scaling. A
straight line parallel to the x axis denotes an exact exponent of -4. Note the range of the y axis.

where ρdef is the density of defects, and d is the dimensionality of the system. The particular form of the

structure factor is written as

S (k, t) = 〈φk(t)φ−k(t)〉, (2.79)

where φk(t) is the Fourier transform of the order parameter φ(t), and 〈. . .〉 is an average over realizations of

the quench.

It is of note that in eq. 2.78 there are two predictions about the behavior. One, the exponent of the tail.

And two, the density term as it evolves over time.

Testing these predictions is relatively straightforward. We setup a critical quench simulations, as in

Mondello & Goldenfeld [5], and calculate the structure factor following eq. 2.79. Since our system has

O(2) symmetry and we implement it in two dimensions, the expected tail should behave as k−4.

In Fig. 2.11 we do a scaling plot of k−4S (k, t) as a function of k, to test if the structure factor behaves as

expected. Since the curve only slightly deviates from the horizontal (note the range of the y axis), we can

claim that our CDS system behaves as expected for an O(2) system.

Now, to test for the scaling of the defect density, we setup two different simulations. One is the quench

just described, and the other one is a quench while the system is sheared with an external velocity field.

Under shear, the number of defects should reach a stationary value, as opposed to a quench situation where

all defects will eventually get annihilated.

In Fig. 2.12 we plot the structure factor value, evaluated at the last calculated value of k, as a function of

time. The quantity is plotted for both the quench and the sheared system, and is expected to be proportional
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Figure 2.12: Plot of the structure factor evaluated at the maximum calculated value of k, as a function of time for
both a quench and a sheared system. This value is expected to be proportional to the defect density in the system. In
both cases the system dramatically reduce the density of defects as they are annihilated. For the sheared system, this
quantity reaches a minimum and then equilibrates, as opposed to the quenched system where in continues to decrease.

to the density of defects in the system. In both cases this quantity decreases as a power law, as is expected

for the density of defects in a quench. For the sheared system, the quantity eventually reaches a minimum,

then equilibrates to a stationary value. For the case of the quench, the quantity keeps decreasing until it

eventually reaches the limit of numerical accuracy. We can conclude then that the behavior of this quantity

is consistent with it being proportional to the density of defects.

Another possible scaling law that can be verified and its related to Porod’s law, is the scaling of the

velocities of defects as they undergo a quench. We detail this particular study in Chapter 3.

2.6.6 Tracking of defect velocities

As part of the research performed, we were interested in the velocity statistics of the topological defects,

such as superfluid vortices and crystal dislocations. Since the defects we are interested in can be found by

means of the zeros of the order parameter field, we can, in principle, simply numerically locate the zeros

and follow them as the simulation evolves (see Qian & Mazenko [55] for a relevant example). Although

the premise is simple and does give us the desired quantities, it also involves significant overhead, which

would mean that proper statistics gathered from these quantities would take a long time to obtain. Moreover,

extending this idea to three dimensions, where defects are strings instead of points, makes this an all but

impossible task to accomplish within a reasonable time frame.

Let’s look at the question more carefully. On one hand, since we are looking for velocity statistics, we
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realize that using the above method we get more information than needed, such as position information for

each defect. (There are interesting situations where such information is desired, such as tracking of the

lifetime of defect pairs; see Huepe et al. [56] for an example.) On the other hand, our simulations give us

access to the full order parameter field, whose dynamics have encoded a wealth of information about the

system. The question then becomes: “is it possible to draw information of the velocity of the topological

directly from the order parameter field?” A secondary question then is what is the price we have to pay in

efficiency for this information.

Fortunately for us, this mapping between order parameter and defect velocity exists. It was originally

mentioned by Halperin [11], and then extensively used and expanded by Mazenko [12] in analytical research

of topological defects [12, 57–59]. It uses the fact that these topological defects are defined by the zeros of

the order parameter, and also that the topological charge of the system obeys a conservation law. What we

obtain from this is the velocity vector, in the case of a point defect, and the velocity vector of a line element

in the case of a defect string. We can also extract the topological charge of the defect, including its sign

(and charge density for defect strings). Curiously, we don’t know of any numerical implementation of this

method prior to our own work.

2.6.6.1 Derivation of the method

The method works as follows. Let our order parameter field be represented by ψ(x). This order parameter

has N components, and the coordinates live in a space with D dimensions. We are mostly interested in point

defects (N = D) and defect strings (N = D − 1).

We want to go from the field variables to the particle (defect) variables. The natural way to do this is to

consider the determinant of the Jacobian [12]

D =

∥∥∥∥∥∥∂ψα∂xβ

∥∥∥∥∥∥ (2.80)

where α = α1, α2, . . . , αN and β = β1, β2, . . . , βD are the indices for the field and coordinate components,

respectively. In particular, we can write, for the N = D case of point defects, the topological charge density

as

ρ(x) = δ(ψ)D(x) (2.81)
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where δ is the Dirac Delta distribution, and the Jacobian is written as

D =
1

N!
εβ1β2...βN εα1α2...αN∇β1ψα1∇β2ψα2 . . .∇βNψαN (2.82)

where ε is a fully antisymmetric symbol. Then we write the fact that the topological charge is conserved,

using a continuity equation,

∂tρ + ∇β(ρvβ) = 0 (2.83)

where v is the defect velocity field, and is written as

vβ =
−1
D

1
(N − 1)!

εββ2...βN εα1α2...αN ψ̇α1∇β2ψα2 . . .∇βNψαN (2.84)

where ψ̇α1 is the time derivative of ψα1 . We are interested in the statistics of the velocity field v.

For the sake of clarity, let’s derive the formula for v in the case for point defects in two dimensions and

a complex scalar order parameter. The scalar order parameter can be written as (see also Chapter 3)

ψ = ψ1 + iψ2 (2.85)

and the topological charge density defined in eq. 2.81. In our two dimensional system the topological charge

is conserved and obeys equation 2.83. In particular, the determinant of the Jacobian of the transformation

reads [60]

D =
1
2i

(
∇xψ

∗∇yψ − c.c.
)

(2.86)

where “c.c.” stands for “complex conjugate”. By differentiating D with respect to time we can define a

current,

Jx =
1
2i

(
ψ̇∇yψ

∗ − c.c.
)

(2.87a)

Jy =
−1
2i

(
ψ̇∇xψ

∗ − c.c.
)

(2.87b)

and thus we can say thatD satisfies a continuity equation,

∂tD + ∇ · J = 0. (2.88)
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Combining equations 2.81 and 2.88 we find that we can writeDv = J. In particular,

vx =
1

2iD

(
ψ̇∇yψ

∗ − c.c.
)

(2.89a)

vy =
−1

2iD

(
ψ̇∇xψ

∗ − c.c.
)
. (2.89b)

A similar argument can be made for defect strings in three dimensions. The topological charge and the

determinant become vectorial,

ρ(x) = δ(ψ)D(x) (2.90)

D =
1
4i

(
∇ψ∗ × ∇ψ − c.c.

)
, (2.91)

thus obtaining the velocity as

v =
1
D2D ×

(
ψ̇∗∇ψ − c.c.

)
, (2.92)

whereD2 =D ·D.

2.6.6.2 Numerical implementation

The numerical implementation of this method is relatively straightforward. However certain caution has

to be taken when interpreting the data. We are reminded by equations 2.81 and 2.90 that our quantities

of interest, namely D and v (and D in the case of three dimensions), are only defined at the location of

the defect. This point is of extreme importance, as failure to account for this fact when calculating these

quantities renders the resulting velocity statistics meaningless.

In practice, to calculate the velocity statistics we proceed the following way:

• We calculate the determinantD (orD in three dimensions). See Fig. 2.13 for a plot of the determinant

in two dimensions, and Fig. 2.14 for a plot of the three-dimensional case.

• We calculate the components of v, and if needed its magnitude v, normalized by D as prescribed in

equations 2.89 or 2.92, making sure the use an adequate definition for the numerical first derivative

(see eqs. 2.48 and 2.49), although the actual choice is not too critical. Also, we use ψ̇(t) ≡ ψ(t)−ψ(t−

1), since in the Cell Dynamics System spirit the time differential is ∆t = 1.
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Figure 2.13: Two-dimensional representation of the determinant D after a critical quench. Color scale shows the
range of values for D. Most of the field has a value near zero, whereas the defects can be seen as highly localized
maxima or minima of this field.

Figure 2.14: Three-dimensional representation of the determinantD and its z-component Dz after a critical quench.
Isosurfaces enclose the points near the maxima of |D|. Color scale shows the range of values for Dz. Like in two
dimensions, most of the field has a value near zero, whereas the strings can be seen as highly localized. We can notice
that the maxima and minima ofDz tend to be aligned parallel or antiparallel with the z-axis, revealing the meaning of
this component as the z-component of the vector of circulation about a line element of the string.

• SinceD is also only defined at the location of the defects, we only retain the values of v at the locations

where the magnitude of D is near its maximum. We normally used a value between 70 and 80% of

the maximum of the magnitude ofD. For an example of the resulting data, see Fig. 2.15.

Strictly speaking, it is always necessary to normalize the distribution using the determinant, even though

its value will be close to zero in most places. Again, this is not a problem, as we are only interested in
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Figure 2.15: An example of the probability distribution of defect speeds for a two-dimensional system undergoing a
quench, as calculated using a numerical implementation of eqs. 2.89. The data is an average obtained after running a
simulation over 96 randomized initial conditions.

extracting values close to the defects, where the determinant’s value deviates significantly from zero. Also,

if we are normalizing the velocity distribution with its mean, we don’t really need to normalize it using D,

although the efficiency gained by doing this is likely minor.

This method works with no problems as long as the topological defects we are interested in can be

located by the zeros of the field, and are localized. For example, if we run the CDS superfluid simulation

in a highly dissipative regime, or in a frozen defect phase in the Complex Ginzburg Landau sense [61, 62],

where the defects behave as particles, then they can be localized with precision. But if we decrease the

dissipation and the simulation is ran on a “defect turbulence” phase [61, 62], the defects cease to be as

localized and they don’t quite behave as particles and the zeros are shallower objects. See Fig. 2.16 for an

example of this behavior.

It is also worth reminding that the definition of the hydrodynamic velocity using the Madelung transfor-

mation vhydro = ∇φ (where φ comes from the definition ψ = Aeiφ) is only valid away from the singularity.

To help us in keeping us away from the defect, when taking statistics of vhydro we also use D to extract

the values of this velocity away from the defect, so as not to taint the high-speed values with artifacts from

calculating too close to the defect core.
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Figure 2.16: Direct integration of the complex Ginzburg-Landau equation in the “defect turbulence” regime, used
to illustrate a case where the defect tracking method does not work. Left: Density field (the module squared of the
complex field); the zeros of the field are not well localized, making it hard to pinpoint a “center.” Right: Determinant
D calculated on the field represented to the left; as expected, the lack of localization is reflected in the fact that the
values of the determinant vary in a shallow way, making it useless to locate particle-like objects in this case.

2.6.6.3 Summary

In conclusion, this method allows us to extract velocity information for the defects directly from the defini-

tion of the order parameter. We can apply this method not only to our own model, but also to other more

complex situations such as Swift-Hohenberg stripes (see Chap. 3 or Angheluta et al. [60]) or phase-field

crystal defects, as long as the defects can be located using the zeros of the order parameter field. This also

means that we will miss topological defects where the zeros are poorly localized, such as in the Complex

Ginzburg-Landau wave turbulence regime, or defects of a different nature, not localizable by the zeros of

the order parameter.

The fact that we can locate and localize the defects using the values of the determinant D, means that

we can use it in practice to numerically discriminate between the “inside” and the “outside” of the defect.

This allows us to extract, for example, the values of the hydrodynamic velocity field using the Madelung

transformation only where it is properly defined.

2.7 Conclusion

In this Chapter I introduced an efficient model for quantum fluids based on a Cell Dynamical Systems

approach. It features both conservative and dissipative dynamics, and it allows the forcing of the system

53



by an external flow representing a normal fluid. The model was validated, as it exhibits topological defects

and scaling behavior predicted for systems obeying the same physical attributes. Finally, I proposed an

extension to the model that allows a fully coupled and efficient two-fluid model of superfluids.

This is yet another success of cell-based modeling, where the physics of the system are accounted for

directly, instead of being represented as differential equations, and then these equations are simulated. This

allows for more efficient numerical evolution and more convenient calculation of asymptotic quantities in

the system.
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Chapter 3

Anisotropic velocity statistics of topological

defects under shear flow

We report numerical results on the velocity statistics of topological defects during the dynamics of phase

ordering and non-relaxational evolution assisted by an external shear flow. We propose a numerically effi-

cient tracking method for finding the position and velocity of defects, and apply it to vortices in a uniform

field and dislocations in anisotropic stripe patterns. During relaxational dynamics, the distribution func-

tion of the velocity fluctuations is characterized by a dynamical scaling with a scaling function that has a

robust algebraic tail with an inverse cube power law. This is characteristic to defects of codimension two,

e.g. point defects in two dimensions and filaments in three dimensions, regardless of whether the motion is

isotropic (as for vortices) or highly anisotropic (as for dislocations). However, the anisotropic dislocation

motion leads to anisotropic statistical properties when the interaction between defects and their motion is

influenced by the presence of an external shear flow transverse to the stripe orientation.

3.1 Introduction

The small-scale dynamics of interacting defects plays an important role in the evolution of complex systems.

In particular, topological defects are a common occurrence in systems supporting a continuous symmetry

that is spontaneously broken in the process of a non-equilibrium phase transition. One central question

is how the universal properties and scaling laws near a critical phase transition relate to the presence and
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interactions of defects. The formation and evolution of topological defects is typically formulated in the

framework of the Ginzburg-Landau theory of symmetry-breaking phase transitions, where defects are de-

scribed as phase singularities in a complex order parameter field (rotational symmetry) [1, 62].

The equilibrium structure of isolated topological defects is deeply rooted in their topological properties

and is relatively well studied and understood [1]. In contrast, the dynamical and statistical properties of

interacting topological defects during a non-equilibrium phase transition are far less understood, and are

the subject of more recent systematic analyses. Numerous studies have focused on the statistical properties

of topological defect ensembles in relation to the large-scale properties of the system. Examples range

from the quenching dynamics during phase-ordering kinetics [12, 63], the motion of defects in convection

patterns [64], the dislocation dynamics in crystal plasticity [65, 66] or the vortex filament motion in quantum

flows [3]. A common characteristic of these apparently disparate systems is that they support codimension-

two topological defects; that is dislocations and vortices which in a two-dimensional space (2D) become

point defects, and defect filaments or loops in a three-dimensional space (3D). One common finding is the

presence of a robust scaling law in the local velocity statistics for these kind of defects. Recent experiments

on decaying quantum turbulence in 4He report that the velocity field v induced by quantized vortices is

characterized by a v−3 scaling, attributed to the rare reconnection events between vortex filaments [67] and

reproduced numerically in atomic Bose-Einstein condensates [68] and counterflow turbulence [69]. Similar

velocity statistics has been observed in a discrete dislocation dynamics model of crystal plasticity [70] and

in experiments on thermal convection in an inclined fluid layer [71].

Theoretically, the asymptotic tail of the velocity probability distribution P(v) can be calculated in a sta-

tistical formulation of random stationary configurations of point defects interacting through a logarithmic

potential in a two dimensional space (2D) [65, 72]. The model predicts the same tail distribution both in neu-

tral systems (zero net topological charge) and systems with a single-charge distribution. An inverse cubic

scaling is consistent with the approximation of the nearest neighbor interaction between defects uniformly

distributed in space [72]. In theoretical studies of defect motion during phase-ordering kinetics, the inverse

cubic law is related to the annihilation events of defect loops or between point defects with opposite topo-

logical charges [12, 57, 73]. The coarsening during phase ordering is reflected in a time-dependent density

of defects and their velocity distribution F(v, t), which is characterized by a dynamical scaling law related

to the growth law of the characteristic length scale in the ordering kinetics [57, 73] (see also [74]). For
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non-conservative dynamics of the order parameter, the distribution of velocity for point defects in 2D takes

the form F(v, t) = 〈v(t)〉−1P(v/〈v(t)〉), where the scaling function is P(x) ∼ x(1 + x2)−2 and the ensemble

average velocity 〈v(t)〉 at time t is related to the average distance between defects L(t) at time t and scales

with time as 〈v(t)〉 ∼ 1/L(t) ∼ t−1/2 [57, 73]. A different scaling exponent for the scaling function P(x) is

predicted for defect filaments in three-dimensions (3D) [12, 73], whereas experiments [67] and numerics

[69, 70] suggest the same scaling as for point defects.

In contrast to isotropic vortex dynamics, dislocation motion in crystals, as well as in stripe patterns, is

typically anisotropic when confined to certain gliding and climbing planes. In addition, dislocations often

coexist and interact with other kinds of defects such as disinclinations and grain boundaries, which makes it

harder to study in isolation. For this reason, phase ordering is much more difficult to study in isotropic stripe

phases and polycrystalline phases, then in anisotropic stripes and single crystals where only dislocations are

present [75, 76].

Stripe ordering is a common pattern occurring in a diversity of systems from the zebra patterns to sand

ripples and in classical fluid convection systems, where defects are local tears of the underlying pattern

[64]. Anisotropic stripes or rolls develop by an uniaxial ordering of stripes as happens, for instance, in

electrically driven convection flows of nematic liquid crystals (electrohydrodynamic convection) [77], or in

thermal convection flows of isotropic fluids down an inclined plane [78].

During relaxational dynamics, where the motion of defects is dominated by mutual interactions prior to

annihilations, the statistics of the velocity components keeps the same form even in the presence of strongly

anisotropic motion of defects. A numerical study of 2D phase ordering after a quench from a disordered

state described by a non-conservative time dependent real Ginzburg-Landau model showed that the isotropic

motion of point vortices is characterized by a statistical distribution with an inverse cubic tail in the scaling

function P(v), as predicted theoretically [55]. Similar statistical distributions for the climbing (motion along

the direction of the stripes) and gliding (motion across the stripes) velocities of point dislocations have

been reproduced in a numerical study of phase ordering in anisotropic stripes in two dimensions [59]. This

is consistent with the theoretical understanding that the dislocation motion in anisotropic stripes can be

in fact mapped onto a Ginzburg-Landau vortex-dynamics [1]. This also means that, to the leading order

approximation, the interactions between dislocations are expected to be similar to those between vortices.

The statistics of defect motion during non-relaxational evolution of the system, self-sustained or driven
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by an external field, is less well-understood due to correlation effects or additional driving forces apart from

the mutual nearest neighbor interactions between defects. A self-sustained motion of defects is obtained in

convection patterns when the mean flow due to vertical vorticity, driven by the undulations in the normal

stripes and the presence of defects, acts as a self-induced drift in the motion of defects [79]. This non-trivial

dynamics of defects leads to a spatio-temporal chaotic state also know as “defect turbulence,” which was

observed experimentally in fluid convection systems [78, 80] or diffusion-reaction systems [81], and studied

in numerous theoretical and numerical investigations [56, 79, 82–84]. In this chaotic dynamical regime, a

statistically stationary distribution of the number of defects is maintained by the defect annihilations and the

spontaneous creations of pairs due to the phase instability. To leading order in the approximation of well

mixed and independent defects, the distribution of the number of defects follows the Poisson statistics with

mean square fluctuations given by the mean number of defects [82]. The well mixed assumption implies

that defect pairs are being created and annihilated randomly, whereas experiments and numerical studies

suggest that more often defects created in a pair at a given time tend to annihilate with each other in the

same pair at a subsequent time [56, 81], which means that correlations between defects are important effects

in their creation/annihilation dynamics and leads to a modified Poisson statistics in their number fluctuations

[84]. A theoretical understanding for the effect of the self-induced mean flow on the collective statistical

properties of defect motion is still lacking. However, experimentally measured velocity statistics during the

spatio-temporal chaotic dynamics of uniaxial stripes in inclined layer convection are observed to be slightly

anisotropic and the exponents in the tail distribution of both climb and glide motion are close to −3 [71].

This is suggestive of a dynamical regime dominated by annihilations of dislocation pairs.

In this chapter, we consider a simpler setup where non-relaxational motion is driven by an externally

imposed flow such that defects are constantly created and annihilated leading to a statistically stationary

defect dynamics. This can be attained in an anisotropic stripe system when a shear flow is acting normal

to the stripe orientation. The role of the shear flow is different from the commonly studied case of shear

alignment of isotropic stripes [71, 85, 86] or the buckling instability under shear acting along unixial stripes

orientation [87].

The purpose of this chapter is threefold: i) to present an efficient numerical method for tracking the

position and velocity of topological defects and ii) its application to study the collective motion of dissipative

vortices both in 2D and 3D and dislocations in 2D; iii) to report on numerical results where the anisotropic
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Figure 3.1: Snapshot of a measure of the charge density vector field for a configuration of vortex filaments in 3D
simulation of phase ordering. The figure shows the x-component Dx of the Jacobian determinant defined in Sec. 3.2.
The system size in this simulation is 1283.

motion (glide and climb) of dislocations subjected to a simple shear flow is explicitly manifested in the

velocity distributions, even though the statistics during phase ordering are similar to those corresponding to

the isotropic motion of vortices.

To track the position and velocity of topological defects, we implemented a numerical method inspired

by analytical treatments of Halperin [11] and Mazenko [57]. The method was originally developed to

locate defects in an O(2)-symmetric order parameter with a Ginzburg-Landau relaxation dynamics in 2D.

We show numerically that this method works very well for Ginzburg-Landau dynamics both in 2D and

3D and it is also suitable for tracking dislocations in systems controlled by anisotropic Swift-Hohenberg

dynamics. Measuring the velocity statistics of vortices during relaxational dynamics, we find a universal

inverse cubic tail for defects of the same codimension, that is point vortices in 2D and vortex filaments in

3D. The scaling law is directly related to the pairwise interactions between vortices prior to annihilation and

reconnection events (in 3D). Finite size core effects induce a Gaussian cut-off to the v−3 scaling. A similar

statistical behavior is observed in the velocity of dislocations in anisotropic stripe patterns. Despite the fact

that dislocations are dominated by their transverse motion, and thus are highly anisotropic, the distribution

of the climb and glide velocities shows the same long tail behavior. In the presence of an external shear flow

that leads to non-relaxational dynamics, the motion anisotropy is explicitly manifested in different statistics

of the velocity components. While the slow motion is highly influenced by the shear flow, the high speed
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Figure 3.2: (a) Snapshot of the charge density field corresponding to a configuration of point vortices in 2D simu-
lations. In panel (b), we show the dislocations in an underlying anisotropic stripe configuration. The lighter blobs
correspond to defects that have a positive charge, while the darker blobs are the defects of the opposite charge. The
system size in both cases is 10242, while the snapshots are drawn from a subset.

limit may still be dominated by the nearest neighbor interactions.

The chapter is organized as follows. Following this introduction, we proceed in Sec. 3.2 to discuss a

method of efficiently tracking topological defects and apply it to a collection of vortices as well as ensembles

of dislocations. Sec. 3.3 presents numerical results on the vortex velocity statistics in 2D and 3D simula-

tions of phase ordering. We discuss the statistics of dislocations during phase ordering and non-relaxation

dynamics sustained by an external shear flow in Sec. 3.4. Concluding remarks and summary are provided

in Sec. 3.5.

3.2 Defect dynamics

Here we present a numerically efficient method for tracking codimension-2 topological defects. The method

is applied to Ginzburg-Landau dynamics of vortices in 2D and 3D, as well as to Swift-Hohenberg dynamics

of dislocations in 2D anisotropic stripes. The effect of hydrodynamic interactions in the presence of an

external shear flow is discussed in the context of dislocation dynamics.
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3.2.1 Locating and tracking of defects

The identification and evolution of a large population of defects is generally a non-trivial problem in systems

described by continuum approaches. Moving from the field variables to the discrete particle variables is not

straightforward. In most defect studies, one resorts to various approximate methods to estimate the locations

and velocity of defects by following their trajectories [55, 71, 76].

In systems that can be described by an O(2)-symmetric order parameter ψ(r, t) whose evolution depicts

the ordering kinetics from an initially disordered state to an ordered state (either isotropic and homogeneous

or a periodic pattern), one can use an elegant method based on a transformation from the order parameter

dynamics to the discrete defect dynamics. The analytical formulation of this method was pointed out first by

Halperin [11], and was subsequently extended by Mazenko to determine the velocity of various topological

defects [12, 55, 57, 58]. To our knowledge, this method has not been previously implemented numerically.

We show that it is an efficient numerical tool used for tracking the evolution of various types of defects.

The basic idea of this technique is that topological defects are located at the zeroes of the complex order

parameter field ψ(r, t) [11]. The transformation from field to particle variables is determined by the Jacobian

determinant D(r) = ||∂ψn/∂r j||, where n = 1, 2 stands respectively for the real and imaginary components

of the order parameter field, i.e. ψ = ψ1 + iψ2, and j = 1, . . . d, with d being the spatial dimension. Thus,

for d = 2, D(r) is a scalar quantity. Its sign determines the topological charge, i.e. q = D(r)/|D(r)| = ±1,

and the charge density is given as

ρ(r, t) = δ(ψ)D(r, t) =

N∑
i=1

qiδ(r − ri), (3.1)

for a collection of N point vortices. The extension to string defects in d = 3 is that the Jacobian determinant

becomes a vector fieldD j(r) related to the vortex filament density by

ρ j(r, t) = δ(ψ(r, t))D j(r), (3.2)

where the notation for the Dirac δ distribution is used [12].

The defect velocity v is determined from the property of topological defects that their total charge is
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conserved (defects are created and annihilated in pairs of opposite charge), namely

∂tρ + ∇ · (ρv) = 0, (3.3)

with the charge density ρ(r, t) defined above. For example, in the case of point defects in 2D, the Jacobian

determinant becomes D = 1/(2i)(∇xψ
∗∇yψ − ∇xψ∇yψ

∗), where ψ∗ is the complex conjugate of ψ. By

differentiatingD with time, a current J (ψ̇) can be defined as [57]

J (ψ̇)
α = −

iεαβ
2

(ψ̇∇βψ∗ − ψ̇∗∇βψ), (3.4)

such that theD-field satisfies the continuity equation

∂tD + ∇ · J (ψ̇) = 0. (3.5)

Summation over repeated indices is implied and εαβ is the two dimensional antisymmetric tensor, εxx = εyy =

0 and εxy = −εyx = 1. From Eqs. 3.3 and 3.5, the defect velocity is determined as v = J (ψ̇)/D. The defect

velocity depends on the dynamics of the order parameter through its time derivative ψ̇(r, t). Explicitly, the

velocity components are given by

vx = −i
ψ̇∇yψ

∗ − ψ̇∗∇yψ

2D
,

vy = i
ψ̇∇xψ

∗ − ψ̇∗∇xψ

2D
(3.6)

where ψ∗ is the complex conjugate of ψ-field and ψ̇ is the time derivative of ψwhich determines the evolution

of the order parameter. This can be generalized to d = 3, in which case the velocity of vortex filaments is

calculated as [12]

v =
D × (ψ̇∗∇ψ − ψ̇∇ψ∗)

2D2 , (3.7)

whereD2 =
∑3

j=1D jD j and the velocity vector field is v = (vx, vy, vz).

In the dilute defect density limit, it can be shown that vortex velocity defined by Eq. 3.6 becomes a

function of the phase and amplitude gradients of the order parameter ψ near the vortex core [58]. The

formula is exact and applies equally well for a high density of defects.
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Figure 3.3: Collapsed probability distribution function (scaling function) of absolute velocity of point vortices in 2D
during phase ordering. (Inset) PDF of the defect velocity for different core sizes (open circles correspond to larger
core size and crosses correspond to smaller core size) to show that the Gaussian cut-off depends effectively on the
vortex core size. The model parameters for the inset figure are A = 2.05 (open circles), A = 1.05 (crosses) and
C = 3/20(1 + A). In the main graph, A = 1.5. Here v ≡ |v|.

3.2.2 Application to vortices

Vortices are defined as the zeros of an order parameter ψ(x, t) with rotational symmetry (complex field)

[1]. The fact that the complex field vanishes at the core of a defect is equivalent to a phase singularity,

i.e. the phase of the order parameter varies discontinuously around a closed contour surrounding the defect.

The phase θ is obtained from ψ = |ψ|eiθ. The shift in phase around the contour or the winding number,

i.e.
∮
∇θ · dl = 2πn, defines the topological charge of the defect. A single vortex corresponds to a unit of

topological charge, that is n = 1.

We now consider the nonconservative evolution of a ψ(r, t)-field described by the time dependent

Ginzburg-Landau equation given by

∂tψ = ∇2ψ + ψ(1 − |ψ|2), (3.8)

which we simulate both in 2D and 3D. For computational efficiency, we solve Eq. 3.8 by a cell dynamical

system (CDS) algorithm, that was originally developed for studying spinodal decomposition dynamics [33]

and extensively used to study phase ordering of systems with continuous symmetry [5, 6, 63]. In the Ap-
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pendix we provide a detailed description and recapitulation of the algorithm, for completeness, and define

the parameters of the simulation used below. In particular, the depth of the quench corresponds to the pa-

rameter A, and the strength of the diffusive couplings in the model are denoted by C. Simulations in 2D are

done on a system size of 10242 cells, while in 3D we use 1283 cells for dx = 1. Unless otherwise noted, the

values for the CDS parameters A, the depth of the quench, and C, the strength of the spatial coupling, are

A = 1.5, C = 3/20(1 + A) (for 2D), and C = 3/24(1 + A) (for 3D). Results were averaged over 48 random

initial conditions, unless otherwise noted.

The vortex dynamics from the Ginzburg-Landau evolution in Eq. 3.8 is similar to a previous one reported

in Qian & Mazenko [55]. Here, we use a different tracking method for locating the defects and extend the

analysis to vortex filaments in 3D.

A snapshot of the charge density field for vortex filaments in 3D obtained using Halperin and Mazenko’s

method, discussed in the previous section, is shown in Fig. (3.1). The charge density field is directly propor-

tional to the D-field, which is zero everywhere except along the vortex filaments. A similar representation

is obtained for point vortices in 2D, where the charge field is localized at the vortex core and vanishes ev-

erywhere else as shown in Fig. (3.2 (a)). Since the charge density is directly related to theD-field, it means

that the defect velocities are meaningfully defined only at the defect positions. In the numerical discretiza-

tions, defects are associated with small blobs (in 2D) or thin tubes (in 3D) with a specific characteristic size

that defines the vortex core size. We define the defect regions as the locations at which the absolute charge

density is above 75% of the theoretical value of |q| = 1. The values of the D-field are finite within these

regions and thus the division is also finite. The velocity of the located defects is determined from Eq. 3.7

for filaments in 3D, and Eq. 3.7 for point vortices in 2D. The time derivative ψ̇ of the ψ-field is defined by

the right hand side expression in Eq. 3.8, namely ψ̇ ≡ ∇2ψ + ψ(1 − |ψ|2).

3.2.3 Application to dislocations

Here, we focus on tracking dislocations in anisotropic stripe patterns. A similar tracking method can be ex-

tended to locate the defects in a crystal phase, and will be the subject of a separate study reported elsewhere.

We consider the defects in a periodic pattern characterized by a preferred wavenumber k formed by

stripes. Stripe patterns occur in a variety of systems, typical examples being the convective rolls in Rayleigh

Bénard convection of isotropic fluids [64] or convective flows in the nematic liquid crystals [88], in the dy-
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Figure 3.4: The scaling function of the probability distribution function of the absolute velocity of vortex filaments in
3D during phase ordering. Here v ≡ |v|.

namics of diblock copolymers [89], etc. When the orientation of the local ordering is random, as in isotropic

stripes, we encounter both isolated defects such as dislocations or disinclinations as well as grain bound-

aries. The coexistance of different types of defects makes it difficult to analyze their statistics. Moreover, the

ordering kinetics of isotropic stripes tends to be dominated at large times by grain boundary slow motion,

which can lead to glassy configurations [75]. By fixing the orientation of the stripes along a preferred axis,

point defects such as dislocations can be isolated from the other types of defects. Examples of anisotropic

stripes are in electrohydrodynamic convection of planary aligned liquid crystals [80], or Rayleigh-Bénard

convection of an inclined fluid layer [71].

The statistics of dislocations in anisotropic stripes has been discussed previously by Qian & Mazenko

[59], where they propose a model based on an effective Swift-Hohenberg (SH) free energy with an additional

term that accounts for the coupling to an external field aligning the stripes along a preferred direction. The

stripe pattern in 2D is represented by a real periodic field u(r, t), which satisfies an anisotropic SH-dynamics

given by

∂tu = (1 − r|u|2)u − (1 + ∇2)2u − c∇2
xu, (3.9)

where the last term is added to impose a preferred orientation of the stripes along the vertical y-axis with
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c > 0 being the coupling strength to the external field. The quench depth r > 0 is interpreted in the context

of convection patterns as the deviation from the onset of convection, r ≈ R/Rc − 1, where R is the Rayleigh

number and Rc is the critical R at the onset [64]. The anisotropic preferred orientation can be seen by

linearizing Eq. 3.9 around the mode solution u ∼ exp(ωt + ikxx + ikyy) with the growth rate obtained from

Eq. 3.9 as

ω = (1 − r) − (1 − k2
x − k2

y )2 + ck2
x, (3.10)

and imposing the condition ω(r; kx, ky) = 0 at the onset of instability with respect to a mode of wavenumbers

kx and ky. The condition is found by minimizing ω with respect to kx and ky, i.e. ∂ω/∂kx = 0 and ∂ω/∂ky =

0. This leads to ky = 0 and kx =
√

1 + c/2 for c > 0.

We consider the amplitude formulation of Eq. 3.9 with an additional contribution due to an external

shear flow. We impose a shear flow that is normal to the main orientation of the stripes to allow for the

nucleation of defects due to wavenumber shifts by shear deformation. In order to track dislocations in

a complex order parameter field, we write the periodic field in terms of its complex envelope field ψ(r, t),

namely u(r) =
√

rψ(r)eik·r+c.c.. Without loss of generality, we consider stripes with the wavevector parallel

to the horizontal x-axis, i.e. k = (k0, 0). The complex ψ-field satisfies an amplitude equation derived from

Eq. 3.9 and given to the leading order in r as

∂tψ + γ̇xLx[ψ] = r(1 − |ψ|2)ψ − L2[ψ] − cL2
x[ψ], (3.11)

where L ≡ (∇2 + 2ik · ∇) is derived from (1 + ∇2) and Lx ≡ ∇x + ik0 comes from the gradient ∇x. The

advection term is determined by a velocity field, which hereby is taken as a simple shear flow γ̇ = v0yx̂, and

the last term is added to impose a preferred orientation of the stripes long the vertical y-axis.

We integrate numerically Eq. 3.11 using a 4th-order Runge-Kutta scheme and a spherical approximation

for the gradients [38] (see Appendix) on a square domain of size 1024dx×1024dx. The time step is dt = 0.05

and the spatial resolution is dx = π/4 so that about 8 grid points are used to resolve the pattern wavelength

λ = 2π/k0, with k0 = 1. The other parameters are set to c = 1, r = 1 and v0 is a changing parameter. In

the absence of shear, period boundary conditions on all sides are used. At a finite shear rate, we impose

a zero flux boundary conditions of the upper and lower boundaries and periodic conditions on the lateral

boundaries.
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Dislocations are efficiently located as the zeros of the complex envelope field ψ using Mazenko’s al-

gorithm. In Fig. (3.2 panel (b)), we illustrate a stripe configuration with the location of dislocations and

their topological charge proportional to the Jacobian determinant ||∂ψn/∂r j||. The velocity of dislocations is

obtained using Eq. 3.6 with the evolution of the order parameter given by the right hand side of Eq. 3.11,

namely ψ̇ ≡ r(1 − |ψ|2)ψ − L2[ψ] − cL2
x[ψ].

3.3 Vortex Statistics

To determine the velocity statistics of vortices, we initiate the system in a disordered state and follow the

ordering kinetics dominated by the initial formation and subsequent coarsening of topological defects. At

a particular time, we calculate the local defect velocities v using Mazenko’s method as described above.

We save the absolute values, v = |v|, every few time iterations and run the system from 48 random initial

conditions. This way, we compute the probability distribution function of the defect velocity at a given

time, i.e. F(v, t). In the asymptotic limit t → ∞ of the coarsening dynamics, we expect scale invariance of

the typical coarsening length scale, i.e. L(t) ∼ t1/2 for non-conservative dynamics (apart from logarithmic

corrections in 2D). Hence the typical velocity obtained as 1/L(t) scales with time as 〈v(t)〉 ∼ t−1/2 and

corresponds to the velocity of defects in a pair prior to annihilation and separated by a distance of the

order of L(t). In the simulations, 〈v(t)〉 is the ensemble average velocity at a particular time, and when

calculated over long times it converges to the expected asymptotic scaling. This dynamical scaling of the

mean velocity implies also a scaling with time of F(v, t). We notice that the time dependence in the PDF’s

can be eliminated by rescaling the velocity variables by their ensemble average values at a given time, i.e.

ṽ ≡ v/〈v(t)〉. Analytically, this corresponds to the rescaling F(v, t) = t1/2P(vt1/2).

The scaling function P(x) of the velocity distribution is a function of the rescaled velocity field v/〈v(t)〉

and has a broad tail with an inverse cubic decay. This is shown in Fig. (3.3) for 2D simulations and Fig. (3.4)

for 3D dynamics. The v−3 tail corresponds to the regime of large velocities obtained in pair interactions prior

to annihilation events or, for 3D, also reconnections events. The −3 scaling exponent is determined by the

logarithmic mutual interaction potential as shown in e.g. Refs. [73, 90]. Since point defects in 2D and

filaments in 3D are both codimension-2 topological defects with the same type of interactions, we expect a

similar scaling behavior. This is consistent with other numerical studies that also show that the tail of P(v)

distribution is dominated by the v−3 scaling both in 2D and 3D simulations [69, 70]. We provide additional
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Figure 3.5: a) Density of defects ρd as a function of time t for different values of the imposed shear velocity v0. b)
Data collapse of the rescaled density with the mean density in the statistical steady state ρ0 ∼ t−2/3

0 , where t0 is the
cross-over time to the steady state. Inset figure shows how t0 scales with v0 as t0 ∼ 1/v0.
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Figure 3.6: a) Evolution with time of the ensemble average of the velocity component vx ≡ 〈|vx(t)|〉 for different values
of the shear rate. b) Data collapse of the rescaled vx as a function of the rescaled time t/t0.

numerical evidence for this scaling regime also during phase ordering kinetics.

From Figs. (3.3) and (3.4), we notice that the vortex core structure has a drastic influence on the defect

velocity statistics [90]. This effect is given by a Gaussian tail which takes over the v−3 regimes at very

large fluctuations. The vortex core size is more pronounced in 3D simulations, due to numerical bounds on

higher spatial resolutions. It is easier to vary the aspect ratio between system size and vortex core size in 2D
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simulations to observe the vortex core effect. In CDS simulations, the core size is fixed by the parameter A.

We consider two different values of A, namely A = 1.05 for small cores and A = 2.05 for larger cores, and

averaged over 2000 random initial conditions. The system size was reduced to 1282 cells. The dependence

of the Gaussian-cutoff on the core size is shown in the inset of Fig. (3.3), while the velocity distribution for

an intermediate core size, parametrized by A = 1.5, is plotted in the main graph of Fig. (3.3), using 10242

cells and averaging over 48 initial conditions.

3.4 Dislocation statistics

Next we discuss the statistics of dislocations in anisotropic stripes during phase ordering and non-relaxa-

tional dynamics assisted by a shear flow.

3.4.1 Dynamical scaling regimes

In the early stages, the evolution of defects is dominated by pairwise interactions leading to annihilations

and a decrease in the density of defects. We measure the density of defects ρd(t) as the ratio between the

effective area occupied by the defects and the total system area. Alternatively, the number of defects N

can be estimated as the area occupied by the defects divided by the approximate core area of a defect. In

simulations, we choose a large system size of 10242 and calculate ρd(t) as a function of time, starting from

a random initial condition. During the relaxation dynamics, the defect density for a very large system is

equivalent to the averaged density over many initial conditions for a smaller system size, and is a smooth

function of time [91]. As expected in the coarsening regime, the density obeys a power law in time as

ρd(t) ∼ log(t)/t like the density of vortices in Ginzburg-Landau theory [55]. This behavior is shown in

Fig. (3.5a) by the data in open circles and is consistent with formal arguments that the anisotropic Swift-

Hohenberg dynamics can be mapped onto the isotropic Ginzburg-Landau dynamics [1]. In Fig. (3.5a), we

also plot the density ρd(t) as a function of time for various values of the shear rate v0. We notice that in

the late stages, when long-range hydrodynamic interactions set in, the density of defects ceases to decrease

monotonically, and approaches instead a statistically steady state. In this steady state , the defect density

fluctuates in time about a mean value because of the sporadic pair creations and subsequent annihilations of

defect pairs. Averages over initial conditions would lead to a constant mean density ρ0 in this steady state,

i.e. 〈ρd(t)〉IC → ρ0 as t → ∞. We also observe that the mean number of defects 〈N〉 in the steady state
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Figure 3.7: a) Evolution with time of the ensemble average of the velocity component vy ≡ 〈|vy(t)|〉 for different values
of the shear rate. b) Rescaled vy plotted as a function of the rescaled time t/t0.

appears to increase with the applied shear v0, suggesting that the creation rate of defect pairs depends on v0.

Also, the mean square fluctuations 〈N2〉 − 〈N〉2 in the number of defects increases monotonically with 〈N〉

with significant deviations from what would be expected in a Poisson process. It appears that the number

statistics of defects behaves in a similar manner to that in defect turbulence [56], although a detailed analysis

of this suggestion would be beyond the scope of this chapter.

From the data presented in Fig. (3.5b), we can determine the cross-over time t0 to the statistical steady

state, and we find that it increases to a first approximation as t0 ∼ v−1
0 , as shown in the inset of Fig. (3.5b).

It turns out that phase ordering assisted by hydrodynamic effects slows down the growth of the typical

distance between defects with corrections that follow a L(t) ∼ t1/3 law until saturating to the steady state.

This implies that the steady state defect density can be estimated as ρ0 ∼ L(t0)−2 ∼ t−2/3
0 . Equivalently, the

mean density in the steady state increases with the applied shear as ρ0 ∼ v2/3
0 . As a first step to see whether

there is any data collapse associated with this scaling behavior, we plot the rescaled ρ/ρ0 versus the rescaled

t/t0 as shown in Fig. (3.5b).

Because the normal stripes are aligned along the y-direction, the climb and glide motions of the dis-

locations correspond respectively to the vertical and horizontal velocities. The motion is anisotropic and

dominated by the transverse (gliding) dynamics of dislocations. We observe that climb motion typically

occurs when two dislocations of opposite topological charge approach each other to annihilate, otherwise
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dislocations would move by gliding across the stripes. Nevertheless, when the two motions are driven by

the local pairwise interactions between dislocations, they exhibit similar characteristics. In the early states,

where the dynamics is controlled mainly by the phase ordering and annihilations of dislocations, the en-

semble average of the net velocities (absolute values), 〈|vx|〉(t) and 〈|vy|〉(t), scale with time as t−1/2 until

hydrodynamic effects set in and the defects are accelerating until they cross over at t0 to a statistically sta-

tionary state. This behavior is shown in Fig. (3.6a) for 〈|vx|〉 and in Fig. (3.7a) for 〈|vy|〉 corresponding to

different values of the imposed shear velocity v0. In the later stages, hydrodynamic effects become impor-

tant and there is a transient regime where the mean velocities increase almost linearly with time until t0 after

which a statistically stationary state is reached. Since, we run large scale simulations for a given realization

without averaging over initial conditions, the ensemble-averaged velocities, 〈|vx|〉(t) and 〈|vy|〉(t), correspond

to time series in the statistical steady state. Averaging these fluctuations over many initial conditions would

smooth out the late-stage time dependence to a constant value.

The mean square fluctuations in the steady state are an increasing function of the applied shear. We

observe that the mean value of climb velocity is approximately an order of magnitude smaller than the

typical velocity of gliding. A rescaling of velocity components as a function of the rescaled time in the

units of t0 is presented in Figs. (3.6b) and (3.7b), which however gives a poor data collapse. Improving

it turned out to be a challenging task, one of the reasons being that there is an additional characteristic

timescale given by the cross-over from the relaxation dynamics to the transient period of acceleration prior

to the steady state. It may be that this timescale also plays a role in the scaling function, but we have not

succeeded in including it to our satisfaction. This is an unresolved issue that deserves a separate detailed

study.

The statistically stationary regime is characterized by fluctuations in the density of defects and their

velocities around a mean value that depends on the imposed shear flow. Fluctuations in the defect density

are attributed to sudden nucleation of dislocation pairs and their subsequent annihilation, either with the

same pair member, or with dislocations from another pair.

Physically, the nucleation mechanism is related to the phase shifts induced by the transverse shear

deformations. The reason for this is that the action of an external shear flow is cumulative in the phase

θ of the complex envelope field ψ = |ψ|eiθ and its gradients ∇θ, similar to the effect of the self-induced

mean flow [92]. The shear flow advects the underlying stripe pattern together with its defects. This motion
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Figure 3.8: The time independent scaling function of the probability distribution corresponding to climb (crosses),
respectively glide (open circles) velocities during the phase ordering in the absense of external field. The rescaled
velocity variable is given as ṽ j ≡ v j/〈|v j|〉 for j = x, y. In the inset figure it is shown the log-log plot of the PDF
calculated with logarithmic binning.

induces small undulations along the stripes which build up stresses and create distortions in the pattern.

These distortions, which are localized into transverse “shear bands”, grow with time up to the point where

they locally tear apart the stripes releasing pairs of defects. The shear flow affects both the isolated motion

of defects and, more importantly, the interaction between defects. The effect of the large-scale flow on the

defect interactions becomes stronger where the defect motion is slower [92].

3.4.2 Velocity statistics

In the absence of shear flow, the motion of dislocations is symmetric. Although the mean velocity in absolute

value is non-zero and related to the mutual interaction forces, the velocity of dislocations averages out to

zero. This is equivalent to the symmetric probability distributions of the velocity fluctuations as shown in

Fig. (3.8). The actual distribution is time dependent due to quench dynamics by annihilations. However,

using the dynamical scaling behavior of the probability distribution we can remove the time dependence

by effectively rescaling the dislocation velocity by the ensemble average of the absolute velocity at a given

time, i.e. ṽi ≡ vi/〈|vi(t)|〉, with i = x, y for the two components. The distribution of these rescaled velocities

corresponds to the scaling function of the time dependent probability distribution as discussed previously
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in the context of vortex dynamics. From Fig. (3.8), we notice that the probability distributions of the climb

and glide velocities retain a similar form that is characterized by a long tail with a −3 power law as in the

relaxational dynamics of vortices. This is consistent with previous numerical studies of the velocity statistics

of defects in the anisotropic Swift-Hohenberg dynamics from Ref. [59].

At a finite shear rate and in the late stage of statistically stationary regime, the motion of dislocations

is influenced by the imposed flow. Dislocations of opposite topological charges tend to move in opposite

directions, with an asymmetry in their mean transverse motion that is related to the shear rate, i.e. γ̇ ∼

(〈v+
x 〉 − 〈v

−
x 〉), while the climb motion remains almost symmetric. The velocity probability distribution for

positive, respectively negative dislocations becomes the same when we rescale their corresponding absolute

velocities as ṽs ≡ |vs|/〈|vs|〉, where s = ±, so that P+(ṽ+) = P−(ṽ−).

In Fig. (3.9), we plot the probability distribution functions of the rescaled gliding velocities and climbing

velocities in the steady state regime. For the transverse motion, the small scale velocity fluctuations are

normally distributed around the mean flow. Large fluctuations against the flow are due to events where

pairs of dislocations of opposite charge, gliding opposite to their drift flow, are attracting and annihilating.

These events contribute to the long left tail for P+(vx) and right tail for P−(vx). The statistics of small climb

velocities are also influenced by the imposed shear flow and given by the slight asymmetry in the Ps(vy).

However, the large fluctuations in the longitudinal motion are due to pair interactions prior to annihilations.

These fluctuations are captured by the long tails in the P(vy) distribution and they seem to follow the inverse

cubic law, but with less accuracy than in the relaxational case. Typically, a nucleation event leads to a

burst in the local density of dislocations which will annihilate subsequently by the fast climbing motions.

However, these large velocity events occur on a longer timescale than during relaxational dynamics, so that

the system needs to be followed longer in the steady state. This is computationally challenging, because of

the prior transient acceleration period whose length increases as the driving force is decreased.

3.5 Conclusions

In summary, our numerical simulations suggest that the velocity statistics of codimensional-two defects

exhibits a dynamical scale invariance with a scaling function that has a universal inverse cubic tail when the

defect dynamics is driven by mutual pair interactions leading to annihilations. This is valid both for point

defects in 2D and defect filaments in 3D during phase ordering kinetics. Finite size effects of the defect core
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Figure 3.9: (a) PDF of the gliding velocity for positive (open diamonds and circles) and negative (open triangles and
crosses) dislocations in the statistically stationary state at a different shear rates. (b) Probability distribution function
of the climb velocity for positive (open circles and diamonds) and negative (open crosses and triangles) dislocations
in the statistically stationary state. In both cases, the rescaled velocity variable is ṽ j ≡ v j/〈|v j|〉 for j = x, y. Inset figure
shows the log-log plot of the tail PDF with logarithmic binning.

introduce a Gaussian cut-off to the v−3 scaling. A similar statistical behavior is observed in the velocity of

dislocations in anisotropic stripe patterns during phase ordering. Although the motion is highly anisotropic

and dominated by the gliding of dislocations, the distributions of the climb and glide velocity fluctuations

exhibit the same algebraic tail when the motion is driven by the local interactions between dislocations.

During non-relaxational dynamics assisted by an external transverse shear flow, small velocity fluctuations

are influenced by the mean flow, whereas the asymptotically large fluctuations are still due to pairwise

interactions. In statistically stationary dynamics, anisotropic defect motion is manifested also in anisotropic

statistics of the glide and climb velocities. In this study, we have neglected the effect of a self-induced

mean flow in the defect dynamics. This effect is however important to capture the spatio-temporal chaotic

dynamics as seen from experiments. It is thus interesting to study in future investigations the statistical

properties of interacting defects when the combined effect of a large scale flow and a self-induced mean

flow is taken into account.
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3.6 Appendix: Calculation of derivatives in cell dynamical systems models

We solve the time dependent real Ginzburg-Landau dynamics from Eq. 3.8 using the cell dynamical systems

approach (CDS) [5, 6, 36]. Numerical efficiency becomes particularly important in 3D simulations and this

method is tailored to that. The complex variable ψ(r, t) is replaced by a ψ(n)
i, j (or ψ(n)

i, j,k in 3D) defined on a

square lattice of size N × N (a cube of size N × N × N in 3D) at time n. The idea of the CDS method is to

construct a discrete set of maps for each lattice cell such that the flow properties of the continuous dynamical

system are preserved. A cell dynamics is defined by two steps: a local update

ψ̃(n+1) =
Aψ(n)√

1 + ψ2(n)(A2 − 1)
, (3.12)

where A > 1 is a parameter that determines the global rate of convergence to the fixed points of the local

double-well potential, and a global update taking into account the interactions between neighboring cells

ψ(n+1) = ψ̃(n+1) + C∇2ψ̃(n+1), (3.13)

where C is a constant proportional to the phenomenological diffusion constant. The isotropy of the order

parameter being simulated naturally mandates the isotropy of the difference operators used to implement

the coupled maps (see Tomita [38]). Oono and Puri [36] chose a 9 point stencil to implement a “Laplacian”

operator, which is highly isotropic for a 2D square lattice [39]. This stencil reads

∇2ψ ≡
3

dx2

1
6

∑
NN

ψ +
1
12

∑
NNN

ψ − ψ

 , (3.14)

where NN stands for the nearest neighbors in the discretized lattice and NNN are the next-to-nearest neigh-

bors for each node in the lattice.

Considering the same isotropy requirements, the discretization of the 3D Laplace operator reads as [6]

∇2 f ≡
3

dx2

1
9

∑
NN

ψ +
1

36

∑
NNN

ψ − ψ

 . (3.15)

Since the calculation of the position and velocities of defects involves first order spatial derivatives of

the ψ field, an isotropic discretization of the gradients is important in order to reduce the underlying lattice
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anisotropic effects. We use the isotropic version of the gradients both in 2D and 3D. Following the idea that

these operators have to be accurately represented in Fourier space [39], we use the following stencil for 2D

∇xψ ≡
1

8dx

(
ψi+1, j+1 + 2ψi, j+1 − ψi−1, j+1 +

+ ψi+1, j−1 − 2ψi, j−1 − ψi−1, j−1
)
, (3.16)

where i and j are the lattice indices for the x and y directions, respectively. Swapping indices we can obtain

the corresponding expression for ∇yψ. We note that this expression looks very similar to a 4 point first

derivative in a 2D square lattice [93]. For the gradients in 3D, the stencil reads

∇xψ =
1

8dx

(
ψi+1, j+1,k − ψi−1, j+1,k + ψi+1, j−1,k − ψi−1, j−1,k+

+ ψi+1, j,k+1 − ψi−1, j,k+1 + ψi+1, j,k−1 − ψi−1, j,k−1
)

+

+
1

4dx

(
ψi, j+1,k − ψi, j−1,k + ψi, j,k+1 − ψi, j,k−1

)
, (3.17)

with the corresponding index swap to obtain ∇yψ and ∇zψ.
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Chapter 4

On the suitability of short reads of 16S

rRNA for phylogeny-based analyses in

environmental surveys

Pyrosequencing platforms have been widely used in 16S rRNA deep sequencing of organisms sampled from

environmental surveys. Despite the massive number of reads generated by these platforms, the reads only

cover short regions of the gene, and the use of these short reads has recently been called into question for

phylogeny-based and diversity analyses. We explore the limits of the use of short reads by quantifying the

loss of information, and its effect on phylogeny. Using available nearly-full-length reads from published

clone libraries and databases, and simulated short reads created from these reads, we show that for selected

regions of the gene, short reads contain a surprisingly high amount of biological information, making them

suitable to resolve an approximate phylogeny. In particular, we find that the V6 region is significantly poorer

than the V1-V3 region in its representation of phylogenetic relationships. We conclude that the use of short

reads, combined with a careful choice of the gene region used, and a thorough alignment procedure, can

yield phylogenetic information comparable to that obtained from nearly-full-length 16S rRNA reads.
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4.1 Introduction

Advances in sequencing technology allow researchers to generate massive libraries of biological informa-

tion. In particular, high-throughput sequencing methods [94] are becoming widely used to analyze microbial

communities [95–100]. One appealing aspect of recent advances in technology has been the deep environ-

mental surveys of the microbial composition from a wide variety of environments, ranging from ocean [95,

101], to soil [102], to mammal guts [99]. In addition, 16S hypervariable tag sequencing has exposed the ex-

istence of a so-called “rare biosphere,”[96] whose contribution to, and impact in, the microbial environment

are only now beginning to be observable, quantified and appreciated [100]. The potential significance of a

previously unsuspected biosphere, rich in diversity but low in abundance, is that it may offer a major clue

as to the response of ecosystems to change, and may well control their ability to adapt, by providing a large

reservoir of genetic novelty to be tapped.

Despite this promise, the technology is still in its infancy. In particular, the reads generated by hyper-

variable tag pyrosequencing are short, spanning only hundreds of nucleotides. In the case of 16S rRNA,

this has forced researchers to focus their studies on partial regions, usually including one or more of its hy-

pervariable regions in an effort to capture the maximum possible amount of useful biological information.

Naturally, there have been studies that compare the information obtained from these short reads with that

obtained from nearly-full-length reads of SSU rRNA, quantifying the loss of information, dependence on

the region of 16S rRNA being studied, and other possible biases [103–106]. In particular, the effects of

the use of short reads in taxonomic assignments and ecological diversity indices have been documented.

These studies make recommendations on which regions of the SSU rRNA are better suited to minimize the

artifacts based on the observations of their studies, yet their recommendations are not fully consistent with

each other, underlining some of the many complexities of the problem.

As pyrosequencing technology is maturing, the systematic artifacts that were present in earlier data sets

have become less of an issue [96]. These artifacts were by no means minor in terms of their biological impact

[107–109]. For example, point errors present in reads and artificial replicates lead to spurious operational

taxonomic unit (OTU) counts and overestimation of abundances in the OTUs [107–109]. Fortunately, both

of these artifacts can be easily removed with careful preprocessing [107, 109] and accurate alignment [15,

16] of the libraries. As these artifacts are being removed, we can grow more confident in pyrosequencing
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data and focus on the challenges imposed by the intrinsic information loss present in these data sets.

The purpose of this chapter is to quantify the amount of phylogenetic information contained in short

reads. In order to do this, we estimate the correlation between the phylogenetic information obtained using

synthetic short reads, to that from nearly-full-length reads. To this end, we constructed an artificial clone

library using 2000 nearly-full-length bacterial SSU rRNA sequences, randomly selected from the Green-

genes [18] 16S database, retrieved August 2009. The sequences in the library were trimmed in length to

simulate data obtained using pyrosequencing, creating additional libraries. The libraries were then used to

construct Maximum Likelihood (ML) phylogenetic trees. To quantify how much information is preserved

in the trees made with short reads, a branch-length-based pairwise distance metric [110, 111], supplemented

with Robinson-Foulds [19] and weighted Robinson-Foulds [112] metrics, was used to correlate [111, 113]

and compare the structures between the different trees. We show that two different inferences of a phylo-

genetic tree using the same short read library can show marked discrepancies due to the stochastic nature

of maximum likelihood-based tree reconstruction methods the nature of the region being studied. We show

that two different tree searches using the same short read library can show marked discrepancies due to the

nature of the region being studied, given the randomized starting trees used by RAxML to perform such

searches.

Then we show that, while a significant amount of information is preserved in the short read-based trees,

the actual amount of information preserved seems to be not only a function of the length of the read, but

also a function of the region sequenced. Our results indicate that the V1-V3 hypervariable region is a good

estimator of phylogenetic information, and would be the preferred target for pyrosequencing assays of large

communities, such as in large-scale environmental metagenomic surveys.

4.2 Materials and Methods

4.2.1 Selection of sequence sample and alignment

The single data set used in this study consisted of 2017 bacterial, nearly-full-length 16S rRNA sequences

randomly selected from the Greengenes database [18], as of August 2009. The reason for choosing 2017

sequences as the sample size of the database comes from the desire to perform a realistic comparison in

the light of the sizes of existing read libraries obtained for nearly-full-length 16S sequences (for example,
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Tree pair PC RF WRF
NM(1) vs. NM(2) 0.97 1042 179.50
NM(1) vs. LM(1) 0.93 1934 512.35
NM(1) vs. LM(2) 0.94 1900 495.39
NM(2) vs. LM(1) 0.94 1910 503.73
NM(2) vs. LM(2) 0.95 1864 484.81
LM(1) vs. LM(1) 0.96 1304 183.44

Table 4.1: Pearson correlation (PC), Robinson-Foulds (RF) and Weighted Robinson-Foulds (WRF) metrics for a
non-masked (NM) and Lane-masked versions of a test alignment. Two tree searches were made from each alignment.

using Sanger sequencing). Although pyrosequencing is now able to create libraries with sizes in the order

of millions of reads, a comparison study is certainly not realistic due to the lack of full-length libraries of

that size in studies, and also bumping the separate problem of creating a phylogeny for such a big number

of reads. Thus, we chose to limit ourselves to a simple case and small size, which is relevant to already

published studies,

It is customary to perform Lane-masking [114] of 16S rRNA aqlignments when constructing Neighbor-

Joining trees. In our work, we use the more accurate Maximum Likelihood (ML) algorithms. No masking of

the alignment is needed, because a Maximum Likelihood approach would place little weight on extremely

variable regions. To demonstrate this point, a Lane-masked version of an almost-full-length 16S rRNA

alignment was tested using the standard Robinson-Foulds (RF) and Weighted Robinson-Foulds (WRF) met-

rics. The RF metric measures the the number of splits present in one tree that are not present in the other tree,

that is, the symmetric difference of the two sets of splits. The WRF metric has the extra feature of weight-

ing the splits by their support value. This alignment was used in two tree searches, and the corresponding

results compared using these metrics. As shown in Table 4.1, the trees from the Lane-masked alignment

show a RF distance of 1304, whereas the trees from the non-masked alignment show a RF distance of 1042.

In the case of the WRF distance, the Lane-masked trees show a distance of 179.50, and the non-masked

version shows a distance of 183.44. Although there is greater variation in the Lane-masked trees found by

ML, these differences have low support values, as evidenced by the very similar WRF distances for both the

Lane-masked and non-masked trees. This shows that Lane masking creates a measurable deterioration of

the quality of the tree from a topological point of view, and therefore would create an uncontrolled artifact

in our topologically-focused analysis. For these reasons we do not use Lane masking.
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Tree pair PC RF WRF
GG(1) vs. GG(2) 0.98 936 157.11
GG(1) vs. S(1) 0.95 1766 648.35
GG(1) vs. S(2) 0.92 1782 646.06
GG(2) vs. S(1) 0.96 1820 663.00
GG(2) vs. S(2) 0.92 1780 644.58
S(1) vs. S(2) 0.96 890 193.67

Table 4.2: Greengenes (GG) and SILVA (S) alignment templates compared using the Pearson Correlation (PC),
Robinson-Foulds (RF) and Weighted Robinson-Foulds (WRF) metrics.

4.2.2 Influence of sequence alignment on tree metrics

The sequences extracted for this study were obtained from the Greengenes database, and as such those se-

quences are profile-aligned using NAST to Greengenes own 16S rRNA alignment template. If, for example,

we profile-align the same sequences to a different template, such as the SILVA bacterial template, or an

altogether different method, such as the Infernal aligner present in the Ribosomal Database Project’s 16S

pipeline, it is reasonable to expect differences between the obtained phylogenies. In this study we are inter-

ested in the relative differences between phylogenies processed using the same pipeline, so a valid question

is, what differences can we expect in the tree comparison metrics if we use different alignment strategies?

To this end, we set up a simple control test to measure the differences between two different alignment

templates, the Greengenes template and the SILVA template, starting from the same original data. We expect

trees constructed using different alignments of the same library to be somewhat different, of course, but it is

essential that trees resulting from searches performed on the same alignment should be more similar to each

other (for full-length 16S trees) than to trees from a different alignment.

To see if this is the case, we re-aligned the full-length library to the SILVA bacterial profile using

Mothur’s NAST and compared the resulting trees to each other and to the trees from the “unaligned” library.

The results are shown in Table 4.2. The trees were compared using Pearson Correlation, Robinson-Foulds

(RF) and weighted RF (WRF) metrics. All three distance metrics between different alignments are greater

than those for trees from the same alignment. This analysis shows that indeed there is consistency between

trees made from the same alignment, and thus re-alignment is not necessary.

Although the RF scores of the SILVA and Greengenes alignments are comparable, the WRF scores

are significantly different, presumably reflecting the presence of subtrees in the SILVA trees with higher

support values than the Greengenes trees. This may also be reflected in the slight difference in the Pearson
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correlation. In summary, re-alignment is not necessary for our analysis, and we proceed just using the

original Greengenes alignment.

4.2.3 Trimming of sequences to create the libraries of simulated short reads

The trimming procedure necessary to create the artificial libraries was performed after the alignment of

the source sequences was completed, instead of arbitrarily set the lengths before alignment, which would

indiscriminately remove some information give the uneven starting and ending points for the reads.The

reason for doing this is to maximize the information content of the reads, and also to use the standard

starting and ending points for the studied regions, which are defined by the primers used at sequencing time.

Also, for the almost-full-length library, the endpoints were trimmed in such a way to maximize the overlap

between all reads.

The selected sequences were imported into the alignment manipulation program Jalview [115]. The

sequences were then trimmed to the lengths expected for pyrosequencing reads coming from the 454 Life

Sciences Genome Sequencers GS 20, GS FLX Standard and GS FLX Titanium platforms, making sure they

contain the hypervariable regions of interest.

4.2.4 Construction of phylogenetic trees

To construct the maximum likelihood phylogenetic trees from the sequences in the libraries, we used

RAxML [116] version 7.0.4, multithreaded using the Pthreads library [117], using the rapid bootstrap [118]

option and the CAT model of rate heterogeneity [119]. The trees constructed using the nearly-full-length

sequences were created from 300 BS replicates, and the ones created from the simulated short reads were

created using 1000 BS replicates. We performed two tree searches for each library in the set using different

seeds for RAxML’s random number generator, which then we used to calculate pairwise distances.

The actual command line used for the tree searches reads as:

raxmlHPC-PTHREADS -T <threads> -f a -m GTRGAMMA -N <replicates>

-x <seed1> -p <seed2> -s <alignment> -n <name>

where “threads” is the number of threads per computer node, “replicates” is the number of BS repli-

cates in the tree search, “seed1” and “seed2” are integer numbers used to seed RAxML’s random number

generators, “alignment” is the alignment file name, and “name” is a name to identify the output file.
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4.2.5 Distance and correlation calculations

To compare the different trees, we used a definition of pairwise distance which depends on the structure

of the tree. The pairwise distance between two sequences is defined as the sum of the branch lengths

of the shortest path connecting the leaves representing the sequences in the tree [110]. For each tree we

calculated the pairwise distances between all possible pairs of sequences, with branch-lengths calculated

under GAMMA, thus creating a patristic distance matrix for a particular tree.

Then we calculate the Pearson correlation for all possible pairs of patristic distance matrices. For that,

we create tuples from the corresponding elements in a pair of matrices, and the we calculated the Pearson

correlation R2 for this set of tuples.

We also supplemented this metric with standard metrics for tree comparison, namely the Robinson-

Foulds (RF) metric [19] and a weighted Robinson-Foulds (WRF) metric [112]. The RF distance between

two trees is the number of splits present in one tree that are not present in the other tree, that is, the symmetric

difference of the two sets of splits. The WRF distance differs from the unweighted RF distance in that it

assigns a weight to each of the splits present in the symmetric difference, and the actual value is then the

sum of these weights. To calculate these distances between all trees created we used RAxML version 7.2.6,

which uses the support values of the splits as the weight for WRF distances.

4.2.6 Plotting of distance data

As a data reduction step, we took the tuples created from the two distance matrices being compared, and

proceeded to do a binning step. This step consisted in performing an average over intervals of size 0.01

distance units, and also obtaining the standard deviation for each interval. After normalizing the maximum

distance to 1.0, and rescaling the standard deviations accordingly, the data sets were now ready for plotting.

4.3 Results

Since we aimed to compare phylogenetic information present in different regions of the 16S rRNA, we use

a metric that can appropriately compare phylogenetic trees created from the different regions. Our metric

measures the distance between a pair of sequences in the tree, and compares it to the corresponding distance

in the other tree. The actual distance is computed as the length of the shortest path in the branches of the
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tree that goes from one member of the pair to the other one [110]. This distance accounts for the different

branch lengths calculated during the tree construction process. For a whole tree, this distance is computed

for all possible pairs of sequences in the trees and it is stored as a distance matrix.

Now, to compare two trees, we create a tuple of the distances of corresponding pairs in both trees,

and then we calculate the Pearson correlation R2 for the set of distances [113]. We chose this method

because it provides a balance between the computational expense of calculating more detailed comparison

metrics, and the oversimplification of comparing single numbers coming from each tree, numbers that do not

necessarily provide meaningful information, unless supplemented by extra details, such as the distribution

of possible distances between randomly structured trees, which itself is something still very time-consuming

to calculate.

We expect, for very similar trees, that the correlation R2 will be very close to 1.0. This is a consequence

of how close or far we expect different pairs of reads to be in different trees. In an ideal case, reads that

are found to be close together in one tree are also expected to be found close in the other tree. Likewise, if

two reads are found to be far apart in one tree, they are expected to be distant in the other tree. Thus, if we

plot the distances found in one tree as a function of the distances found in a second tree, we would obtain a

straight line in the case of identical trees, with R2 = 1.0. For trees that are slightly different, the points will

be scattered around this straight line. When the correlation is very poor, this straight line behavior would

be just a weak trend buried in a jungle of wildly scattered points. That said, we do not expect a situation

where we observe very good, non-linear correlation, which can give very low values of R2. We will call

these graphs Sequence Correlation Plots.

As a first calculation, we applied this metric to different trees created from the same region. For the

nearly-full-length case, this measurement would yield the minimum possible uncertainty in the structure

of the resulting trees, resulting from the ML procedure we used. Thus, we construct an upper limit on

the quality of our comparison methodology. From the resulting value of R2 and the graph related to the

comparison, we can base subsequent explorations.

The short reads are between 120 and 400 base pairs long, or approximately 15% and 30% of the full

length of the 16S gene, and it is reasonable to expect a loss of phylogenetic information when using these

reads. Now, when this distance metric is applied to trees created from the simulated short reads, we expect

more deviations from the straight line behavior of almost identical trees. This is because the ML trees
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created from shorter reads are harder to resolve –less sequence information leaves greater ambiguities to

be resolved. The ML problem in these cases requires a more intense search of the solution space in order

to converge to a solution, which itself is one of many equally good approximations to the “real” solution.

This suggests an interesting possibility: if it is harder to find a solution to the ML problem, that means

the sequences would contain less phylogenetic information. This implies that the quality of a ML tree for

fixed computational effort could be used as a proxy for measuring phylogenetic information content in the

sequences used to create the trees.

As a way to supplement the patristic correlation metric, and also to gain further insight on the difference

between the trees, we also compared the trees using a Robinson-Foulds (RF) metric [19], and a weighted

Robinson-Foulds (WRF) metric [112]. The RF metric is the count of the splits present in one tree that are

not present in the other. In other words, it is the symmetric difference of the sets of splits of the trees being

compared. The WRF metric, on the other hand, multiplies each split count by a certain number. In our

case, each split is weighted by the support value of said split, where the support value goes from 0 for no

support, to 1.0 for full support for the split. Besides providing another measure of similarity between trees,

using both RF and WRF metrics provide us some insight on the nature of the differences between the trees.

If the RF distance is much larger than the WRF distance, we can infer that the differences between trees

occur mostly on low-support subtrees, whereas if the WRF distance is closer to the RF distance, then the

differences are mostly due to rearrangements of high-support subtrees [120].

From this kind of comparison, we can gain some insight on two specific questions we have about the

short reads: (i) how much information is contained in the hypervariable tag regions; and (ii) how the length

of the read correlates with the phylogenetic information contained in the nearly complete gene. There

has been previous work regarding the latter question, exploring simulated datasets to address the general

question of length requirements for tree-reconstruction [121, 122], and although their concerns extend well

beyond the question of short-reads and into large-scale phylogeny in general, their findings are certainly

relevant to our case and add to our observation of the complexity of the short-reads situation.

In Figure 4.1, we show Sequence Correlation Plots (SCP) for the nearly-full-length (FL) tree, as well

as for all the considered regions. Distances in the plot are normalized to a maximum value of 1.0 and, for

clarity, they are also binned. The bins have a width of 0.05 distance units before normalization. The error

bars correspond to the standard deviation calculated during the binning process.
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Figure 4.1: Correlations between tree searches performed on full length and partial reads. The sequence correlation
plots show how similar are two ML tree searches for the different regions considered. The higher the correlations,
the more similar the solutions to the ML problem. This measure can be used as a proxy for phylogenetic information
content in the region used to construct the tree. The dots correspond to the average normalized distance in one tree as
a function of the corresponding distance in the other tree, averaged over all distance pairs in a bin. The shaded area
corresponds to the standard deviation for the points in each bin.

In Figure 4.1A, we show the comparison between two tree searches performed on the alignment of

nearly-full-length reads. The correlation of these two trees is very high, and this comparison can be thought

of as an approximate minimum of the possible uncertainty in determining the phylogeny based on 16S

rRNA, using RAxML as the treeing tool, with the NAST-based alignments. There are differences even in

the nearly-full-length trees because of the approximate, probabilistic nature of the solutions found for the

ML problem as solved by RAxML. Even in this “benchmark” case, there are a couple of notable features

in this plot. First, the error bars are very small in the lower 20% of the pairwise distances in the plot,
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meaning that the reads that were found to be close together in one tree search stayed in similar positions

in the other search. As the pairwise distance is increased, there is an increase in the size of the error bars,

yet the error bars stay relatively constant up to the maximum distance in the trees. This indicates that the

relationship between distantly related pairs does not significantly deviate from the average, indicating that

the relationships between pairs are preserved on average.

In Figure 4.1B, we see a very similar situation for the reads encompassing hypervariable regions V1

to V3 (V1-V3), a library that can be experimentally obtained using 454 GS FLX Titanium platforms. The

rather surprising observation is that the lower 15% of the pairwise distances are very well preserved between

tree searches on the same alignment, the error bars being comparable to those present in Figure 4.1A.

Beyond this 15%, the error bars grow substantially, but their magnitude remains more or less constant

throughout the set of pairwise distances, signaling some loss of information compared to the FL trees, yet,

at the same time, still being able to resolve the long distance relationships between reads for a majority of

the pairs. Interestingly, the Pearson correlation in this case (R2 = 0.89) is very similar to that obtained when

comparing the V1-V3 tree with the nearly-full-length reads tree (see Figure 4.2). Overall, when compared

to the nearly-full-length situation, the V1-V3 has produced very consistent trees, as indicated not only by

visually comparing the graphs, but also by the high value of R2.

The situation for the other two regions appears very different. There is poor consistency in the structures

of the different tree searches, and the error bars tend to grow as the distance increases. In the V6 region

graph, there is a major change in behavior at very large distances, signaling substantial differences in the

tree structures.

Figures 4.1C and 4.1D show the resulting plots for the shortest reads analyzed. Beyond the very closely

related reads, the error bars keep growing as the pairwise distances grow, in contrast to the FL and V1-V3

reads. This likely indicates an inability to consistently resolve the relationship between distant reads across

tree searches. In particular, when focusing on the two trees we constructed using the V6 region (Figure

4.1D), there are major differences between the distantly related taxa between both trees. This, despite the

fact that the trees constructed using the short reads were calculated using more BS replicates during the

construction process, and it is likely that adding more BS replicates to this process will not significantly

change the outcome.

We now apply the same comparison metric to trees made from different regions to explore cross-
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correlation between different regions of the 16S gene. Unlike the previous case in which we used the

correlation metric as a proxy to estimate the intrinsic phylogenetic information content of a given region,

this cross-correlation between different regions can be used to estimate the phylogenetic information content

from a region, relative to the information present in another region.
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Figure 4.2: Correlations between trees constructed using different regions. The top row shows pairwise distance
correlations between trees from the different regions and a full length tree. The bottom row shows the correlations
between all the trees made from the different regions. These graphs illustrate the possible variations in tree correlation,
ranging from very good (B) to poor (E). The dots correspond to the average normalized distance in one tree as a
function of the corresponding distance in the other tree, averaged over all distance pairs in a bin. The shaded area
corresponds to the standard deviation for the points in each bin.

Figure 4.2 shows the normalized pairwise distances between the reads in one tree, as a function of the

corresponding distance of a second tree. The top row contains all the comparisons against the nearly-full-

length reads, where the V1-V3 tree shows good agreement with the FL tree. Other comparisons for this
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same region show similarly high correlations (see Table 4.3). A different picture can be observed for V3

(Figure 4.2A) and V6 (Figure 4.2C), where correlations are not as good. The values of the correlations also

vary with tree searches, such that the better match between a short read and the nearly-full-length tree is

dependent on the found trees, signaling a rather important loss of phylogenetic information.

The bottom row shows the comparison between the different simulated short read libraries. As expected,

comparisons with the V1-V3 region reads give a better correlation, comparable even with the correlations

with nearly-full-length reads. But the comparison between the V3 and V6 is not as good, highlighting

substantial differences between the structures of the trees created using these regions.

The Robinson-Foulds (RF) and weighted Robinson-Foulds (WRF) distances calculated for all tree pairs,

besides complementing the data obtained with the correlations and giving us more insight on the differences

between the trees, should also be consistent with the trends shown in the figures. Table 4.3 contains the

Pearson correlations (PC), RF distances and WRF distances for all tree pairs analyzed in this study. The

number in parentheses indicates which of the tree searches for that particular region is being compared. The

purpose of the table is to show all the range of R2 values present in the dataset, and also compare them with

the corresponding RF and WRF distances. The first point we want to show is the range of differences for

trees created from the same alignment. The PC values drop from the FL trees down to the V3/V6 case,

as the RF distances increase, and the WRF distances only show a slight increase. We can interpret these

differences as an increasing discrepancies between topologies and branch lengths as the size of the regions

being used to construct the trees become shorter, but given the WRF distances most of the differences seem

to be concentrated on the low-support subtrees. The next trend we notice is that the R2 values between

the V1-V3 trees and the FL trees are consistently high, ranging from 0.85 to 0.89. Their corresponding

RF distances are very similar, ranging from 2700 to 2742, and their respective WRF distances also follow

this pattern. These numbers show that, while there is quantifiable phylogenetic information loss, the tree

structure is rather well resolved and consistent across tree searches. The next point we want to highlight is

the fluctuation of the R2 values for the trees found for V3 and V6, when correlated to the FL trees. From

these numbers alone we cannot reliably tell if one of these regions is more suitable than the other. However,

by looking at the RF and WRF values, we can see that the topological differences between the trees are

due to rearrangements of high-support subtrees. The fact that the RF and WRF distances don’t fluctuate as

much compared to the PC values, shows that, while the differences in subtree structure might be relatively
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Tree Pair PC RF WRF Tree Pair PC RF WRF
FL(1) vs. FL(2) 0.96 1012 150.98 V1-V3(1) vs. V3(1) 0.59 3302 746.68
FL(1) vs. V1-V3(1) 0.89 2700 861.52 V1-V3(1) vs. V3(2) 0.64 3336 750.52
FL(1) vs. V1-V3(2) 0.85 2724 871.21 V1-V3(1) vs. V6(1) 0.61 3634 942.84
FL(1) vs. V3(1) 0.59 3310 980.40 V1-V3(1) vs. V6(2) 0.53 3600 946.27
FL(1) vs. V3(2) 0.68 3308 969.56 V1-V3(2) vs. V3(1) 0.63 3306 746.42
FL(1) vs. V6(1) 0.69 3472 1083.62 V1-V3(2) vs. V3(2) 0.63 3322 744.12
FL(1) vs. V6(2) 0.60 3444 1083.58 V1-V3(2) vs. V6(1) 0.55 3638 943.23
FL(2) vs. V1-V3(1) 0.86 2702 871.29 V1-V3(2) vs. V6(2) 0.46 3596 946.51
FL(2) vs. V1-V3(2) 0.88 2742 886.41 V3(1) vs. V3(2) 0.78 2560 159.82
FL(2) vs. V3(1) 0.65 3300 979.69 V3(1) vs. V6(1) 0.34 3716 675.30
FL(2) vs. V3(2) 0.70 3292 969.87 V3(1) vs. V6(2) 0.33 3710 687.56
FL(2) vs. V6(1) 0.65 3476 1093.31 V3(2) vs. V6(1) 0.47 3704 666.35
FL(2) vs. V6(2) 0.58 3450 1091.76 V3(2) vs. V6(2) 0.42 3700 680.00
V1-V3(1) vs. V1-V3(2) 0.89 1578 171.42 V6(1) vs. V6(2) 0.76 2772 195.53

Table 4.3: Correlations and distances between all trees studied. The table shows Pearson correlations (PC) between
all the trees used in this study, as well as their corresponding Robinson-Foulds (RF) and weighted Robinson-Foulds
(WRF) distances. The number in parentheses represents the tree search used when multiple trees were made from
the same library. We see that the PC values for the longest short read libraries (V1-V3) are consistently high, and the
corresponding values for the V3 and V6 regions show a high degree of fluctuation. Also of interest is the increase of
RF/WRF when moving from V1-V3 towards V6, noting that the differences between trees start involving high-support
subtrees, specially in the V6 case.

comparable, the branch length differences have a measurable effect, signaling potentially damaging loss of

phylogenetic information for these regions. The final point is that the magnitude of the values of R2 for

the V3 and V6 trees, when correlated with the V1-V3 trees, are only slightly lower than for the FL case,

the corresponding RF distances are similar, and their WRF distances are slightly lower, meaning that the

topological differences are slightly more biased towards lower-support subtrees, giving another point of

support for V1-V3 as being a good proxy for the FL reads.

Finally we can say something about the trees themselves. In Table 4.4 we see the tree lengths, defined

as the sum of all branch lengths in the trees, and the logarithm of the likelihood (LogLk) value for the trees,

as calculated using the original full-length alignment. The values of the tree lengths don’t seem to follow

a particular trend with respect to the read length. On the other hand, the LogLk values seem to get closer

to zero as the read length decreases, meaning that the trees obtained are a progressively worse description

of the data in the full-length alignments, when decreasing the read lengths, thus adding another layer of

support to the observations about the discrepancies when using shorter reads.
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Tree Length LogLk
FL(1) 189.38 -473754.97
FL(2) 188.15 -473750.26
V1-V3(1) 252.90 -494070.55
V1-V3(2) 254.76 -493119.36
V3(1) 172.54 -519286.99
V3(2) 187.78 -520317.05
V6(1) 132.72 -552733.64
V6(2) 136.26 -550485.72

Table 4.4: Parameters characterizing the trees. The table shows the tree length, defined as the sum of all branch
lengths of the tree, and the logarithm of the likelihood for the tree (LogLk) using the full length alignment as the input
data, as calculated during the tree search using a Maximum Likelihood method. The tree lengths don’t seem to follow
a trend with decreasing read length. The likelihood values, on the other hand, indicate that the trees made with short
reads get worse at describing the relationships inferred from the full-length alignment as the reads become shorter.

4.4 Discussion

We have examined trees created from simulated short read libraries that were constructed using a random

sample from the Greengenes database, comparing them using a Pearson Correlation of patristic distances

between leaves of the trees, supplemented with Robinson-Foulds and weighted Robinson-Foulds distances.

This comparison give us insight on the phylogenetic information content of the short reads, and it is a

complement to other studies that quantify the pros and cons [107, 108] of pyrosequencing technology. This

is specially relevant now, in the light of the huge influx of environmental data coming from big projects such

as the ocean environmental studies [123] , Human Microbiome Project [124, 125], or studies on other more

particular environments [126, 127] that would be difficult to accomplish if not for pyrosequencing.

We have also only considered focusing on a de novo approach to constructing phylogenetic trees, instead

on doing a survey on all popular methods for reconstructing phylogenies, including insertion of reads into

a pre-existing tree. Although the question of the reliability and comparison of large-scale phylogenies is

certainly interesting, as evidenced by published studies on the subject (for example [104]) we wanted to

focus on a specific problem of phylogenetic information loss, not doing a comparison of methods used in

community analysis, which is beyond the scope of this chapter.

Our study identifies in detail the limitations of the short reads, from a phylogenetic information point

of view, complementing other short read studies [104–106], which conclude that short reads less than 200

bp long show significant topological differences between tree searches, signaling phylogenetic information

loss. From this observation, we can say that any conclusions derived using phylogeny-based tools (most
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notably Unifrac [128]) that used very short reads and de novo phylogenies as their input data, have to be

interpreted with some significant degree of uncertainty, independent of the region of 16S sequenced. Similar

concerns have also been expressed elsewhere in the published literature [129].

On the other hand, based on the results shown here, the prospect looks much better when using appro-

priately chosen longer reads, which are already accessible using FLX Titanium pyrosequencing technology.

These longer reads make it possible to extract phylogenetic information with high degree of reliability. The

type of analysis we performed can be extended to other genes of interest, such as proteorhodopsins [130],

which show a high degree of environmental correlation.

4.5 Conclusion

In this chapter, we generated synthetic short reads from complete 16S rRNA databases, and compared the

complete phylogenetic trees with those obtained from the synthetic short reads. Our results show unequiv-

ocally that the different hypervariable regions are not equally suitable for this purpose, and that the V1-V3

region is the one that represents the best proxy for the complete 16S rRNA gene.
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Chapter 5

Robust computational analysis of rRNA

hypervariable tag datasets

Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as

gastrointestinal microbiomes, where it is important to be able to quantify measures of abundance and di-

versity. The fragmented nature of the 16S rRNA datasets obtained, coupled with their unprecedented size,

has led to the recognition that the results of such analyses are potentially contaminated by a variety of arti-

facts, both experimental and computational. Here we quantify how multiple alignment and clustering errors

contribute to overestimates of abundance and diversity, reflected by incorrect OTU assignment, corrupted

phylogenies, inaccurate species diversity estimators, and rank abundance distribution functions. We show

that straightforward procedural optimizations, combining preexisting tools, are effective in handling large

(105 − 106) 16S rRNA datasets, and we describe metrics to measure the effectiveness and quality of the

estimators obtained. We introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA

data, and show that complete linkage clustering greatly outperforms other widely-used methods.

5.1 Author summary

Microbes constitute the majority of the living mass and genetic diversity on the Earth. They construct com-

munities with elaborate patterns of abundance and diversity. Major current scientific interest is in quantify-

ing these patterns in various microbial ecologies, from microbes living in oceans, to microbes in vertebrate
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intestines and on human palms. To ascertain the diversity and abundance of microorganisms in a sam-

ple, experimenters sequence organismal tags. However, it is important to carefully analyze these data sets

in order not to overestimate the number of species living in an environment. Our chapter describes how

to make correct computational analyses of the next generation of deeply sequenced genome populations,

where the unprecedented sample size and fragmented data set pose special problems to conventional ap-

proaches. As more and more sequence data are collected, it becomes critical to have robust, reliable and fast

computational methods for analyzing these data. We have developed and made available online the software

TORNADO (Taxon Organization from RNA Dataset Operations) to perform such computational analysis,

and to quantitatively measure its quality.

5.2 Introduction

There is a long history of using environmental 16S rRNA [131] to estimate microbial diversity [132]. While

early techniques relied on using clone libraries [133], next-generation high-throughput sequencing technol-

ogy, such as pyrosequencing, directly generates vast libraries of sequences [134]. Next-generation high-

throughput sequencers are capable of producing large datasets of more than a million reads from a single

plate [135]. As the size of these datasets grow, the ability to computationally manage and characterize such

data becomes a larger and more critical component of microbial ecology.

The goal of analyzing these sequences is to quantify the diversity and abundance distributions of organ-

isms present in the environment. As pyrosequencing technology advances, our ability to measure microbial

diversity increases. Already, this technique has been used to study the diversity of microbiomes from a

variety of environments [136, 137], resulting in reports of a so-called “rare biosphere” of low-abundance

organisms [96].

In order to assess the microbial diversity present in any dataset, the ability to appropriately measure the

distance between different sequences and to reliably group them into operational taxonomic units (OTUs)

is paramount. Typically, the abundance of OTUs is plotted in a rank abundance plot. These plots have been

used as a gold standard for ecological population modeling for many decades[138]. In addition, the OTU

groupings are utilized by other metrics in determining relative species compositions, microbial diversity, and

community comparisons[139, 140]. While much effort and controversy has been focused on measurements

of the quality of next-generation sequences[96, 104, 106, 109, 141], or the interpretation of pyrosequenc-
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ing flowgrams [107], less attention has been given to computational analysis of pyrosequenced 16S rRNA

data after quality processing, despite the large discrepancies in OTU numbers and diversity when different

analysis methods are used[107–109, 142].

There are two major components to the analysis of OTU abundance. The first is multiple alignment

of 16S rRNA or fragments of 16S rRNA. The second is clustering the sequences based on a distance

metric. The purpose of this chapter is to provide a careful discussion of the computational analysis of

alignment and clustering of pyrosequencing datasets, identifying sources of error, and appropriate ways to

handle the data to mitigate these artifacts. In particular, we use the Calinski-Harabasz (CH) index [143]

to compare the quality of clustering, finding unexpectedly large differences in the performance of different

algorithms. We show that data analysis is surprisingly sensitive to even small errors in multiple align-

ment and clustering, but that with relatively little difficulty, these artifacts can be substantially mitigated

using a judicious combination of preexisting tools, and others that we have made available on a web site

(http://tornado.igb.uiuc.edu). Following these procedures results in robust characterization of mi-

crobial ecosystems.

5.2.1 Multiple Alignment: NAST and Infernal

Multiple alignment is the starting point of almost all analyses performed on microbiome sequences. Most

phylogeny [116, 144], community distance estimates [140, 145], and abundance distributions [146–148]

ultimately rely on input from a multiple alignment to compute sequence distances within a consistent align-

ment template.

The goal of multiple alignment is to align sequences according to their evolutionary relationships. In

order for a multiple alignment to be meaningful in this context, all sequences in the multiple alignment

must have a common origin. The various match, mismatch, and indel events then represent possible recon-

structions of the evolution of those related sequences. In contrast to pairwise alignment, multiple alignment

leverages conserved features of an entire gene family to obtain a broader evolutionary picture. This picture

can then be fed into various algorithms such as maximum-likelihood phylogeny[114, 116, 144] in order to

reconstruct the evolutionary relationships between the individual sequences.

The use of 16S rRNA sequences for discerning evolutionary relationships has a long history. The very

first studies that organized the Bacteria according to their evolutionary relationships and resulted in the
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discovery of the Archaea utilized this important ribosomal molecule as a molecular fossil [149] and it still

remains the most widely used evolutionary marker in microbial ecology today [96, 99, 135]. As such, it is

not surprising that a number of tools exist which are specifically tailored to 16S rRNA such as the NAST

pipeline [15] or Ribosomal Database Project [16].

These specialized 16S rRNA alignment tools all incorporate information about the 16S rRNA secondary

structure. The importance of the secondary structure is two-fold. First, the conservation of 16S rRNA se-

quences stems from the conserved structure. Second, unlike proteins which are built from up to 20 different

amino acids, there are only 4 basic RNA bases. Randomly chosen RNA bases have a greater chance of

aligning well with one another than randomly chosen protein sequences, making it more difficult to dis-

tinguish between evolutionary relationships and random matches. Secondary structure can, and should, be

used to provide extra discriminatory power beyond that available from the one-dimensional sequence alone.

The NAST algorithm [15] tries to align new sequences against a precalculated multiple alignment tem-

plate, and has been integrated into many commonly used 16S rRNA analysis tools such as Mothur [140]

and GreenGenes[18]. Typically, this template is hand-curated to include the appropriate secondary struc-

ture considerations. In this chapter we will use the SILVA SEED SSURef database version 102 [150] as

the template and refer to this alignment method as NAST+SILVA. The weaknesses of this method are that

errors in the hand-curated multiple alignment propagate and that alignment against a fixed-size template ne-

cessitates the inclusion of purposeful misalignments. Overall, this results in alignments that are sometimes

inconsistent with alignments based on secondary structure. An example of this is shown in the alignments

in Figure 5.1b. By contrast, Infernal [17], which has been integrated into the Ribosomal Database Project

16S rRNA Pipeline [16], aligns sequences against a predefined structure. However, even among the well-

conserved structures of 16S rRNA, there exist hypervariable regions which vary in their secondary structure

from taxon to taxon. These regions cannot be aligned to a fixed structural template, and are left unaligned

by Infernal (leading to a multiple alignment whose length is not fixed but may be different in different

datasets). An example of this Infernal’s alignment is shown in Figure 5.1a. It is important to note that while

both methods align to a seed model of some sort, the practical difference is that RDP+Infernal does better

in regions of strong secondary structure whereas NAST+SILVA does better in hypervariable regions.

To exploit this distinction, one can merge the best alignments from each tool by combining the hyper-

variable regions aligned using the NAST algorithm with the regions of strong secondary structure aligned
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Figure 5.1: Snippets of 9 reads aligned using the 4 different methods described in this chapter. The 9 reads are of the
V3 region of the 16S rRNA. (a) Sequences aligned via RDP [16] which uses the Infernal aligner [17]. Note that the
hypervariable region is left unaligned (bases 36 through 64). (b) Sequences aligned via NAST [15] (as implemented
by Mothur [140]) to the SILVA [150] database. Notice the inconsistencies in the alignment of the regions with strong
secondary structure conservation (bases 5, 25, 29, 72 through 79, and 85). (c) Sequences aligned using the merge
program in the tool we developed, TORNADO (http://tornado.igb.uiuc.edu). The merge process takes the
unaligned, hypervariable parts of the sequence aligned by (a) and replaces them by the alignment in (b). (d) Sequences
aligned like in (c), but with the final hand-curation step of the hypervariable regions.

by Infernal. An example of sequences aligned using the merging method is given in Figure 5.1c. One can

also make adjustment to the multiple alignment by hand. Done properly, this can produce a better quality

alignment than automated methods alone. An example of the merged alignment in which the hypervariable

region was further hand-curated is given in Figure 5.1d. For a brief description of the process and the tools

that we developed to perform the merging and hand-curation, please refer to the Materials and Methods

section.

With the availability of a variety of tools that perform multiple sequence alignment, it is imperative

to have a way to assess its quality. One way to do that is through maximum-likelihood (ML) phylogeny.

ML phylogeny tries to identify the set of relationships with best likelihood value. Conversely, ML scores
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can also be used to judge the likelihood of a multiple alignment reflecting sequence evolution. Indeed,

similar measures have been used in the past [151] and tools such as SATÉ [152] already take advantage

of this measure when iterating between multiple alignments and phylogeny to automate the search for the

best alignment and tree. However, exploring enough multiple alignments for large datasets is prohibitively

expensive and therefore remains impractical for now. Nonetheless, it is feasible to use the ML method in

order to compare the quality of alignments by measuring their likelihood values, and we use this below to

compare different alignment strategies.

5.2.2 Clustering Algorithms

Clustering algorithms, such as complete linkage [153], are essential for quantifying the diversity of micro-

bial communities. The goal of clustering is to group sequences that are within some measure of evolutionary

distance. Distances can be calculated using many different metrics such as percent sequence identity (PSI)

or distance along the phylogenetic tree branches. Ideally, a clustering algorithm should identify the natu-

ral boundaries between the clusters without utilizing more clusters than necessary to account for the entire

dataset. Ultimately, clustering should accurately reflect the underlying phylogenetic and taxonomic distri-

bution of sequences.

Complete linkage clustering (as implemented by Mothur [140]) has become the most widely-used clus-

tering algorithm in microbial ecology. It relies on input from a distance matrix that can be generated from

the pairwise distances between sequences in a multiple alignment. When calculating sequence distances,

it is important to clearly note how alignment gaps are dealt with. One can ignore the gaps (like Phylip

DNADIST does [148]) or count them in a number of different ways [146]. Once pairwise distances are

obtained, complete linkage operates by progressively merging smaller clusters into larger ones, as long as

each element in a cluster is within a defined distance from other elements in the cluster[153].

The performance of linkage clustering algorithms, for example as implemented in Mothur, scales poorly

(N3, where N is the number of sequence reads) as the number of sequence reads generated per study in-

creases. In the studies reported below, we reimplemented Mothur’s clustering algorithm, achieving an im-

provement in computational complexity (scaling as N2 log N), better memory usage, and an overall speedup

that is typically a factor of 5-10, leading to the ability to handle datasets with N up to about 30,000. De-

spite these improvements, it is understandable that heuristic, computationally efficient algorithms have been
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Figure 5.2: Calculation of clustering a set of points in a plane. (a) FastGroup’s method. (b) complete linkage cluster-
ing. Both of these clusterings are performed with the same radius r equal to the radius of the set of points. FastGroup
constructs 4 clusters whereas complete linkage finds 1.

developed, such as FastGroup [154] and ESPRIT[155].

FastGroup does not order clustering in any particular way, but instead chooses a sequence at random,

grouping everything within a defined PSI distance of that sequence. As an example of how that is different

from the complete linkage clustering employed by Mothur, consider the clustering of a scatter of points in

two dimensions, as shown in Figure 5.2. The two-dimensional space is a very simple example of sequence

space, with position in the space corresponding to the particular sequence of an organism. A set of points

in this space, if sufficiently close to one another, represents a set of sequences that can be considered to be

grouped into a single equivalence class—in other words, an OTU. The largest allowable distance between

points in a single equivalence class corresponds to the sequence similarity required for sequences to be

included in the same OTU (typically 97% is used).

When the FastGroup algorithm is used to group these sequences, with a radius equal to the radius of

the circle of points, the number of clustered OTUs can vary, depending on the order of chosen cluster

centers. One example of FastGroup’s clustering is given in Figure 5.2a. On the other hand, complete

linkage clustering with the same diameter correctly identifies the existence of 1 cluster (Figure 5.2b), by

progressively merging clusters as long as they are within a cluster diameter (see Figure 5.3 for the progress

of the complete linkage algorithm).

ESPRIT[155] goes one step further and does away with multiple alignment entirely and processes the

clusters in two steps: the first relying on a k-mer heuristic, similar to that used in BLAST[156], in order to

group closely related sequences under one representative sequence; the second relying on pairwise distances

between representatives in order to determine the final clusters. Both FastGroup and ESPRIT differ from the
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Figure 5.3: Illustration of the process of the complete linkage algorithm. Smaller clusters are progressively merged
into larger ones as long as no two elements of a cluster are farther than r from each other.

more controlled calculations of the complete linkage algorithm, but at the same time promise less compu-

tationally intensive results. Before pursuing such alternatives, it is important to understand the differences

between the results produced by each of these algorithms.

In other words, do the heuristic algorithms produce natural cluster borders and correct cluster composi-

tions? A natural cluster should have a representative sequence that is near the center of the cluster, i.e. the

representative sequence should be one that shares the most similarity to all other sequences in the cluster.

Natural clusters should not partition the dataset into more groups than necessary. One way to quantify this

goodness of clustering is via the Calinski-Harabasz (CH) index [143] that has been found to be the best in

a comprehensive study of 30 different clustering quality indices [157]. In essence, the Calinski-Harabasz

index is higher when the cluster centers are further away from each other (i.e. the clusters are better delin-

eated from each other), and when the cluster radii are smaller (i.e. the clusters are tighter). The CH index is

also correctly normalized so as to be comparable for different number of OTUs.

5.3 Results

In this work, we demonstrate that different methodologies can lead to very different estimates of OTU abun-

dances. We characterize these differences and deconstruct their two primary sources: multiple alignment

and the clustering method used. We measure the performance of both components of this process, restricting
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ourselves to 16S rRNA based techniques. We also provide metrics to quantitatively evaluate the effective-

ness of algorithms used. Our analysis includes an examination of the robustness of these algorithms on

real biological data. We perform our analysis on a dataset of 22, 911 bacterial 16S rRNA sequences (V3

region) with an average length of 205bp from a sample of a chicken caecum. We note however, that our

methodology is also applicable to longer 16S rRNA reads.

Before further analysis, we treated our dataset in the following way. To handle length variation among

sequences, we trimmed our sequences to only be between the first and last conserved columns in the NAST

[15] alignment to SILVA database [150]. We further removed any sequences less than 100bp long and any

sequences that contained an unknown nucleotide (N). After cleanup our dataset had 21,646 sequences.

5.3.1 Multiple Alignment: Performance

We compared the effectiveness of the different alignment algorithms by using the likelihood values returned

by maximum-likelihood phylogeny. In alignment of nucleotide sequences with secondary structure the

aligners that are aware of the secondary structure generally outperform those that rely on sequence data alone

[158], such as ClustalW [159] and MUSCLE [160]. In addition, these aligners scale poorly with dataset

size [161]. Thus, we test the two commonly used 16S rRNA alignment algorithms: RDP [16]+Infernal

and NAST in conjunction with the SILVA database [150]. Using ML phylogeny, we find log-likelihood

scores of −17, 012 and −17, 322 for RDP+Infernal and NAST+SILVA, respectively, as obtained from the

FastTree ML algorithm [144]. The merged alignment of RDP+Infernal with NAST+SILVA, described in

the introduction, has a log-likelihood value of −16, 262, representing an improvement over either of the

two algorithms alone. When we perform further hand-curation of hypervariable regions of the 16S V3 in

the merged alignment, we obtain a log-likelihood score of −15, 036—reflecting the misalignments that can

occur in the other automated procedure.

We can also take these different multiple alignments and cluster them in order to see how the OTU

abundance results depend on the multiple alignment procedure. The OTU numbers after complete linkage

clustering with radii 3%, 5% and 7% on seven different alignments are shown in Table 5.1. Here, “merge”

refers to the merging of RDP+Infernal with NAST+SILVA. Note that running the aligners on sequences

after quality processing produces thousands of OTUs. However, performing hand-trimming of sequence

tails reduces the number of OTUs by an order of magnitude. This suggests that poorly curated alignments
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Alignment method Number of OTUs
3% 5% 7%

NAST+SILVA (on raw) 1141 646 406
RDP+Infernal (on raw) 3588 2313 1743
Merged (on raw) 3647 2297 1682
NAST+SILVA (on trimmed) 425 251 187
RDP+Infernal (on trimmed) 406 234 169
Merged (on trimmed) 393 227 165
Hand-curated 354 207 153

Table 5.1: Dependence of the number of OTUs on the alignment method used. The percentages indicate clustering ra-
dius. Trimmed sequences refer to sequences in which elementary hand-curation was performed (see introductory para-
graphs of Results for more information). Merged refers to the multiple alignment that is a merging of the hypervariable
regions aligned by NAST+SILVA regions with strong secondary structure conservation aligned by RDP+Infernal. See
Introduction for more information. Note that crude hand-curation can reduce numbers of OTUs by a whole order of
magnitude.

may overestimate microbial diversity.

5.3.2 Clustering: Performance

We compared the three clustering algorithms (complete linkage, FastGroup and ESPRIT) by running them

on the hand curated alignment described in the previous section. We can visualize the effect of the choice

of clustering algorithm by comparing rank abundance curves and cluster compositions. Rank abundance

curves for the chicken caecum dataset are compared in Figure 5.4, for the 3% sequence difference clustering

distance (and 1.5% FastGroup). As demonstrated by the curve, complete linkage clustering, ESPRIT and

FastGroup 1.5% obtain the same shape of the curve, but FastGroup with 3% finds a very different one. This

is because complete linkage at distance r corresponds to clusters where every element is at distance r to

every other element in the cluster. On the other hand, FastGroup guarantees that every element is only at

distance r from the chosen center of the cluster. This means that there may be elements in the same cluster

that are at a distance of 2r from each other. Hence, r for FastGroup denotes the “radius” of the cluster,

whereas r for complete linkage denotes the “diameter” of the cluster. Thus, FastGroup at 1.5% sequence

distance can be compared to complete linkage and ESPRIT at 3%.

We find that FastGroup at 1.5% overestimates the number of OTUs in the sample. The binning in Figure

5.4 hides the fact that the number of OTUs found by FastGroup 1.5% is much larger than that of ESPRIT

and complete linkage. FastGroup 1.5% finds 834 OTUs compared to complete linkage (354) and ESPRIT
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Figure 5.4: Rank abundance curves obtained with different algorithms and/or clustering distances. Notice that Fast-
Group with 1.5% sequence distance identifies a similar rank abundance curve to those of ESPRIT and complete
linkage. However, it is not evident from the Figure that FastGroup identifies almost two times the number of OTUs
than ESPRIT or complete linkage.

(434). Most of these extra OTUs are singletons. Of the 834 FastGroup OTUs, 440 are singleton OTUs. In

comparison, complete linkage has 103 OTUs that are singletons out of total of 354. ESPRIT has 122 OTUs

that are singletons out of 434 total. This is in accordance to the idea that is sketched in Figure 5.2, that a

clustering algorithm such as FastGroup overestimates the number of OTUs.

We now evaluate the clustering quality via the CH index. For 3% clustering distance, complete linkage

has a CH index of 167,771, whereas ESPRIT clustering has a CH index of 244. FastGroup with 1.5%

clustering radius has CH index of 94,696. We note that complete linkage significantly outperforms other

linkage clustering algorithms: nearest neighbor linkage (single linkage) got a CH index of 14,042 and

average neighbor linkage got 23,512. We can also compare CH indices for clustering assignments that have

roughly the same number of OTUs, rather than the same clustering distance. We find that complete linkage

has CH indices between 140,000 and 160,000 for a range of clustering assignments with 200 to 300 OTUs.

ESPRIT produced two clustering assignments in this range: first with 235 OTUs has a CH score of 280, and

second with 303 OTUs has a CH score of 286. Finally, FastGroup (with 3% distance) got a CH score of

16,000 for a clustering assignment with 251 OTUs.

Another way to quantitatively judge the goodness of clustering is by comparing the OTU assignments

to the structure of the maximum likelihood phylogenetic tree. To do this, we count the number of clades in a
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Figure 5.5: Sketch of the calculation of the number of clades with uniform OTUs. A phylogenetic tree with 2 different
cluster (OTU) assignments is shown. The cluster assignment is indicated by OTU number and color. Both cluster
assignments have 2 uniform clades (interior nodes indicated by +1). (a) The uniform clades are: one made up of two
OTU 1 organisms, and one made up of three OTU 3 organisms. (b) The uniform clades are: one made up of two OTU
1 organisms and one made up of three OTU 1 organisms.

phylogenetic tree that contain only sequences of the same OTU (as determined by the clustering algorithm).

We expect that a good clustering assignment will have many such clades. Two examples of this calculation

are sketched out in Figure 5.5. We ran this calculation on 2 phylogenetic trees, one made by FastTree [144]

(FT) and one made by RAxML [116] (RX), both inferred from our dataset described above. We find that

complete linkage clustering has the most clades with uniform OTUs: 863 in FT and 698 in RX. Clustering

with FastGroup (with 1.5% distance), we find 427 clades in FT and 367 in RX, whereas ESPRIT performs

the most poorly: 6 clades in FT and 7 in RX.

We also explored if the rank abundance curves depend upon the clustering distance metric used. We find

that the complete linkage clustering with the hand curated multiple alignment is very robust with respect to

the choice of distance metric. In Figure 5.6a we compare the rank abundance curves (made by complete

linkage) for three different distance metrics: Phylip DNADIST[148], percent sequence identity and distance

along phylogenetic tree constructed by FastTree. We see that regardless of the choice of the distance metric,

the shape of the rank abundance curve is conserved.

If we seek universal laws in the rank abundance data, we should expect that the shape of the rank

abundance curve does not depend upon the particular clustering radius chosen. If instead rank abundance

changes significantly with radius, that would imply that there is an interesting interplay between population

dynamics and sequence distance. The complete linkage clustering with our hand curated multiple alignment
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Figure 5.6: Two checks that should be used to verify quality of rank abundance curves. Both plots show rank abun-
dance curves of the chicken caecum dataset. (a) Comparison of rank abundance curves for three clusterings using
three different distance metrics. We compare the clusterings that produce 300 OTUs (which corresponds to different
radii r for different metrics). (b) Rank abundance curve is robust if it does not change shape (functional form) when a
different clustering radius is used. The rank abundance curves for different clustering radii all fall onto the same curve
after rescaling the ranks to the same number of OTUs (while keeping area under the curve constant).

is found to be robust with respect to choice of clustering radius. As an example, see Figure 5.6b for the

rank abundance curves of our chicken caecum microbial sample clustered at three different distances. By

rescaling the axis of the rank abundance curves, while keeping areas under them constant, we can compare

the functional forms (i.e. shapes) of the rank abundance curves. The figure shows that the chicken caecum

microbial sample rank abundance seems to obey a universal law over a range of clustering distances.
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5.4 Discussion of the Results

In the literature, the quality of data from pyrosequencing has been called into question [108, 162], especially

with regard to its use in surveys of OTU diversity. Concern has been directed mostly at the experimental

process of acquiring DNA sequences with high quality. Sogin et al. [96] showed that a number of heuris-

tics can guarantee that per-base error rate of pyrosequencing is lower than that of Sanger sequencing while

retaining more than 90% of data. Other artifacts that raised concern came from the shortness of pyrose-

quenced reads [104, 106]. Quince et al. [107] showed that reinterpreting pyrosequencing flowgrams via

a maximum-likelihood scheme can lead to fewer OTUs. In this chapter we showed that a significant part

of the discrepancy may arise from different computational analyses employed. Recent work [142] that has

been similarly motivated has been commensurate with the conclusion that clustering is an important step

in OTU analysis. In particular, they suggest that a preclustering step can help fix problems where deep

sequencing overestimates species richness. Our work presents more general quantitative metrics that can

be used as a standard for clustering programs. In addition, we find that calculating the log-likelihood of

a maximum-likelihood phylogenetic tree is a good way to compare the quality of nucleotide alignments.

Clustering quality index such as Colinski-Harabasz can even be used to verify what clustering radius is

appropriate for a particular dataset. Our results that the multiple alignment and distance metrics can have a

large effect on OTU abundances are also in agreement with recent work by Schloss [129].

In general, we found that multiple alignments can have a large influence on OTU abundance informa-

tion, and the automated 16S rRNA alignment tools should be subjected to hand curation. Fast clustering

tools such as ESPRIT do not make use of a multiple alignment and rely on k-mer heuristics to calculate

pairwise distances between ungapped sequences. Our results show that such tools, intended to improve

upon complete linkage, actually perform significantly worse. Hence, even with increasing dataset sizes, it is

important to verify that the clustering method used performs no worse than complete linkage. We developed

tools that ease the burden of performing hand curation and complete linkage of large contemporary datasets.

These are available as supplementary software and are described in more detail in Sec. 5.5, Materials and

Methods.

Finally, we summarize for the reader’s convenience, step-by-step recommendations for handling a large

16S rRNA dataset, based on the analyses we have reported here. These are graphically illustrated in Figure
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Figure 5.7: Diagram of our proposed 16S rRNA alignment pipeline, TORNADO. After the preliminary clean up step,
we align the sequences in two different ways. First, we use Mothur [140] to align our sequences to the SILVA [150]
database. Second, we align using Ribosomal Database Project’s front end [16] to the Infernal aligner [17]. We then
merge the two, using Infernal’s secondary-structure-aware alignments and SILVA’s alignment of hypervariable region.
Finally, we manually curate the hypervariable regions, using a helper tool, splicer, we developed (see Figure 5.8).

5.7.

1. Quality Processing: Remove short reads and sequences with unknown nucleotides (N). Make an

alignment to the SILVA database [150], via NAST [15] as implemented by Mothur [140]. Trim

sequences to be between the first and last strongly conserved columns in this alignment.

2. Alignment: From the trimmed dataset, produce another alignment through RDP pipeline’s [16] front

end to the Infernal aligner [17]. Merge the two alignments (NAST+SILVA with RDP+Infernal) using

the tool that’s a part of the TORNADO pipeline at http://tornado.igb.uiuc.edu. Further hand-

optimize hypervariable regions of the reads by using the tool available on the website above.

3. Cluster: Cluster the dataset using the complete linkage tool available on the website above.

Further analysis can be performed by calculating estimators in Mothur [140], or by estimating phylogenetic

trees via RAxML [116] or FastTree [144].
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5.5 Materials and Methods

5.5.1 V3 rRNA amplicon sequencing.

We used the V3 rRNA sequences from the chicken caecum from batch B of a previous study [163]. PCR

specific primers flanking the V3 hypervariable region of bacterial 16S rRNA were used to generate PCR

products for pyrosequence analysis. The forward fusion primers for pyrosequencing included 454 Life

Sciences A adapter, and barcode A fused to the 5′ end of the V3 primer 341F (5′ gcctccctcgcgccatcag-

ACGAGTGCGT-CCTACGGAGGCAGCAG3′ ) or with barcode B (5′ gcctccctcgcgccatcag-ACGCTCGACA-

CCTACGGAGGCAGCAG3′ ). The reverse fusion primer included 454 Life Sciences B adapter fused to

5′ end of V3 primer 534R (5′ gccttgccagcccgctcag- ATTACCGCGGCTGCTGG3′ ). Cycling conditions

(20 cycles) were; initial denaturation at 94 Ph.D.C for 5 min; 20 cycles of 94 Ph.D.C 30 s, 60 Ph.D.C 30

s and 72 Ph.D.C 30 s; then 72 Ph.D.C 7 min for final extension. The amplicon products were cleaned

using PCR purification clean-up kit and SPRI size exclusion beads. The quality of products was assessed

using a Bioanalyzer using DNA1000 chip. The fragments in amplicon libraries were subjected to a single

pyrosequence run using a 454 Life Science Genome Sequencer GS FLX (Roy J. Carver Biotechnology Cen-

ter, University of Illinois). The resulting dataset had 22953 sequences of average length 204.7bp. Before

further analysis was performed, we performed basic filtering. We removed all sequences that were shorter

than 100bp reducing the number of sequences to 21646. The sequences have been uploaded to GenBank

(accession numbers HQ293272-HQ315544).

5.5.2 Multiple Alignments

We compared 4 different alignment methods as illustrated in Figure 5.1. (1) We fed the sequences into

Infernal [17] with bacterial secondary structure template as provided by RDP [16]. (2) We aligned the

sequences to the SILVA database [150] using the NAST[15] algorithm as implemented by Mothur [140,

164] (align.seqs command). (3) The results of (1) and (2) were then fed into a merger script we have

made available on the Web at http://tornado.igb.uiuc.edu. (4) The merged data sets’ hypervariable

regions were then hand curated using splicer, a tool we developed and made available on the Web as

part of our pipeline TORNADO at http://tornado.igb.uiuc.edu. This tool allowed us to greatly

reduce the number of unique snippets of the hypervariable region of V3 down from 21,646 to about 200, by
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cutting the longest hypervariable subregion from the alignment, and then dereplicating it. These snippets of

sequences in the hypervariable subregion ranged from 1bp to about 30bp. This meant that we only needed

to hand-curate 200 short snippets to handle the alignment of the hypervariable region. These snippets

were separated into two groups according to their secondary structure: loop, and stem-loop-stem. We used

RNAfold web server [165–168] to verify the structure. The two groups were then hand curated and merged

back into the complete multiple alignment using the splicer merge command. For clarity, the process of

using splicer is described in Figure 5.8. All multiple alignments are available at http://tornado.igb.

uiuc.edu.

5.5.3 Likelihood Scores

Each data set described in the previous section was dereplicated producing 2215 clones each. Likelihood

scores were then computed for each dataset using FastTree 2.1.1 with command line parameters -gamma

-nt -gtr.

5.5.4 Distance metrics

We compared 3 different distance metrics to generate Figure 5.6a. (1) Phylip DNADIST 3.67 [148] with

default model parameters. (2) Percent sequence difference calculated using a program we developed,

psi-distance, available at http://tornado.igb.uiuc.edu. The program constructs pairwise differ-

ences by calculating the number of letters that are different between every two sequence (gap is considered a

letter). This number is then divided by the average of the ungapped lengths of the two sequences compared

[146]. (3) Tree distance calculated from the phylogenetic tree calculated by FastTree in the previous section.

The tree distances were acquired by calculating tree branch lengths from the Newick formatted tree using

the tree-distance program we developed, available at http://tornado.igb.uiuc.edu.

5.5.5 Clustering algorithm

Three different clustering algorithms were compared, all on the hand-curated dataset. (1) Complete linkage

clustering with furthest neighbors, as implemented in c-linkage, a program we developed that is available

at http://tornado.igb.uiuc.edu. We tested that the program produces the same results as Mothur, but

much faster and with less memory usage since it works in O(N2 log N). For a comparison of running times
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Figure 5.8: Using splicer, a part of the TORNADO pipeline, to perform hand curation. Dereplicating the hypervariable
region significantly reduces the effective number of snippets of sequences one needs to hand curate (4 instead of 6 in
this example). In our dataset of around 20,000 sequences, there were only around 200 unique sequence snippets in the
hypervariable region varying in length between 1 and 30 bp.

of c-linkage and Mothur version 1.12.3, when clustering up to a clustering cutoff of 10% see Figure 5.9.

(2) FastGroup[154] with no trimming, PSI difference of 97% with gaps. (3) ESPRIT[155], for which the

dataset was first degapped.
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Figure 5.9: Comparison of running times of c-linkage with the running times of Mothur. The two programs were
benchmarked on artificial datasets of 1000, 2000, 4000, 6000 and 8000 elements. The scripts used to generate these
datasets and run the benchmarks are available at http://tornado.igb.uiuc.edu.

5.5.6 Cluster Metric

We evaluated the quality of the clustering by calculating the Calinski-Harabasz index[143, 157, 169]. The

implementation of the program that calculates the index is available at http://tornado.igb.uiuc.edu.
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Chapter 6

Quantification of the relative roles of niche

and neutral processes in structuring

gastrointestinal microbiomes

The theoretical description of the forces that shape ecological communities focus around two classes of

models. In niche theory, deterministic interactions between species, individuals and the environment are

considered the dominant factor, whereas in neutral theory, stochastic forces, such as demographic noise,

speciation and immigration are dominant. Species abundance distributions predicted by the two classes of

theory are difficult to distinguish empirically, making it problematic to deduce ecological dynamics from

typical measures of diversity and community structure. Here we show that the fusion of species abundance

data with genome-derived measures of evolutionary distance can provide a clear indication of ecological dy-

namics, capable of quantifying the relative roles played by niche and neutral forces. We apply this technique

to six gastrointestinal microbiomes drawn from three different domesticated vertebrates, using high resolu-

tion surveys of microbial species abundance obtained from carefully curated deep 16S rRNA hypervariable

tag sequencing data. Although the species abundance patterns are seemingly well fit by the neutral theory

of metacommunity assembly, we show that this theory cannot account for the evolutionary patterns in the

genomic data; moreover our analyses strongly suggest that these microbiomes have in fact been assembled

through processes that involve a significant non-neutral (niche) contribution. Our results demonstrate that

high-resolution genomics can remove the ambiguities of process inference inherent in classical ecological
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measures, and permits quantification of the forces shaping complex microbial communities.

6.1 Introduction

Ecological species distributions are determined by the interplay between environmental factors and evolu-

tionary processes. In classical ecological theory, niches, characterized, for example, by nutrients and other

environmental factors, determine species abundance distributions and populations primarily through deter-

ministic partitioning of resources amongst species [170]. Species populations are limited by niche carrying

capacity, rather than interspecies competition, thus tending to promote coexistence [171]. In niche theory,

diversity is determined primarily by the number of available niches, raising the issue of how to account

quantitatively for the apparent observed diversity [172–175] from well-documented instances of niche dif-

ferences [176].

An alternative perspective is the class of neutral theories, in which species are functionally equivalent,

and stochastic factors such as immigration, birth-death processes and speciation are the primary drivers of

ecological diversity and community structure [177–182]. This class of models has been reported to be capa-

ble of accurate predictions for the species abundance distributions in (e.g.) riverine fish populations [183] or

microbial populations [184], in addition to the early successes in forest ecosystems, a planktonic copepod

community, and a bat community in Barro Colorado Island (BCI) [179]. However, the methodology used in

such comparisons is contentious when examined carefully [185, 186], with sampling issues, parameter esti-

mation, and model definition being some of the key factors that require careful attention. The assumptions

of neutral theory, in particular functional equivalence, are not transparently biological [187], and addition-

ally have been criticized on a variety of empirical grounds [188, 189], including the predictions for species

lifetimes, speciation rates and the incidence of rare species [190]. Other technical assumptions, for example

that the number of individuals competing for a resource is a constant (the “zero-sum” assumption), may be

unrealistic, but can be extended or relaxed [182, 191, 192]. Perhaps a more useful insight into the applica-

bility of neutral theory comes from considering the interplay between niche stabilization mechanisms and

fitness [193]. A recent study of a sagebrush steppe community, where strong niche stabilization mechanisms

were identified even in the presence of apparently small fitness differences [194], underscores the fact that

weak functional inequivalence need not necessarily mean that niche dynamics are negligible. On the other

hand, a study that attempted to infer pairwise interaction strengths among the most abundant species in the
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BCI site found that interspecies interactions were much weaker than intraspecies one, in apparent agreement

with neutral assumptions [195].

Despite their fundamental differences, and the plethora of studies nominally supporting each side of the

niche-neutral dichotomy, these theories predict species abundance distributions that are difficult to distin-

guish empirically [174, 196], with similar mathematical properties for asymptotically large diversity [197].

The inverse problem of inferring ecological dynamics from measures of diversity does not appear to have

a unique solution, either theoretically or empirically. Accordingly, a more nuanced perspective has arisen

[171, 188, 198], in which elements of both types of theory may contribute to a proper description of the eco-

logical dynamics, and a variety of mathematical frameworks for accomplishing this type of synthesis have

recently appeared [195, 199–204]. Nevertheless, it remains an open question as to how to properly charac-

terize community dynamics, and how to usefully quantify the relative roles of niche and neutral processes

in the evolutionary dynamics of ecosystems.

These questions are of particular relevance to microbial communities, which play functionally important

roles in ecosystems, but are typically rich in diversity, suggesting the presence of sub-populations shaped

primarily by stochastic forces. Such communities would not be expected to represent endmembers of the

niche-neutral continuum, and quantification of their structuring process represents a complex problem that

has recently attracted attention. Most studies find evidence for a mixture of neutral and niche processes

in microbial community assembly [205–209]. These seem to arise for different physical reasons. One

indication is that the neutrally-assembling taxa are generalist microbes, that can exist in a wide variety of

environments [207], whereas the niche portion of the microbiota are adapted to the media conditions [210].

There are also indications that that microorganismal coocurence patterns are shaped by the same processes

and interactions that shape macroorganismal coocurence patterns [211].

In this chapter we propose a methodology for addressing the problem of quantifying the relative role

of niche and neutral processes in structuring microbial communities, by fusing measures of abundance

with phylogenetic information. The merging of classical ecological measures with phylogenetic analysis

is growing in importance, but is still in its infancy [212–216]. The method presented here is particularly

applicable to uncultured microbial communities that are characterized by a high level of diversity, and are

amenable to modern metagenomic tools, such as pyrosequencing.

In order to explain the basic idea of how we quantify an ecosystem on the niche-neutral continuum, it
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Figure 6.1: Sketch of the starting point for a metagenomic analysis of an environment. Circles indicate OTUs, and
abundance (number of sequences within the OTU) is labeled by the size of the circle. A representative sequence is
associated with each OTU. The OTUs are embedded in a sequence space such that the distance between the circles in
the sequence space corresponds to e.g. sequence or phylogenetic distance between the representatives.

is necessary to recall how microbiomes can be probed by genomic methods. The first step in an ecolog-

ical study of a microbiome, following sequencing, cleanup and alignment, is the assignment of sampled

sequences into Operational Taxonomic Units (OTUs) through a clustering process [217]. The OTUs are

then used as a proxy for estimating microbial species abundance [105]. The OTU data are two-fold. On

the one hand, the OTUs have relative abundances that are estimations of the species’ abundances in the

environment. On the other hand, OTUs also have representative sequences associated with them. Typically

a representative sequence of an OTU is the most abundant of the identical clones within the OTU, and also

it is more than 97% similar to every other sequence within that OTU. This genomic data associated with the

representative sequence allows us to think of OTUs as points in a sequence space as illustrated in Fig. 6.1.

We can think of distances between points in this space as corresponding to the phylogenetic or sequence

distances between the sequences in these OTUs.

This cloud of points in high-dimensional sequence space can also be labeled by OTU abundance. In our

work, this is determined by sequence abundance (after every effort has been made to account for artifacts),

but in principle OTU abundance labels could be obtained from any other source, such as Q-PCR. In this

space, we can categorize the OTUs into two sorts: the most abundant OTUs (which we term “modal” OTUs,

and define this precisely below) and the other, less abundant, OTUs (which we term “rare” OTUs, and define

this precisely below). The correlations between the modal and rare OTUs will depend upon the evolutionary

dynamics, and in fact exhibit sharp mathematical differences that can be used to discriminate different

putative dynamics. To see the essential idea, we will now explain how this would work in two caricatures
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Figure 6.2: (a) Classification of the OTUs into two groups based on the rank abundance. The top k% of OTUs are
labeled modal, whereas the remainder of the OTUs are labeled rare. (b) Sketch of the neutral and niche evolution
processes in sequence space. Light blue OTUs are rare, whereas red OTUs are modal. For the neutral process, the
average distance of a rare OTU to its closest modal OTU is large (indicated by the arrow). For the niche process, this
distance is much smaller since rare OTUs cluster about the modal OTUs which define the niches. (c) Sketch of the
expected distributions of distance to the closest modal OTU. For the neutral process, this distribution is peaked around
some non-zero distance, which is close to the average distance between the OTUs in the dataset. In the niche process,
the distribution monotonically decays with distance since the rare OTUs are attracted to the niches.

of ecosystem dynamics: a simplified neutral model and a simplified niche model. A significantly more

elaborate analysis is carried out below, in the main body of this chapter, but the key concepts are captured

by these simplified models.

First, suppose that the evolutionary dynamics is itself neutral, so that the rare and modal OTUs are

distributed at random in the high-dimensional sequence space. We are going to be interested in measuring

the distances between sequences corresponding to different OTUs, and comparing their similarity. Let us

assume that the sequences being analyzed are all of the same length, containing L nucleotide bases from the

usual 4-letter alphabet (ACGT); here we are ignoring real life complications such as insertions, deletions
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and gaps. We label the sequences by S i
α, where α = 1 . . . L labels position along the sequence and i labels the

OTU; S i
α can take the values 1,2,3,4 corresponding to the alphabet of bases ACGT. We define the normalized

Hamming distance Hi j between two sequences i and j as the fraction of bases in i that are different from the

base in the corresponding position in j:

Hi j ≡
1
L

L∑
α=1

(1 − δ(S i
α − S j

α)) (6.1)

where δ denotes the Kronecker delta. The mean 〈H〉 of Hi j averaged over a large sample of random se-

quences would be 3/4, because there is a 1/4 chance that two bases at the same position are identical.

Thus, the probability distribution of H would be expected to be a roughly bell-shaped curve, peaked around

H = 3/4, with a width dependent on the number of sequences. In practice, there are complications due

to insertions, deletions and gaps, but most importantly, conserved positions. Bases that are highly con-

served cannot be appropriately modeled as being chosen randomly from the alphabet. This can be taken

into account by simply restricting the above analysis to bases that are strongly non-conserved: let us call

the number of highly conserved bases M < L, so that the expected value of H will now be reduced by the

fraction of conserved bases: 〈H〉 = 3(L − M)/4L. Thus, taking into account conservation, the bell-shaped

curve will shift its peak to a smaller value of H. In the data presented below, we found that L ∼ 200 and

M ∼ 160, so that the distribution of H should be peaked at about 0.15, in the case of a neutral system. Now

consider a subset {Ek} of distances
{
Hi j

}
. For each “rare” OTU k, we rank all of the distances between OTU

k and each “modal” OTU l. Then, we select the shortest such distance and label it Ek. In this way, the set

{Ek} is the set of distances of “rare” OTUs to their nearest niche neighbor. For the above case where the

evolutionary dynamics is neutral-like, the distribution of E is also a bell-shaped curve like the distribution of

H. However, its mean is slightly shifted to the smaller values, and its standard deviation is smaller (because

{E} is the subset of shortest distances from the set of {H}). In other words, 〈E〉 < 〈H〉.

Second, let us consider a caricature of a system that is dominated by niche dynamics. In the extreme

(and unrealistic) case where there is only one niche, occupied by one particular modal OTU, the probability

distribution of E will be a delta distribution peaked at E = 0. In a more realistic model, where there

is a cloud of rare OTUs surrounding the modal OTU, having evolved from it by a few point mutations,

one would expect the probability distribution of E to be peaked at E = 0, and then to monotonically

decrease for E > 0. In the case of a system with several niches, the probability distribution for E will
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be somewhat more complicated, because one needs to calculate the normalized Hamming distance from

each rare OTU to the nearest modal OTU, and this requires making a Voronoi polyhedron construction in

sequence space. Nevertheless, for small values of E, the probability distribution will be dominated by the

single niche argument given above, and the functional form will be unchanged: peaked at the origin and

monotonically decreasing for E > 0. These two caricatures for simplified models of ecosystem structure

are sketched in Fig. 6.2, and show that there are clear and distinct signatures arising from the nature of the

processes that have structured the community.

In the remainder of this chapter, we numerically evaluate the metric for model systems in order to quanti-

tatively and concretely confirm the above heuristic description. We then describe how we have implemented

these ideas in a proof-of-principle study of vertebrate gastrointestinal microbiomes. These experimental

systems were chosen, not only because of the growing recognition of the importance of microbiomes as a

determinant of host health[218], but also because these are systems that have high diversity, and are likely to

be shaped both by stochastic and niche processes. Indeed, as we will see, they can be well-described naively

by neutral theory, although in fact niche processes play a fundamental role in structuring these communities.

6.2 Model calculations

In this section we evaluate our metric on model systems parametrized by a single parameter, α, the propor-

tion of the system undergoing a niche dynamic. We perform 5000 Monte Carlo simulations of the following

process. We simulate N OTUs (here N = 1000) each with representative sequences of length L = 200. A

subset αN (0 ≤ α ≤ 1) of the OTUs undergo a niche dynamic in the following way. A single random OTU is

chosen to be the center of the niche. The remainder of the αN − 1 OTUs (niche OTUs) are are generated by

performing random mutations of the genome of the OTU representing the niche center. The placement and

number of the mutations were chosen randomly in the following way. Placements of mutations were sam-

pled uniformly (without replacement) across the entire genome. The number of mutations for each of the

niche OTUs was sampled from an exponential distribution thereby modeling the evolution of OTUs under

multiplicative fitness pressure (larger number of mutations corresponds to smaller fitness, and hence smaller

abundance of OTU). The remaining (1 − α)N OTUs (neutral OTUs) are randomly distributed throughout

the sequence space, and they represent the sequences undergoing dynamics under no evolutionary pressure

(neutral dynamics).
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Each OTU in the model system is associated with an abundance. The abundances of neutral OTUs

are randomly sampled from an exponential distribution. (In the Hubbell Neutral Model, the OTU rank

abundances are exponentially distributed.) On the other hand, the abundance of niche OTUs exponentially

scales with their closeness to the niche:

Ni = A exp(−di) (6.2)

where Ni is the abundance of OTU i and di is the distance from the OTU to the center of the niche (in

sequence space). The results of our metric, the distributions of {Ek} are shown in Fig. 6.4 for 3 model

systems characterized by values of α = 0, 0.5 and 1. We see that the heuristic arguments we described in

the previous section and sketched out in Fig. 6.1(c) are consistent with these model numerical calculations.

It is instructive to demonstrate the effects of two factors on our metric, in order to highlight some of

the mathematical considerations that went into the design of the metric, in particular our use of an extremal

measure (the shortest distance aspect of our metric) and the influence of sampled abundance distributions.

First we demonstrate the role of extremality introduced by choosing the subset {E}. Instead, if we choose to

plot the distribution of {H} we obtain qualitatively the same results for neutral-like models (compare models

1 and 2 in Fig. 6.3). However, for niche-like models, the peak at zero moves to a nonzero peak which

corresponds to the average size of the niche (compare models 5 and 6 in Fig. 6.3). Thus, the choice of an

extremal measure is important in making sure that the endmember distributions (pure niche, pure neutral)

are clearly distinct.

Second, we demonstrate what might appear at first to be a rather counter-intuitive fact: the distribution

of distances is only weakly dependent on the abundance distribution of the OTUs. If the abundance of an

OTU k is Nk then we could imagine modifying our procedure by weighting the contribution of Ek in the

distribution {E} by a factor of Nk. Such a weighting introduces no change whatsoever to the neutral dataset

(compare models 2 and 4 in Fig. 6.3), and no qualitative change in the niche dataset (models 6 and 8 in

Fig. 6.3). Finally, we can also weigh the distribution of {H} in such a way that each distance Hi j between

OTUs i and j gets weighted by a factor of NiN j. The results are exactly the same as with no weighing for

the neutral dataset (compare models 1 and 3 in Fig. 6.3) and qualitatively the same for the niche dataset

(compare models 5 and 7 in Fig. 6.3).
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Figure 6.3: Explicit numerical calculations of our metric on 8 model systems. In these systems, we study the difference
between the effects of the metric on neutral (models 1-4) and niche model systems (models 5-8). We also study the
effect of choosing the closest distance (even-numbered models) compared to considering all distances (odd-numbered
models). Finally, we consider the weighted models (3-4 and 7-8) versus the unweighted ones (1-2 and 5-6).
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Figure 6.4: The results of our metric, the distributions of E shown for a fully Niche-like model dataset (α = 1), a fully
Neutral-like model dataset (α = 0) and an intermediate dataset (α = 0.5). The results shown are the average of 5000
Monte Carlo simulations for each dataset.
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# Unique Average Aligned # OTUs
reads reads length width at 3%

Swine 33283 14122 165.0 420 1509
feces 1
Swine 36254 16198 175.3 418 1856
feces 2
Cattle 31201 18264 180.7 471 2580

rumen 1
Cattle 19642 10074 183.6 385 1509

rumen 2
Chicken 17585 2151 136.5 310 396
caecum 1
Chicken 21646 2223 138.9 332 354

caecum 94

Table 6.1: Summary statistics of our six datasets.

6.3 Results

We performed a pyrosequencing study of the gastrointestinal (GI) microbiomes of 3 pairs of domesticated

vertebrates: 2 swine, 2 cattle and 2 chickens. These pairs of organisms were chosen as pilots for probing

specific microbiome issues of relevance to animal science. In particular, we attempted a comparative study

looking at the effects of diet on identically cloned swine, and the effects of a microbial challenge on two

identically-raised chickens. For the purposes of this chapter, these comparisons and the outcomes of the

experiments are not of interest: full details of the comparisons and other studies will be published elsewhere.

In this study, two genetically identical cloned swine were fed different diets and then their fecal samples were

collected for sequencing. Cattle rumen 1 and cattle rumen 2 were rumen fistula sampled at 0 and 8 hours

after feeding, respectively [219]. Chicken caecum 94 was inoculated with Campylobacter jejuni one week

prior to caecal sampling. Chicken caecum 1 was kept under the same conditions but without oral gavage

of C. jejuni [163]. See the Methods for details regarding the laboratory protocols. The GI Samples were

subjected to deep hypervariable 16S rRNA tag sequencing using a 454 Life Science Genome Sequencer GS

FLX [105]. Table 6.1 shows the average read length and number of reads obtained for each sample.

Following their acquisition, we aligned the pyrosequenced reads using NAST [15] to the SILVA [150]

database. We also aligned the reads using RDP’s frontend [16] to the Infernal [17] structural aligner. For

each dataset, the NAST+SILVA and RDP+Infernal multiple alignments were merged and hand curated

using the methodology and tools described in Sipos et al. [217]. Short reads and sequences with unknown

nucleotides were removed. Spurious “tails” in the multiple alignment, sequences that extend beyond the
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Simpson Shannon Jackknife ACE Chao1
diversity diversity richness richness richness

Swine 0.0070 5.8 2000 1472 1540
feces 1 ±0.0003 ±0.02 ±260 ±55 ±150
Swine 0.0068 5.9 2300 1633 1720
feces 2 ±0.0003 ±0.02 ±300 ±53 ±150
Cattle 0.0044 6.3 3300 3070 2640

rumen 1 ±0.0002 ±0.02 ±260 ±88 ±190
Cattle 0.0110 5.9 2070 1818 1830

rumen 2 ±0.0006 ±0.03 ±110 ±62 ±130
Chicken 0.084 4 770 655 620
caecum 1 ±0.003 ±0.03 ±120 ±75 ±150
Chicken 0.046 3.9 560 426 460

caecum 94 ±0.001 ±0.02 ±90 ±57 ±100

Table 6.2: Summary diversity metrics of our six datasets.

region of 16S common to all the sequences in the dataset, were also removed. Distance matrices were

generated from the multiple alignments, and were then fed to a complete linkage clustering algorithm to

generate the OTUs. The careful multiple alignment procedure led to a vast reduction in the number of

resulting OTUs in the datasets as previously reported in Sipos et al. [217]. See Table 6.2 for species diversity

and richness metrics for each of the 6 GI microbiome samples. Rarefaction curves show how the number of

sampled OTUs varies as a function of the number of organisms sampled. Our rarefaction curves are shown

in Fig. 6.5 for each of the 6 datasets.

We plotted the abundances of the OTUs for each of the 6 datasets in our study, and we find a very good

agreement with the Neutral Model. These are displayed in rank-abundance form in Fig. 6.9, and in alter-

native forms in Figs. 6.6 and 6.7. The early ranks (high abundance OTUs) show some systematic deviation

from the abundances expected from neutral theory but at face value, these results are consistent with the

majority portion (thousands) of the OTUs evolving in the absence of any apparent selection acting on the

individual OTUs. Given all the factors that influence the gastrointestinal microbiome [99, 220–224], and

the reproducible, thereby seemingly host-selected, microbial abundances [225], it seems counterintuitive

that there should be no apparent selection for the vast majority of OTUs in the exponential tail of the rank

abundance. However, if we compare taxonomic assignments of microbes across each pair of animals in our

study (Fig. 6.8), we find that there is a correlation between the relative abundances of taxa in members of

each animal pair. Namely, we observe that the most abundant taxonomic orders are the same for each animal

pair (Clostridiales for swine and chickens, and Pseudomonadales for cattle). This correlation also extends

to other taxonomic orders. Hence, our dataset indicates that certain taxa are favored more than others within
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the GI tract of these 6 vertebrates.

We now attempt to resolve this apparent contradiction, namely that the Neutral Theory fits the rank

abundance patterns well, with only 2 fitting parameters, even though the taxonomic data suggests Niche

selection. In order to do this, we must turn our attention to other information contained within the py-

rosequenced reads. As shown in Fig. 6.1 the OTUs with their characteristic sequences and associated

abundances form patterns within a high-dimensional space. Each read constitutes a point in this space,

defined by its nucleotide sequence. One way in which we can attempt to comprehend the structure of this

space is through dimensional reduction. We use Principal Component Analysis (PCA) in order to place the

OTUs into a 2 dimensional space spanned by the two principal components. We perform a weighted version

of PCA [226] where we assign a weight to the OTUs proportional to their abundance. The resulting patterns

in the space of two principal components are shown in Fig. 6.10. Each circle in the figure is an OTU and

the circles’ size and color indicates the logarithm of the OTU abundance.

As a control, we generate datasets of artificially generated sequences (hereafter referred to as neutral

datasets). We generate a neutral dataset for each of the 6 experimental datasets to facilitate a 1-to-1 compar-

ison. Each neutral dataset is constructed in a way such that it has the same number of OTUs and the same

OTU abundance distribution as the associated experimental dataset. However, the representative sequence

for each OTU is artificially generated and has a randomized sequence, with constraint such that it has the

same sequence statistics as the original dataset (probability of observing a nucleotide at a position in the

multiple alignment) and column conservation. This ensures that the sequences are randomly distributed

along a realistic sub-manifold of sequence space (the subset of 16S sequences that are allowed by secondary

structure). We then run the PCA on the neutral datasets (Fig. 6.11). Comparing Figs. 6.10 and 6.11, we

notice the following pattern in the experimental GI data: the low-abundance OTUs cluster around the high-

abundance OTUs in the dimensionally reduced space. In the neutral datasets, this is not observed, instead

the PCA distributes the OTUs approximately uniformly in the dimensionally-reduced space.

We now formulate a heuristic to clearly discriminate between the randomly assembled model sequences

and those assembled from a niche-driven process. On a rank-abundance curve, we label the k% of the most

abundant OTUs as modal OTUs. We label the remaining OTUs as rare OTUs (Fig. 6.2(a)). Instead of using

the whole-dataset rank-abundance curve, one can also use per-order rank-abundance curves if additional

resolution is necessary. Once modal and rare OTUs have been assigned, for each rare OTU we compute the
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distance to the modal OTU that is closest to it. The motivation behind this heuristic is the following. The

spread pattern of sequence abundances gives us an indication of whether organisms are evolving neutrally

or toward defined niches. In long time behavior, neutral evolution leads to the expectation that organisms

have an equal chance of being anywhere in this space. Niche selection, however, suggests a very biased

distribution of organisms. In particular, organisms would be densely clustered about the local optimum for

each niche (Fig. 6.2(b)). These two scenarios lead to very different distributions of distance to nearest niche.

If the OTUs are undergoing a niche-driven dynamic, then the rare OTUs will tend to drop off exponentially

in abundance around the modal OTUs. If on the other hand, the OTUs have been sampled from a community

shaped by neutral evolutionary dynamics, then the rare OTUs’ distance to closest modal OTU will be peaked

around some non-zero distance that is the average distance between any two OTUs in the dataset (Fig.

6.2(c)).

We apply the above analysis to the case of gastrointestinal microbiome datasets of the 6 vertebrates.

The results are summarized in Fig. 6.14. In this figure, the blue bars indicate the results of our metric

applied to experimental data. The dashed red lines indicate the results of the metric applied to a dataset of

sequences that were randomized in the way described above. The results indicate that the GI tracts of the 6

vertebrates largely undergo niche dynamics, with the possible exception of a subpopulation of the chicken

GI tracts. The chicken datasets have a small non-zero peak corresponding to the average distance between

sequences chosen at random. Our study indicates that the sequences within this peak may be undergoing

neutral dynamics. The results that we obtain are robust in that they do not qualitatively depend upon the

choice of the cutoff k. In Fig. 6.13 we show the metric for k = 5% and k = 7%. Similarly, the results of

the metric on model systems are virtually unchanged when k is changed between 2% and 10% (Fig. 6.12)

indicating robustness. Whereas our metric is robust in this way, the reader is reminded that phylogenetic

resolution is nevertheless important: some niches may appear as a single OTUs at 97% sequence identity.

6.4 Discussion

In this work, we set out to construct genomic-based measures of ecosystem diversity and abundance that can

provide evidence for process. We focused on understanding the processes that structure microbial commu-

nities, because these play functionally important roles in many ecosystems, yet are rich in diversity. Thus,

such systems would a priori be expected to contain at least sub-populations shaped primarily by stochastic
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forces. The dual features of high diversity and foundational role functionally in their host ecosystem sug-

gests that microbial communities would not be simple to characterize as either niche or neutral. At the same

time theoretical arguments suggest that such high-diversity communities might appear, for fundamental

statistical reasons, as neutral.

We succeeded in creating a quantitative metric that fuses abundance and genomic data in order to deter-

mine whether an ecological system is dominated by neutral evolution or by niche selection. The key concept

was to explore the correlations and associated probability distributions between the most abundant members

of the community and the long, low abundance tail members. We showed that the signature of the probabil-

ity distribution describing the distance in genomic sequence space from each rare OTU to the nearest modal

OTU provided a signature of the strength of niche dynamics. We tested this construct on large datasets from

6 animal gastrointestinal tract microbiomes, finding in all cases that the results are inconsistent with neutral

assembly. We conclude that niche selection largely dominates within the GI microbiome, despite the fact

that the rank abundance patterns are apparently well-modeled by Neutral Theory.

Our results provide firm evidence from an empirical dataset that apparently neutral patterns of diversity

and abundance can arise from niche-dominated dynamics, in agreement with earlier theoretical expectations

[171, 174, 188, 196–198]. Our results establish definitively that simple ecological measures need to be, and

can be, augmented by genomic data in order to provide insight into the processes that structure communities.

6.5 Materials and Methods

6.5.1 Sample Preparation

All procedures involving animals were approved by the Institutional Animal Care and Use Committee of

the University of Illinois. For each animal, we used two different samples for our test that vary in some

aspect such as diet or sampling times. The Duroc sow (2-14; TJ Tabasco) was used as the genomic template

for producing cloned animals using somatic cell nuclear transfer. Tabasco was used to produce the CHORI

242 BAC library which was used to generate the full pig genome sequence [227]. The clones were born

by vaginal delivery and allowed to suckle. They were weaned at 4 weeks of age and continuously housed

together. They were not vaccinated or ever in contact with other pigs after weaning. Pigs were fed once

daily in the morning and had free access to water. Fecal samples were collected on day 14 (the last day of
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that feed rotation) of each diet for a total of 4 samples for each animal. Samples were collected from the

rectum into a sterile tube and frozen at -80 ◦C until time of analysis. Bovine rumen samples were collected

as previously reported in ref.[219]. Chicken caeca were collected as previously reported in Qu et al. [163].

6.5.2 Sequencing

Swine and cattle samples were sequenced using PCR product from PCR specific primers flanking the V1-

V3 region of bacterial 16S rDNA [228]. The forward fusion primers for pyrosequencing included 454 Life

Science’s A adapter, and barcode A fused to the 5’ end of the V1 primer 27F. In chicken the V3 primer

341F was used. In all samples, the reverse fusion primer included 454 Life Science’s B adapter (lowercase)

fused to 5’ end of V3 primer 534R. The fragments in the amplicon libraries were subjected to a single

pyrosequence run from the V3 primer end using a 454 Life Science Genome Sequencer GS FLX (Roy J.

Carver Biotechnology Center, University of Illinois).

6.5.3 Rank-abundance, Species-abundance, Preston Plots and Taxa Distributions

The reads from cattle and swine microbiomes were cleaned up using the method recommended in ref. [108].

For the chicken caecum microbiome we removed all sequences shorter than 100 bp. The ends of all reads

were trimmed so that the sequences start and end in the same place in the 16S rRNA consensus structure.

All remaining sequences were then aligned using the method described in ref. [217]. The OTUs were

clustered using complete linkage [140] 3% sequence identity with the denominator 4 from [146] (counting

indels as differences). The OTU abundance data for rank-abundance was then binned into a histogram using

the method in Adami and Chu [229]. Species-abundance and Preston plots were generated following ref.

[230]. Neutral model curves were generated using the algorithm for the sampling organisms from a neutral

metacommunity [179]. Hubbell’s θ parameter was fixed to match the exponentially decaying tail of the

rank abundance. Offset was chosen by a least-squares method. Taxonomy assignments and comparison of

libraries was made with the Library Compare tool [231] at RDP [16].

6.5.4 PCA Ordination

In Fig. 6.10 we show the results of Principal Component Analysis on our OTU data. In performing this

calculation, each OTU was associated with a vector of real numbers of dimension 4L where L is the length of
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the multiple alignment. The elements of the vectors were calculated in the following way. Each nucleotide

within the multiple alignment is represented by a sub-vector of 4 numbers, A is (1, 0, 0, 0), C is (0, 1, 0, 0),

G is (0, 0, 1, 0), T is (0, 0, 0, 1), whereas the gap is represented as (0, 0, 0, 0). The vector associated with the

OTU is then the arithmetic average of the vectors associated with each sequence within the OTU. We then

perform the weighted PCA procedure [226] where we weigh each OTU by its abundance.

6.5.5 Closest-distance metric

We used the percent sequence distance metric in Fig. 6.14. The randomized dataset (red line) was gen-

erated in the following way. Each OTU (with its associated abundance) was replaced by a representative

randomized sequence. This sequence was generated by selecting each nucleotide from a distribution of

probabilities generated from the sequence reads. In this way, the base pair distribution for each position in

the multiple alignment of the model dataset is the same as that of the experimental dataset. Furthermore,

since the abundances of OTUs are kept, the rank abundance of the model dataset is exactly the same as that

of the experimental dataset.
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Figure 6.5: Rarefaction curves for the 6 vertebrate GI microbiomes.Solid line represents the median number of OTUs
(100 resamplings) whereas the shaded area represents the 95% confidence interval.
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Figure 6.8: Taxa Comparisons. Taxonomic assignments at order level for all libraries, at 80% confidence threshold,
sorted by combined abundance. Though there appear to be no differences in the form of the rank-abundance curves,
we see differences in the taxonomic distributions here as the result of changes in diet or challenges to the microbial
ecosystem.
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Figure 6.10: Weighted PCA ordination applied to the 6 experimental datasets. See the text for details on how weighted
PCA was performed. Each circle in this Figure represents an OTU and its size and color indicates the logarithm of
OTU abundance.
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Figure 6.11: Weighted PCA ordination applied to the randomized datasets. Compare with Fig. 6.10. See the main
text for details on how the randomized datasets were generated, and how weighted PCA was performed. Each circle
in this Figure represents an OTU and its size and color indicates the logarithm of OTU abundance.
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Figure 6.12: Measuring the effect of the choice of k on our metric. Darkest lines indicate k = 2%, medium lines
indicate k = 6% and lightest lines indicate k = 10%. (a) α = 0.0 model (red dashed lines) and α = 1.0 model (black
solid lines). (b) α = 0.5 model (black solid lines).
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Figure 6.13: Histogram of distances of rare OTUs to the nearest modal OTU for each of the 6 GI microbiomes with
cutoffs k = 3% and k = 7%. Red dashed lines indicate the results of the metric applied to sequences that were
randomized while preserving rank abundance and sequence statistics (see main text).
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Figure 6.14: Histogram of distances of rare OTUs to the nearest modal OTU for each of the 6 gastrointestinal micro-
biomes with cutoff k = 5% (blue bars indicate experimental data). Red dashed lines indicate the results of the metric
applied to sequences that were randomized while preserving rank abundance and sequence statistics (see text). Cattle
and swine datasets share the same y-axis.
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Chapter 7

Balance and structure in molecular

phylogenies and taxonomies

The work in this Chapter came as a technical spin-off from the previous Chapter. For Chapter 6, a series

of metrics were tried with the goal of being able to discriminate between various populations of interest

found in microbial communities. This technique relies on balance measure of the subtree structure of the

phylogenetic trees at all levels. Although unsuccessful in the original intent, I found that this technique

could be used to ask more fundamental questions about the structure of phylogenies, and even compare

them to other structures such as taxonomies. Although I will touch those questions briefly, this Chapter is

otherwise strictly technical, and I will not try to answer those questions as this is work in progress. This

Chapter is structured as follows. After introducing the technique, formulas and relevant terminology in Sec.

7.1, I explain the implementation and the data on which this technique is applied in Sec. 7.2, I show the

resulting data in Sec. 7.4, and conclude with the future prospects in 7.4.

7.1 Introduction

As I have shown in the second part of this dissertation, there is a wealth of biology still waiting to be

extracted from sequence and phylogenetic information that describe communities. The approach I will be

using during this chapter started with the work of Herrada et al. [232]. They compared phylogenies of

organisms in all domains of life, at different scales, by looking at the balance of these trees at many scales,
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and after some data reduction they claimed to have found a universal, allometric scaling in a set of tree

structure metrics. They also made similar claims for protein families [233]. Although the scaling claim has

been strongly disputed [234], it opened the door to similar quantitative measures in trees.

The question of balance in life is not new in biology. Taxonomists and biologists, such as Ernst Mayr,

claimed, to the point of dogmatism, that the structure of life must be balanced [235], and any systematization

of biology must reflect this principle [236]. Since the dawn of the genomics era, numerous techniques have

been created to infer the evolutionary relationships of organisms based on their genetic differences, and this

“principle of balance” has been put into question [237]. The question has not been settled, and in the age

of massive genetic data sets, there have been attempts to measure the true balance structure of evolutionary

trees [238, 239].

The motivation of this work is to try to offer a way to compare the hand-based systematization present

in taxonomies, versus the inferred results found in molecular phylogenies. This is work in progress, and

what is presented here is most of the technical analysis necessary to make statements about the balance of

these trees.

In what follows, I present the tree structure metrics used.

7.1.1 Tree structure metrics

We start by considering a tree structure. This tree contains a root node, leaf nodes and intermediate nodes.

In an inferred phylogeny, the root is not necessarily well defined, but in a taxonomy a root always exist.

Now, let’s consider a subtree S i. This subtree is rooted at the i-th node, and includes itself and all its

descendant nodes. Special cases are the whole tree (which is the largest possible subtree), and the leaf

nodes, where each subtree contains only its root node.

For each subtree S i, we can define its size Ai as the number of nodes in that subtree, including its root

node.

A related quantity is the cumulative branch size Ci for the subtree S i, which is the sum of branch sizes

for all subtrees contained within subtree S i, including itself, namely

Ci =
∑
j∈S i

A j. (7.1)

In principle, these quantities can be applied to any rooted tree structure. Of particular interest are binary
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Figure 7.1: Example of A and C values calculated for a fully imbalanced binary tree with 8 leaf nodes.

trees, because of their usage in molecular phylogenies. There is a claim for a scaling relationship between

C and A, C ∼ Aη [232].

Finally, a third related quantity can be defined using the previous two. The average node depth di of

subtree S i is the average distance of all leaf nodes to the root of the subtree, and it can be calculated from

Ci and Ai as

di =
Ci

Ai
− 1 (7.2)

For this last quantity, there are a series of limiting values of interest, which are defined for binary trees.

First, for the case of a fully imbalanced binary tree (see Fig. 7.1 for an example), this quantity reaches its

maximum, and as a function of A this can be written [233] as

dmax =
1
4

(
A2 − 1

A

)
(7.3)

For a fully balanced binary tree (see Fig. 7.2 for an example), the depth d reaches a minimum [233] for

binary trees, scaling as

dmin =
1
A

(
(A + 1) log2(A + 1) − 2A

)
(7.4)
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Figure 7.2: Example of A and C values calculated for a fully balanced binary tree with 8 leaf nodes.
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Figure 7.3: Example of A and C values calculated for a random binary tree structure with 8 leaf nodes.

Finally, if we move outside of the domain of binary trees, another interesting limit exists for a polytomic

tree (see Fig. 7.4 for an example), where the scaling reaches an even lower value than eq. 7.4, and this

scaling reads [232]

dpoly = 1 −
1
A

(7.5)

All these quantities, Ai, Ci and di are calculated on a per-node basis, meaning that to be implemented

numerically a program has to traverse the structure many times, although a dynamic programming approach

would make this more efficient, especially for large enough trees.

In Figs. 7.1, 7.2, 7.3 and 7.4 I show examples of the different values of CI and Ai for fully imbalanced,

fully balanced, and random binary trees, as well as for a polytomic tree, respectively. The leaf nodes always

have size 1, whereas the maximum values occur at the root. Overall they don’t seem to be that different, but
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Figure 7.4: Example of A and C values calculated for a polytomic tree structure with 8 leaf nodes.

the values at the root of the trees say otherwise.

Now, for the purposes of this Chapter, I calculated these quantities for three large trees (hundreds of

thousands of leaf nodes), and plotted the square root of the average node depth di as a function of subtree

size Ai. The results are shown in Figs. 7.5, 7.6 and 7.5. The reason to plot it that way is because of the

predicted behavior of d, scaling as d ∼ (ln(A))2 for phylogenies [238, 240, 241]. Below, I describe the

technical details of how these topological metrics of trees were calculated, and then present the results of

the calculations.

7.2 Data sources and methods

7.2.1 16S rRNA phylogeny

The 16S rRNA phylogeny was created from a library of almost-full-length reads from the Greengenes

database [15] (retrieved on November 16, 2011, containing 406,997 bacterial and archaeal sequences). The

library was then aligned using the NAST algorithm [18], as implemented in the Mothur [140] software

package, version 1.22, with the Greengenes template. After alignment, the Lane mask [114] was used to

remove hard-to-align hypervariable regions of the 16S gene. This procedure does not seem to alter the

large scale structure of a phylogeny created with this database, and it was designed to better resolve deep

branching in 16S phylogenies. Finally, the alignment was used to construct an approximately Maximum

Likelihood phylogeny using Fastree [144, 242] version 2.1.4, using parameters -spr 4 -gamma -fastest

-no2nd,̃ and no constraint trees.

7.2.2 Taxonomies

Two taxonomies were used in this chapter, the NCBI taxonomy [243, 244] (retrieved on November 16, 2011

and containing 744,131 leaf species) and the ENA-EMBL taxonomy [245] (retrieved on November 16, 2011

and containing 730,415 leaf species). Then I used the ETE [246] version 2.0 Python module to create a tree
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version of the taxonomies that can be used to compare their structures to the 16S phylogeny.

7.2.3 Calculation of the structure quantities

I wrote a Python script that directly calculates from the tree structure of the 16S phylogenetic tree and the

tree representation of the taxonomies the subtree size Ai, the cumulative branch size Ci and the average

depth of nodes in the subtree of node i, di (as defined in eqs. 7.1 and 7.2). Since many nodes can generate

the same values for Ai, Ci and di, redundant data was removed prior to plotting and further analysis, although

in future analyses this data might be retained. No averaging or binning was performed on the resulting data.

7.3 Results

After generating the tree structures for the 16S library and the taxonomies, and then calculating the corre-

sponding values for Ci, Ai and di, I plotted the data in various forms to understand their structure and make

the comparisons between them. I did not perform any average or binning at this point because I wanted to

see if there was any structure in the point clouds. I did remove redundant, non unique points generated by

the many subtrees that share the same structure. At the very least, all leaf nodes will have the same values

for A and C, as Figs. 7.2, 7.1, 7.3 and 7.4 show. This information might be relevant in future work done

with this data.

Figure 7.5 shows the square root of average subtree depth di plotted as a function of the subtree size Ai

for the Greengenes 16S phylogeny. The dashed, continuous and dotted curves show the limit cases of d(A)

for a fully imbalanced binary tree, fully balanced binary tree and polytomic tree. The plot show a great deal

of structure, most of it falling within the limits for binary trees, leading to the interpretation that most of the

subtrees lie somewhere in between being balanced and imbalanced. There are points falling outside of this

binary region, which is surprising because reconstructed phylogenies are usually structured as binary trees,

with branch lengths to indicate extra information about the nodes. Looking at the structure of these points,

especially the ones that fall closer to the bottom, we see that the overall structure follows certain curves

similar to the bottom polytomic limit, suggesting the presence of non-binary subtrees with varying degrees

of balance. Upon closer inspection, there are even points falling on the polytomic curve, which is a rather

surprising result considering that these measures do not account for branch lengths.

Figure 7.6 shows d1/2
i as a function of Ai for the two taxonomies considered, NCBI (red) and ENA-
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Figure 7.5: Square root of the average depth of nodes d versus subtree size A for the Greengenes phylogeny. The
dashed, continuous and dotted curves represent the limit cases of d(A) for fully imbalanced binary tree, fully balanced
binary tree and polytomic tree, respectively. The points falling outside the limits for binary trees signal a deviation
from the usually strict binary structure of software-reconstructed phylogenies, indicating either inference of non-binary
clades or software artifacts.

EMBL (blue). The dashed, continuous and dotted curves have the same meaning described above. The

point clouds are highly structured, and fall mostly outside the binary tree limits. This is not surprising, as

relationships between taxa in these curated databases are not strictly binary. I can conjecture that the curves

that these points seem to follow are the equivalent fully balanced limit curves for non binary trees, up to fully

polytomic subtrees, thus making difficult to make an informed statement about the overall balance of these

taxonomies. Also, both taxonomies show considerable overlap in their structures, as shown by the purple

hues in the plot. This is expected as both databases are highly related and regularly exchange information.

Figure 7.7 shows a comparison between the structures of the 16S phylogeny (green) and the NCBI

taxonomy (red), as seen from the values of di calculated for both. Clearly. both structures fall in different

regions, with the 16S phylogeny being firmly in the binary tree region, and the NCBI away from the binary

tree region. It is tempting to make a statement about balance of both structures, but we can only do so with

the phylogeny, since most of it is represented as a binary structure. However the more complex structure of

the taxonomy, with multiple kinds of subtree structures involved, makes this statement not possible at this

moment. Finally, we can note a degree of overlap between some of the non-binary points of the phylogeny
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Figure 7.6: Square root of the average depth of nodes d versus subtree size A for the NCBI (red) and ENA-EMBL
(blue) taxonomies. Purple coloring signals overlap between both taxonomies. The dashed, continuous and dotted
curves represent the limit cases of d(A) for fully imbalanced binary tree, fully balanced binary tree and polytomic
tree, respectively. The plot shows that, unsurprisingly, the taxonomies mostly have a non-binary structure as the point
cloud lies mostly outside the limits of the binary region. It also shows that both taxonomies mostly follow the same
structure, with only a few differences.

in the lower part of the plot, and the points of the taxonomy. The structures roughly follow the same pattern,

indicating the presence of similar subtree structures.

7.4 Discussion and conclusion

In this Chapter I calculated and explored metrics to probe the structure and balance of phylogenies and

taxonomies. The metrics are based on the structures of all subtrees, and in particular we focused on the

subtree size Ai, the cumulative branch size Ci and the average node depth di. We calculated these quantities

for a phylogeny of 16S rRNA genes from the Greengenes database and for taxonomies obtained from NCBI

and ENA-EMBL. We compared the resulting plots between them to highlight structural differences. I found

that a reconstructed phylogeny like 16S and a hand-curated structure like the taxonomies studied have

significantly different structure, with the phylogeny being primarily a binary tree (most likely by design),

and the taxonomies having predominantly non-binary subtrees. If I can make an statement about the balance

of the phylogeny, it is to note that it mostly does not lie close to the fully balanced binary case. This is
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Figure 7.7: Square root of the average depth of nodes d versus subtree size A for the Greengenes phylogeny (green)
and NCBI taxonomy (red). The dashed, continuous and dotted curves represent the limit cases of d(A) for fully
imbalanced binary tree, fully balanced binary tree and polytomic tree, respectively. This comparison highlights the
major structural differences between the 16S phylogeny and the NCBI taxonomy.

relevant, as that limit also applies to a set of random binary trees used as test cases in phylogeny [232],

which makes them less realistic when compared to inferred phylogenies.

While one of the motivations to start these calculations in the first place was to make a balance com-

parison between the phylogeny and the taxonomies, the current data makes this comparison impractical at

the moment, as both structures are very different. This does not rule out that further work on this matter

will eventually make the comparison possible. For instance, the phylogeny reconstructed here has more

internal nodes and also contains branch length information, in lieu of the multi-branching subtrees present

in taxonomy. This branch length information can be used, in principle, to infer the existence of these multi-

branching structures in the phylogeny, especially in the case where the branch length is extremely small.

Also, since I expect the existence of limit curves for the cases of subtrees that branch in modes other than

binary, a way to map structures to a single master curve could be possible, a data collapse of sorts. More

likely, a completely different way of assessing tree balance [247], or a combination of them, will allow fair

comparisons between a molecular phylogeny and published taxonomies.

In light of this, I have not enough information at the moment to answer deeper questions related to
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phylogenies and taxonomies, such as how well taxonomic structures and assumptions reflect the evolution-

ary history of organisms, the usefulness of taxonomies in light of very detailed, if seemingly unstructured,

molecular phylogenies.

If I were to make a prediction about the answers, I would like to make speculation about what a more

advanced analysis might reveal, borrowing an example from computer science. There is a now ubiquitous

algorithm for information classification and retrieval, the PageRank algorithm [248], which yields rich yet

seemingly unstructured results (much like a phylogeny), and was at the end vastly more powerful and

successful than hand-curated indices of data (much like taxonomies) that were the basis of now forgotten

web search engines. Considering that PageRank has been used beyond its original intended use [249], it is

not far fetched to think that a similar situation might unfold in the realm of biology.
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Chapter 8

Conclusion

In this dissertation, I devised computational approaches to model, analyze and understand two different

stochastic systems in physics and biology.

In the first part, I constructed a Cell Dynamical Systems model of a quantum fluid. The model contains

both a conservative and a dissipative part, and I incorporated a forcing term, allowing the driving of the

system due to an external normal flow. The results show that it captures the essential physics of quantum

fluids, exhibiting quantized vortices, and universal scaling laws in the distribution of defect velocities. This

cellular, minimal approach made calculations more efficient allowing for detailed statistical analysis.

In the second part, I studied evolutionary dynamics of communities of microbes living in the gastroin-

testinal tract of vertebrates, from the pre-processing of the raw sequence data to the modeling of niche and

neutral based evolution in sequence space.

I started by first quantifying how much phylogenetic information is lost when using partial instead of full

sequence reads. Not surprisingly, the more initial data the better the recovery of the original phylogenetic

structure. More surprising is the fact that the amount of information recovered is dependent of the region of

the 16S gene used for these short reads. It’s hard not to emphasize that care must be take when interpreting

results from this type of data.

Then I proposed a pipeline that takes raw 16S short reads, removes known errors, aligns them and

allows for curation. We show that a mixture of automatic, heuristic and manual approaches results in better

alignments, diversity and phylogeny data than automatic processing alone.

Finally, using the tools above, I study the evolutionary dynamics of communities of bacteria living in
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the gastrointestinal tracts of vertebrates. Starting from species abundance data, we show that communities

seeming to evolve using neutral dynamics are shown to mostly obey niche-based dynamics when consid-

ering sequence data. Although the debate of niche vs. neutral dynamics is far from over, we show that

modeling in sequence space can be a useful tool to probe evolutionary behavior using only sequence data.

8.1 Thoughts on interdisciplinary science

Since my late undergraduate years, I have been collaborating with biologists. First, with animal scientists

and biochemists gaining insight on a seemingly simple process. Then, during my Doctorate, collaborating

with microbiologists and bioinformaticians making sense of the processes involved in various microbial

communities. And in the immediate future, I will be working with medical researchers, clinicians and

system biologists. From a distance, it might look as if this was my intention all along, but uncertainties have

plagued all the way.

I can only paraphrase this, but interdisciplinary science has been put together with sausage making and

legislation in the sense that is better just to enjoy the end result and completely ignore the reality of the

creation process, because it might disgust us [250]. Although an exaggeration, there is quite a bit of truth in

that statement. During my years in the fuzzy border between fields, I have noticed very overt indifference,

mistrust or even disdain between potential collaborators coming from different backgrounds. I guess this

can be explained due to the natural fear of the unknown, but mostly I think the training, the upbringing of

scientists has part to blame. Let me explain with my own training as an example.

I am trained as a theoretical physicist. We use advanced mathematics that are beyond the immediate

understanding of most biologists without a few years of training. These techniques are mostly firmly rooted

in physics, because they were devised as solution to problems in physics, and in my opinion learning them

without understanding of their physical basis would diminish their power. Likewise, a basic knowledge

of programming and computer science is very useful. I’m not asking for a full computer science degree

and an intimate knowledge of how computers work, but an understanding on how to translate a potential

solution or a method into a program that can implement those solutions. At the very least, this requires

being comfortable with computers. This is not such a common trait, not even between physicists.

I cannot really speak for the pure biological training, but I have noticed a frequent aversion to mathe-

matics and computer, much like physicists’ stereotyped aversion towards chemistry. At most, math is the
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last step in an experiment’s protocol.

So, how do we bridge this gap? How is it possible to make science happen when mixing scientists with

very different degrees of training? My take on the problem is the following. Besides a great deal of patience

(and some diplomatic skills), I think the very first step is genuine interest in the problem at hand in the first

place. Also, a willingness to learn the basics from the other field, even if uncomfortable at times, just like any

learning process. But I also think that each party requires mastery of their own fields. Without it, it would be

impossible to abstract the problem into terms and concepts we truly understand, and also because it makes

the sharing of information possible. With this mastery, we can teach the very essentials to collaborators,

for example from a simple log-log plot to the intricate heuristics involved in some bioinformatic software,

without drowning them in ultimately unnecessary complexity.

A related question is, is it possible at all to train this hybrid scientist, without going through two Ph.D.

degrees? I am not advocating for the training of a “Renaissance man” of sorts. I am also aware that in

training this scientist we should be cautious about training someone with very broad, but shallow knowl-

edge, a “jack of all trades, master of none.” I am not sure about the answer. Today, traditional university

departments are still very conservative about their curricula, and students must go out of their way to find

“melting pots” with researchers willing to mentor an “outsider.” Probably things will get clearer in the fu-

ture, as fields grow out of their niches and mature. As for myself, I would not be who I am without the time

spent working in superfluid simulations or year-long peer reviews in an unfamiliar setting. I am confident

that the acquired skills will make my time easier when meeting and collaborating with yet another class of

researchers. Exciting times lie ahead.
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