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Abstract

In this thesis, I present research on biological systems at three different scales of space and time: biodiver-

sity of ecological systems, the dynamics of repetitive elements and their diversity in the genome, and the

development of phylogenetic trees in evolution. The unifying theme is the interplay between ecology and

evolution, expressed within an ecosystem, within genomes, and over the evolutionary history of life.

Part I concerns biodiversity on the ecological scale. I study the “Kill the Winner” (KtW) hypothesis, a

proposed solution to the biodiversity paradox questioning why many competitors can coexist in a single niche.

The original KtW model is deterministic and expressed in terms of continuous biomass concentrations, and

appears to predict the coexistence of species. Here I present a stochastic individual-level model for the KtW

paradigm, representing populations as finite integers. We find an extinction cascade and a monotonic loss

of diversity in time due to the stochasticity, thus failing to explain diversity in the presence of stochasticity.

To solve this problem, we couple the coevolution of predators and prey with the KtW model, and show that

the diversity of the stochastic system can arise from the constant population flux induced by the emergence

of new mutants, although there are undoubtedly contributions from the spatial variations in populations

too. Our results suggest that diversity reflects the dynamical interplay between ecological and evolutionary

processes, and is driven by how far the system is from an equilibrium state.

Part II consists of three projects on the dynamics and diversity of repetitive DNA elements on the genomic

scale. The first project is to develop a statistical mechanical model for the interaction between two types of

DNA transposons, known as LINE and SINE. These mobile genetic elements are respectively autonomous

and non-autonomous: SINE steals the machinery of LINE to complete its migration, and thus acts as a

parasite. We have found that the demographic noise due to the discreteness of element copy numbers leads

to noisy oscillations on the evolutionary time scale, in a similar way to that resulting in the predator-prey

quasi-cycles in ecology. By viewing these DNA elements as predators and prey, we have shown that the

dynamics in the genome can fruitfully be analyzed using the analogy to ecological models. In the second

project, we look for the predicted quasi-cycles of LINE and SINE in the genomic history of the ancient fish

coelacanth. We analyze the periodicity of the age distribution recorded in the genome by the molecular
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clock, and also develop a theoretical model to examine under what conditions can the cycles be recorded.

Our analyses provide a procedure for future research work, but the conclusion is that the rapid deterioration

of DNA transposons due to mutations means that the observational window is restricted to the last 50

million years, which is not long enough to conclude that the predicted oscillations are present. In the third

project, we further explore the analogy of a genome to an ecosystem and DNA elements to organisms. We

use the metric known as the rank-abundance distribution (RAD) from ecology to study the diversity of junk

DNA “species”. We have found that the RADs for all the 46 examined species can be reasonably fit by a

power law, with very similar exponents. This universal RAD can help identify the underlying microscopic

evolutionary processes of these DNA species. Our work demonstrates that applying ecological methods to

study genomic elements may provide novel insights for genome functions and evolution.

Part III focuses on the development of phylogenetic trees on the evolutionary scale. The topology of

phylogenetic trees has been found to obey a universal scaling law. The exponent lies in between the two

extreme cases of completely balanced binary trees and completely imbalanced ones. We seek evolutionary

processes that can generate the observed topology, and here study in particular the effect of niche construction

on the large-scale structure of phylogenetic trees. In contrast to the conventional natural selection framework,

which treats the environment independently of the organisms under selection, the niche construction theory

views the feedback of organisms on their environment as a crucial and explicit process in evolution. We

present a coarse-grained statistical model of niche construction coupled to simple models of speciation,

and show that the resultant phylogenetic tree topology can exhibit a scale-invariant structure, through a

singularity arising from large niche construction fluctuations. These results show in principle how the scaling

laws of phylogenetic tree topology can emerge from rather general assumptions about the interplay between

ecological and evolutionary processes.
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Chapter 1

Introduction

The science of biology branches into many subfields, studying objects of various scales. It ranges from

as small as single molecules to as large as the entire biosphere. At the molecular level, DNA sequences

record all the details of the blueprint to design a functional organism. At the ecosystem level, organisms

interact with each other as well as with the environment, fighting for survival. Dynamics at these distinct

scales are coupled via the process of evolution: genomic information determines how organisms behave, and

the selection over behaviors promotes beneficial genotypes. The multiscale nature of biological systems,

the important role of noise and fluctuations, and the strong interactions between their components, make

them an interesting subject to study from the perspective of physical sciences, especially statistical physics.

In this dissertation, I present projects applying techniques from statistical physics to study the dynamics

in biological systems on multiple scales. As will be seen, intrinsically distinct systems can sometimes be

described by the same type of minimal model, and applying methods in one field to another can generate

insightful results.

From a mean-field point of view, the state of a system is represented by the continuous concentration of

each component. This picture ignores both intrinsic and extrinsic stochasticity. In a stochastic system, the

mean-field model often only describes the ensemble-averaged dynamics. The historical trajectory followed

by a specific system, however, is like a single trial out of the ensemble and usually is very different from the

average. Previous work has illustrated how demographic noise induced by the fact that species populations

or molecule copy numbers are discrete integers can change the dynamics from the mean-field expectation,

both in terms of time series and spatial distributions [1, 2]. The integration of stochasticity in these problems

provides minimal models to described the observed phenomena without adding in detailed ingredients of the

system. In this thesis, I also concentrate on the role of stochasticity in dynamics and incorporate intrinsic

demographic noise in the modeling when applicable.

I report studies on questions of three different scales: the biodiversity in the ecological system, the

dynamics of jumping genes and their diversity in the genome, and the development of phylogenetic trees in

evolution. Part I is on the biodiversity in an ecosystem. I show that stochasticity destroys the predicted

1



diversity in the deterministic “Kill the Winner” (KtW) hypothesis, and that incorporation of predator-prey

coevolution maintains the diversity in the stochastic KtW paradigm.

Part II involves repetitive elements in the genome. I develop a minimal model to describe the interaction

between two types of “jumping genes” or transposons, called LINE and SINE, and show that stochasticity

leads to persistent noisy oscillations in their copy numbers, similar to prey-predator quasi-cycles in ecology.

We further analyze the genome history of coelacanth to look for these predicted cycles, but the time series

are not long enough to verify the predictions. We also use the rank-abundance distribution to investigate

the diversity of repetitive elements in genomes of 46 species, showing that ecological concepts can be used

to characterize the entities that reside in genomes.

Part III is on the phylogenetic tree in evolution. I address the question of the origin of the apparent scale

invariance of phylogenetic trees, and show that this can arise from the interplay between niche construction

and evolution. I present a theoretical model that integrate the niche construction of organisms as an explicit

evolutionary process to study its impact on the resultant tree topology.

In the following sections, I briefly introduce the contents of remaining chapters, explain my contribution

in each project, and list the publications.

1.1 Coevolution Maintains Diversity in the “Kill the Winner”

Framework in Ecology

Diversity is one of the major topics of ecological study. It refers to the fact that multiple species coexist in the

same ecosystem. Researches focus on how the species population is distributed and what is the mechanism

that drives the diversity.

In Chapter 2, I introduce the biodiversity paradox and several resolutions to it. The biodiversity paradox

[3–5] questions why many species competing for the same limited resource coexist, while the the competitive

exclusion principle [6] predicts that only one species could survive eventually. I also review several methods

of quantifying the diversity, including the diversity index [7], the species-abundance distribution (SAD) and

the rank-abundance distribution (RAD). I discuss in detail the relation between the SAD and the RAD, and

review models in the literature on these distributions.

In Chapter 3, I focus on one of the proposed resolutions to the biodiversity paradox, known as the “Kill

the Winner” hypothesis [8, 9]. It argues that, in a system where species compete with each other for limited

resources, there exist host-specific predators corresponding to these competitors. The predators control

the population of each prey, preventing a winner from emerging and thus maintaining the coexistence of
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all species in the system. The original model assumes that the system is spatially homogeneous and uses

deterministic ordinary differential equations of continuous biomasses to describe the population dynamics.

It predicts coexistence of species in the sense that the equilibrium steady state has positive biomasses.

We develop an individual-level model for the KtW hypothesis to account for intrinsic demographic noise.

We demonstrate that stochasticity causes the coexistence steady state in the deterministic KtW model to

break down through a cascade of extinctions, leading to a loss of diversity. The reason of the breakdown is

that the finite populations in the stochastic model always have a nonzero probability of reaching zero due

to random fluctuation.

In Chapter 4, I develop a stochastic coevolving KtW model to revalidate the KtW theoretical framework,

by introducing the coevolution of predators and prey. The coevolution arises when the prey mutate in

phenotypic traits to escape from the predation and the predators mutate to catch up. It constantly introduces

fit mutants into the system and thus prevents the elimination of species. We find that coevolution maintains

the diversity of the stochastic KtW system, and we compute the diversity dependence on the mutation rate.

The coevolving KtW model applies to systems that mutate frequently so that ecological interactions happen

on the same time scale as the evolution. Our results suggest that diversity reflects the dynamical interplay

between ecological and evolutionary processes, and is driven by how far the system is from an equilibrium

state.

1.2 Dynamics and Diversity of Repetitive Elements in Genomes

The DNA in a genome is not 100% coding sequences. Instead, there are a large number of non-coding

repetitive elements, or repeats, in genomes across all three domains of life. Their existence resolves the

C-value paradox [10], which states that the complexity of an organism is not reflected in the genome size,

because genomes can maintain enormous redundancy and also junk or non-coding regions. The human

genome is about 45% junk, mostly composed of transposons [11]. Repetitive elements generally include

two categories [12]: interspersed repeats, usually resulted from transposon activities, scattered all over the

genome, and tandem repeats located adjacently to each other. Repetitive elements are a major driver of

evolution, as their activities, such as expansion, contraction and migration, can interrupt the coding and

regulatory sequences as well as cause misaligned pairing and unequal chromosome crossovers, resulting in

both deleterious and advantageous mutations. Studying the dynamics of repetitive elements is thus crucial

to understanding the evolution of species.

In Chapter 5, I review background knowledge on transposable elements (TEs), or transposons. Trans-
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posons are classified into autonomous elements that code all necessary enzymes for their activities, and

non-autonomous elements that do not and so must rely on others’ machinery [13]. They can also be catego-

rized as DNA transposons following a “cut-and-paste” rule and retrotransposons obeying a “copy-and-paste”

rule [13]. We focus on the autonomous LINE-1 and non-autonomous Alu elements, which are both abun-

dant retrotransposons in the human genome. I review the molecular interactions between the two types of

elements and discuss the parasitic dependence of Alu elements on LINE-1 elements.

In Chapter 6, I develop and solve a minimal individual-level model for the population dynamics of a

pair of autonomous and non-autonomous transposons. I use LINE-1 and Alu elements as a model system.

Our model predicts that demographic stochasticity generates persistent and noisy oscillations in the copy

numbers of the transposons, similar to the predator-prey quasi-cycles in ecology. The characteristic time

scale of the cycles is much longer than the cell replication time, and the state of the predator-prey oscillator

is stored in the genome and transmitted to successive generations. By viewing these DNA elements as

predators and prey, we have shown that the dynamics in the genome can fruitfully be analyzed using a

mathematical analogy to an ecological model.

In Chapter 7, I report a search in the genomic history for the predicted quasi-cycles of a LINE-SINE

pair. The history of the genome is annotated by the molecular clock, with the element age being reported

as the number of point mutations in the DNA sequence. Researchers have found in several species so-called

periodic expansion of transposons, visible as oscillations of transposon copy numbers along the age axis. We

are interested in whether these cycles are induced by the intrinsic LINE-SINE interaction. Specially, we

examine the periodic expansion in the transposon age distribution of coelacanth [14]. This “living fossil”

species has remained in its current form for about 400 million years [15], which we interpret as evidence of

a lack of external selection pressure. Thus we expect historical changes in its transposon composition to

originate from intrinsic element interactions, rather than from external factors. We analyze the coelacanth

transposon age distribution data to look for quasi-cycles, and also develop a theoretical model to investigate

under what conditions can the quasi-cycles be recorded by the molecular clock. These analyses are the first

attempt to explore the potential connection between the observed periodic expansion and the quasi-cycles

of an autonomous/non-autonomous TE pair.

In Chapter 8, I study the diversity of all families of repetitive elements in the genome. We further

explore the analogy of a genome to an ecosystem, and treat genomic elements as organisms that live in the

system [16]. Element families are then like genomic species. Under this analogy, we use the rank-abundance

distribution (RAD) in ecology as a characterizing metric to study the repeat diversity in the genomes of

46 species. We observe RADs of simple repeats that can be well-fitted as power laws with very similar
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exponents. This surprising universal distribution can help reveal the underlying microscopic evolutionary

process, which will further provide insight to the question of whether the abundant repetitive elements in

eukaryotic genomes are functional or just selfish “junk” DNA [17]. Our work also shows that applying

ecological methods to study the genomic elements may provide insights from a novel perspective.

I also participated in a project that measured the bacterial growth defect induced by retroelements, in

collaboration with Professor Thomas Kuhlman’s group. We transferred two retroelements, human LINE-1

and the bacterial group II intron Ll.LtrB, into E. coli and B. subtilis cells, and observed that the invasion led

to significant reduction in the population growth rate and eventually cell death. In addition, we found that

retroelement lethality and proliferation was enhanced by the ability to perform eukaryotic-like nonhomolo-

gous end-joining (NHEJ) DNA repair. We showed by theoretical modeling that the only stable evolutionary

consequence in simple cells was maintenance of retroelements in low numbers. We hypothesized that eu-

karyotes must have evolved methods to get around the growth defect associated with the transposons, and

thus our work connected with the evolutionary history of the spliceosome. Our results suggested that NHEJ

might have played a fundamental and previously unappreciated role in enabling the evolutionary transitions

from simple to complex genomes and circular to linear chromosomes. The main results were obtained by K.

Michael Martini and so are not reported in this thesis.

1.3 Effect of Niche Construction on the Evolution of

Phylogenetic Trees

The conventional account of the evolutionary process is based upon natural selection [18]. Phenotypic

variations first arise due to mutation and gene migration; then environmental selection and genetic drift

determine how each phenotype frequency changes with time. The process results in adaptation to the

environment with the survival of the fittest organisms. The environment, however, is treated as a boundary

condition of the evolutionary process and especially does not depend on the status of the organisms under

selection. A new theoretical framework called niche construction theory [19], in contrast, advocates for the

impact of organisms’ feedback on the environment as an evolutionary process. The result is a feedback

between ecology and evolution, one example of which is so-called “Rapid Evolution” [20–22].

In Chapter 9, I briefly review main ideas of the niche construction theory and compare it with natural

selection. In the niche construction framework, organisms are capable of modifying the environment, termed

as the niche, and thus altering the selection pressure. Consequently, the evolutionary path of the organism

is a result of the interplay of organisms and their environment. Natural selection, on the other hand, views
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niche construction behaviors as special phenotypic traits of certain organisms and does not distinguish their

role in the evolution.

In Chapter 10, I introduce a metric to characterize the topology of a binary tree and review the observed

universal topological scaling of phylogenetic trees. Phylogenetic trees represent the hypothetical evolutionary

process derived from the relatedness of extant species, with internal nodes standing for inferred ancestor

species. For an arbitrary node on the tree, we define A and C as the size and cumulative size, respectively,

of its subtree. Technical details are provided in Chapter 10. The important point is that it appears that

C(A) of actual phylogenetic trees are found to be universal and obey C(A) ∼ A1.4 [23–25], which lies in

between the two extreme cases of complete balanced binary trees and completely imbalanced binary trees.

In Chapter 11, I report attempts to formulate evolutionary process models to explain the observed power

law scaling of phylogenetic trees. Especially, I include niche construction explicitly as a process in the

evolution and study how it influences the resultant tree topology. We develop a Niche Inheritance Model in

which the parent’s niche passes on to the child species with some fluctuation due to the construction. We

show that a large niche construction effect generates an apparent power-law regime in the topological metric

of the tree. We show that the power-law regime emerges asymptotically as a model parameter tends to zero,

using crossover scaling theory. These results show that over a wide range of tree size, niche construction

effects can give rise in principle to power-law scaling in topological measure of phylogenetic trees. In short,

niche construction can leave an indelible footprint on the evolutionary process.

1.4 My Contribution

The work elaborated in this dissertation is a result of close collaboration with other scientists. My advisor

Professor Nigel Goldenfeld has provided intense motivation, input and feedback for all projects. Assistant

Professor Oleg Simakov at University of Vienna has performed data analyses in the repetitive element

project. I list my contribution in these projects below.

In the project on the biodiversity in ecology, I developed the stochastic individual-level model of the

original “Kill the Winner” hypothesis and conducted the numerical simulations. I extended it to the gen-

eralized KtW model, performed numerical integrations of both its stochastic and deterministic versions. I

also analyzed the linear stability of the mean-field version. These are documented in Chapter 3. I further

proposed the coevolving KtW model in Chapter 4 and performed numerical simulations.

In the project on the dynamics of LINE-SINE transposon pair, I proposed the stochastic individual-level

model for the L1-Alu pair in Chapter 6 and conducted the numerical simulations. I also derived and solved
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the stochastic differential equations for the power spectra and phase difference, and the mean-field equations

for linear stability.

In the project on searching for quasi-cycles in the coelacanth genome in Chapter 7, Professor Oleg

Simakov developed the phylogeny method of analyzing the sequence data, and generated the transposon age

distribution of coelacanth. I examined the periodicity of the data and calculated the cross correlations of

any two transposon families. I also developed the theoretical model to describe the age distribution, and

analyzed the low-pass filter effect of the molecular clock .

In the project on the diversity of repetitive elements in genomes, reported in Chapter 8, the age distri-

bution data of repeats in all species were generated and provided by Professor Oleg Simakov. I calculated

and analyzed the rank-abundance distribution of repeats in each genome.

In the project on the bacterial growth defect induced by retroelements, I collaborated on developing the

model for retroelement dynamics over evolutionary time.

In the project on the topology of the phylogenetic trees, I developed the Niche Inheritance Model in

Chapter 11, performed numerical simulations and derived the mean-field C(A) relation as a function of the

tuning parameter. I also analyzed the critical scaling of C(A) and performed the data collapse.

1.5 List of Publications

The work in Chapters 3 and 4 is published as Ref. [26]. The work in Chapter 6 is published as Ref. [27].

The work on the bacterial growth defect induced by retroelements is in review. The publications are listed

below.

• Chi Xue, Nigel Goldenfeld, Stochastic Predator-prey Dynamics of Transposons in the Human Genome,

Phys. Rev. Lett. 117, 208101, (2016) [27]

• Chi Xue, Nigel Goldenfeld, Coevolution Maintains Diversity in the Stochastic “Kill the Winner” Model,

Phys. Rev. Lett. 119, 268101, (2017) [26]

• Gloria Lee, Nicholas A. Sherer, Neil H. Kim, Ema Rajic, Davneet Kaur, Niko Urriola, K. Michael Mar-

tini, Chi Xue, Nigel Goldenfeld, Thomas E. Kuhlman, Testing the Retroelement Invasion Hypothesis

for the Emergence of the Ancestral Eukaryotic Cell, in review, Proc. Natl. Acad. Sci. U.S.A. [28]
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Diversity at the Ecological Scale
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Chapter 2

Introduction to the Diversity of
Ecosystems

2.1 Biodiversity Paradox and Proposed Resolutions

The high diversity of coexisting species in most ecosystems has been a major puzzle for more than 50

years. Hutchinson first articulated the so-called Paradox of the Plankton in 1961 [3] for the case of marine

ecosystems: why do many species of plankton that feed on the same nutrients coexist, instead of one species

outcompeting all the others?

This latter expectation has been formulated precisely as the so-called competitive exclusion principle [6].

As the premise of the paradox, it has been validated, for example, in Ref. [29], which demonstrates that in a

system where species with different traits feed on and compete for the same resource, clusters of organisms

emerge as a result of the competition exclusion.

The Paradox of the Plankton is not limited to marine ecosystems, but has been generalized to terrestrial

systems and expressed as the biodiversity paradox [4, 5].

The various tentative resolutions of the paradox can be divided into two classes [5, 30, 31]. In the first,

it’s argued that the competitive exclusion principle applies to a fixed point equilibrium state, while the

ecosystem fails, due to temporal or/and spatial factors, to reach such an equilibrium. For example, the

time needed for the system to reach equilibrium might be much longer than the time over which the system

undergoes significant changes in its boundary conditions, such as weather [32]. Also, spatial heterogeneity

can increase the global diversity of the system by maintaining local patches that each obey the competitive

exclusion principle but globally support the coexistence of multiple species [33, 34] (for another perspective,

see [35]). In other words, the system does not reach a global equilibrium state due to spatial dispersion. In

the second class of resolutions, interactions such as predation, in conjunction with competitive exclusion,

promote the coexistence of species through time-dependent or stochastic steady states [8, 36–38]. One widely

celebrated example of this behavior is the continual succession of different community members known as

the “Kill the Winner” (KtW) dynamics [8, 9, 39]. We will discuss details of the KtW model and demonstrate

its breakdown in the presence of the demographic stochasticity in Chapter 3. And in Chapter 4, we will
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show that the coupling of KtW and coevolution together are able to recover the diversity of the stochastic

system.

2.2 Methods of Characterizing Species Diversity in Ecology

The diversity of a system not only refers to the richness, i.e. the total number, of species, but also the evenness

of the population distribution. There are several ways to quantify this concept, such as by calculating the

diversity index and by looking at the abundance distribution. I briefly introduce these conventional methods

in this section, and explain some useful connections between them that are not usually made explicitly in

the literature.

2.2.1 Diversity Index

If the population of each species is known in an ecosystem, with pi being the population fraction of species

i in the system and R being the richness, then the diversity index can be defined in the following general

form [7].

qD =
1

q−1

√∑R
i=1 pip

q−1
i

=

(
R∑
i=1

pqi

)− 1
q−1

, q > 1, (2.1)

where q refers to the order of the diversity. We observe that the expression in the bracket is the mean of pq−1,

denoted as Mq−1 ≡ 〈pq−1〉, under the given population distribution {pi}. And the diversity qD = 1/M
1/(q−1)
q−1

is interpreted as the effective number of species that would give the same Mq−1 assuming equally distributed

populations. There are several special cases: 1D = 1/R; lim
q→1

qD = exp(S), with S being the Shannon entropy

S ≡ −
∑R
i=1 pi ln pi [40, 41]; and 2D is the reciprocal of the Simpson index λ ≡

∑R
i=1 p

2
i [42].

Despite its convenience and wide usage, the above index itself is not sufficient to reveal all the features

of the diversity. To be comprehensive, ecologists look at the distribution of the species population, or

abundance, directly. There are two broadly used distributions, called the species-abundance distribution

(SAD) and the rank-abundance distribution (RAD).

2.2.2 Abundance Distributions

The species-abundance distribution (SAD) quantifies, how many species S, usually in the same trophic

level, have a certain population size (abundance) A. It has the same interpretation as the population

size distribution. The rank-abundance distribution (RAD) is obtained by sorting in descending order the

abundance values of all species, assigning rank r = 1 to the most abundant species, r = 2 to the second
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most abundant one, etc., and then plotting the abundance A against the rank r. It shows straightforwardly

the species richness and evenness in the system.

The two distributions are not independent. Instead, RAD can be conveniently derived from the SAD.

Let SA be the number of species that consist of A individuals, and thus describe the species abundance

distribution. The rank, rA, of a species with abundance A can then be calculated as follows.

rA =

+∞∑
A′≥A

SA′ . (2.2)

The key idea of the equation is that the rank of a species is equal to the total number of species that are

more or equally abundant. Approximate the summation with integration and the above equation becomes

rA → r(A) =

∫ +∞

A

S(A′)dA′. (2.3)

The inverse function A(r) then gives the functional form of the abundance-rank relation.

In particular, suppose that the species abundance distribution is power-law with exponent −n,

SA = C1A
−n, (2.4)

where C1 is the normalization factor such that
∫ +∞
1

SAdA = R. Then we can derive r(A) following Eq.

(2.3) for n > 1 as below [43]:

r(A) = C1

∫ +∞

A

A′−ndA′ =
C1

n− 1
A−(n−1). (2.5)

Therefore the abundance-rank equation is

A = C2r
− 1
n−1 , (2.6)

with C2 = [(n−1)/C1]−1/(n−1). This is the power-law rank-abundance distribution, with exponent −1/(n−

1). For n = 1, the integral in Eq. (2.3) gives a logarithmic function,

r(A) = C1

∫ A1

A

A′−1dA′ = C1 ln
A1

A
, (2.7)

with A1 being the highest species abundance. The abundance-rank relation is then

A = A1e
− r
C1 . (2.8)
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This is the exponential rank-abundance distribution.

2.2.3 Rank-abundance Distribution in Ecosystems

The most famous RAD-type distribution probably is the Zipf’s law [44], which states that the frequency of a

certain word in a given language is inversely proportional to its rank, i.e. A ∝ r−1. Zipf’s law is ubiquitous

in many languages and also found in other non-linguistic systems, such as the population ranks of cities,

income ranks, and so on [43].

In ecology, ecosystems also share common functional forms of SADs or RADs. First, the general quali-

tative trend of the RAD is uniform in all sampled ecosystems. It typically consists of two parts: the high

abundance segment composed of a few core species, and the main body containing the majority of species

and extending to the rare biosphere with low abundance. Although rare species have nearly undetectably

small abundances at a certain temporal point, they can contribute to the resilience of the system in later

composition turnovers [45]. Second, many ecosystems share the same quantitative asymptotic behaviors at

large rank. Both exponentially decaying [46–48] and power-law [49–54] RADs have been observed in a broad

range of systems. Data are constantly being generated, as the sequencing technology proceeds, for example,

by the Tara Oceans, a project sampling microbes on the global scale [55–59]. It seems that the preliminary

data are consistent with the broad characterization of marine virus and bacteria species exhibiting power-law

decaying A(r), whereas terrestrial and microbiomes exhibit an exponential tail. Although it is tempting to

speculate that the form arises due to a combination of density-dependent birth-death processes coupled with

turbulence, as I have attempted in unfinished work, this remains an unproven speculation at present.

2.2.4 Models in the Literature

Although SAD and RAD give straightforward characterization of the diversity, they are both macroscopic

features and veil the underlying microscopic rules followed by species. There have been intense efforts to

reverse engineer the microscopic processes based on the SAD and RAD. I briefly introduce two end member

theories [60] here.

The unified neutral theory [61] assumes that species are functionally equivalent. They undergo birth,

death, migration processes in a completely random and independent manner, yet with the same rates. The

difference in their relative abundances is purely due to fluctuations. The unified neutral theory has been

criticized ever since its proposal, since its assumption is against the observation and it has failed to match

many of the observed distributions [62–66]. Nevertheless it is widely accepted as a null hypothesis.

The opposite end member is the niche apportionment models, first proposed in Refs. [67, 68] and then
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expanded in Refs. [69–72]. This family of models assigns species to occupy their specific niches and thus

to break up the niche space or available resources. The niche occupation behavior determines the relative

abundance. Each species has its unique feature and niche, in contrast to the functional equivalence in the

neutral theory. Examples of testing the niche theory are in Refs. [73, 74].

In reality, ecosystems are found on a spectrum between these two end members, e.g. in Ref [48]. And

there have been efforts to unify the two types of theories [60, 75, 76].

Although the neutral and niche theories are radically distinct in their premises, they can generate the

same RAD behavior [77–79]. Therefore, it’s not conclusive to infer whether the underlying microscopic

process is neutral or niche-based, judging from the observed SAD and RAD.
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Chapter 3

Breakdown of the “Kill the Winner”
Hypothesis in the Presence of
Demographic Stochasticity
The “Kill the Winner” hypothesis [8, 9] is an attempt to address the biodiversity paradox. It has been

frequently revisited and expanded in the context of marine systems [39, 80], and is related to the Janzen-

Connell hypothesis [81, 82] for tree biodiversity. It argues that host-specific predators control the population

of each prey, preventing a winner from emerging and thus maintaining the coexistence of all species in the

system. It is seen in both natural ecosystems as well as some laboratory systems such as chemostats [45, 83].

The original calculations assume that the system is spatially homogeneous and use continuous biomass to

describe the population. However, the continuous variables, which are allowed to become arbitrarily small,

can not capture effects induced by the finite population size, such as extinction events [84, 85]. The fact

that the population size is integer-valued leads inexorably to shot noise, referred to in the ecological context

as demographic stochasticity.

In the rest of this chapter, we explore the effect of demographic stochasticity on the KtW paradigm and

demonstrate that the stochasticity causes the coexistence steady state in the deterministic KtW model to

break down through a cascade of extinctions, leading to a loss of diversity. This work has been published as

a part of Ref. [26].

3.1 Original “Kill the Winner” Hypothesis

The original “Kill the Winner” hypothesis [8, 9] was proposed to explain the coexistence of bacteria and

plankton, which both consumed the same limited chemical resource in the ocean. The basic idea is that

the coexistence of competitors is maintained by their predators that prevent any winners from taking over.

The plankton community generally has a lower efficiency of resource usage than the bacteria. They remain

in the system, only because a protozoan consumes the bacteria non-selectively and thus limits the bacterial

population, leaving room for the plankton to thrive. Inside the bacterial community, different strains have

distinct growth rates. They coexist, with no dominating winners, due to host-specific viruses controlling the

corresponding strains. This results in two layers of coexistence, nested like Russian dolls [39]: the coexistence
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of bacteria and plankton as the first layer, and the coexistence of all bacterial strains as the second.

In a later paper [39], the bacteria and plankton communities in the original model were generalized to two

groups: the competition specialists and the defense specialists. The former (bacteria) have a high resource

consumption efficiency but are susceptible to predators, while the latter are resistant to the predation but

poor at resource usage. Predators exert pressure on the competition specialists and prevent them from

dominating over the defense specialists; the defense specialists are limited by the total amount of available

resource.

The original KtW model was formulated as deterministic Lotka-Volterra type equations for the species

biomass concentrations [8, 9]. The high diversity of the system is exhibited in the steady state where multiple

species coexist with positive biomass values.

Here, we reinterpret the original equations, which were about biomass concentrations, in terms of number

densities in Eq. (3.1), and later compare the results with those of its stochastic version.

Ḃi = biBiR− piViBi − gPBi − riBi, (3.1a)

V̇i = piViBi − diVi, (3.1b)

Ṗ = gP
∑
i

Bi − dpP, (3.1c)

Ȧ = bAAR− rAA, (3.1d)

Ṙ = −
∑
i

biBiR− bAAR+
∑
i

diVi +
∑
i

riBi + dpP + rAA. (3.1e)

The dot operator stands for the time derivative. Bi and Vi are, respectively, the densities of the ith bacterial

and viral strains. P is the density of the protozoan, A of the plankton, and R of the resource. Bacteria have

strain-specific growth rate bi and death rate ri. Viruses of strain i attack their specific bacterial hosts with

rate pi and decay with rate di. The protozoan hunts all bacteria nonselectively, with rate g, and dies with

rate dp. Plankton face no predation and have a growth rate of bA and death rate of rA.

The set of Eq. (3.1) is redundant in the sense that
∑
i Ḃi +

∑
i V̇i + Ṗ + Ȧ + Ṙ = 0. This reflects that

the total number density of all categories is constant, assumed to be 1, shown in Eq. (3.2). We have set

this condition to mirror the constraint in the original model that the entire biomass is conserved. With this

fixed carrying capacity, this model thus is a type of “urn” model.

∑
i

Bi +
∑
i

Vi + P +A+R = const. (3.2)

There is a caveat in Eqs. (3.1) and (3.2). While the biomass of a system is truly conserved, the total
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number density usually is not. For example, at the lysis of a bacterial cell due to viral infection, out of each

bacterium emerges O(10) ∼ O(100) viruses. This ratio is called the burst size. While the number density

dramatically increases, the total biomass stays the same. In order to use Eq. (3.2) to model the carrying

capacity, we have to ignore the fact that viruses have a large burst size. By setting aside the burst size,

Eq. (3.1) generally can not capture the fact that viruses are 10 times more abundant than bacteria. But

doing this will make it easy to write down the stochastic version using an urn model for comparison. At

this moment, we focus on demonstrating the difference between the deterministic and stochastic situations,

and ignoring the burst size does not matter for this purpose. Later, when we generalize the model, we will

break the urn and then add back the burst size.

Following the original model, we further assume the bacteria growth rates are ordered in the way below:

b1 > b2 > b3 > . . . . (3.3)

We can solve for the steady state by setting the time derivatives in Eq.(3.1) to zero and calculating all

densities. We are particularly interested in the nontrivial steady state where most species coexist and have

positive densities. In that state, there exists m bacterial and m−1 viral strains together with the protozoan,

plankton and resource. The analytical expressions are as follows.

Ȧ = 0 =⇒ R∗ =
rA
bA

(3.4a)

Ṗ = 0 =⇒
m∑
i=1

B∗i =
dp
g

(3.4b)

V̇i = 0 =⇒ B∗i =
di
pi
, i = 1, 2, . . . ,m− 1 (3.4c)

=⇒ B∗m =
dp
g
−
m−1∑
i=1

di
pi

(3.4d)

V ∗m = 0 (3.4e)

Ḃm = 0 =⇒ P ∗ =
1

g
(bmR

∗ − rm) (3.4f)

Ḃi = 0 =⇒ V ∗i =
1

pi
(biR

∗ − ri − gP ∗), i = 1, 2, . . . ,m− 1 (3.4g)

=⇒ V ∗i =
1

pi
[(bi − bm)R∗ − (ri − rm)] , i = 1, 2, . . . ,m− 1 (3.4h)

=⇒ A∗ = 1− P ∗ −R∗ −
m∑
i=1

B∗i −
m∑
i=1

V ∗i (3.4i)

The starred variables in the above expressions stand for the steady state values. Eq. (3.4b) indicates that
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the protozoan controls the population of the entire bacterial community. And Eq. (3.4c) demonstrates that

each viral strain constrains the corresponding bacterial strain. Together, the number of existing bacterial

strains m is determined by predation behaviors of both the protozoan and viruses, as shown in Eq. (3.4d).

To show the dynamical behavior of the deterministic model Eq. (3.1), we assign a set of illustrative

parameters, and numerically evolve the equations using the Runge-Kutta (RK4) method. Assume there are

six bacterial strains with birth rates b = (0.1, 0.09, 0.08, 0.07, 0.06, 0.05). Let other parameters be strain

independent and pi ≡ p = 0.1, di ≡ d = 0.01, g = 0.1, dp = 0.055, bA = 0.02, ri = rA ≡ r = 0.001. Then the

steady state densities are given by the following values:

R∗ = 0.05, (3.5a)

P ∗ = 0.015, (3.5b)

A∗ = 0.31, (3.5c)

B∗ = (0.1, 0.1, 0.1, 0.1, 0.1, 0.05), (3.5d)

V ∗ = (0.025, 0.02, 0.015, 0.01, 0.005, 0). (3.5e)

Note that the viral populations are ordered s.t. V ∗1 > V ∗2 > V ∗3 > V ∗4 > V ∗5 > V ∗6 = 0. The left column of

Fig. 3.1 shows the time series obtained from the deterministic model. The system is initially perturbed away

from the steady state. All species densities, which are predicted to be positive, undergo strong oscillations

and slowly decay toward the steady state values. The system has a high diversity throughout time despite

the fluctuations.

3.2 Stochastic Version of the Original KtW Model

We can write down the individual-level reactions (3.6) that correspond to the Lotka-Volterra type rate

equations Eq. (3.1). Xi stands for a bacterium of the ith strain, Yi for a virus of the ith strain, Z for a

protozoan individual, S for a plankton organism, and E for a resource quantum.

Xi + E
bi−→ 2Xi, Xi + Yi

pi−→ 2Yi, (3.6a)

Xi + Z
g−→ 2Z, S + E

bA−−→ 2S, (3.6b)

Bi
ri−→ E, Yi

di−→ E, (3.6c)

Z
dp−→ E, S

rA−−→ E. (3.6d)
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Figure 3.1: Time series of species population densities, with the deterministic result on the left and stochastic
one on the right. The first row is the populations of bacterial strains, the second row the viral strains, and
the third row the protozoan, resource, plankton, bacterial total and viral total. In the deterministic version,
the system is initially perturbed away from the steady state by setting B6 = 0.02, V6 = 0.03 and everything
else at their steady state values. Despite of the large oscillations, all species, except V6, coexist, in accordance
with the prediction by the deterministic model. In the stochastic version, the system size is C = 10000 and
species are initiated with the exact steady state values. Demographic noise drives species to deviate from
their steady state, and some populations drift to zero. Eventually, the entire viral community vanishes, while
one winner emerges from the bacterial community. The coexistence state is destroyed. Figures are adopted
from the published work Ref. [26].
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Results of numerical simulations of the above stochastic model with the Gillespie algorithm [86] are shown

in the right column of Fig. 3.1. In the stochastic model, species go extinct one after another, destroying the

coexistence state. And eventually only one bacterial strain remains with the protozoan and plankton, while

the viral community is completely annihilated. For the particular time series presented in the right column

of Fig. 3.1, the order in which species became extinct was V5 → V4 → V2 → V3 → B6 → B5 → B4 →

B3 → V1 → B2. The general trend was determined by the fact that bacterial growth rates were ordered in

the way such that B6 had the lowest growth rate and B1 the highest, and V5 was the closest to extinction

and V1 the farthest. This order is reflected in Eq. (3.5). It’s noticeable that V2 went extinct before V3 did.

This resulted in B2 being freed and driving other strains with lower growth rates to extinction until later

being outcompeted by B1. These large fluctuations and temporal dominance of one certain strain are also

a consequence of stochasticity and cannot be captured by the deterministic model.

3.3 Generalized “Kill the Winner” Model

The original KtW model includes interactions on both the species level (bacteria, plankton and the proto-

zoan) and the strain level (bacterial and viral strains), which makes it mathematically difficult to tackle.

We realize that the key component of the KtW hypothesis is that for each resource competitor there is a

corresponding predator that can prevent it from becoming a dominant winner. The Russian doll-like hier-

archy is hence not essential for the basic idea. Thus we focus on only a single layer in the original model,

the bacterial and viral strains, and ignore the multilevel structure. The KtW model is in this way simplified

and generalized to a system of m pairs of prey (bacteria) and predators (viruses). The individual reactions

are as follows.

Xi
bi−→ 2Xi, Xi +Xj

eij−−→ Xj , (3.7a)

Yi +Xi
pi−→ (βi + 1)Yi, Yi

di−→ ∅. (3.7b)

All rates are positive. i, j = 1, 2, . . . ,m are strain indices. Bacterial individuals Xi, have strain-specific

growth rate bi. They compete with each other for an implicit resource with strength eij . Viruses of the ith

strain Yi, infect the corresponding host Xi with rate pi and burst size βi, and decay to nothing ∅ with rate

di. These reactions form the minimal generalized KtW model. In this set of reactions, the carrying capacity

is modeled by the competition among bacterial strains, instead of as an explicit urn. The total population

is no longer forced to be a constant and we are thus able to use a realistic viral burst size.
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3.3.1 Mean-field Solution of the General KtW Model

Reactions (3.7) have the following mean-field rate equations.

Ḃi = biBi −
m∑
j=1

eijBiBj − piBiVi, (3.8a)

V̇i = βipiBiVi − diVi. (3.8b)

Bi and Vi represent the densities of the ith bacterial and viral strains, respectively. We set eij to a constant

value e for simplicity.

Eq. (3.8) has a nonzero steady state as shown below.

B∗i =
di
βipi

, V ∗i =
1

pi

bi − e m∑
j=1

B∗j

 . (3.9)

We require all B∗i and V ∗i to be positive, which limits the parameters to satisfy bi > e
∑m
j=1 dj/βjpj ,∀i.

We have conducted the linear stability analysis, which will be discussed later in the subsection, and found

that the steady state Eq. (3.9) is exponentially stable, as long as the quantity xi ≡ βip
2
iB
∗
i V
∗
i = di(bi −

e
∑m
j=1 dj/βjpj) is distinct for each i. The steady state can be either a focus or node, depending on whether

the eigenvalues of the linear stability matrix have nonzero imaginary parts or not. The parameters used in

this chapter result in the steady state being a focus, but the conclusion also applies to the node case.

In Fig. 3.2, we show in the first row the time series of prey and predator densities obtained from a

numerical evolution of Eq. (3.8) for m = 10 pairs of bacteria and phages. Species densities are initially

perturbed away from the steady state. As shown in the figure insets, species densities decay back to the

steady state at long times, confirming the result of the linear stability analysis. The oscillatory behavior at

short time scales demonstrates the steady state to be a focus.

Linear Stability of the Steady State of the Generalized KtW Model

The Jacobian matrix of Eq. (3.8) is 2m× 2m, and can be written in the form of a block matrix as below.

J =

A B

C D

 . (3.10)
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Figure 3.2: Population density time series obtained from the generalized KtW model, with 10 bacterium-
phage pairs. The left column is for bacteria and the right for viruses. The first row shows the result from a
numerical evolution of the deterministic generalized KtW equations, with species densities initially perturbed
randomly away from the steady state. The parameters are b = (0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15,
1.2), pi ≡ p = 2, βi ≡ β = 10, di ≡ d = 0.5, and eij ≡ e = 0.1. Densities undergo oscillatory decay toward
the steady state. The insets show the long time behavior, which demonstrates that the steady state is a
focus. For readability, only the decays of B2 and V2 are shown. The second row presents a typical simulation
result of the stochastic version of the generalized KtW model, using the same set of parameters. The system
size is C = 1000 and populations are initialized with the steady state values. The oscillatory decay behavior
is destroyed by the demographic noise. And the system eventually collapses after all bacterial strains become
extinct. Figures are adopted from the published work Ref. [26].
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The four blocks are all m×m matrices with their elements defined as follows.

Aij =
∂Bi
∂Bj

, Bij =
∂Bi
∂Vj

, Cij =
∂Vi
∂Bj

, Dij =
∂Vi
∂Vj

. (3.11)

The four matrices can be evaluated by observing that

∂Bi
∂Bj

=


bi − 2eBi − e

∑
j 6=iBj − piVi, j = i

−eBi, j 6= i

(3.12a)

∂Bi
∂Vj

=


−piBi, j = i

0, j 6= i

(3.12b)

∂Vi
∂Bj

=


βipiVi, j = i

0, j 6= i

(3.12c)

∂Vi
∂Vj

=


βipiBi − di, j = i

0, j 6= i

(3.12d)

Substitute the steady state values B∗i and V ∗i into the above expressions, and we have

A∗ =



−eB∗1 −eB∗1 · · · −eB∗1

−eB∗2 −eB∗2 · · · −eB∗2
...

...
. . .

...

−eB∗m −eB∗m · · · −eB∗m


, (3.13a)

B∗ =



−p1B∗1

−p2B∗2 0
0 . . .

−pmB∗m


, (3.13b)

C∗ =



β1p1V
∗
1

β2p2V
∗
2 0

0 . . .

βmpmV
∗
m


, (3.13c)

D∗ = 0. (3.13d)

22



The characteristic equation of the Jacobian matrix J is given by

det(J − λI) = det

A∗ − λI B∗

C∗ D∗ − λI

 = 0, (3.14)

where λ is the eigenvalue, I is the 2m× 2m identity matrix, and I is the m×m identity matrix. Since the

two diagonal matrices C∗ and (D∗ − λI) commute with each other, we have the following equation

det

A∗ − λI B∗

C∗ D∗ − λI

 = det
(
(A∗ − λI)(D∗ − λI)− B∗C∗

)
. (3.15)

We can define −eB∗i ≡ ai, then matrix A becomes

A∗ =



a1 a1 · · · a1

a2 a2 · · · a2
...

...
. . .

...

am am · · · am


, (3.16)

and further

(A∗ − λI)(D∗ − λI) =



λ2 − a1λ −a1λ · · · −a1λ

−a2λ λ2 − a2λ · · · −a2λ
...

...
. . .

...

−amλ −amλ · · · λ2 − amλ


. (3.17)

We can also straightforwardly calculate that

B∗C∗ =



−β1p21B∗1V ∗1

−β2p22B∗2V ∗2 0
0 . . .

−βmp2mB∗mV ∗m


. (3.18)

23



With the above two equations, we then have

(A∗ − λI)(D∗ − λI)− B∗C∗

=



λ2 − a1λ+ β1p
2
1B
∗
1V
∗
1 −a1λ · · · −a1λ

−a2λ λ2 − a2λ+ β2p
2
2B
∗
2V
∗
2 · · · −a2λ

...
...

. . .
...

−amλ −amλ · · · λ2 − amλ+ βmp
2
mB
∗
mV
∗
m


. (3.19)

Our goal is to calculate the determinant of the above matrix to obtain the characteristic equation. We

can first simplify the matrix with linear transformations. Subtract column 1 from column i, ∀i > 1, and we

have a new matrix named M as follows.

M =



λ2 − a1λ+ β1p
2
1B
∗
1V
∗
1 −λ2 − β1p21B∗1V ∗1 −λ2 − β1p21B∗1V ∗1 · · · −λ2 − β1p21B∗1V ∗1

−a2λ λ2 + β2p
2
2B
∗
2V
∗
2 0 · · · 0

−a3λ 0 λ2 + β3p
2
3B
∗
3V
∗
3 · · · 0

...
...

...
. . .

...

−amλ 0 0 · · · λ2 + βmp
2
mB
∗
mV
∗
m


. (3.20)

Note that matrix M has nonzero elements only in the first row, in the first column and on the diagonal.

With this special structure, its determinant can be calculated below.

det(M) =

m∏
i=1

Mii +

m∑
k=2

(−1)2k−3Mk1M1k

m∏
i 6=1,k

Mii (3.21a)

=

m∏
i=1

Mii −
m∑
k=2

Mk1M1k

m∏
i6=1,k

Mii (3.21b)

=(λ2 − a1λ+ β1p
2
1B
∗
1V
∗
1 )(λ2 + β2p

2
2B
∗
2V
∗
2 ) · · · (λ2 + βmp

2
mB
∗
mV
∗
m)

− (λ2 + β1p
2
1B
∗
1V
∗
1 )(a2λ)(λ2 + β3p

2
3B
∗
3V
∗
3 ) · · · (λ2 + βmp

2
mB
∗
mV
∗
m)

− (λ2 + β1p
2
1B
∗
1V
∗
1 )(λ2 + β2p

2
2B
∗
2V
∗
2 )(a3λ) · · · (λ2 + βmp

2
mB
∗
mV
∗
m)

− (λ2 + β1p
2
1B
∗
1V
∗
1 )(λ2 + β2p

2
2B
∗
2V
∗
2 )(λ2 + β3p

2
3B
∗
3V
∗
m) · · · (amλ). (3.21c)
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Rearrange the terms and we arrive at the following expression.

det(J − λI) = det(M) =(λ2 + β1p
2
1B
∗
1V
∗
1 )(λ2 + β2p

2
2B
∗
2V
∗
2 ) · · · (λ2 + βmp

2
mB
∗
mV
∗
m)

− (a1λ)(λ2 + β2p
2
2B
∗
2V
∗
2 )(λ2 + β3p

2
3B
∗
3V
∗
3 ) · · · (λ2 + βmp

2
mB
∗
mV
∗
m)

− (λ2 + β1p
2
1B
∗
1V
∗
1 )(a2λ)(λ2 + β3p

2
3B
∗
3V
∗
3 ) · · · (λ2 + βmp

2
mB
∗
mV
∗
m)

− (λ2 + β1p
2
1B
∗
1V
∗
1 )(λ2 + β2p

2
2B
∗
2V
∗
2 )(a3λ) · · · (λ2 + βmp

2
mB
∗
mV
∗
m)

− (λ2 + β1p
2
1B
∗
1V
∗
1 )(λ2 + β2p

2
2B
∗
2V
∗
2 )(λ2 + β3p

2
3B
∗
3V
∗
m) · · · (amλ). (3.22)

Let

fi ≡ λ2 + βip
2
iB
∗
i V
∗
i ≡ λ2 + xi, (3.23)

where xi = βip
2
iB
∗
i V
∗
i . Then the characteristic equation is simplied as

det(J − λI) =

m∏
i=1

fi −
m∑
i=1

aiλ

m∏
j 6=i

fj = 0. (3.24)

In order to determine the stability of the steady state, we don’t necessarily need the exact λ values that

satisfy the above equation, but only need to know whether their real parts are positive or negative. The

Routh-Hurwitz criterion [87, 88] can be applied to determine how many roots of a polynomial have negative

real parts. But it’s not trivial to carry out the calculation for Eq. (3.24), which is of degree 2m, when m is

large. Here, I show a simple method to determine the stability of the steady state.

First, consider the case where all xi are distinct from one another. Then we can prove that for any

eigenvalue λ satisfying Eq. (3.24), we always have fi(λ) 6= 0, ∀i. In fact, if we assume ∃i∗, s.t. fi∗ = 0,

then λ2 = −xi∗ . Since xi are different from each other, we have fj 6= 0,∀j 6= i∗. Therefore, the term

ai∗λ
∏m
j 6=i∗ fj 6= 0, and with the first term being zero, Eq. (3.24) cannot be satisfied. This brings out the

contradiction, and our assumption is wrong. Thus fi(λ) 6= 0,∀i. And we now can divide both sides of Eq.

(3.24) by
∏m
i=1 fi to get the following equation.

1−
m∑
i=1

aiλ

fi
= 0. (3.25)

Now let

λ = α+ iβ, (3.26)

where i is the imaginary unit, and substitute it into Eq. (3.25), then we arrive at an equation of the following
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form.

1 +

m∑
j=1

Re γj + i

m∑
j=1

Im γj = 0, (3.27)

where Re and Im stand for the real and imaginary parts of a complex number, respectively. The above

equation requires that

1 +

m∑
j=1

Re γj =0, (3.28a)

m∑
j=1

Im γj =0. (3.28b)

And γj is given by the following expressions.

Re γj =− αaj(α
2 + β2 + xj)

(α2 − β2 + xj)2 + 4α2β2
, (3.29a)

Im γj =− βaj(−α2 − β2 + xj)

(α2 − β2 + xj)2 + 4α2β2
. (3.29b)

We now can obtain the following equation,

1− α
m∑
j=1

aj(α
2 + β2 + xj)

(α2 − β2 + xj)2 + 4α2β2
= 0. (3.30)

Since aj = −eB∗j < 0 and xj > 0, we conclude that α < 0. This applies to any λ that is a root of Eq.

(3.24). In other words, all eigenvalues have negative real parts and the steady state Eq. (3.9) is locally

exponentially stable.

Back to our condition that xi is distinct from one another. If this is not satisfied, then fi can be zero for

some value(s) of i, and ∃i = k, s.t. λ = ±i
√
xk are two roots of Eq. (3.24). Due to these pure imaginary

eigenvalues, the steady state is not exponentially stable.

Note that

xi = βip
2
iB
∗
i V
∗
i = di(bi − e

m∑
i=1

di
βipi

), (3.31)

and we can easily select parameters such that the steady state is exponentially stable.

In the first row of Fig. 3.2, we show the time series of prey and predator densities from a numerical

evolution of Eq. (3.8) for m = 10 pairs of bacteria and phages, with the parameters b = (0.75, 0.8, 0.85, 0.9,

26



0.95, 1, 1.05, 1.1, 1.15, 1.2), pi ≡ p = 2, βi ≡ β = 10, di ≡ d = 0.5, and eij ≡ e = 0.1. The steady state is

B∗i = 0.025, ∀i, (3.32a)

V ∗ = (0.3625, 0.3875, 0.4125, 0.4375, 0.4625, 0.4875, 0.5125, 0.5375, 0.5625, 0.5875). (3.32b)

Species densities are initially perturbed away from the steady state by a small random amount. As shown

in the figure insets, species densities decay back to the steady state in the long time, confirming the result

of the linear stability analysis. The oscillatory behavior on the short time scale is due to the imaginary part

of the eigenvalues of the linear stability matrix.

3.3.2 Stochastic Simulation of the General KtW Model

To reveal the effect of demographic noise, we also conduct the Gillespie stochastic simulation [86] of the

corresponding individual level reactions (3.7) with the same parameter set as that used in the deterministic

equations to generate the first row of Fig. 3.2. The resultant species density time series are shown in the

second row of Fig. 3.2.

In contrast to the deterministic behavior of oscillatory decay, species go extinct in a short time. Bac-

terial strains become extinct due to random fluctuation; this consequentially triggers the extinction of the

corresponding viral strains, which die due to a lack of food. The number of existing species monotonically

decreases in the process, and the system diversity undergoes a cascade.

3.4 Conclusion

We have compared the deterministic and stochastic versions of the KtW model, both the original and

the generalized ones. While the deterministic model predicts a stable steady state of coexistence, the

demographic stochasticity present in a system with finite populations induces an extinction cascade and

leads the coexistence state to break down. The reason for the breakdown lies in the fact that species

populations in the stochastic model are all finite, and the probability of the population reaching zero due to

random fluctuation is always nonzero.

In Chapter 4, we will explore how to the revalidate the KtW theoretical framework, by introducing the

coevolution of predators and prey.
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Chapter 4

Coevolution Maintains Diversity in
the KtW Model

We have shown in Chapter 3 that demographic stochasticity causes the coexistence steady state in the

KtW model to break down. Ecosystems have evolved many potential mechanisms to get around the path

to extinction, as introduced in Chapter 2. Here, we discuss one possibility: prey and predator coevolve

with each other so that fit mutants are constantly being introduced into the system, thus preventing the

elimination of the species. Specifically, prey improve their phenotypic traits (e.g. strengthening the shell)

to escape from predators, and predators also adjust their corresponding traits (e.g. sharpening the claws)

to catch prey. This coevolutionary arms race has been well-documented in many systems [89–97]. Previous

theoretical studies focused on the dynamics of the traits of prey and predator groups [98–101], and the

structure of the predation network [102]. The coevolution can generally be divided into two modes: the

gene-for-gene mode, where predators can catch all prey with traits greater/smaller than a certain value,

and the matching-allele or lock-and-key mode, where predators can only eat prey with a specific trait value.

Here, we study how coevolution affects the diversity of the KtW model, whose host-specific predation fits in

the lock-and-key picture. This work has been published as a part of Ref. [26].

4.1 Stochastic Coevolving-KtW Model

We modify the stochastic generalized KtW model (3.7) by adding in the following two sets of reactions to

describe mutations of the prey Xi and predator Yi, respectively, from strain i to i± 1.

Xi
µ1/2−−−→ Xi±1, Yi

µ2/2−−−→ Yi±1. (4.1)

We assume that the mutation rates are strain independent and one individual can mutate into its two

neighbor strains with the same rate, µ1/2 for bacteria and µ2/2 for viruses. We set the boundary condition

to be that mutations out of the index set {1, 2, . . . ,m} are ignored. We will refer to Eqs. (3.7) and (4.1)

together as the coevolving KtW (CKtW) model.

For sufficiently high mutation rates, the absorbing extinction state in the generalized KtW model can be
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avoided, in the sense that a strain can reemerge as mutants generated from its neighbor relatives after its

population drops to zero. Therefore, mutation can stimulate a flux of population through different strains

and promote coexistence.

4.2 Coexistence in the CKtW Model

We quantify the diversity of the system in the CKtW model using the Shannon entropy [40, 41],

S = −
m∑
i=1

fi ln fi, (4.2)

where fi is the fraction of the ith bacterial (viral) strain in the entire bacterial (viral) community. The

expression reaches the maximum, when all strains coexist at their deterministic steady state Eq. (3.9), and

the minimum 0, when only one strain exists. We score S = −1, if either the bacterial or viral community

goes extinct.

We present population density time series in Fig. 4.1, and the dependence of prey diversity on the

mutation rates in Fig. 4.2. We set µ1 = µ2 ≡ µ for simplification. The diversity of the prey community

for a certain simulation replicate is calculated at the end of the diversity time series shown in the inset of

Fig. 4.2, after the system has gone through the transient region. We then average the diversity over 100

replicates for each parameter set to obtain the main figure of Fig. 4.2. Although in principle, species in a

stochastic system will always go extinct at a time exponentially long depending on the population size [85],

this extinction time scale is not relevant in our simulation, and we thus focus on the system state in the long

steady region before the eventual collapse.

For small enough mutation rate (population time series not shown), the entire community can become

extinct before mutants can emerge, and the system still collapses, demonstrated by the diversity time series

of µ = 0 in the inset of Fig. 4.2, as in the generalized KtW model. This corresponds to region I in Fig. 4.2.

For intermediate mutation rates, most strains stay near extinction, driven by the demographic noise,

while some mutants can grow to be dominant if they happen to confront only a few predators when first

emerging. Subsequently, the predator population expands, feeding on the dominating winners, thus reducing

the winner population, and allowing the next dominator to grow. In this way, we see that winner populations

spike alternatively in the time series, as in the first row of Fig. 4.1. As illustrated in region II in Fig. 4.2,

near the onset µ value of coexistence, the diversity has a large deviation and is very sensitive to the mutation

rate. The large deviation is also seen in the diversity time series corresponding to µ = 0.015 in the inset.

For large mutation rate, the coevolution-driven population flow is fast enough to compensate for the
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Figure 4.1: Population density time series in the stochastic coevolving KtW model. The left column is for
bacteria and the right for viruses. The system size is C = 1000, and the mutation rates are set to be equal,
µ1 = µ2 ≡ µ. Other rates are the same as those in Fig. 3.2. The upper row is obtained from a typical
stochastic simulation of the coevolving KtW model. The system size is C = 1000, and the mutation rates
are µ = 0.015. Populations undergo winner alternation in the presence of the low mutation rate. The lower
row is from the same model as in the first row with a high mutation rate µ = 1. Strains coexist, with small
fluctuations around the steady state. Figures are adopted from the published work Ref. [26].
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Figure 4.2: The main figure shows the prey diversity S, defined in the main text, as a function of the
mutation rate µ1 = µ2 ≡ µ. For each value of µ, we conduct 100 replicates and calculate the diversity values
at the end of the simulations, represented by the gray dots with the blue one being their mean. The inset
shows diversity time series at mutation rates from the three regions, with µ = 0, 0.015, and 1, respectively.
For this particular set of parameters, the mean-field generalized KtW equations give equal bacterial strain
concentration at the steady state, and the maximum diversity in the corresponding CKtW model is lnm.
The figure is adopted from the published work Ref. [26].

demographic fluctuations. All strains remain near the steady state, and no one can win over others, as

shown by the population time series in the second row of Fig. 4.1. The diversity slowly approaches the

maximum, with small deviations, as demonstrated in region III in Fig. 4.2, as well as in the time series of

µ = 1 in the inset.

For extremely large mutation rate (figures not shown), we can not view the mutation as a perturbation to

the ecological population dynamics. Species populations deviate from the mean-field steady state Eq. (3.9).

Specifically, under the boundary condition in our model, in which the mutation out of the species space

{1, 2, . . . ,m} are effectively individual death, the population leaks through the boundary and eventually

reaches zero at extremely large mutation rates.

According to the above discussion, we see three phases of dynamics, as sketched in Fig. 4.3, the extinction

phase at low mutation rate, the winner-alternating phase at intermediate mutation rate, and the coexisting

phase at high mutation rate.

mutation
rate

low intermediate high

extinction
winners 

alternating
all species 
coexistng

Figure 4.3: A descriptive phase diagram of the dynamics, with the mutation rate as the tuning parameter.
The figures is adopted from the published work Ref. [26].
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Open system model

In the above analyses, we have pre-assigned a fixed number of predator-prey pairs, m, in the system. A

more realistic approach is to let the system be open and evolve by itself to establish however many species

there can be.

As mutants take on new traits, the population spreads in the trait space. This expansion usually is

associated with a trade-off in the fitness [98]: the further the trait is from the origin, the lower the growth

rate becomes. We model this trade-off effect, assuming a 1-D trait space, by setting up M species and

assigning the highest birth rate to the species with index M/2, and decreasing the birth rate as the species

index goes from M/2 to 1 and and from M/2 to M . The species with index M/2 is at the center of the trait

space and then is the origin of the trait expansion. Species 1 and M have the lowest birth rates that are

almost 0, and further mutation of the two will result in mutants with negative birth rates, which can not

grow and are thus excluded from the model. The species space {1, 2, . . . ,M} contains all possible species

that can potentially exist in the system. However, under conditions of resource limitation, formulated by the

competition strength e, only a few with relatively high growth rates, out of M , can eventually be established

in the system. The number of species that manage to thrive corresponds to m in the previous models.

Specifically, we set M = 20 distinct pairs of preys and predators. The prey birth rates are b = (0.05,

0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1). The 11th

species has the highest birth rate and is the origin of trait expansion. Mutations of the first and last species

generating mutants with negative birth rates are excluded from the model. Other parameters are pi ≡ p = 2,

βi ≡ β = 10, di ≡ d = 0.5, and eij ≡ e = 1. The individual level reactions have the same form as Eqs. (3.7)

and (4.1), with index i = 1, 2, . . . ,M .

In the mean-field situation, the carrying capacity allows the coexistence of 13 pairs, with indices from

5 to 17, while the remaining seven species are forbidden. In the presence of demographic stochasticity,

mutants can emerge in the forbidden region in the species space, although they can not develop a significant

population size, limited by the high competition with other individuals. The number of coexisting pairs m

can be greater that the value 13 predicted by the mean-field calculation, and varies with time.

As shown in the prey population time series in Figs. 4.4 (a) and (b), a small mutation rate results in

the alternation of dominating winners, and a large mutation rate generates coexistence with much smaller

fluctuations. Figures 4.4 (c) and (d) show the distribution of prey population across all species as a function

of the distance to the winner defined as the most abundant strain. The red bar graph stands for a snapshot

at a certain moment in the steady region, and the blue one represents the average of the distribution over a

long steady interval. It’s clear that a winner stands out at low mutation rate, while no one is significantly
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dominant at high mutation rate. Figure 4.4(e) shows the dependence of the prey diversity, defined as the

Shannon entropy, on the mutation rate. The three regions as seen in the CKtW model with fixed number

of pairs are recovered.
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Figure 4.4: Simulation results of the CKtW model with the number of coexisting species limited by the
carrying capacity. Parameters used are b = (0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1,
0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1), pi ≡ p = 2, βi ≡ β = 10, di ≡ d = 0.5, and eij ≡ e = 1.
The system size is C = 1000. Population is initiated in the fittest species and expands in the species
space. (a) and (b) are prey population time series for small mutation rate µ1 = µ2 ≡ µ = 0.02 and large
mutation rate µ1 = µ2 ≡ µ = 0.5, respectively. At the small mutation rate, winners alternate with time
and the population is localized to the winner species. At the large mutation rate, all species coexist and the
population distribution is roughly uniform in the mean-field allowed region, with some mutants leaked into
the forbidden species. (c) and (d) show the prey population distribution across the species as a function
of index distance from the winner strain, constructed from (a) and (b), respectively. The red bar graph
is calculated at t = 499.5, after the transient regime. The blue one is the distribution averaged over 501
snapshots uniformly sampled between t = 249.5 and t = 499.5. For reference, the mean-field steady state
predicts that species with indices from 5 to 17 coexist with equal abundance and that other species have
zero population. The center bar at 0 distance is the population fraction of the most abundant strain. It’s
clear that a winner dominates at the low mutation rate but not at the high one. (e) The dependence of
prey Shannon entropy on the mutation rate, defined in the same way as in Eq. (4.2). At low mutation,
the system collapses due to extinction; at intermediate mutation, diversity increases rapidly with the rate;
at high mutation, diversity stays near the maximum given by the deterministic steady state. Figures are
adopted from the published work Ref. [26].

4.3 Discussion

In the intermediate and fast mutation regions of the CKtW model, the ecological and evolutionary dynamics

are coupled to each other and occur on the same time scale. This type of coupling can most easily be
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observed in microbial systems, in which organisms have a high mutation frequency [22, 103, 104]. Recent

work has shown clearly the existence of genomic islands, where genomes of different strains vary in loci that

are believed to be associated with phage resistance [105]. Both host-specific predation and mutation are

important in generating the observed diversity of the bacterial genome. The minimal CKtW model can in

principle describe the diversity in the above system. Also, the CKtW model may be tested by conducting an

experiment of bacterium-phage coevolution, with the coevolving rate being tuned by inducible mutations.

In addition to inevitable simplification of biological details, both the generalized KtW and the coevolving

KtW models assume that the system is well mixed, ignoring any spatial dispersion. Consequently, they can

not capture the reservoir effect [106] present in an ecosystem, which means that for any local community,

organisms in its surrounding environment can move into it, keeping it supplied and refreshed. Specifically,

even if a species goes extinct in a local community, it can be reseeded there by the surrounding reservoir.

Well-mixed models should be thought of as describing not the entire system, but a much smaller correlation

volume, in which local demographic stochasticity can be significant [107, 108].

Also, the models only consider pair-wise predator-prey interaction, while predation in an ecosystem

usually happens in food webs, which can result in more complicated dynamics than that in the pair-wise

case. Therefore, a spatially extended stochastic model of a food web would serve as a better quantitative

description for real ecosystems. Nevertheless, the overall behavior of the generalized KtW and the coevolving

KtW models, i.e. extinction driven by demographic noise and coexistence maintained by coevolution, only

depend on the quantization of population and the fact that coevolution constantly creates fit mutants to

avoid extinction. Therefore, we expect our results to persist in spatial food web models, even though

quantitative features, such as time scales, will strongly depend on the specific network architecture and

spatial heterogeneity.

4.4 Conclusion

We have proposed a stochastic model that couples the generalized KtW hypothesis and the coevolution of

predators and prey. We have shown that the coevolution generically avoids the extinction cascade induced

in the KtW framework by the demographic noise and maintains the diversity of the ecosystem, even in the

absence of spatial extension. Our results strongly suggest that diversity reflects the dynamical interplay

between ecological and evolutionary processes, and is driven by how far the system is from an equilibrium

ecological state (as could be quantified by deviations from detailed balance). The surprisingly deep role of

demographic stochasticity uncovered here is consistent with earlier demonstrations that individual-level min-
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imal models capture a wide variety of ecological phenomena, including large-amplitude persistent population

cycles [1], anomalous phase shifts due to the emergence of mutant sub-populations [22, 109], spatial patterns

[2, 107] and even reversals of the direction of selection [110] without requiring overly detailed modeling of

inter-species interactions.
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Part II

Dynamics at the Genomic Scale
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Chapter 5

Introduction to Repetitive Elements
in Eukaryotic Genomes

Repetitive elements, or repeats, are DNA sequences that are present in multiple copies in a genome. They

occupy a significant amount of the genome, but usually are non-coding. Repetitive elements generally include

two categories [12]: tandem repeats located adjacently to each other, and interspersed repeats scattered all

over the genome.

Tandem repeats are found in all sequenced species genomes, not only prevalent in eukaryotes, but also

widely existing in bacteria [111, 112] and viruses [113, 114]. They were first discovered as the satellite bands

of the density-gradient centrifugal separation of DNA molecules [115]. The repeated segment in the sequence

is called the unit. Depending on the length of the unit, they are divided into microsatellites (unit length < 10

nucleotides) [116, 117], minisatellites (unit length ≥ 10 nucleotides) [118, 119] and sometimes megasatellites

(unit length ≥ 135 nucleotides). The fact that tandem repeats are adjacent to one another indicates their

duplication mechanisms to be local. The addition or loss of a full unit usually occurs by strand-slippage

replication and recombination [120–124]. Tandem repeats locate both in coding and non-coding regions in

the genome. Their expansion and contraction can induce mutations in the coding and regulatory sequences,

resulting in both deleterious and advantageous mutations [125, 126]. Tandem repeats have high mutation

rates compared with other DNA sequences and are highly polymorphic from one individual to another [127].

This property has promoted tandem repeats to be widely used in DNA fingerprinting, lineage analysis and

gene mapping.

Interspersed repeats are usually resultant from transposon activity. Transposons, or transposable ele-

ments (TEs), are DNA sequences that can migrate from site to site in the host genome. Some transposons,

known as retrotransposons [128, 129], make copies of themselves during the transposition, by reversely tran-

scribing RNA intermediates. This results in the growth of their copy numbers. Other transposons, called

DNA transposons [130, 131], excise themselves directly out of the original positions and insert into new sites.

Their copy numbers stay unchanged in the transposition process,, but can be increased if a homologous or

sister chromosome is used as the template for DNA break repair afterwards. Transposons are regarded as a

major driver of adaptation and evolution [132], since they can induce both beneficial and deleterious trans-
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formations in the host genome, by inserting into encoding or regulation sequences, or causing misaligned

pairing and unequal crossovers of chromosomes. In most cases, the modifications are disadvantageous to the

host. For example, L1 elements can insert into the factor VIII gene on the human X chromosome and cause

hemophilia A disease [133].

The discovery of repetitive elements provides a resolution to the C-value paradox [10], which reflects the

irrelevancy between the amount of DNA in a haploid (the C-value) and the complexity of the organism.

Here’s an example manifesting the paradox: the maize genome has 2.3 billion base pairs [134], while the

human 3.2 billion [11]; still, even with the comparable genome size, human is much more functionally

complex than maize. The resolution to the paradox lies in the fact that the genome contains a large amount

of non-coding sequences, many of which are repetitive elements.

Then, do these non-coding sequences generate any benefits to the host organisms at all? Why do

organisms carry such a big resource-consuming burden in their genome? Although some repetitive elements

crucially function as regulatory sequences, for others this seems not to be the case. There has been a long

debate over the topic whether the repeats are just parasitic “selfish” “junk” DNA [17, 135–137] or whether

they have functions and evolutionary roles that are yet poorly understood [138, 139]. We will attempt to

explore this issue by looking at the diversity of repetitive elements in Chapter 8.

In the rest of this chapter, I will focus on the transposable elements, introduce a pair of retrotransposons

in the human genome, and review previous models to describe transposon dynamics.

5.1 Transposable Elements

Transposable elements, also known as “jumping genes”, were discovered in 1950 in the maize genome [140,

141]. They widely exist in most genomes in all three domains of life. Especially they take up a large fraction

of eukaryotic genomes. For example, the Initial Human Genome Project has revealed that roughly 45% of

the human genomic sequence originates from transposons [11].

There are two classifications of transposons following two criteria [13]: autonomous transposons vs.

non-autonomous transposons, and DNA transposons vs. retrotransposons.

Autonomous transposons are elements that encode all needed enzymes and thus have a complete mech-

anism system for the transposition. Non-autonomous transposon cannot encode all necessary enzymes and

must rely on the enzymes produced by other elements.

DNA transposons cut themselves out of the genome and reintegrate to the genome at other sites. This is a

“cut-and-paste” route. Transposons in bacteria and archaea mostly belong to this group. Retrotransposons
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produce RNA intermediates first and undergo a reverse transcription to complete the transposition. This

“copy-and-paste” route results in an increase of the element number in the genome. The retrotransposons

can be further divided into two types: LTR-transposons that have a long terminal repeat (LTR) structure

and non-LTR transposons that do not. Retrotransposons primarily exist in eukaryotes. The counterpart

in bacteria is the group II intron retroelements [142, 143]. Group II introns usually perform an accurate

insertion into a very specific target gene, a process known as retrohoming. In the absence of the target gene,

they can also insert into a random site, with a much lower rate, and complete a retrotransposition [144].

Group II introns are found in roughly only 30% of sequenced bacteria and usually have very small copy

numbers, rarely exceeding 10 copies [145].

Why do retroelements not proliferate in bacteria as the retrontransposons do in eukaryotes? To address

this question, we collaborate with Professor Thomas Kuhlman’s group. Together, we have designed and

conducted experiments and theoretical modeling on the growth defect induced by retroelements in the

bacterial genome. We induced human retrontransposons into bacteria cells and observed that the invasion

led to significant reduction in the population growth rate and eventually cell death. Our model showed that

this negative impact prevented the prevalence of retroelements in the bacterial genomes. We hypothesized

that eukaryotes must have evolved methods to get around the growth defect associated with the transposons.

This had indications on the emergence of spliceosome, nuclear membrane and linear chromosomes [28].

Although I participated in this work, the main results were obtained by K. Michael Martini and so are not

reported in this thesis.

To fight against the expansion of transposons, cells have evolved several methods of defense [146], in-

cluding RNA interference [147–149], chromatin modifications and DNA methylation [150, 151].

5.2 LINE-1 and Alu Elements in the Human Genome

Among the non-LTR retrotransposons, we are specially interested in the following two families: the long

interspersed nuclear elements (LINEs) and the short interspersed nuclear elements (SINEs). The former are

autonomous, and the latter non-autonomous, with SINEs relying on the machinery encoded by LINEs to

spread.

LINEs typically are over 5000 base pairs (bp) in length, while SINEs are usually shorter than 500 bp

[152]. We take LINE-1 (L1) and Alu elements as representatives from the two families, respectively. They

are both very prevalent in primates. In the human genome, L1 is the only active autonomous transposon.

Among the 500000 L1 copies, which take up 17% of the genome [11], only 7000 copies are complete and only
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80–100 are active [153]. Alu elements contribute to 11% of the human genome with about 1500000 copies

[11]. L1 elements help SINEs like Alu and SVA to transpose [154]. We focus on the L1-Alu pair and discuss

the details of their interaction.

5.2.1 Structure of Human LINE-1 Element

A complete L1 sequence consists of four segments[155], as shown in Fig. 5.1(a): an untranslated region (UTR)

containing a pol II promoter [156] and an antisense promoter [157], two open reading frames ORF1 and ORF2

[133], and a poly-adenine (poly-A) region. ORF1 encodes a RNA-binding protein. ORF2 encodes a protein

with both DNA endonuclease [158] and reverse transcriptase [159, 160]. These proteins are necessary and

sufficient to complete the transposition [161]. Recent research [162] has revealed the existence of an antisense

ORF0 upstream of ORF1, but its exact function remains unclear.

5.2.2 Structure of Human Alu Element

An Alu element does not have any ORFs and cannot encode proteins to complete the transposition. It has

a pol III promoter, a non-coding segment containing two monomers and a poly-A region [163].

Alu elements are believed to originate from the 7SL-RNA [164–167], which is the RNA component of the

sequence recognition particle (SRP) that leads the translocation of nascent peptides [168, 169]. The 7SL-

RNA contains an Alu-domain and an S-domain. The Alu-domain combines with two sequence recognition

proteins named SRP9 and SRP14 to form a complex [170]. This complex attaches to the ribosome sequence

recognition factor binding site. S-domain then binds with the recognition sequence on the nascent peptide.

This entire complex of SRP, ribosome and peptide then is targeted to the signal site on the endoplasmic

recultum. In this way, with the Alu-domain held to the ribosome, and the S-domain to the peptide, the

7SL-RNA helps translocate the nascent peptide to the endoplasmic recultum for further processing.

Alu elements emerged by losing the 7SL-RNA S-domain and acquiring a tandem Alu-domain followed

with a poly-A tail [164]. As a result, they reserve the ability to form a ribonucleoprotein particle (RNP)

with SRP9 and SRP14 and to cling to the ribosome. This provides them with the opportunity of hijacking

the L1 proteins at the assembly factory [171].

5.2.3 Dependence of Alu on LINE-1

As sketched in Fig. 5.1(b), when a protein is produced at a ribosome coded by an L1 mRNA, it tends to bind

with that particular mRNA, presumably by recognizing its poly-A tail [172], and later reversely transcribes

it into the genome. This is known as the cis-preference of L1 elements [173]. However, if an Alu mRNA
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Figure 5.1: (a) The structure of L1 and Alu elements. L1 has a pol II promoter (the right-pointing arrow)
and an antisense promoter (the left-pointing arrow) followed by two open reading frames (ORFs) encoding,
respectively, a RNA binding protein and a protein that consists of an endonuclease (ED) and a reverse
transcriptase (RT). Alu is composed of two non-coding monomers, with the left one bearing A and B boxes
(the shaded area in the figure) as the pol III promoter. L1 and Alu elements share similar poly-A tails and
are both flanked by target site duplicates (TSDs). (b) The cis and trans effects of L1 elements. When an
ED+RT protein is translated at the ribosome, it cis-preferentially attaches to the L1 mRNA that codes
it, indicated by the solid arrow. An Alu mRNA can combine with two signal recognition proteins SRP9
and SPR14, and then attach to the ribosome. The nascent ED+RT protein then can trans-bind to the
Alu mRNA, which has a similar poly-A tail (indicated by the dashed arrow), presumably with a similar
probability to that of binding to the L1 mRNA. Figures are adopted from the published work Ref. [27].

attaches to the same ribosome, then it can bind with the nascent protein by faking the L1 mRNA poly-A

tail [174]. In this way, Alu elements steals the transposition machinery designed by L1 elements [171, 175].

This is known as the trans-effect of L1 elements [173].

Due to various regulation pathways, transposon activity rate is low, usually on the order of 10−4 ∼ 10−6

per element per generation [176, 177]. In the human genome, L1 transposition events happen once in every

20 - 200 births, and Alu events occur once in every 20 births [178–180].

5.3 Modeling the Transposon Dynamics

Several theoretical approaches have been proposed to study the dynamics of transposons. Population genetics

models [181–186] were first developed to describe the equilibrium distribution of transposons in a population.

Recent developments view the genome as an ecosystem, with genetic elements of different types playing the

role of individuals from different species [16, 187–191]. In the case of non-autonomous transposons, a mean-

field model [188, 189] describes their parasitic relationship with an autonomous transposon, viewing the

transposons at predator and prey species. A decaying oscillatory mode has being predicted for a certain

parameter range.
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However, there are two major drawbacks in these models. First, they did not account for the molec-

ular level interactions between transposable elements. The dynamic behavior turns out to be sensitively

dependent on these details. Second, the models used continuous variables for the element copy numbers and

ordinary differential equations to describe the system, which could not handle the fact that copy numbers

are finite integers. As known in ecology as the demographic noise, finite population size usually causes

fluctuations in the population dynamics, preventing it from reaching the mean-field result [1]. To study such

a system, a stochastic model, instead of the mean-field one, should be used. The copy number fluctuations

are large in a cell, since the number of active (expressed) transposons is usually of order ten to a hundred

[153]. Thus, the next generation of transposon models needs to take into account molecular details and

stochasticity. We will develop and solve such a stochastic model in Chapter 6, taking the L1-Alu pair as a

model system.
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Chapter 6

Stochastic Predator-Prey Dynamics of
Transposons in the Human Genome

I describe in this chapter a minimal individual-level model for the population dynamics of a pair of au-

tonomous and non-autonomous transposons, using LINE-1 and Alu elements in the human genome as an

model system. We begin with interactions between the transposon pair, and then use techniques from statis-

tical mechanics to derive and solve stochastic differential equations. Our model predicts that demographic

stochasticity generates persistent and noisy oscillations in the copy numbers of the transposons, similar to

the predator-prey quasi-cycles, with a characteristic time scale that is much longer than the cell replication

time, indicating that the state of the predator-prey oscillator is stored in the genome and transmitted to

successive generations. Our work builds upon recent results that have shown how demographic stochastic-

ity in ecosystems, where population size is integer-valued and locally finite, can lead to minimal models of

persistent population cycles [1] or spatial patterns [2, 107, 192–194] without extra assumptions about the

details of predation. This work has been published as Ref. [27].

6.1 Minimal Model for Transposon Dynamics

In Chapter 5, I have introduced the detailed interactions on the molecular level between LINE-1 and Alu

elements. Here we discard all details about how proteins are made and how complexes are formed, and

develop a minimal model for the dynamics of LINE-1 and Alu. Although this model is developed for the

L1-Alu pair, we believe that the idea and the qualitative results can be applied to all autonomous/non-

autonomous pairs with minor modifications.

Reactions, with the corresponding forward rates, describing behaviors of individuals from each chemical

species are shown in Eq. (6.1), where L stands for an active LINE, S for an active SINE, and RL for the

complex of the ribosome, LINE mRNA and nascent protein. ∅ stands for null. Deactivated transposons do
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not participate in the transposition events and thus are excluded from the model.

L
bR−→ L+RL, RL

bL−→ L, RL + S
bS/V−−−→ 2S, (6.1a)

RL
dR−−→ ∅, L

dL−−→ ∅, S
dS−−→ ∅. (6.1b)

An L element encodes the complex RL at the rate bR. The complex RL reversely transposes to produce a

new L element at the rate bL, if there is no interruption. S element hijacks the complex RL to duplicate itself

at the rate bS/V , where V is the system size. The complex RL decays at the rate dR. L and S elements are

deactivated, at the rates dL and dS , respectively. We assume the system is well mixed because the mixing

of reactants occurs constantly within the cell lifetime, and so is faster than the reactions.

6.2 Numerical Simulation

Eqs. (6.1) look like and can actually be understood as chemical reactions. Since each reaction fires inde-

pendently and randomly, the evolution of the system starting with a certain initial condition is a stochastic

process. Under the assumption of a well-mixed system, we can use the Gillespie algorithm [86] to exactly

evolve the stochastic system over time.

For the model Eq. (6.1), the time series of element copy numbers obtained from Gillespie simulations

are plotted in Fig. 6.1(a). The solid lines are the numerical integration, using the Runge-Kutta method

(RK4), of the deterministic mass rate equation of the reactions, which will be discussed in detail in a later

section. In the simulation, after the initial transition, the copy numbers fluctuate persistently around the

deterministic values. A noisy periodic oscillation is clearly present. The circular envelope of the trajectory

on the L-S plane shown in Fig. 6.1(b) indicates a phase difference of roughly π/2, with SINE lagging LINE.

These noisy cycles and π/2-phase lag feature can be qualitatively understood in the following way. When

the SINE copy number increases, LINEs will have more complexes stolen and their transposition rate thus

is reduced; with the unchanged deactivation rate , the LINE copy number decreases. Consequently, fewer

complexes will be made and SINE transposition rate drops, which also causes the SINE copy number to

shrink. Now more complexes are available; thus LINE transposition rate recovers and so does its copy

number. SINEs then follow and grow back in the copy number soon afterwards. This cycle persistently goes

on. This qualitative picture is similar to the predator-prey interaction in the ecosystem, with SINEs being

the predators hunting LINEs.

In the following sections, I will analyze in detail the features of the oscillation, and explain that the noisy

cycles of the SINE and LINE pair in this model are stimulated by the demographic stochasticity and has

44



0 50 100 150 200 250

Generation

0

500

1000

1500

2000

C
op

y 
nu

m
be

r

LINE

SINE

complex
7L
7S
7RL

(a)

0 400 800 1200
LINE copy number

0

500

1000

1500

2000

S
IN

E
 c

op
y 

nu
m

be
r

(b)

Figure 6.1: Results of a typical stochastic simulation with illustrative parameters bR = 2, bL = 1, bS = 1,
dR = 2, dL = 0.5, dS = 0.5, and the system size V = 500. (a) The copy numbers of active LINEs, SINEs and
ribosome/L-mRNA/protein complexes as a function of time, in the unit of a cell generation. Solid lines are
obtained by evolving the deterministic equations and show oscillatory decay toward steady values. Discrete
dots are generated by a numerical simulation with the same parameters. Copy numbers fluctuate around
the deterministic steady state, demonstrating quasi-cycles with period ∼ 25 generations. Demographic noise
induces quasi-cycles by constantly stimulating the deterministic oscillation mode. (b) The trajectory on the
L-S plane. The circular envelope indicates a phase difference of roughly π/2. Figures are adopted from the
published work Ref. [27].

the same origin as the quasi-cycles in the predator-prey system.

6.3 Analytical Calculation

In this section, I will derive equations for the stochastic system Eq. (6.1), and calculate both the mean field

and stochastic features of the dynamics. The analytical results are compared to the numerical simulations.

Let the copy numbers of active LINEs, SINEs and complexes be NL, NS and NR. We can write down

the master equation for the model Eq. (6.1), about the probability P (NL, NS , NR) of the system being in

the state (NL, NS , NR).

d

dt
P (NL, NS , NR) =

{
(E−RL − 1)NLbR + (E+RLE

−
L − 1)NRbL

(E+RLE
−
S − 1)NRNS

bS
V

+ (E+RL − 1)NRdR

(E+L − 1)NLdL + (E+S − 1)NSdS

}
P (6.2)

The raising and lowering operators E±X change the copy number NX of species X by ±1 respectively, where
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X can be L, S and RL. The above master equation is an exact interpretation of the stochastic system, and

gives the time evolution of the probability distribution in the state space.

The state status represented by (NL, NS , NR) is discrete, since the copy numbers can only be integers.

In order to make it mathematically more tractable, we define the copy number concentrations L, S and RL,

respectively, so that with the system size being V , NL = V L, NS = V S and NR = V RL. Using (L, S,RL)

as the state status, we can rewrite the master equation as follows, about the probability P(L, S,RL),

d

dt
P(L, S,RL) =V

{
(E−RL − 1)bRL+ (E+RLE

−
L − 1)bLRL

+ (E+RLE
−
S − 1)bSRLS + (E+RL − 1)dRRL

+ (E+L − 1)dLL+ (E+S − 1)dSS
}
P, (6.3)

with the raising and lowering operators given by

E±Xf(X) ≡ f(
NX ± 1

V
) ≈ f(X)± 1

V
∂Xf +

1

2V 2
∂2Xf, (6.4)

where f is an arbitrary function of the concentration X, and X stands for L, S or RL.

Substituting the expansions of operators Eq. (6.4) into the master equation Eq. (6.3), and saving terms

up to order O(V −1), we obtain the following Fokker-Planck equation of the model.

d

dt
P(L, S,RL) = ∂RL (−bRL+ bLRL + bSRLS + dRRL)P

+ ∂L (−bLRL + dLL)P + ∂S (−bSRLS + dSS)P

+
1

2V
∂2RL (bRL+ bLRL + bSRLS + dRRL)P

+
1

2V
∂2L (bLRL + dLL)P +

1

2V
∂2S (bSRLS + dSS)P

+
1

2V
∂RL∂L (−2bLRL)P +

1

2V
∂RL∂S (−2bSRLS)P (6.5)

The above equation is non-linear with multiplicative noise, in the continuous state space. We follow a further

standard procedure, known as the van Kampen system size expansion [195], to simplify it by expanding the

state status into the deterministic part L̄, S̄ and R̄L, and the stochastic part, ξ, η and θ.

L = L̄+
ξ√
V
, S = S̄ +

η√
V
, RL = R̄L +

θ√
V
. (6.6)
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Now the state status can be represented by (ξ, η, θ). Let

Π(ξ, η, θ) = P(L, S,RL). (6.7)

Substitute the expansion Eq. (6.6) into the Fokker-Planck equation Eq. (6.5) and compare different orders

of V on both sides.

On the left hand side,

d

dt
P = ∂tΠ−

√
V
dL̄

dt
∂ξΠ−

√
V
dS̄

dt
∂ηΠ−

√
V
dR̄L
dt

∂θΠ. (6.8)

On the right hand side (RHS),

RHS =
√
V
(
−bRL̄+ bLR̄L + bSS̄R̄L + dRR̄L

)
∂θΠ +

√
V
(
−bLR̄L + dLL̄

)
∂ξΠ +

√
V
(
−bSS̄R̄L + dSS̄

)
∂ηΠ

+ ∂θ
(
−bRξ + bLθ + bSR̄Lη + bSS̄θ + dRθ

)
Π + ∂ξ (−bLθ + dLξ) Π + ∂η

(
−bSR̄Lη − bSS̄θ + dSη

)
Π

+
1

2
∂2θ
(
bRL̄+ bLR̄L + bSS̄R̄L + dRR̄L

)
Π +

1

2
∂2ξ
(
bLR̄L + dLL̄

)
Π +

1

2
∂2η
(
bSS̄R̄L + dSS̄

)
Π

+
1

2
∂θ∂ξ

(
−2bLR̄L

)
Π +

1

2
∂θ∂η

(
−2bSS̄R̄L

)
Π +O(V −1/2) (6.9)

Matching the two sides to order O(
√
V ), we obtain the deterministic, or mean field, equations.

dL̄

dt
= bLR̄L − dLL̄, (6.10a)

dS̄

dt
= bSS̄R̄L − dSS̄, (6.10b)

dR̄L
dt

= bRL̄− bLR̄L − bSS̄R̄L − dRR̄L. (6.10c)

By matching O(1) terms, we obtain the linearized Fokker-Planck equation about Π(ξ, η, θ).

∂Π

∂t
= ∂θ

(
−bRξ + bLθ + bSR̄Lη + bSS̄θ + dRθ

)
Π + ∂ξ (−bLθ + dLξ) Π + ∂η

(
−bSR̄Lη − bSS̄θ + dSη

)
Π

+
1

2
∂2θ
(
bRL̄+ bLR̄L + bSS̄R̄L + dRR̄L

)
Π +

1

2
∂2ξ
(
bLR̄L + dLL̄

)
Π +

1

2
∂2η
(
bSS̄R̄L + dSS̄

)
Π

+
1

2
∂θ∂ξ

(
−2bLR̄L

)
Π +

1

2
∂θ∂η

(
−2bSS̄R̄L

)
Π (6.11)

Using Itô’s Lemma [196], we can write down the linearized Langevin equations for ξ, η and θ, directly
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from the first order derivative terms in the above Fokker-Planck equation.

dξ

dt
= bLθ − dLξ + r(t), (6.12a)

dη

dt
= bSR̄Lη + bSS̄θ − dSη + s(t), (6.12b)

dθ

dt
= bRξ − bLθ − bSR̄Lη − bSS̄θ − dRθ + h(t). (6.12c)

r(t), s(t) and h(t) are noises in ξ, η and θ, respectively. The correlations between these noises are given by

the second order derivative terms in the Fokker-Planck equation Eq. (6.11).

〈h(t)h(t′)〉 = δ(t− t′)(bRL̄+ bLR̄L + bSS̄R̄L + dRR̄L), (6.13a)

〈r(t)r(t′)〉 = δ(t− t′)(bLR̄L + dLL̄), (6.13b)

〈s(t)s(t′)〉 = δ(t− t′)(bSS̄R̄L + dSS̄), (6.13c)

〈h(t)r(t′)〉 = δ(t− t′)(−bLR̄L), (6.13d)

〈h(t)s(t′)〉 = δ(t− t′)(−bSS̄R̄L), (6.13e)

〈r(t)s(t′)〉 = 0. (6.13f)

The above linear Langevin equations describe the fluctuations of concentrations around the determinicstic

trajectory.

In the rest of the section, I will analyze in detail the behaviors of the deterministic and stochastic parts.

Together, they give the complete dynamics of the model.

6.3.1 Steady States of the Deterministic Equations

The deterministic equations Eq. (6.10) have three steady states, given below, which satisfy dL̄/dt = 0,

dS̄/dt = 0 and dR̄L/dt = 0.

(L̄∗, S̄∗, R̄∗L)1 = (0, 0, 0), (6.14a)

(L̄∗, S̄∗, R̄∗L)2 = (L2, 0, RL2), (6.14b)

(L̄∗, S̄∗, R̄∗L)3 = (L3, S3, RL3). (6.14c)
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We are interested in the third one with all copy numbers being non-zero. It’s straightforward to derive the

expression of the steady state.

L3 =
dSbL
bSdL

, (6.15a)

S3 =
bRbL − bLdL − dRdL

bSdL
, (6.15b)

RL3 =
dS
bS
. (6.15c)

We may further require all the three copy numbers to be positive to be physically meaningful.

We first analyze the linear stability of the above state, as the demographic noise constantly perturbs the

system away from it. The Jacobian matrix of Eq. (6.10) evaluated at (L̄∗, S̄∗, R̄∗L)3 is

J3 =


−bSS3 − dR − bL bR −bSRL3

bL −dL 0

bSS3 0 0

 , (6.16)

with the following characteristic equation

λ3 +

(
bLbR
dL

+ dL

)
λ2 + [bL (bR − dL)− dLdR]

dS
dL
λ+ dS [bL (bR − dL)− dLdR] = 0, (6.17)

where λ is the eigenvalue.

For this degree-3 polynomial equation, we can apply the Routh-Hurwitz criterion [87, 88] to find the

condition for it to have all three roots with negative real parts. The Routh-Hurwitz table for Eq. (6.17) is

α3 α1

α2 α0

β1 0

γ1 0

α3 =1, α2 =
bLbR
dL

+ dL, α1 = [bL (bR − dL)− dLdR]
dS
dL
, (6.18a)

α0 =dS [bL (bR − dL)− dLdR] , β1 =
α2α1 − α3α0

α2
, γ1 =

β1α0 − α2 · 0
β1

. (6.18b)

αi, i = 0, 1, 2, 3, is the coefficient of the λi term. Elements in row n are obtained by cross-multiplying

elements in rows n − 1 and n − 2, for n = 3, 4. According to the criterion, the sufficient and necessary
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condition for all three roots of Eq. (6.17) to have negative real parts is

α3 > 0, α2 > 0, β1 > 0, γ1 > 0. (6.19)

It is straightforward to prove that the sufficient and necessary condition for the above inequalities to be true

is

L3 > 0, S3 > 0 (6.20)

In other words, the physically meaningful coexistence steady state is always stable. Referring to Eq. (6.15),

we obtain the following stable condition

bRbL − bLdL − dRdL > 0 (6.21)

6.3.2 Oscillatory Mode of the Deterministic Trajectory

The linear stability analysis demonstrates that the physically meaningful steady state with positive copy

numbers of the deterministic equation Eq. (6.10) is always exponentially stable. Still, it’s not clear from

the calculation whether the steady state is a node or a focus, which is determined by whether the imaginary

parts of the Jacobian matrix eigenvalues are zero or not.

Here, we reduce the original three-body deterministic equations to two-body ones and calculate their

eigenvalues of the linear stability matrix. This reduction is done via an adiabatic limit, similar to the

derivation of the Michaelis-Menten mechanism [197]. Specifically, we set dR̄L/dt = 0, so that

R̄L =
bRL̄

bL + bSS̄ + dR
(6.22)

Let

α =
bL + dR
bR

, β =
bS
bR
, (6.23)

then

R̄L =
L̄

α+ βS̄
. (6.24)
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Substitute the above expression into Eq. (6.10) and obtain the two-body equations as follows.

dL̄

dt
=

bLL̄

α+ βS̄
− dLL̄, (6.25a)

dS̄

dt
=

bSS̄L̄

α+ βS̄
− dSS̄. (6.25b)

Generally, setting dR̄L/dt = 0 and substituting the steady solution of R̄L into other equations require the

dynamics of R̄L to be much faster than those of other chemical species so that it can be viewed as reaching

equilibrium instantaneously. This separation of time scales is not necessarily present in our model. Still,

we use the Michaelis-Menten mechanism as an approximation and will show later that it gives reasonable

results.

The coexistence steady state of the reduced equations are (L̄∗, S̄∗) = (L3, S3). The Jacobian matrix at

the steady state is

J =

 0 − bLβL3

(α+βS3)2

bSS3

α+βS3
− bSβL3S3

(α+βS3)2

 ≡
Ã B̃

C̃ D̃

 , (6.26)

where

Ã = 0, B̃ = − bLβL3

(α+ βS3)2
, C̃ =

bSS3

α+ βS3
, D̃ = − bSβL3S3

(α+ βS3)2
. (6.27)

The characteristic equation is

λ2 − (Ã+ D̃)λ+ (ÃD̃ − B̃C̃) = 0, (6.28)

with eigenvalues

λ =
1

2

[
(Ã+ D̃)±

√
(Ã+ D̃)2 − 4(ÃD̃ − B̃C̃)

]
. (6.29)

Both eigenvalues have negative real parts for any physically meaningful states with L3 > 0 and S3 > 0,

and the corresponding steady state thus is always exponentially stable. This result agrees with the analysis

on the three-body equation.

When (Ã+ D̃)2 < 4(ÃD̃ − B̃C̃), which corresponds to the following condition

dS <
4bLdRdL

bL(bR − dL)− dRdL
, (6.30)

the eigenvalues have nonzero imaginary parts. In this case, when perturbed away from the steady state, L̄

and S̄ will undergo an oscillatory decay back. The decay rate is equal to the absolute value of the real parts
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of the eigenvalues, with the characteristic time being

τ =
2

Ã+ D̃
. (6.31)

The oscillation angular frequency is equal to the absolute value of the imaginary parts, with the period being

T =
4π√

4(ÃD̃ − B̃C̃)− (Ã+ D̃)2

=
4π√

4dSdL
bR

[
bR − dL − dL

bL
dR

]
− d2S

b2R

[
bR − dL − dL

bL
dR

]2 . (6.32)

In Fig. 6.1(a), the solid lines are obtained by numerically integrating the deterministic equations Eq.

(6.10), using the Runge-Kutta method (RK4). For the demonstrated parameter set, the system starts with

an arbitrary initial condition, decays with oscillations toward the steady state, and stays at the steady state

afterwards. This is in agreement with the above linear stability analyses. Furthermore, we have verified

numerically that the imaginary part of the two-body linear stability matrix eigenvalues provides a reasonable

estimate for the angular frequency of the stochastic cycles. Specifically, for the parameters used to generate

Fig. 6.1 and Fig. 6.2, the eigenvalue imaginary part is 0.2330, and the Gillespie simulation gives a peak

angular frequency of 0.23 generation−1, measured from the oscillation power spectra shown in Fig. 6.2.

6.3.3 Power Spectra of the Fluctuations

In this subsection, I will focus on the stochastic part of the system and calculate the power spectra of the

fluctuations.

Starting with the linearized Langevin equations Eq. (6.12), we perform on both sides the Fourier trans-

form defined below:

χ̃(ω) =
1

2π

∫
χ(t)e−iωtdt, χ(t) =

∫
χ̃(ω)eiωtdt, (6.33)

where χ(t) stands for an arbitrary function and χ̃(ω) stands for its Fourier transform. We obtain the following

set of linear equations.

iωξ̃(ω) = bLθ̃ − dLξ̃ + r̃(ω), (6.34a)

iωη̃(ω) = bSR̄Lη̃ + bSS̄θ̃ − dS η̃ + s̃(ω), (6.34b)

iωθ̃(ω) = bRξ̃ − bLθ̃ − bSR̄Lη̃ − bSS̄θ̃ − dRθ̃ + h̃(ω), (6.34c)
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with the correlations below:

〈h̃(ω1)h̃(ω2)〉 =
1

2π
δ(ω1 − ω2)(bRL̄+ bLR̄L + bSS̄R̄L + dRR̄L) ≡ 1

2π
δ(ω1 − ω2)A, (6.35a)

〈r̃(ω1)r̃(ω2)〉 =
1

2π
δ(ω1 − ω2)(bLR̄L + dLL̄) ≡ 1

2π
δ(ω1 − ω2)B, (6.35b)

〈s̃(ω1)s̃(ω2)〉 =
1

2π
δ(ω1 − ω2)(bSS̄R̄L + dSS̄) ≡ 1

2π
δ(ω1 − ω2)C, (6.35c)

〈h̃(ω1)r̃(ω2)〉 =
1

2π
δ(ω1 − ω2)(−bLR̄L) ≡ 1

2π
δ(ω1 − ω2)D, (6.35d)

〈h̃(ω1)s̃(ω2)〉 =
1

2π
δ(ω1 − ω2)(−bSS̄R̄L) ≡ 1

2π
δ(ω1 − ω2)E, (6.35e)

〈r̃(ω1)s̃(ω2)〉 = 0, (6.35f)

where A,B,C,D, and E defined above are constants independent of ω.

With the above equations and noise correlations functions, Pχ1χ2
(ω) ≡ 〈χ̃1(ω)χ̃2(−ω)〉 can be calculated,

for χ̃1 and χ̃2 being any of ξ̃, η̃ and θ̃. In particular, when χ̃1 and χ̃2 correspond to the same chemical

species, Pχ1χ1
(ω) is equal to the power spectrum of the corresponding fluctuation. The steps of deriving

Pχ1χ2
(ω) are briefly written down as follows.

From Eqs. (6.34a) and (6.34b), it’s found that

ξ̃ =
bLθ̃ + r̃

iω + dL
≡ bLθ̃ + r̃

M
, (6.36a)

η̃ =
bSS̄θ̃ + s̃

iω + dS − bSR̄L
≡ bSS̄θ̃ + s̃

N
, (6.36b)

where

M = iω + dL, N = iω + dS − bSR̄L. (6.37)

Substitute the above equations into Eq. (6.34c), and we have

(
iω + bL + bSS̄ + dR

)
θ̃ = bRξ̃ − bSR̄Lη̃ + h̃

= bR
bL
M
θ̃ + bR

1

M
r̃ − bSR̄L

bSy

N
θ̃ − bSR̄L

1

N
s̃+ h̃ (6.38)

Let

Q = iω + bL + bSS̄ + dR. (6.39)

Then we can rearrange the equation to be

(
QMN −NbRbL +Mb2SS̄R̄L

)
θ̃ = NbRr̃ −MbSR̄Ls̃+MNh̃. (6.40)
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Define

F = QMN −NbRbL +Mb2SS̄R̄L, (6.41)

then

θ̃(ω) =
NbR
F

r̃(ω)− MbSR̄L
F

s̃(ω) +
MN

F
h̃(ω)

≡ ar̃(ω) + bs̃(ω) + ch̃(ω), (6.42)

with

a =
NbR
F

, b = −MbSR̄L
F

, c =
MN

F
. (6.43)

Substitute the above equations back to Eqs. (6.36a) and (6.36b), then we have the following expressions

ξ̃ =

(
bL
M
a+

1

M

)
r̃ +

bL
M
bs̃+

bL
M
ch̃ ≡ a1r̃ + b1s̃+ c1h̃, (6.44a)

η̃ =
bSS̄

N
ar̃ +

(
bSS̄

N
b+

1

N

)
s̃+

bSS̄

N
ch̃ ≡ a2r̃ + b2s̃+ c2h̃, (6.44b)

where

a1 =
bL
M
a+

1

M
, b1 =

bL
M
b, c1 =

bL
M
c (6.45a)

a2 =
bSS̄

N
a, b2 =

bSS̄

N
b+

1

N
, c2 =

bSS̄

N
c. (6.45b)

With the above equations of ξ̃(ω) and η̃(ω), we finally arrive at the following results.

Pξξ(ω) ≡ 〈ξ̃(ω)ξ̃(−ω)〉

= 〈
(
a1(ω)r̃(ω) + b1(ω)s̃(ω) + c1(ω)h̃(ω)

)(
a1(−ω)r̃(−ω) + b1(−ω)s̃(−ω) + c1(−ω)h̃(−ω)

)
〉

= [a1(ω)a1(−ω)]
B

2π
+ [b1(ω)b1(−ω)]

C

2π
+ [c1(ω)c1(−ω)]

A

2π

+ [a1(ω)c1(−ω) + a1(−ω)c1(ω)]
D

2π
+ [b1(ω)c1(−ω) + b1(−ω)c1(ω)]

E

2π
, (6.46)
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Pηη(ω) ≡ 〈ξ̃(ω)ξ̃(−ω)〉

= 〈
(
a2(ω)r̃(ω) + b2(ω)s̃(ω) + c2(ω)h̃(ω)

)(
a2(−ω)r̃(−ω) + b2(−ω)s̃(−ω) + c2(−ω)h̃(−ω)

)
〉

= [a2(ω)a2(−ω)]
B

2π
+ [b2(ω)b2(−ω)]

C

2π
+ [c2(ω)c2(−ω)]

A

2π

+ [a2(ω)c2(−ω) + a2(−ω)c2(ω)]
D

2π
+ [b2(ω)c2(−ω) + b2(−ω)c2(ω)]

E

2π
, (6.47)

Pξη(ω) ≡ 〈ξ̃(ω)η̃(−ω)〉

= 〈
(
a1(ω)r̃(ω) + b1(ω)s̃(ω) + c1(ω)h̃(ω)

)(
a2(−ω)r̃(−ω) + b2(−ω)s̃(−ω) + c2(−ω)h̃(−ω)

)
〉

= [a1(ω)a2(−ω)]
B

2π
+ [b1(ω)b2(−ω)]

C

2π
+ [c1(ω)c2(−ω)]

A

2π

+ [a1(ω)c2(−ω) + a2(−ω)c1(ω)]
D

2π
+ [b1(ω)c2(−ω) + b2(−ω)c1(ω)]

E

2π
. (6.48)

Further simplification shows that both functions Pξξ(ω) and Pηη(ω), the power spectra of the LINE

and SINE fluctuations respectively, have numerators being fourth order polynomials of ω and denominators

being sixth order polynomials of ω. Asymptotically, the power spectra have a tail in the form of ω−2. Figure

6.2 shows a comparison between the power spectra obtained from stochastic simulations and the analytic

calculation, which demonstrates a satisfactory agreement. The peak value gives a representative angular

frequency of the noisy oscillations.
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Figure 6.2: Power spectra of the LINE and SINE concentration fluctuations. Circles stand for the power
spectra obtained by averaging over 1000 stochastic simulation replicates. Solid lines stand for the analytically
calculated spectra. The dash line is a reference function ∼ ω−2. Parameters are bR = 2, bL = 1, bS = 1, dR =
2, dL = 0.5, dS = 0.5, V = 500. The peak angular frequency is equal to 0.23 generation−1, corresponding to
a period of 27 generations. The straight tail, in log-log scale, has a slope of −2, indicating a ω−2 asymptotic
behavior. The figure is adopted from the published work Ref. [27].
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We can further show that Pξη(ω) is related to the correlation function of ξ(t) and η(t). Define the

correlation function as

Ξ(τ) ≡
∫
ξ(t)η(t+ τ) dt. (6.49)

Then its Fourier transform is

Ξ̃(ω) = 2πξ̃(−ω)η̃(ω). (6.50)

Therefore, 〈Ξ̃(ω)〉 = 2πP ∗ξη(ω). ∗ here refers to the complex conjugate. Observe that the complex argument

of ξ̃(−ω)η̃(ω) is equal to the opposite of the phase lag φ of η(t) (SINE) to ξ(t) (LINE). Therefore φ is related

to Ξ̃(ω) by the following equation

φ(ω) = − arg Ξ̃(ω). (6.51)

Figure 6.3(a) shows the Fourier power spectrum of the correlation function of a typical simulation. It has

a peak at the same position as the oscillation power spectra in Fig. 6.2. Figures 6.3(b) and (c) show the phase

lag of SINE to LINE as a function of ω. The phase lag at the oscillation peak frequency is approximately

1.2 rad. This measured phase lag is close to the visual estimation π/2 based on the time series in Fig. 6.1.

In Fig. 6.3(c), the averaged phase over replicates as a function of ω agrees with the analytical result. The

smeared tail at large ω is due to numerical errors and can be further reduced by averaging over even more

replicates.

6.4 Noise-induced Quasi-cycles

I have shown both the deterministic and stochastic dynamics of the model. In summary, on the mean field

level, the system returns exponentially fast to the steady state once perturbed; this indicates the long term

values of all copy numbers to be constants without any fluctuations. On the stochastic level, copy numbers

fluctuate persistently with a dominant oscillatory mode, and the oscillation frequency can be conveniently

estimated by that of the deterministic oscillatory mode.

The two parts are drastically distinct, and yet closely connected. Essentially, the persistent stochastic

cycles are induced by the fact that the demographic noise constantly stimulates the trajectory of the system to

go away from the deterministic decay path and restarts the oscillatory mode over and over again. Specifically,

the deterministic trajectory is smooth and assumes continuous changes of the system state. However, the

copy numbers of elements are finite integers and the system state thus is discrete. When the system follows

the mean field trajectory toward the steady state, it cannot exactly step onto the smooth curve. Instead,

it almost always overshoots or undershoots, because of the discreteness. As a result, the system can never
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Figure 6.3: (a) The power spectrum of the correlation function obtained from a typical simulation, with the
peak at ω = 0.23 generation−1. (b) The phase lag of SINE to LINE as a function of the angular frequency
calculated from (a) using Eq. 6.51. (c) The comparison between the analytical calculation and the numerical
simulation. The phase difference measured from the correlation function spectrum is averaged over 1000
replicates. The smeared tail is due to numerical errors. In (b) and (c), the black vertical line indicates
ω = 0.23 generation−1. The corresponding value of φ is approximately 1.2 rad. Parameters used in the
simulation are bR = 2, bL = 1, bS = 1, dR = 2, dL = 0.5, dS = 0.5, and V = 500.

57



truly reach the steady state, but can only wander around it.

If the steady state is a focus with an oscillatory mode deterministically, then the stochastic fluctuation

resets the amplitude of the oscillation and prevents it from decaying to zero, resulting in an observed noisy

oscillation with roughly the same frequency. This type of noise-induced noisy oscillation is called a quasi-

cycle and has been discussed previously in the predator-prey system[1, 198]. Its characteristic feature is the

asymptotic power-law tail in the fluctuation power spectrum of the form ω−2. The noisy oscillations observed

in the minimal model of SINE-LINE interaction are also quasi-cycles, indicated by the ω−2 power-law tail

in Fig. 6.2.

6.5 Seeking SINE-LINE Dynamics in Real Genomes

I have shown that the minimal individual-level model of the SINE-LINE interaction predicts the existence of

noise-induced quasi-cycles in the element copy numbers. Then we wonder: can the quasi-cycles be observed

in real genomes?

For the human genome, transposition rates of L1 and Alu elements measured by the mutation accumula-

tion method are of order 1 in O(10) ∼ O(100) births [178–180]. The deactivation rates have a lower limit set

by the base pair point mutation rate, which is roughly 10−8 per base pair per generation [199, 200]. These

rates seem to be too slow to generate any experimentally detectable dynamical behaviors. However, this

estimate only accounts for fixed mutations that are not lethal, and thus underestimates the actual mutation

rates. In a recent experiment [201] on real-time transposition events in living bacterium cells, the actual

transposition rate of the DNA transposon directly observed was 103 times higher than that obtained by

the mutation accumulation method. Moreover, the point mutation rate can be raised by a factor of 102 by

deactivating the base pair mismatch repair machinery [202]. Thus, for a single-cell experiment rather than

a large population, the relevant estimate is: bR = 2, bL = 1× 10−2, bS = 1× 10−2, dR = 1, dL = 1× 10−2,

dS = 1 × 10−2, with units being generation−1. The resultant quasi-cycle period should be roughly 1 × 103

generations. Such oscillations could potentially be observed by integration of the LINE and SINE elements

into a host microbial cell, E. coli for example, and using novel reporter techniques [201, 203]. Our recent

work in Professor Thomas Kuhlman’s lab has achieved successful integration of human LINE-1 elements

into E. coli and B. subtilis bacterial cells [28]. The idea of engineering bacteria to demonstrate SINE-LINE

quasi-cycles is very promising.

On the other hand, since the transposon events happen slowly on the population, they can potentially

leave traces in the evolution history of the species. This leads to another perspective to look for the SINE-
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LINE quasi-cycles. That is to look into the history of the species genome recorded by the molecular clock,

and count the copy number of elements at different ages to reconstruct the dynamical history of the elements.

This idea is explained in detail in Chapter 7.

6.6 Conclusion

In conclusion, we have developed a minimal stochastic model of SINE-LINE interaction, based on the

molecular mechanisms of the human LINE-1 and Alu elements, and shown that there exist persistent, noise-

induced quasi-cycles in the element copy numbers, which are potentially observable.

By viewing SINEs as predators that feed on LINEs, we have shown that the dynamics of transposons can

fruitfully be analyzed using an analogy to ecological models, equipped with tools from statistical physics.
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Chapter 7

Looking for SINE-LINE Quasi-cycles
in Genomic History

We have demonstrated in Chapter 6 that the parasitic interaction between SINE and LINE pair can result

in quasi-cycles in their copy numbers, with a period on the evolutionary time scale. In this chapter, we

report a search for the predicted quasi-cycles in the genomic history of the species coelacanth.

7.1 Molecular Clock

For a certain DNA element, the base pairs have been undergoing point mutations since its emergence. The

older the element, the more alternations to the sequence. Accordingly, given two elements, by looking at

their sequence divergence level, we can deduce their relative ages. In this sense, the sequence itself acts as

a clock that times its own history. This idea, known as the molecular clock [204–206], also applies to the

protein amino acid sequence.

In practice, in order to convert the divergence level to actual time, we must refer to a certain mutation

model. The Jukes and Cantor 1969 (JC69) model [207] and the Kimura (K80) model [208] are two of the

most popular ones.

The JC69 model assumes a constant point substitution rate µ for all four types of nucleobases. The

conversion from the divergence percentage p, to the Jukes-Cantor distance d between two elements is given

by the following equation.

d = ν = −3

4
ln

(
1− 4

3
p

)
. (7.1)

ν = 3
4µt, and has the interpretation of the expected number of replacement of a nucleobase during time

t. The Jukes-Cantor distance d is proportional to the separation time between the two elements under

comparison.

The K80 model takes into account that the transitions (A↔ G and C ↔ T ) and transversions (A↔ C,

A ↔ T , C ↔ G, and T ↔ G) have different rates, both being constant, with a ratio κ. The conversion

relation is given below.

K = −1

2
ln
(

(1− 2p− q)
√

1− 2q
)
, (7.2)
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whereK is named the Kimura distance, and p and q are, respectively, the percentages of sites with transitional

and transversional differences. Both JC69 and K80 models assume the four bases are equally frequent.

Since the mutation rate is unknown and is usually species dependent, the molecular clock is often cali-

brated by referring to the fossil records to match historical benchmarks [206], so that the above Jukes-Cantor

or Kimura distance can be mapped to real time.

The assumption of a constant mutation rate is not necessarily true over the evolutionary time. A relaxed

molecular clock with changing mutation rates has been developed [209].

In the rest of the chapter, we will use the JC69 molecular clock model and study the TE dynamics

recorded in the genome. Genomic data are provided by our collaborator, Assistant Professor Oleg Simakov

at University of Vienna.

7.2 Periodic Expansions of Transposons

The molecular clock has been widely applied to map the age distribution for transposable elements and fur-

ther study their historical dynamics [11]. Researchers have found so-called periodic expansion of transposons

in several species, cichlid [210], coelacanth [14] and hydra [211], to name a few. This periodicity happens on

the evolutionary time scale. For example, the period of the cichlid transposon age distribution is roughly

10 – 20 million years, calibrated with respect to the fossil record [212]. It’s natural to relate the expansion

to external factors like environmental changes. However, we would like to explore whether these cycles have

any interpretations in terms of the intrinsic SINE-LINE interaction.

Among the species that have periodic transposon expansions, the “living fossil”, coelacanth, stands out.

This lobe-finned fish species evolved into the current form about 400 million years ago and has remained

roughly the same ever since [15]. Despite the lack of change in the phenotype, the genome of coelacanth has

been constantly evolving, but at a considerably low rate compared with other vertebrates, with transposons

being especially active [213–215]. The slow phenotypic evolution reflects a small external selection pressure.

We thus deduce that the change in the genome might be largely a result of intrinsic dynamics due to element

interactions, rather than of external factors. This makes the coelacanth genome an ideal system in which to

look for SINE-LINE quasi-cycles. Figure 7.1 shows the age distribution of all transposons in the coelacanth

genome. Arrows mark the periodic expansion events.

In the next section, we will test in detail whether or not the observed periodic expansion of transposons

in the coelacanth genome is due to the SINE-LINE interaction.

61



0 0.1 0.2 0.3 0.4 0.5 0.6
Jukes-Cantor distance

0

1

2

3

4

5

6

C
op

y 
nu

m
be

r

#104

Figure 7.1: Age distribution of all transposons in the coelacanth distribution. Young elements that insert
recently are on the left end of the graph, with small Jukes-Cantor distance, while old elements are on the
right end. Vertical arrows point out the periodic expansion events. The figure is reproduced from Ref. [14],
with data provided by Professor Oleg Simakov.

7.3 Looking for SINE-LINE Quasi-cycles in the Coelacanth

Genome

Figure 7.1 shows the age distribution of all transposons in the coelacanth genome, which consists of several

categories and many families. According to Ref. [14], these transposons occupy 25% of the genome. Among

them, there is a LINE-SINE pair, CR1 (the autonomous LINE) and Deu (the non-autonomous SINE). CR1

has a genome coverage of 2.9% and Deu 1.8%. In the rest of the section, we will exam whether there exist

quasi-cycles in the copy numbers of the CR1-Deu pair.

7.3.1 Methods of Constructing the Age Distribution

There are different methods of constructing the age distribution. They differ in the way of computing the

reference sequence. And as will be discussed later, the resultant distribution is highly impacted by the

method. Here we introduce main ideas of two methods: the consensus sequence method and the phylogeny

method.

Consensus Sequence Method

In the framework of the molecular clock, to calculate the accurate age, ideally every element in a certain

family should be compared to the ancestor sequence, which, however, is usually unknown. In practice, the

ancestor sequence is approximated by a consensus sequence [11], which is a weighted average of all elements
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in the current genome. Since transposons are deactivated due to the accumulation of point mutations, the

active elements should be the most similar to the ancestor and should be assigned large weights. However,

it’s not trivial to identify active transposons in the first place. The accuracy of the consensus sequence

depends on the specific set of weights. Also, when a family contains several subfamilies that independently

inserted in the genome at different times, the consensus sequence of the family would have finite distances

from each of the subfamilies. This induces an artifact: an active element of a certain subfamily, which

should have age 0, now is assigned a nonzero age due to a finite distance to the consensus. This artifact is

manifested in the peak at a nonzero age value in the age distribution , as shown in the coelacanth LINE age

distribution in Fig. 7.2(a).

(a) (b)

Figure 7.2: (a) Age distribution of all LINEs in the coelacanth genome obtained from the consensus sequence
method. The leftmost peak at a non-zero age manifests the artifact that the consensus sequence has finite
distances to all active elements in the subfamilies. (b) Age distribution of all LINEs in the coelacanth
genome obtained from the neighbor-joining method. Each subfamily has its own consensus sequence, and
the artifact in (a) is removed. Both figures are provided by Professor Oleg Simakov.

Phylogeny Method

The phylogeny method first builds a phylogenetic tree for elements in a certain transposon family. The

purpose is to resolve subfamilies that independently invaded the genome. An example of the transposon

phylogenetic tree is shown in Fig. 7.3. Each major branch corresponds to a subfamily, and the tips are the

active elements. Next, for each subfamily, a consensus sequence is constructed using the active elements.

After that, the age distribution of that subfamily can be calculated.
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In this way, we avoid representing elements from different subfamilies with the same consensus sequence

and remove the artifact mentioned above.

Figure 7.3: Phylogenetic tree of transposon family rnd-5 family-245. Subfamilies are revealed as the branches
in the star-like graph. Elements on the tips are the active ones. The figure is provided by Professor Oleg
Simakov.

Our collaborator Professor Oleg Simakov has developed a fast algorithm, based on the neighbor-joining

method, to construct the transposon phylogenetic tree and calculate the age distribution accordingly, with

the following procedure.

1. Input genome data into RepeatModeller, to find main classes of repeats: SINEs, LINEs, LTRs, DNA

transposons, etc..

2. Run BLASTN against the genome to find all the repeat loci.

3. Take all BLASTN-identified loci, remove CpG sites (since they are fast evolving), merge them into one

file and run BLASTN of those loci against each other.

4. For each locus, find all of its BLASTN-alignments, and calculate the Jukes-Cantor distance between

any two repeats. This results in a distance matrix of the repeats.

5. Run a simple neighbor-joining algorithm. In the distance matrix, find the closest pair, namely Locus

X and Locus Y , with the smallest distance. Record the distance, merge X and Y into one node, and

adjust the distances of all other loci to that node as the smaller distance to either X or Y . This gives

a new distance matrix.

6. Repeat Step 5. until no nodes are left to merge.
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The distance recorded in the neighbor-joining method represents the time at which an element bifurcates

into two due to point mutations.

The age distribution of LINEs in the coelacanth genome calculated via the neighbor-joining method is

plotted in Fig. 7.2(b). Compared with Fig. 7.2(a), the artificial peak at a nonzero age is removed.

In the following sections, we will use data primarily generated by the consensus sequence method, for

convenient comparison with literature.

7.3.2 Data Analyses Based on the Consensus Sequence Method

We have made several attempts to look for quasi-cycles in the LINE-SINE pair of coelacanth, known as the

CR1-Deu pair. Before showing the specific analyses, we need to point out two caveats. First, as demonstrated

in Fig. 7.2, the age distribution strongly depends on the underlying construction method. The existence or

nonexistence of quasi-cycles should be tested with different construction methods for solidity. Second, since

the age series is short, with few “periods” present, the periodicity analysis will not be very reliable, unless

there is a strong signal. With the two issues, the following analyses are developed as a procedure. They help

build a comprehensive understanding of the age distribution, although they don’t provide strong conclusions

yet.

Behaviors of Single Transposon Families

Our first step is to inspect all families of CR1 and Deu. The data are provided by Professor Oleg Simakov.

There are 26 CR1 families and 6 Deu families. Their age distributions are shown in Fig. 7.4. There are two

main messages in the figure. First, different families do not behave in phase. Second, there are dominating

families whose copy numbers are much higher than others.

We then look at the most abundant CR1 and Deu families, whose age distributions are shown as bold

lines with dots in Fig. 7.5(a). This pair of CR1 and Deu families do not have the exact π/2 phase difference

as predicted by the SINE-LINE stochastic model, although Deu peaks in general do appear later in time

than CR1 ones.

Besides the CR1 and Deu families, we also look at another 5 abundant TE families whose maximal copy

numbers exceed 2000 at some age. Their age distributions are shown as thin lines with crosses in Fig. 7.5(a).

To our surprise, these transposons, although irrelevant to the SINE-LINE interaction, have oscillations too,

many in phase with each other. Also, these TE families have similar decay behaviors at the tails near

dJC = 0.3. We think this tail similarity indicates that the cutoff in the age distribution around dJC = 0.5,

also shown in Fig. 7.1, is due to an instrumental filter that acts on all families. This filter exists simply
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Figure 7.4: (a) Age distributions of 26 coelacanth CR1 families. (b) Age distributions of 6 coelacanth Deu
families. Figures are produced with data provided by Professor Oleg Simakov.

because elements beyond a certain age have too many base substitutions to be recognizable. Especially, if

the decays were due to intrinsic loss rate, then the length of the tail would positively depend on the number

of elements. However, as shown in Fig. 7.4 and Fig. 7.5(a), elements with different copy numbers more or

less end at the same cutoff. This cutoff in the age distribution makes it hard to date very far back into the

history. With a high mutation rate in transposons, dJC = 0.5 usually corresponds to ∼ 50 million years.

The Fourier power spectra of the abundant TE families are shown in Fig. 7.5(b). Despite the limited

length of data, the Fourier spectra show one physical peak around f = 7 for many of the 7 families. Still,

there are not any strong signals of the predator-prey dynamics between CR1 and Deu. These two families

even peak at different frequencies on the spectra, CR1 at f ≈ 6.5 and Deu at f ≈ 10.5. Again, the Fourier

transform is not sufficient to give convincing information because the age series is too short.

Age Distributions of Transposon Superfamilies

Figure 7.5 raises a question: can transposons from other families have similar oscillations with the SINE and

LINE pair? In fact, if there is a carrying capacity in the genome, then other TE families compete with the

SINE-LINE pair for resources, and should have oscillations that are anti-phase with the pair. If there’s is no

such capacity, then other TEs should be independent of the SINE-LINE pair. We here test this argument.

First, we add up all 26 CR1 families into a CR1 superfamily and all 6 Deu families into a Deu superfamily.

The superfamily age distributions are shown in Fig. 7.6. Still, the predator-prey relationship is not clear on

the superfamily level. The CR1 and Deu superfamilies rather seem in phase. Next, we calculate DNA TE

and LTR superfamilies in the same manner, and also superpose (CR1 + Deu). We expect DNA TE and LTR
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Figure 7.5: (a) Age distributions of the 7 most abundant TE families in the coelacanth genome. Their copy
numbers all have maxima that are greater than 2000. (b) Fourier spectra of the 7 TE families in (a). In
both figures, the bold lines with dots are for the CR1 and Deu pair, and the thin lines with crosses are for
other families. Many families have oscillations, with similar frequencies and phases. Figures are produced
with data provided by Professor Oleg Simakov.

to be either independent of or anti-phase with (CR1 + Deu). As seen in Fig. 7.6, the DNA TE superfamily

does not have any cycles, and appears independent of others, as expected. The LTR superfamily is almost

in phase with (CR1 + Deu). This is against with our expectation, and instead indicates that the dynamics

of different TE superfamilies are, to some extent, synchronized.

Cross Correlations of Transposon Families

So far, we have not seen strong evidence for the quasi-cycles in CR1 and Deu. By looking at single families

in Fig. 7.5 and superfamilies in Fig. 7.6, it’s possible to miss the signal if one Deu family simultaneously

depends on several CR1 families. We thus further examine the cross correlations of all pairs of Deu and

CR1 families. Let x be the age series of a Deu family and y of a CR1 family. Then the correlation between

x and y, Cxy(m) as a function of the shift distance m, is given by the following expression.

Cxy(m) =


∑N−m−1
n=0 xn+myn, m ≥ 0

Cyx(−m), m < 0

(7.3)

Under this definition, we expect CSINE,LINE to have a peak at a negative correlation time, if the pair has a

predator-prey relationship.

With the coelacanth genome data, we calculate correlations for the 156 pairs formed by the 6 Deu families
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Figure 7.6: Age distributions of TE superfamilies in the coelacanth genome. The predator-prey relationship
between CR1 and Deu is not clear on the superfamily level. LTR and DNA TE superfamilies appear
synchronized, instead of anti-phase, with (CR1 + Deu). The figure is produced with data provided by
Professor Oleg Simakov.

and 26 CR1 families. For each correlation, we find the m that makes the correlation maximal, and record it

as the correlation time ∆0. Figure 7.7 shows the distribution of ∆0 for the Deu and CR1 families. Although

there exist negative correlation times as expected from the interaction, the positive ones are against our

argument.
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Figure 7.7: Distribution of correlation time ∆0 between Deu and CR1 families. A negative correlation time
is expected if the pair follows the predator-prey dynamics. The figure is produced with data provided by
Professor Oleg Simakov.

We further follow the same procedure and calculate the correlation time between any two families from X

and Y superfamilies, with X and Y being SINE, LINE, LTR, or DNA TE. The distribution of the correlation

time is shown in Fig. 7.8. Compared with others, the SINE-LINE correlation time distribution does not

have a significant outstanding feature, and is not sufficient to distinguish any specific dynamics of SINE and
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LINE. Also, many pairs have a correlation time of 0, which means they are roughly in phase. Even for the

pairs with nonzero correlation times, there is still ambiguity in interpreting the correlation, since the age

series is too short and could be highly biased by stochasticity.
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Figure 7.8: Distributions of the correlation time ∆0 between two families, one from superfamily X, the
other from Y. X and Y can be SINE, LINE, LTR and DNA TE, as noted by the title of each figure. A
negative correlation time is expected if the pair follows the predator-prey dynamics. The SINE-LINE ∆0

distribution does not have a significant feature to be distinguishable from others. Figures are produced with
data provided by Professor Oleg Simakov.

7.3.3 Discussion

Based on the above analyses, we do not find convincing evidence for the SINE-LINE quasi-cycles between

Deu and CR1 in the coelacanth genome. There are several issues that should be explored in detail in future

research.

First, the shape of the age distribution depends on the underlying construction method. This is clearly

shown in Fig. 7.2 comparing the consensus sequence and the neighbor-joining phylogeny methods. In

particular, the construction method can artificially affect the phase difference of the SINE-LINE pair. This

induces difficulty in investigating the predator-prey phase relationship between SINE and LINE.

Second, the age distribution data are too short to generate reliable Fourier power spectra and correlation
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calculation. This is the main reason why we could not reach a solid conclusion.

Third, based on the consensus sequence method, all TE families have oscillations that are roughly in

phase. In particular, CR1 and Deu do not appear as prey and predators. There are several potential factors

behind the observation. 1. Stochasticity has washed away the predator-prey phase relationship. 2. New

CR1 and Deu elements randomly invaded the genome, disrupting the dynamics. 3. TE families were subject

to strong external driving force(s), which potentially drove all elements to synchronize.

7.4 Theoretical Modeling of the Transposon Age Distribution

Besides mining the data to look for SINE-LINE quasi-cycles in the actual data, we also develop a model to

theoretically investigate whether the actually quasi-cycles can be recorded by the molecular clock and what

the age distribution should look like. In this section, we elaborate the model and discuss some related issues.

7.4.1 Model

The stochastic model in Chapter 6 predicts how the active elements should behave. To obtain the age

distribution, we just need to introduce the mutation of sequences, which acts as the molecular clock. The

individual level reactions are shown below.

L0

bL
α+βS0/C−−−−−−→ 2L0, S0 + L0

bS
α+βS0/C−−−−−−→ 2S0 + L0, (7.4a)

Li
dL−−→ ∅, Si

dS−−→ ∅, (7.4b)

Li
µL−−→ Li+1, Si

µS−−→ Si+1. (7.4c)

Li represents an individual of LINEs that have undergone i point mutations in the sequence. We also use Li

as the copy number of the corresponding elements. The same interpretation applies to Si. C is the system

size. The rates in the growth reactions (7.4a) are taken from the reduced two-body model Eq. (6.25) in

Chapter 6. α and β here are tunable parameters. It’s assumed that only the elements L0 and S0, which

do not have any base pair substitutions, are actively duplicating. The decay rates dL and dS in reactions

(7.4b) are assumed to be constant for all LINEs and SINEs, respectively. Reactions (7.4c) describe the

accumulation of one point mutation in the sequence. The mutation rates of the LINE and SINE sequences

are, respectively, µL ≡ ν̂ML and µS ≡ ν̂MS , with ν̂ being the substitution rate of a single base pair, and

ML and MS being the sequence lengths, respectively.

With the above reactions, the index i represents the number of base pair substitutions of element Xi,
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and i/MX has exactly the same interpretation as the Jukes-Cantor distance. Here X can be L or S.

L0(t) and S0(t) are the time series that follow the LINE-SINE dynamics discussed in Chapter 6. The sets

{L0, L1, . . . , Li, . . . } and {S0, S1, . . . , Si, . . . } give the age distributions of LINEs and SINEs, respectively,

with the subscripts proportional to the ages. They ideally should be the mirror images of L0(t) and S0(t),

with reversed time.

Reactions (7.4) serve as a minimal model, and ignore many biological details. For example, if the

consecutive substitutions A→ G→ A happen to an L0 element, they will leave the element unchanged and

still active; but in the model, they are counted as accumulating 2 substitutions and the element will become

L2, which is deactivated. Still we think the model gives qualitatively correct results, since the above type of

consecutive substitutions are rare.

7.4.2 Numerical Results

We simulate the reactions (7.4) using the Gillespie algorithm [86]. Although the quasi-cycles are seen with

a wide range of parameters, as discussed in Chapter 6, it still requires specific parameter tuning in order to

match the period with the observed cycles in the coelacanth genome. Below are several important factors

to consider for choosing the parameters.

1. Due to the specific form of the growth rates in reactions (7.4a), the dynamical behavior is sensitive

to the noise. Even though the steady state is exponentially stable, the decay toward it could be very

slow compared with the oscillation mode. And demographic stochasticity easily kicks the trajectories

of L0(t) or S0(t) to extinction.

2. The oscillation period of L0(t) and S0(t) should be large. The resolution of the age distribution graph

is set by 1/MX , X being L or S. If the oscillation is too fast, it can not be resolved.

3. The mutation rates µL and µS should be large. The dynamics in the time series L0 and S0 is recorded

by mutations to Li and Si, i > 0. The mutation rates are similar to the refresh rate of a voltmeter,

which sets the response time to the input voltage. The signal can not be reliably measured, if it has a

characteristic time shorter than the response time.

4. The oscillation amplitudes in L0(t) and S0(t) should be large. A signal with a small amplitude would

be washed out by the decay tail of the mutation expansion from small i to large i.

5. dL and dS should be small. Otherwise, the decay of Li and Si would be so fast that no oscillations in

L0(t) and S0(t) could be recorded.
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Figure 7.9 shows the result of a fine tuned simulation, with Fig. 7.9(a) being the time series of active

elements L0(t) and S0(t), and Fig. 7.9(b) being the age distribution recorded by the molecular clock. It

should be pointed out that we do not have an instrumental filter to get rid of old elements beyond a certain

age, and the tails in Fig. 7.9(b) is due to the expansion from small i to large i as a result of mutation.
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Figure 7.9: (a) Time series of active elements L0 and S0. Time flows from the left to the right. SINEs turn
extinct, meaning that no active elements remain, around t ∼ 3.1× 107. (b) Age distribution recorded by Li
and Si. Time flows from the right to the left. This is the time reversed version of (a), with smaller amplitudes
and smoother curves. Fine features are lost during the recording. Parameters used in this simulation are
ML = 5000, MS = 500, bL = 5.02×10−5, bS = 1×10−5, α = 1, β = 0.01, ν̂ = 1×10−8, dL = 0, dS = 0, and
C = 2000. Initially, L0(0) = 1000 and S0(0) = 800. The oldest element has dJC ≈ 0.35, which corresponds
to an age of dJC/ν̂ ≈ 3.5× 107. This is roughly the duration of the time series.

Major peaks in the oscillations of L0(t) and S0(t) are successfully recorded in the age distribution. And

the phase relationship is reserved: LINE peaks precede the SINE ones. However, we also notice significant

difference between the two figures. First, the oscillation amplitudes in the age distribution are much smaller

than those in the time series. Second, fine features in the time series are smoothed out in the age distribution.

We will discuss these issues in the next section. We will see why and how the signal is distorted during

the recording process, and what type of signal can be faithfully documented by the molecular clock.

7.4.3 Molecular Clock as a Low-pass Filter

We have noticed the smoothing effect of the molecular clock in Fig. 7.9. In fact, this effect can cause not

only reduced amplitudes but also skipped peaks. Figure 7.10 represents a commonly observed results from

the simulation. In the time series, there are 6 very sharp peaks in S0(t). However, in the age distribution,

only 3 SINE peaks are recorded, and they are very shallow.
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Figure 7.10: (a) Time series of active elements L0 and S0. (b) Age distribution recorded by Li and Si.
Parameters used in this simulation are ML = 2000, MS = 200, bL = 2.1 × 10−5, bS = 6 × 10−6, α = 1,
β = 0.05, ν̂ = 1× 10−8, dL = 0, dS = 0, and C = 1000. Initially, L0(0) = 300 and S0(0) = 300. The oldest
element has dJC ≈ 0.4, which corresponds to an age of dJC/ν̂ ≈ 4× 107. This is roughly the duration of the
time series.

Now, we derive analytically how the smoothing effect of the molecular clock comes into play. Let L0(t)

be the time series of the active element copy number. We are interested in Li(t), which is the copy number

time series of elements with i substitutions. The age distribution at time t∗ is obtained by plotting Li(t
∗)

vs. i.

The mean-field rate equation for L1(t), based on reactions (7.4c) assuming dL = 0, has the following

form.

d

dt
L1 = µL0 − µL1. (7.5)

This equation can be solved by multiplying both sides by exp(µt) and integrating over t. The result is

L1(t) = L0(t)− [L0(0)− L1(0)]e−µt − e−µt
∫ t

0

L̇0(τ)eµτdτ. (7.6)

The dot operator in the integral stands for derivative.

Let’s first assume

L0(t) = A sin(ωt+ φ). (7.7)

We will later generalized the calculation to an arbitrary L0(t). Then the third term in Eq. (7.6) can be
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exactly calculated, as shown below.

I3(t) ≡ e−µt
∫ t

0

L̇0(τ)eµτdτ

=
ωA

ω2 + µ2

[
ω sin(ωt+ φ) + µ cos(ωt+ φ)− e−µt(ω sinφ+ µ cosφ)

]
. (7.8)

Let

cos θ =
µ√

ω2 + µ2
, sin θ =

ω√
ω2 + µ2

. (7.9)

Then we have

I3(t) = A sin θ
[

cos(ωt+ φ− θ)− e−µt cos(φ− θ)
]
. (7.10)

And L1(t) is simplified as

L1(t) = A cos θ sin(ωt+ φ− θ)− [L0(0)− L1(0)]e−µt +Ae−µt sin θ cos(φ− θ). (7.11)

At large t, we can ignore the two decay terms and obtain

L1(t)→ A cos θ sin(ωt+ φ− θ). (7.12)

Now let A1 = A cos θ, and L1(t) = A1 sin(ωt+φ−θ). Follow the above steps, and we obtain L2(t), which

satisfies

d

dt
L2 = µL1 − µL2. (7.13)

At large t, L2(t) has the following form

L2(t)→ A1 cos θ sin(ωt+ φ− 2θ). (7.14)

Repeat the procedure recursively, and we obtain the following asymptotic expression for any Lk(t).

Lk(t)
t→+∞−−−−→ A

(
µ√

ω2 + µ2

)k
sin(ωt+ φ− kθ). (7.15)

Now we can fix the time t = t∗, and look at the Lk(t∗) vs. k for the age distribution.

Lk(t∗) = A

(
µ√

ω2 + µ2

)k
sin(−kθ + ωt∗ + φ). (7.16)
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This is an exponentially decaying oscillatory function of the age k. The period of the oscillation mode is

given by

Tk =
2π

θ
, (7.17)

with θ determined by Eq. (7.9). Since it takes ∆t = ∆k/µ to accumulate ∆k base substitutions, the above

period measured in k, corresponds to the following time interval.

T =
Tk
µ

=
2π

µθ
. (7.18)

For large µ� ω, the decay factor cos θ is roughly 1, and the amplitude of Lk(t∗) is approximately equal

to A, the amplitude of L0(t). More accurately,

cos θ =
µ√

ω2 + µ2
=

1√(
ω
µ

)2
+ 1

(7.19)

= 1− 1

2

(
ω

µ

)2

+O

((
ω

µ

)3
)

(7.20)

Also, cos θ = 1− θ2/2 +O(θ3), therefore we have

θ ≈ ω

µ
, (7.21)

and

Tk = 2π
µ

ω
, T =

Tk
µ

=
2π

ω
. (7.22)

Note that the period T in the age distribution is identical to that of the input L0(t) time series Eq. (7.7).

So, in the limit of µ � ω, the age distribution Lk(t∗) vs. k is a lossless reflection of the time series L0(t),

faithfully recording its amplitude and period.

In the other limit, µ� ω, however, cos θ ≈ 0, and θ ≈ π/2. As a result, Lk(t∗) decays significantly with

k, which means the amplitude information of L0(t) cannot be preserved. Also, Tk = 2π/θ = 4, independent

of ω. Therefore, the periodicity information is lost as well. The age distribution thus is not an accurate

record of the input time series.

Now, consider an arbitrary time series L0(t), which can be expanded, shown below, as a superposition

of different oscillation modes.

L0(t) =

∞∑
i=0

Ai sin(ωit+ φi). (7.23)
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Then, we can derive the age distribution to be

Lk(t∗)
t∗→+∞−−−−−→

∞∑
i=0

(
µ√

ω2
i + µ2

)k
Ai sin(−kθi + ωit

∗ + φi), (7.24)

with θi given by

cos θi =
µ√

ω2
i + µ2

, sin θi =
ωi√

ω2
i + µ2

. (7.25)

The molecular clock assumes a fixed mutation rate µ, which cannot be tuned. For a mode in L0(t) with

ωi � µ, its amplitude and period can be documented in the age distribution Lk(t∗). For a mode with

ωi � µ, however, it will be lost in the recording process. Therefore, the molecular clock acts as a low-pass

filter. With the mutation rate being proportional to the element length, the SINE has a smaller mutation

rate than the LINE’s, and thus suffers more information loss, as shown in Fig. 7.10.

7.4.4 Discussion

Noise-induced quasi-cycles usually have a small relative fluctuation size ∼ 1/
√
N , compared with the average

population N . They thus may not be clearly recorded by the molecular clock, due to the amplitude decay.

Furthermore, the ω−2 tail in the power spectrum of the quasi-cycles will not be stored in the age distribution,

since modes with large ω are filtered out. Both factors make it difficult to identify quasi-cycles from the age

distribution. On one hand, the quasi-cycles may not be successfully documented, if they come with high

frequency modes or small amplitudes. On the other hand, even if there are oscillations in the age distribution,

we may not be able to rule out other possible mechanisms because of the absence of the signature ω−2 tail.

Besides, since the observed peaks in the coelacanth TE age distribution are deep, as shown in Fig. 7.4

and Fig. 7.5, they are likely to result from dynamics with more dramatic amplitudes than the quasi-cycles.

7.5 Conclusion

I have reported an attempt to look for SINE-LINE quasi-cycles in the transposon history of the coelacanth

genome, recorded by the molecular clock. The SINE-LINE quasi-cycle is a potential origin of the periodic

expansion. However we did not find strong evidence in the genomic data nor an effective way to identify

the cycles in theoretical modeling. Other mechanisms, such as external environmental changes, can still be

responsible for the periodicity. A future research direction is to compare quantitatively and systematically

the age distributions of different species, to identify species-specific signals.
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Chapter 8

Diversity of Repetitive Elements in
the Genome

I have shown in previous chapters that certain transposons interact with each other in similar ways to that

of species in ecosystems. To explore this further, we now consider the diversity of all families of repetitive

elements in the genome. Specifically, we borrow the metric called rank-abundance distribution (RAD) from

ecology, introduced in Chapter 2, as a characterization of the diversity.

The RAD is widely used in ecology to characterize the diversity of species in a given ecosystem. To

obtain the distribution, we first sort the species abundances (populations) in descending order and then plot

the abundance against rank. The RAD straightforwardly illustrates the richness and evenness of species. In

this chapter, we adopt the RAD metric to study the diversity of repetitive elements in the genome.

8.1 Rank-abundance Distribution of All Repetitive Elements

We examine genomes of 46 species, with data downloaded from RepeatMasker.org and processed by Pro-

fessor Oleg Simakov. We count in all repetitive elements, including transposons and tandem repeats, to

calculate their rank-abundance distribution, with abundance defined as the element copy number. Figure

8.1 demonstrates the RADs of 6 sample species in double logarithmic scale. Colors distinguish the categories

of elements. RADs for the remaining 40 species are shown in Fig. 8.2.

There are several features in these RAD plots. First, there exist both dominating and rare families,

similar to that observed in ecosystems. Second, categories present in the genome are species-dependent.

Third, the RAD functional form is not universal across species. Fourth, some species, especially those with

simple repeats on the RAD tail, have power-law asymptotic abundance-rank relation.

8.2 Rank-abundance Distribution of Different Repeat Categories

Now, we plot the RAD of each repeat category, to look for any category-specific features. The result for

a sample species Alligator mississippiensis (American alligator) is shown in Fig. 8.3. The RAD of simple

repeats is especially interesting, since it appears as a straight line in the double logarithmic plot indicating
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Figure 8.1: The RADs of repetitive elements in 6 sample genomes. The color refers to the category of the
element. Figures are produced with data downloaded from RepeatMasker.org and processed by Professor
Oleg Simakov.

a power-law behavior. It should be pointed out that the copy number of simple repeats are defined as the

number of segments. So, one (ACTG)6 segment and one (ACTG)8 segment are counted as two copies of the

same simple repeat family with the common unit (ACTG).

We further calculate the RAD of simple repeats in all other species, and obtain 46 RAD plots, presented

in Fig. 8.4. In order to compare genomes with different repeat richnesses, we normalize the abundance and

rank by dividing them by their maxima, Ã ≡ A/Amax and r̃ ≡ r/rmax, respectively. These RADs all appear

power-law over several orders of magnitude, with similar slopes in the double logarithmic scale.

We calculate the RAD power-law exponent by linear fitting log10 Ã against log10 r̃ for the slope. We use

data in the range 0.005 < r̃ < 0.2. Figure 8.5 shows the scatter plot of the 46 exponents, revealing a cluster

in the range from −1.2 to −1.5.

8.3 Comparison with Previous Observations

Different power-law abundance distributions of genomic elements have been recorded in literature.
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Figure 8.2: The RADs of repetitive elements in the remaining 40 sampled genomes. The color refers to the
category of the element. Figures are produced with data downloaded from RepeatMasker.org and processed
by Professor Oleg Simakov.
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Figure 8.3: The RADs of repeat categories in the genome of Alligator mississippiensis. Figures are produced
with data downloaded from RepeatMasker.org and processed by Professor Oleg Simakov.
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Figure 8.4: The normalized RADs of simple repeats of all 46 sampled genomes. They all have power-law
behaviors with similar exponents. Figures are produced with data downloaded from RepeatMasker.org and
processed by Professor Oleg Simakov.
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Figure 8.5: The scatter plot of the power-law exponents in Fig. 8.4. The exponents are calculated by
performing linear fit with log10 Ã and log10 r̃, in the data range 0.005 < r̃ < 0.2. The error bar of each dot
represents the 95% confidence interval of the exponent.

The first type involves the so-called n-mers, with 4 ≤ n ≤ 40. A n-mer is defined as a segment of n

consecutive bases. Researchers scan the entire genome of a certain species to count the number of occurrences

of each n-mer and then calculate the frequency distribution. This distribution is power-law and further lead

to a power-law rank-frequency distribution similar to the Zipf’s law [216–218], due to the rational of Eq.

(2.5). The authors interpret the power-law rank-frequency distribution as a linguistic feature of the sequence.

The n-mers are artificially constructed, and different from the simple repeats, which naturally emerge as

independent genomic elements.

It is also found that gene family size and protein family size both are distributed in a power-law way

[219–222]. The family here is defined as a cluster of genes or proteins that have sequences within a similarity

range. These family size distributions tend to have large exponents and correspond to RADs with shallower

slopes on the double logarithmic scale than those in Fig. 8.4. The gene/protein families are similar in

concept to the repeat families, but are under strong selection pressures, which may lead them to obey

different distributions. Models based on a birth-death process have been proposed to explain the power-law

gene and protein family size distributions [219, 220, 223–225]. However, they generally require finely tuned

parameters or rate functions in order to produce the desired exponents.

8.4 Discussion

I have presented the rank-abundance distribution of repetitive elements as a novel method of representing the

diversity. Especially, we observe power-law RADs of simple repeats, with similar exponents across genomes.
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Although it is hard to interpret the exact microscopic evolutionary process that results in the observed

RADs, it is promising to deduce the generic factors by developing minimal models as well as by experimentally

exploring the molecular interactions between repeat families. In particular, we need to understand if these

RADs reflect predominantly niche or neutral processes. If the latter is favored, then this might be consistent

with the hypothesis that non-coding repeats are essentially junk DNA with no functional significance. If

not, then this could be evidence for the functional significance in the genome of repetitive elements. We

hope that future study can help resolve this debate over the “junk” DNA.
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Part III

Dynamics at the Evolutionary Scale
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Chapter 9

Introduction to Niche Construction
Theory

Evolution is known as the change of heritable phenotypes of organisms over generations. It happens on all

levels of biological organization. Some examples are the change of allele frequency (eg. fixation of a certain

gene) on the molecular level, the development of an individual trait (eg. viral resistance) on the organism

level, and the emergence of a collective behavior (eg. eusociality) on the species or population level.

The evolutionary process can be generally divided into two stages. In the first, mutation and gene

migration create phenotypic variations among individuals in the population. In the second, natural selection

and genetic drift determine how the phenotypic variations change with time. In reality, the two stages

coexist without a well-defined temporal boundary. As a result, some biological units, being a certain allele,

organism or population, turn extinct, while others survive and increase in number.

In this chapter, I briefly review the main ideas of natural selection, and introduce the more recently

developed niche construction theory, which emphasizes the influence of organisms on their environment.

9.1 Natural Selection

The theory of natural selection was first reported by Alfred Russel Wallace and Charles Darwin [18], and then

systematically elaborated in the book On the Origin of Species by Darwin. The main process contains two

parts. First, various phenotypes are created by mutation or genetic migration. These phenotypic variations

must be heritable. Second, if the phenotypes are associated with the capability to survive or reproduce in the

background environment of the population, then after generations, advantageous phenotypes will increase

in population fraction or be selected for, and disadvantageous ones will decrease or be selected against. As

a result, only significantly fit phenotypes survive.

In natural selection, organisms evolve and adapt to the selection pressure exerted by the environment,

and the environment itself is treated as a boundary condition that is adiabatically constant during the entire
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process. This can be formally expressed by the following equations.

dO

dt
= f(O,E), (9.1a)

dE

dt
= g(E), (9.1b)

where O stands for the organism and E for the environment. f and g are system-specific functions that de-

scribe the evolution of the organism and environment, respectively. Specially, the environment is independent

of the organisms.

9.2 Niche Construction

The niche of a species refers to its position in the ecosystem. It involves the environmental resources that the

species relies on, including the geographic configuration, the climate, etc., and the interactions with other

species in the same ecosystem, represented by the species’ position in the food web and their dynamical

history.

9.2.1 Niche Construction as an Evolutionary Process

The phenomenon that organisms modify the environment and thus create new niches is termed niche con-

struction [19]. Natural selection theory treats niche construction simply as a special phenotype of some

organisms. Since the 1980s, this conventional view point has been challenged, and the emphasis on niche

construction as a key factor in evolution has been promoted [19, 226–229]. In niche construction theory,

organisms can shape the environment they live in, change the selection pressure, and, as a result, reroute

their own evolutionary path.

A good example is the Great Oxidation Event on the earth [230] caused by the emergence of photosyn-

thetic cyanobacteria. During the event, the oxygen concentration of the earth atmosphere increased from

virtually zero to 2% ∼ 4% and finally reached the current value 20%. By changing the oxygen level, the

cyanobacteria created a new niche and subsequently influenced the evolution of the entire biosphere.

9.2.2 Ecosystem Engineering

In ecology, a similar feedback of organisms on the environment has been observed, known as ecosystem

engineering [231, 232]: the engineer organisms create, modify, maintain or destroy their habitat. Some

commonly known engineers are earthworms, which modify the soil in terms of both physical morphology and
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chemical composition, beavers, which build dams and completely change the landscape, and humans, whose

activities, such as agriculture and mining, dramatically impact the biosphere. This feedback mechanism is

viewed as the bridge connecting ecology and evolutionary biology [233, 234].

The main difference between niche construction and ecosystem engineering lies in the fact that the former

emphasizes the effect on the long-term evolutionary consequence, while the latter focuses on the temporary

remodel of the habitat.

9.2.3 Theoretical Models

In niche construction theory, Eq. (9.1) are rewritten formally as follows [235],

dO

dt
= f(O,E), (9.2a)

dE

dt
= g(O,E). (9.2b)

The functional response g of the environment now depends both on the environment itself and the organisms.

And the time dependence is on the evolutionary scale.

Previous works applied population dynamics models [236–239] and population genetics models [227] to

study the effect of niche construction or ecosystem engineering on organism populations and evolution.

Instead of implicitly embedding the influence of environment in the parameters, these models incorporated

the environment as an explicit variable to which the organisms dynamically feed back.

9.2.4 Criticisms on the Niche Construction Theory

Niche construction theory remains controversial [240–242]. Critics focus on the fact that niche construction

can be viewed, without losing any explanatory power, as a special trait resulting from natural selection,

and that it does not provide answers which can not be reached in the framework of natural selection. The

advocates for the theory emphasize that viewing the niche construction as a separate process helps develop

an accurate evolutionary history of the species and reveals properties that may be hidden in the natural

selection picture.

In Chapter 11, I will explicitly incorporate niche construction into the evolution of phylogenetic trees

in order to answer the question of whether or not niche construction leaves an imprint on evolution, as

represented by the structure of phylogenetic trees.
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Chapter 10

Introduction to the Topology of
Phylogenetic Trees

Phylogenetics studies the evolutionary relations of a group of organisms. By evaluating the similarity

of heritable traits, including DNA sequences and phenotypes, it can be inferred whether two organisms

originate from a common ancestor and when the speciation happened. The reconstructed evolutionary

history is represented by the so-called phylogenetic tree. The nodes on a phylogenetic tree stand for species,

with the external ones or leaves being the actual species that are observed and the internal ones being

hypothetical species that are inferred based on the similarity and the embedded evolutionary process. When

a tree is rooted, the top node, or the root, represents the inferred common ancestor of all nodes in the tree.

A node can bifurcate or multifurcate into more than two descendants at a speciation event.

There are several metrics used in the literature to describe the scaling behavior associated with the

topology of trees [23, 243, 244]. In this chapter, we introduce one of the methods [23] to characterize the

topology of phylogenetic trees and show that they have a universal and unique scaling behavior.

10.1 Characterizing the Tree Topology

For an arbitrary rooted tree, we define the depth d of a node as the number of edges on the path from the

root to the node, and the height h of a node as the number of edges on the longest path from the node to a

leaf. Then we have d(root) = 0 and h(leaf) = 0. We use the height of the root as the height of the tree H.

Ref. [23] introduces a quantitative metric to characterize the topology of a tree. We will focus on the

phylogenetic trees, although this metric has been applied to many other trees and networks and revealed

interesting scaling behaviors [245–247]. We rephrase it in this section.

First, we define quantity A for an arbitrary node i on the tree as the size, or number of nodes, of the

subtree Si rooted at node i. For a binary tree, with the child nodes named left and right, A(i) can be
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calculated recursively as follows.


A(leaf) = 1,

A(i) = 1 +A(i→ left) +A(i→ right).

(10.1)

Next, we define quantity C for node i as the cumulative size of the subtree Si,

C(i) ≡
∑
j∈Si

A(j). (10.2)

Alternatively, define dij as the number of edges from node i to node j, or the depth of node j in the subtree

Si. Then the above equation is equivalent to

C(i) =
∑
j∈Si

(dij + 1) =
∑
j∈Si

dij +A(i). (10.3)

Divide both sides by A(i), and we have

C(i)

A(i)
= 〈d(i)〉+ 1, (10.4)

with 〈d(i)〉 being the average depth of nodes in the subtree Si. C(i) can also be calculated recursively, shown

below. 
C(leaf) = 1,

C(i) = A(i) + C(i→ left) + C(i→ right).

(10.5)

Since i→ left and i→ right are symmetric in the above recursion, we deduce that mirroring the tree rooted

at i, by switching the left and right subtrees, preserves C for the node i.

Now, for every node in a given tree, we can calculate its A and C, and further obtain the relation C(A).

If the tree is multifurcating, instead of binary, then the addition in the recursive calculations Eq. (10.1)

and Eq. (10.5) should run over all children of i, as indicated below.

A(i) = 1 +
∑

j∈Children(i)

A(j), (10.6)

C(i) = A(i) +
∑

j∈Children(i)

C(j), (10.7)

where Children(i) is the set of node i’s immediate children.

In the rest of this section, we calculate C(A) for two extreme cases of binary trees and demonstrate that

it can be used to characterize the shape of the tree.
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10.1.1 Topology of Completely Balanced Binary Trees

A binary tree is said to be completely balanced when all its levels are fully filled, meaning that at depth

d, there are 2d nodes. An example is shown in Fig. 10.1(a). On this type of tree, every non-leaf node has

two child nodes and every leaf has the same depth. For an arbitrary node i, its depth and height have the

following relation,

d(i) = H − h(i). (10.8)

(a) (b)

Figure 10.1: (a) A completely balanced tree of height 3 with 8 leaves. The dots represent nodes. Each
non-leaf node has both left and right children. At depth d, the number of nodes is 2d. (b) A completely
imbalanced tree of height 4. For each non-leaf node, the left child is always a leaf and only the right child
may continue branching.

Since all nodes on the same layer have the same subtree size, A(i) of node i is determined by the height

of the node. Therefore, we can rewrite the recursive equation Eq. (10.1) of A(i) in terms of Ah.


A0 = 1,

A(i) = Ah = 1 +Ah−1 +Ah−1.

(10.9)

From the above equation, it’s straightforward to see that Ah + 1 = 2(Ah−1 + 1) = 2h(A0 + 1) = 2h+1.

Therefore we have the expression of Ah below.

Ah = 2h+1 − 1. (10.10)
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We can calculate C(i) by using its definition Eq. (10.2) and observing that the number of nodes at height

h is nh = 2H−h. For a node i at height h, we have

C(i) = Ch =
∑
j∈Si

A(j) =

h∑
h′=0

Ah′nh′ =

h∑
h′=0

(
2h
′+1 − 1

)
2h−h

′
. (10.11)

And the expression of Ch is simplified to be

Ch = 2h+1h+ 1. (10.12)

Based on Eqs. (10.10) and (10.12), we can solve for the relation of C(A) as follows.

C =

[
ln(A+ 1)

ln 2
− 1

]
(A+ 1) + 1. (10.13)

Asymptotically C(A) ∼ A lnA at large A.

10.1.2 Topology of Completely Imbalanced Binary Trees

Another extreme case of the binary tree, a completely imbalanced tree, is shown in Fig. 10.1(b). For all

non-leaf nodes, the left children are always leaves and the bifurcation only happens on the right branch,

leading the tree to be extremely right-biased.

A(i) is again associated with the height h of the node, and the recursive equation Eq. (10.1) can be

rewritten below, by observing that A(i→ left) = A0.


A0 = 1,

A(i) = Ah = 1 +A0 +Ah−1.

(10.14)

We can see that Ah = Ah−1 + 2 = A0 + 2h, and

Ah = 2h+ 1. (10.15)

The recursive cumulative size C can also be rewritten in terms of h.
C0 = 1,

C(i) = Ch = Ah + C0 + Ch−1.

(10.16)
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We then have the following series of equations.

Ch − Ch−1 = Ah + 1, (10.17a)

Ch−1 − Ch−2 = Ah−1 + 1, (10.17b)

. . . ,

C1 − C0 = A1 + 1. (10.17c)

Adding up the left and right hand sides, respectively, of the above set of equations, we have Ch − C0 =∑h
h′=1Ah′ + h. Together with Eq. (10.15), we arrive at the following expression of Ch.

Ch = h2 + 3h+ 1. (10.18)

And the C(A) relation can be further derived, as shown below.

C =
A2

4
+A− 1

4
. (10.19)

The asymptotic behavior is C(A) ∼ A2 at large A.

Furthermore, due to the symmetry of i→ left and i→ right in the recursive equation Eq. (10.5), as long

as there is one and only one child node branching for every non-leaf node, the C(A) relation has the same

form as Eq. (10.19).

10.2 Topology of Phylogenetic Trees

We have seen from the calculation in the previous section that the C(A) relation is determined by the

topological structure of the tree. At large A, C(A) ∼ A lnA for a completely balanced binary tree, while

C(A) ∼ A2 for a completely imbalanced binary tree.

An actual phylogenetic tree is partially imbalanced, and the C(A) scales in between the above two

extrema. Several reports [23–25, 248] have found that C(A) ∼ Aη, with η ≈ 1.4. Especially, in Ref. [23],

the researchers examined systematically a large set of phylogenetic trees both inter- and intra-species, and

found a universal power-law asymptotic scaling of C(A), with the exponent η = 1.44. Ref. [249] argues that

the measurement methodology is influenced by bias due to uneven speciation rates, choice of taxa, choice of

outgroups for the trees. However it does not explain how these effects could lead to power-law behavior of

tree topology.
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It has also been observed that the diversification rate on a phylogenetic tree declines over time [250–

252]. In other words, as the speciation event proceeds from the root to the leaves, the rate decreases. This

phenomenon is usually interpreted as due to the niche space being filled up and the carrying capacity being

approached. However, the premise that the niche space has a fixed capacity is not necessarily correct.

10.3 Models for Phylogenetic Tree Topology

There have been many theoretical models on the evolution of a phylogenetic tree. See Ref. [252–255]

for comprehensive reviews. The equal-rates-Markov (ERM) model and the proportional-to-distinguishable-

arrangements (PDA) model are among the most popular ones.

The ERM model was first developed by Yule in 1924 [256], and later expanded in literature [257–259].

ERM assumes that all extant species on the tree have the same speciation rate. Despite being not always

realistic, this simple model is usually used as a null hypothesis for the evolutionary process of the tree. The

resultant tree, however, is less imbalanced than the observed ones. In fact, most local branching models

invariably give rise to C ∼ A lnA for large A, because they are essentially random walks at large A.

The original PDA model [260–262] did not involve any rules of the growth of the tree. The model

assumes that for a given tree size, all tree topologies are equally likely to appear. The tree then is a result

of recursively sampling the topology for the subtrees. Evolutionary processes that correspond to the PDA

model were developed later [263, 264].

There were also attempts to directly address the scaling behaviors of the phylogenetic tree [243, 265–

267]. But no solid conclusion has been reached yet. We will report in Chapter 11 our exploration to develop

evolutionary process models for the observed scaling behavior. Our goal was to see if in principle it is

possible for phylogenetic trees to exhibit power-law scaling of topological measure. Specially, we propose to

explicitly incorporate niche construction in the evolutionary process and examine how it contributes to the

topology of the phylogenetic tree.
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Chapter 11

Effect of Niche Construction on the
Topology of Phylogenetric Trees

As introduced in previous chapters, the effect of niche construction on evolution is not sufficiently appreci-

ated, and the process that leads to the universal scaling of the phylogenetic tree is not well explained. In

this chapter, I develop models that explicitly include simple caricatures of niche construction in the evolu-

tionary process of a phylogenetic tree, and explore how this incorporation impacts the topology of the tree.

In particular, we will see that the power-law behavior of C(A) reported in natural phylogenetic trees can

be recapitulated from the statistical effects of niche construction. We will see that the critical behavior is

induced by a singularity that models the deactivation of nodes in the tree. Due to the generality of this

effect, it is not impossible that the observed power-law scaling reflects the imprint of such a broad class of

processes as niche construction. Indeed, our results echo the conclusions of an earlier analysis by O’Dwyer

[248], which considered a specific metric characteristic of phylogenetic trees: the edge-length distribution.

O’Dwyer’s work suggested that the observed scale invariance in this quantity could not arise from neutral

models of ecological communities. Our focus on niche construction provides a specific example of his conclu-

sion, although we have not yet tested whether our results can also account for the edge-length distribution

that he has reported from the data.

11.1 Niche Inheritance Model

When a new species emerges from its parent, it occupies a novel niche. An intuitive way to describe the

process is to associate a species with a certain niche value, and let its children inherit the niche with an

amount of fluctuation. We introduce the Niche Inheritance Model below.

11.1.1 Ingredients of the Niche Inheritance Model

We assign each species node three attributes: the amount of available niche n, the speciation rate r, and the

extinction probability e. The speciation rate is treated as an increasing function of niche r(n) in the sense

that the more available niche there is, the more likely it is for a speciation event to be successful. It also
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implicitly wraps up all ecological interactions among species. For simplicity, we set

r(n) =


n, n ≥ 0

rε, n < 0

(11.1)

The extinction rate e can be positively related to r due to the fact that frequent speciation leads to heavy

competition among species. We will discuss e(r) in the next section.

Let the parent node be represented as (n0, r0, e0). We first sample the time interval till its speciation

based on a Poisson process with the rate r0. Then forward time to the speciation moment. Let the parent

diversify into two children (n1, r1, e1) and (n2, r2, e2). We treat the branching to be binary, because a

multifurcation can be viewed as a coarse-grained bifurcation. The niche sizes n1 and n2 are inherited from

the parent with fluctuations due to the construction/destruction, as expressed below:

n1 = n0 + ∆n1, (11.2a)

n2 = n0 + ∆n2. (11.2b)

The fluctuations ∆ni, i = 1, 2, are assumed to be generated by the following distribution:

∆ni
n0
∼ N (µn, σ

2
n), (11.3)

whereN (µn, σ
2
n) stands for a normal distribution with mean µn and variance σ2

n. ri and ei are next calculated

accordingly. For each child node, test whether it goes extinct or remains to bifurcate later. The test is done

by drawing a uniformly distributed random number in [0, 1], and comparing it with the extinction probability

e. The child goes extinct and is removed from the tree, if the random number is smaller than e. All inferred

nodes and branches dependent on the extinct child are also pruned away.

In a numerical simulation, we start with a root node and evolve the tree based on the above rules until

it reaches a certain size. A and C for each node on the tree are then calculated following their recursive

definitions Eq. (10.1) and Eq. (10.5), respectively.

11.1.2 Existence of the Absorbing Boundary

In the above framework of the Niche Inheritance Model, there exists a boundary case when rε = 0, which

means that nodes with negative niches will never bifurcate. We discuss qualitatively here the difference

between a zero and nonzero rε and leave more quantitative details to Section 11.3.
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Imagine the left node starts by chance with a larger n and thus a higher r than the right one. If rε 6= 0

and all succeeding nodes are able to branch, then the right node, by fluctuation, will eventually gain a

descendant with high r, and the left node will gain a descendant with low r. The two subtrees in general

undergo the same random process and are symmetric. Therefore, at a long time scale, the entire tree is

balanced.

However, if rε = 0, once a node gets a negative niche, it is deactivated and will not be able to contribute

any descendants in the evolutionary process. This eliminates the possibility of leveling up the general

growth between the left and right subtrees. Leaf nodes that have long life times like those in the completely

imbalanced case in Fig. 10.1(b) will emerge in the tree. Therefore, rε = 0 drives the asymmetry of the

tree and leads it to be imbalanced. We will refer to the case of rε = 0 as the absorbing boundary, since it

effectively removes bifurcating species from the tree.

In actual evolution, we observe species that seem not to be changing phenotypically while their relatives

actively diversify, for example, the “living fossil” species coelacanth, which we have discussed in Chapter 7.

It therefore is reasonable to use the absorbing boundary as a simplified starting point of analyzing the Niche

Inheritance Model. In the rest of this chapter, we will first focus on the edge case of rε = 0 to discuss the

effect of niche construction on the tree topology, and then examine the effect of a finite rε.

11.2 Effect of Niche Construction on Tree Topology with the

Absorbing Boundary

From the qualitative argument in the previous section, we already see that rε = 0 can induce imbalance in

the tree. But is this sufficient? Are there any other factors which are crucially indispensable in this model?

The answer lies in the niche construction strength, represented by σn.

Based on Eq. (11.3), we see that σn tunes the probability for the child node to be associated with

a negative niche value. Therefore, it determines how often the nodes hit the absorbing boundary. When

σn = 0, the niche does not fluctuate and all nodes have the same value of niche as well as the same speciation

rate. In this situation, the Niche Inheritance Model is equivalent to the Yule process [256]. We expect the

resultant tree to be balanced with a significant symmetry. When σn is large, however, the access to the

absorbing boundary is frequent. There will be many nodes turning inactive and many branches being

terminated during the evolution. The effect of imbalance exerted by the absorbing boundary is therefore

switched on and becomes visible.

In the rest of this section, we will present numerical simulations and a mean-field calculation to demon-
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strate the effect of niche construction on the topology of the phylogenetic trees, under the absorbing boundary

of rε = 0.

11.2.1 Topology of Trees with Extinctive Nodes

First, we let species nodes be extinctive, with the following probability,

e(r) =
r

r +R0
. (11.4)

This effectively limits the bifurcation rate of the tree, since nodes with high speciation rates become extinct

and are removed.

C(A) at Zero and Strong Niche Construction Strengths

We demonstrate in Fig. 11.1 the C(A) relations in two extreme cases: zero niche construction (σn = 0) in

the first row, and strong niche construction (σn = 2) in the second. In the left column of Fig. 11.1, each dot

represents the (C,A) pair of a node. If two nodes have subtrees of the same size A but different topologies,

then they will most likely host different values of C (except if one tree can be transformed to the other by

mirroring the left and right branches). For a given size, there can be many subtrees of distinct topologies.

Therefore, we usually have multiple C values associated with the same A, especially when A is not too

small. However, if A is large, then there may only be few subtrees that have reached the desired size, and

C hence comes in few values. Especially, when A is equal to the size of the phylogenetic tree, there is only

one topology present, that of the tree itself, and C is single valued. The (C,A) pair now is associated with

the root.

In the right column of Fig. 11.1, we average the C values corresponding to the same A, and present the

resulted C̄ v.s. A. At small A, there are many samples of subtrees and C̄ reasonably represents the expected

value. This is indicated by the thin and smooth region in the C̄-A graph. However, at large A, there are

few subtrees present, and the tree topology is thus heavily undersampled. C̄ then does not reflect the true

expected value. This is illustrated as the broad scattered region in the C̄-A graph.

As discussed at the beginning of this section, for σn = 0, we expect the tree to be balanced with a

C(A) ∼ A lnA asymptotic behavior. This is verified in the first row of Fig. 11.1. Notice that the scale is

linear-logarithmic and the A lnA behavior is illustrated by the dots scattering along a straight line.

When there is a significant niche construction effect or a large σn, we expect the tree to be imbalanced

with C(A) deviating from the balanced scaling. This is demonstrated in the second row of Fig. 11.1. Instead
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Figure 11.1: (a) C(A) calculated for a typical tree generated by the extinctive Niche Inheritance Model,
with σn = 0. The dots scatter along a straight in the linear-logarithmic scale, indicating C/A ∼ lnA. (b) C
is averaged over values with the same A, for the tree in (a). The smeared region at large A is due to a lack
of subtree samples. (c) Typical C(A) calculated with σn = 2. The scale is double logarithmic. (d) Averaged
C(A) for the tree in (c). Fitting the well-averaged region, A < 200, to a power function C ∼ Aη gives an
exponent of η = 1.501, with the 95% confidence interval being [1.496, 1.505]. The red line stands for the
fitted function. Other parameters for both sets of simulations are rε = 0, µn = 0, R0 = 10, and n0 = 1 for
the root node.
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Figure 11.2: (a) Dependence of averaged C(A) on σn, with rε = 0, in the extinctive Niche Inheritance
Model. As σn increases, the apparent power-law region of C̄(A) also stretches. Other parameters are
µn = 0, R0 = 10, and n0 = 1 for the root node. (b) is the compensated plot of (a). The vertical axis is
C̄/Aη, and the value of η is taken from the fit in Fig. 11.1(d). The flat region of each curve corresponds to
the power-law regime.

of A lnA, in the range comparable with the observed data [23], A < 200, C(A) falls roughly along a straight

line in the double logarithmic scale, indicating a power-law behavior, C(A) ∼ Aη. A fitting to the power

law function gives the exponent of η ≈ 1.50.

C(A) at Intermediate Niche Construction Strengths

Knowing the end behaviors, we now move one step further to calculate C(A) for intermediate values of σn.

The results are presented in Fig. 11.2(a), as the averaged C̄(A) curves at different values of σn. Judging

from the smooth regions at small A of C̄-A curves, as σn increases from 0 to 2, the C̄(A) relation transitions

from A lnA to an apparent power-law behavior. In the compensated plots in Fig. 11.2(b), the power-law

regime is illustrated as the flat region at small A for each curve. It grows in width as σn increases. At the

large A end, we do not have a strong conclusion, since the data is not adequately averaged.

Next, we will carry out a mean-field calculation on a simplified model with e = 0 and attempt to

understand the dependence of C(A) on σn.

11.2.2 Mean-field Calculation on the Non-extinctive Niche Inheritance Model

The extinction probability in the previous subsection depends positively on the speciation rate and thus

induces a bias toward small rates in the evolutionary process. Here, we are interested in a mathematically

simpler version without such a bias. This can be done by setting the extinction probability to be constant
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for all nodes. Furthermore, since any nonzero constant e can be mapped to e = 0 by effectively offsetting

the speciation rates to r(1− e), we only need to look at the simplest situation with

e = 0. (11.5)

It should be pointed out that removing the bound on the values of niche and speciation rate will result

in the speciation rate growing exponentially large in a short time, since the niche of a child changes propor-

tionally to its parent’s niche as in Eq. (11.3). This is not biologically meaningful. Still, this simplified model

can be handled mathematically from a mean-field point of view, and provides insights to the non-extinctive

model, as will be discussed later.

In the rest of this subsection, we conduct a mean-field theory calculation for the non-extinctive Niche

Inheritance Model to derive the dependence of C(A) on σn. We again work in the presence of the absorbing

boundary rε = 0, so that a certain number of nodes will turn inactive and not branching during the

evolutionary process. We will discuss the applicability of the mean-field assumption at the end of this

subsection.

Deactivation Probability of Nodes

Comparing trees with different topologies, we observe the following facts. In a completely balanced binary

tree, the leaf nodes are all active and can branch. In a completely imbalanced binary tree, only one child

can branch and the other is inactive. A phylogenetic tree should lie somewhere in between the two extreme

cases. If we define the deactivation probability of a leaf node as q, then


q = 0, completely balanced binary tree,

q = 0.5, completely imbalanced binary tree.

(11.6)

Dependence of C(A) on the Deactivation Probability

Suppose there are nd leaf nodes, when the tree evolves to depth d. Then on average, ndq of the leaves will

turn inactive, and each of the remaining nd(1−q) nodes will branch into two leaves at depth d+1. Therefore,

we have a recursive relation for nd,

nd+1 = 2nd(1− q). (11.7)
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The general expression for nd is then calculated to be


n0 = 1,

n1 = 2,

nd = n1a
d−1,

(11.8)

with a = 2(1− q) as the average number of active children of one parent node. The full parameter range is

0 ≤ q ≤ 1 and correspondingly 0 ≤ a ≤ 2. However, for 1/2 < q ≤ 1 and 0 ≤ a < 1, the tree can not grow

to a significant size, We thus exclude this situation from the consideration.

The subtree size A of a node at depth D is given by

A =
D∑
d=0

nd. (11.9)

The average depth of nodes in the subtree is

〈d〉 =

∑D
d=0 dnd
A

. (11.10)

Following Eq. (10.4), we calculate C of the node as

C = A(〈d〉+ 1). (11.11)

With Eq. (11.8), we obtain the following explicit expressions of A and C in terms of D, for 0 ≤ q < 1/2 and

1 < a ≤ 2.

A = 1 + 2
aD − 1

a− 1
, (11.12)

C =
2

a− 1
[(D + 1)aD − 1]− 2a(aD − 1)

(a− 1)2
+A. (11.13)

The C(A) relation is further given as follows, by eliminating D from the above two equations.

C(A) = (A− 1) loga

[
(A− 1)(a− 1)

2
+ 1

]
+

2

a− 1
loga

[
(A− 1)(a− 1)

2
+ 1

]
+ (A− 1) +

a−A
a− 1

. (11.14)

For the completely balanced tree with a = 2, C(A) is reduced to

C(A) = (A+ 1) log2(A+ 1)−A, (11.15)
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which is equivalent to Eq. (10.13).

As q → 1/2 and a→ 1, we can derive the limit form of C(A), given below, using L’Hôpital’s rule.

C(A)→ A2 + 1

2
. (11.16)

Despite the different functional form, it has the same asymptotic scaling C(A) ∼ A2 at large A as Eq.

(10.19).

A similar mean-field calculation has been performed in Ref. [265]. The authors reported the same

qualitative result as what we have derived above, but with a slightly different model.

Dependence of C(A) on the Niche Construction Strength

Now we analyze the relationship between the parameter σn in the Niche Inheritance Model and the deacti-

vation probability q.

Based on Eq. (11.2) and Eq. (11.3), the child node turns inactive if n0 +n0x < 0, where x is the random

number drawn from the distribution N (µn, σ
2
n) to characterize the niche construction effect. Therefore, we

have the following equation to link q and σn.

q = Prob(r = 0) = Prob(x < −1) =
1

2
erfc

(
1√
2σn

)
. (11.17)

So, for a given σn, we can compute q using the above equation, and then calculate C(A) following Eq.

(11.14). Figure 11.3 shows the C(A) relations with different values of σn. When σn is finite, C(A) always

approaches A lnA when A is large. This can also be derived from Eq. (11.14). Despite the A lnA asymptote,

there exists a range at small A, in which C(A) can be approximated as a power function, as indicated by

the reference line of A1.5. As σn → +∞, q → 1/2 and the asymptotic behavior approaches C(A) ∼ A2.

Comparing the mean-field result Fig. 11.3 with the simulation presented in Fig. 11.2, we conclude that

the analytical calculation qualitatively captures the trend observed in the simulation, even though it is based

on a simplified non-extinction version.

In the presence of the absorbing boundary rε = 0, the strength of the niche construction effect strongly

impacts the topology of the phylogenetic tree. When there is no construction, species are effectively the

same and have the same bifurcation rate. The resultant tree is balanced, and C(A) ∼ A lnA.

As the construction effect gets strong, C(A) develops an apparent power-law regime at small A, before

transitioning to the A lnA asymptote. And the width of the regime increases with the construction strength.

We point out that, in the data obtained from actual phylogenetic trees in Ref. [23], the tree size A is usually
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Figure 11.3: Mean-field analytical C(A) at different values of σn. For finite σn, C(A) always approaches
A lnA, but has a range at small A that resembles a power-law behavior, parallel to the reference line of A1.5

in the double logarithmic scale. As σn → +∞, q → 1/2 and the asymptotic behavior approaches C(A) ∼ A2.

limited to O(100). In this range of A, our model successfully yields a power-law C(A) relation.

Comments on the Mean-field Calculation

There are two main caveats in the above calculation. First, the calculation does not account for any

stochasticity in the process. It is applicable to an averaged situation, since nd is the expected number of

nodes at depth d. Second, the calculation is only correct with an infinite growth time of the tree. In order to

use the recursion relation Eq. (11.7), all active nodes at depth d have to be able to complete the branching

process. This premise can always be achieved if the growth is terminated at T = +∞. However, if T is finite,

then there will always be some active nodes that will not branch before the termination. This effectively

leads to a larger deactivation probability than the constant q. This effect is significant for nodes with small

speciation rates, which can occur at any depth. Therefore, the effective deactivation probability q̃d should

be dependent on the distribution of speciation rate at depth d.

Nevertheless, the mean-field calculation succeeds in describing the qualitative behavior of C(A) at differ-

ent σn. However, it does not truly explain the origin of scale-invariant behavior. As is well-known from the

theory of critical phenomena, non-trivial power-law scaling arises from singularities in limit processes [268].

We turn to this question next.
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11.3 Singularity Induced by the Absorbing Condition

In the previous sections, we have shown that with rε = 0, the niche construction strength strongly impacts

the C(A) relation. Specifically, as σn increases, the tree becomes imbalanced, and C(A) develops an apparent

power-law at small A, before transitioning to A lnA at large A,

The imbalance induced by a large niche construction effect is crucially related to the condition r(n) =

rε = 0 for n < 0, which means that nodes stop branching when n < 0. As has been discussed in previous

sections, the absorbing boundary is the origin of the imbalance of the phylogenetic tree. A large σn then

ensures that a finite number of nodes will reach the absorbing boundary and be cut off the tree. Together,

we see the development of a power-law scaling.

11.3.1 Effect of a Relaxed Absorbing Boundary

One question arises here, how crucial is the absorbing boundary to the imbalance power-law scaling? Or

can rε be relaxed to a finite value?

The short answer is yes, if the tree has a finite growing time T . In this case, when rε is finite but still

small enough s.t. 1/rε � T , then very few nodes with negative niches will be able to complete the bifurcation

before the termination of the tree growth. So, effectively, a small rε acts as an absorbing boundary as well.

As rε increases, the deactivation effect due to a finite T only acts on nodes near the tips. The symmetry

between the left and right branches is gradually restored. Therefore, at large rε, the tree becomes balanced.

In the above argument, we have implied that nodes are able to reach the n < 0 region, so that rε can

play a role in the evolution. For all the analyses in the rest of the section, we work in the framework of the

extinctive Niche Inheritance Model and apply a large niche construction effect with σn = 2.

In Fig. 11.4, we show the dependence of C̄(A) on rε for trees terminated at a finite size A ≈ 106, with

σn = 2. When rε = 0, we observe the apparent power-law regime of C̄(A) in the well-averaged range of A.

This is demonstrated as the segment of straight line under the double logarithmic scale in Fig. 11.4(a) and

the compensated plot Fig. 11.4(b). We have discussed the dependence of the power-law regime on σn in

the previous section. As rε increases, the apparent power-law region of C̄(A) reduces in range. Eventually,

a behavior of A lnA becomes significant in the entire range of A at a large rε, as illustrated by the straight

line with rε = 0.1 under the linear-logarithmic scale in Fig. 11.4(c).

104



100 101 102 103 104 105 106

A

100

101

102

103

7 C
=A

r
0
 = 0.1

r
0
 = 0.01

r
0
 = 0.001

r
0
 = 0.0001

r
0
 = 0

(a)

100 101 102 103 104 105 106

A

10-2

10-1

100

101

7 C
=A

1
:5

0
1

r
0
 = 0.1

r
0
 = 0.01

r
0
 = 0.001

r
0
 = 0.0001

r
0
 = 0

(b)

100 101 102 103 104 105 106

A

0

20

40

60

80

100

120

140

7 C
=A

r
0
 = 0.1

r
0
 = 0.01

r
0
 = 0.001

r
0
 = 0.0001

r
0
 = 0

(c)

Figure 11.4: (a) Dependence of averaged C(A) on rε, with σn = 2, in the extinctive Niche Inheritance
Model. As rε approaches zero, C̄(A) has a longer and longer apparent power-law range. Other parameters
are µn = 0, R0 = 10, and n0 = 1 for the root node. (b) The compensated plot of (a). The vertical axis is
C̄/Aη, and the value of η is taken from the fit in Fig. 11.1(d). The flat region of each curve corresponds to
the power-law regime. (c) The same data as in (a) plotted in the linear-logarithmic scale. At large A, C/A
appears as a straight line, indicating C(A) ∼ A lnA. This behavior is clear for large rε.
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11.3.2 Critical Scaling at the Absorbing Boundary

Although the behavior of C̄(A) at large A in Fig. 11.4 is not well represented due to undersampling, we

conjecture that, for a nonzero rε, C(A) consists of two distinct asymptotic limits: at small A, C(A) ∼ Aη; at

large A, C(A) ∼ A lnA. The crossover happens around the transition point A = AT . In fact, in Fig. 11.4,

the curve corresponding to rε = 0.01 has both a significant power-law region and a smooth A lnA region,

before the issue of undersampling smears the data.

With this conjecture, we observe that AT divides C(A) into two regimes and that the transition point

AT increases as rε approaches 0. We claim that the dependence of AT on rε is critical. Then, in terms of a

phase transition language, there exists a crossover scaling function F (x), with

x = raεA, (11.18)

such that

C(A, rε) = AηF (x). (11.19)

The functional form of F (x) should accommodate the fact that

C(A) ∼


Aη, small A,

A, large A.

(11.20)

Here, we have ignored the lnA correction at large A. We require that F (x) has the following asymptotic

behaviors.

F (x)→


const, small A and x→ 0,

x1−η, large A and x→ +∞.
(11.21)

If the function F (x) exists and our claim about the critical scaling is correct, then different data sets

corresponding to different rε values should collapse onto the same curve, when plotted as C/Aη vs. x = raεA.

Indeed, in Fig. 11.5, we show the data collapse obtained by tuning a and η. For the presented eight data

sets, a = 2.5 and η = 1.55 gives the best data collapse. At large x, the data show a shallower tail than the

expected x1−η asymptote. We presume that this is because of the lnA factor carried along in the simulation

data, but not accounted for in the crossover scaling argument.

The data collapse indicates a critical behavior of C(A) as rε approaches 0. Notice that the value of η

found from the data collapse is slightly different from the one obtained via fitting in Fig. 11.1(d). From the

function F (x), obtained in the data collapse, we can read off the value xT at which F (x) crosses over from
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Figure 11.5: Critical scaling of C(A) as rε decreases, indicated by the data collapse. We conduct simulations
for eight values of rε ranging from 0 to 0.1, across four orders of magnitude. By tuning η and a, we reach a
data collapse of the eight data sets. a = 2.5 and η = 1.55 gives the best result, shown in the figure in the
double logarithmic scale. The tail is shallower than the expected x1−η behavior, which is indicated by the
straight reference line, because the simulation data incorporate a lnA factor. Other parameters for all eight
sets are σn = 2, µn = 0, R0 = 10, and n0 = 1 for the root node.

a constant to x1−η. In Fig. 11.5, this value is xT ≈ 3.85. Then, for an arbitrary rε, we can calculate AT as

follows:

AT = xT r
−a
ε . (11.22)

As rε → 0, AT → +∞ and the power-law scaling of C(A) ∼ Aη expands to the entire range of A. We do not

yet know if the scaling laws and scaling functions are universal, and if not, what are the relevant or marginal

operators in the branching process that control the scaling laws.

11.4 Conclusion

I have presented a model to explain the observed universal scaling of phylogenetic trees. We incorporate

niche construction as an explicit evolutionary process in the tree growth. By analyzing the Niche Inheritance

Model, we make two major conclusions. First, a large niche construction effect, together with the absorbing

boundary, leads to an apparent power-law regime in the tree topology. This is in the same range of A as

observed in actual phylogenetic trees [23]. Second, the establishment of the power-law C(A) relation is a

critical phenomenon. We demonstrate this by analyzing the crossover of C(A) from Aη at small A to A lnA

at large A, with a rε-dependent threshold, reflecting a singular behavior in the niche construction model as

rε → 0.

Our model has simple rules for the evolution of the tree. The significance is that there is a local in time
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interplay between the speciation rate and niche availability and that this can generate a critical behavior in

C(A) because of the singularity induced by the cutoff of rε = 0 at negative n.

There are several issues that require further investigation. First, we have predicted a scaling form for the

crossover point AT as a function of rε, separating the power law and the A lnA regions. Actual phylogenetic

trees, however, have small sizes that do not exceed AT . Therefore, it is not possible to detect the crossover

to A lnA, and it remains unclear whether or not actual phylogenetic trees follow the critical scaling. Second,

the exponent of the power-law behavior in our model is close to, but not exactly equal to the reported values.

A detailed study should be done to show how the exponent in our model depends on other details in the

evolutionary process. Third, our model is surely not the only explanation for the observed scaling behavior,

but it shows that one must search for singular effects if a power-law C(A) is to be recovered. Fourth,

our model does not capture the decreasing cladogenesis rate that has been observed in actual phylogenetic

trees. It remains to be examined whether incorporating sophisticated mechanisms to account for the realistic

cladogenesis rate reduction would change the scaling and how.

108



References

[1] A. J. McKane and T. J. Newman, Physical Review Letters 94, 218102 (2005).

[2] T. Butler and N. Goldenfeld, Physical Review E 80, 030902 (2009).

[3] G. E. Hutchinson, The American Naturalist 95, 137 (1961).

[4] J. S. Clark, M. Dietze, S. Chakraborty, P. K. Agarwal, I. Ibanez, S. LaDeau, and M. Wolosin, Ecology
Letters 10, 647 (2007).

[5] J. B. Wilson, New Zealand Journal of Ecology 13, 17 (1990).

[6] G. Hardin, Science 131, 1292 (1960).

[7] M. O. Hill, Ecology 54, 427 (1973).

[8] T. Thingstad and R. Lignell, Aquatic Microbial Ecology 13, 19 (1997).

[9] T. F. Thingstad, Limnology and Oceanography 45, 1320 (2000).

[10] C. A. Thomas Jr, Annual Review of Genetics 5, 237 (1971).

[11] International Human Genome Sequencing Consortium, Nature 409, 860 (2001).

[12] G.-F. Richard, A. Kerrest, and B. Dujon, Microbiology and Molecular Biology Reviews 72, 686 (2008).

[13] T. Wicker, F. Sabot, A. Hua-Van, J. L. Bennetzen, P. Capy, B. Chalhoub, A. Flavell, P. Leroy,
M. Morgante, O. Panaud, E. Paux, P. SanMiguel, and A. H. Schulman, Nature Reviews Genetics 8,
973 (2007).

[14] D. Chalopin, S. Fan, O. Simakov, A. Meyer, M. Schartl, and J.-N. Volff, Journal of Experimental
Zoology Part B: Molecular and Developmental Evolution 322, 322 (2014).

[15] L. Cavin and G. Guinot, Frontiers in Ecology and Evolution 2, 49 (2014).

[16] J. F. Brookfield, Nature Reviews Genetics 6, 128 (2005).

[17] W. F. Doolittle, Proceedings of the National Academy of Sciences 110, 5294 (2013).

[18] C. Darwin and A. Wallace, Zoological Journal of the Linnean Society 3, 45 (1858).

[19] F. J. Odling-Smee, in The Role of Behavior in Evolution, edited by H. C. Plotkin (MIT Press, 1988)
pp. 73–132.

[20] T. Yoshida, L. E. Jones, S. P. Ellner, G. F. Fussmann, and N. G. Hairston, Nature 424, 303 (2003).

[21] S. P. Ellner, M. A. Geber, and N. G. Hairston, Ecology letters 14, 603 (2011).

[22] H.-Y. Shih and N. Goldenfeld, Physical Review E 90, 050702 (2014).

109



[23] E. A. Herrada, C. J. Tessone, K. Klemm, V. M. Egúıluz, E. Hernández-Garćıa, and C. M. Duarte,
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