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Abstract

This dissertation focuses ultimately on the topic of evolution, which is the foundation of modern biology.

I hope to understand, in a general sense, evolution on a population scale by investigating individual level

interactions.

In this dissertation, I present four projects in biophysics performed under the supervision of Professor

Nigel Goldenfeld: Population dynamics of viruses and their hosts, game theory and the social life of micro-

organisms, a novel mechanism enhancing cooperation in evolutionary game theory, and evolutionary robust

strategies for delivery of antibiotics.

In the first project, starting with stochastic rate equations for the fundamental interactions between

microbes and their viruses, we derive a mean-field theory for the population dynamics of microbe-virus

systems, including the e↵ects of lysogeny. In the absence of lysogeny, our model is a generalization of that

proposed phenomenologically by Weitz and Dusho↵. In the presence of lysogeny, we analyze the possible

states of the system, identifying a novel limit cycle, which we interpret physically. To test the robustness

of our mean field calculations to demographic fluctuations, we have compared our results with stochastic

simulations using the Gillespie algorithm. Finally, we estimate the range of parameters that delineate the

various steady states of our model.

In the second project, we present a mean field model for the phase diagram of a community of micro-

organisms, interacting through their metabolism so that they are, in e↵ect, engaging in a cooperative social

game. We show that as a function of the concentration of the nutrients glucose and histidine, the community

undergoes a phase transition separating a state in which one strain is dominant to a state which is char-

acterized by coexisting populations. Our results are in good agreement with recent experimental results,

correctly reproducing quantitative trends and predicting the phase diagram.

In the third project, we propose a novel mechanism to enhance cooperation in evolutionary game theory.

Explicitly incorporating stochasticity in the phenotypic decision making process, and the interaction between

evolution and ecology in the dynamic landscape, we demonstrate that for a wide variety of cooperative games

of the prisoner’s dilemma type, cooperation eventually becomes the dominant strategy as long as the rules
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are permitted to evolve in response to the changing environment. Therefore, the ubiquitously observed

cooperation in nature may come from stochastic phenotype and evolutionary landscape rather than the

detailed type of competition. Altruism becomes an advantageous strategy, because it avoids being exploited

by selfish agents.

In the last project, we treat antibiotic resistance, which is a major concern in public health. Compared

with conventional antibiotics, we show that the emergence of antibiotic resistance can be significantly de-

layed by using narrow and ultra-narrow spectrum antibiotics to target pathogens, rather than the entire

microbiome. We also develop a new strategy that involves spoofing quorum sensing channels of commu-

nication, causing premature expression of virulence factors. When combined with ultra-narrow spectrum

antibiotics, our strategy removes infections and most importantly does not lead to the emergence and spread

of antibiotic resistance genes.
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Chapter 1

Introduction

Approximately five centuries ago, Nicholas Copernicus (1473 - 1543) famously dragged the Earth away from

its holy position as the center of the entire universe. Worshipping and pursuing elegance and brevity, he put

the Earth revolving around the Sun together with other planets, discarding Claudius Ptolemaeus’s exquisite

and complex design of epicycles on epicycles. Although the heliocentric model was still a naive infant, a

historic revolution was launched. When the Earth was no longer so special as humans had imagined, why

should the Sun be that special or even the Milky Way galaxy? Today, the once sacred Earth ends up to be

a most ordinary planet at a brim far, far away from the center of the universe.

Two hundred years ago, another revolution began, this time in biology. Charles R. Darwin (1809 -

1882) and Alfred R. Wallace (1823 - 1913) mercilessly dragged humans away from their holy position at

the center of all life. Attached to a history of evolution longer than any human record, Homo sapiens too

has evolved from other species while mountains elevate and flatten. Carl Woese completed the indignity

visited upon humans when he unveiled the phylogeny of life, placing humans at the periphery of a huge

three-domained tree, composed mostly of microbes. While admitting that humans were not that special, we

again were astonished when the human genome was mapped out in 2001. Instead of a previous estimation

of about 100,000 protein-coding genes, it turned out that the human genome encodes only about 20,000

- 25,000 genes [24, 25], about four times that of Pseudomonas aeruginosa (Gram-negative bacterium) [26]

and Saccharomyces cerevisiae (budding yeast) [27, 28] (both about 6000), not much more than the simple

Caenorhabditis elegan (nearly 20,000) [29], and only half as many as Oryza sativa (rice) [30, 31]. Intuitively

perceiving the number of genes as a measure of organismal complexity, we were more or less disappointed and

frustrated. Our euphoria of superiority continued to evaporate when the genome-wide nucleotide divergence

between chimp (Pan troglodyte) and human was revealed to be only 1.23% and may be even smaller [32].

Creating unprecedented civilization, we humans, are apparently not that special or superior, or are we? As

a book made up of only four letters and twenty words, genomes do not sound incomprehensible. It is simple

in what is printed out, but what is encoded implicitly is beyond our wildest dreams.

This dissertation focuses ultimately on the topic of evolution, which is the foundation of modern biol-
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ogy. We hope to understand, in a general sense, evolution on a population scale by investigating detailed

and specific individual level interactions. That is to say, evolution is an emergent property of interacting

populations. Always bearing in mind the big picture of evolution and ecology, we start our journey with

stochastic rate equations and master equations in statistical physics, and apply them to compute the pop-

ulation dynamics of microbe-virus systems. Analyzing fixed points and limit cycles in the phase diagram

describing the population dynamics, we reveal non-triviality in derivations from the microscopic level and

further provide physical interpretations and estimations testable in experiments.

Next I became interested in cooperative phenomena, which are ubiquitous in biology. In particular, I

focused on a recent experiment that quantifies the degree of cooperation in budding yeast as the environment

changes. It is hard to use the same approach of population dynamics as in the first project here because of the

high complexity in the metabolism and transportation mechanisms, which should require systems biology.

As an alternative, we retreat to mean field level and employ game theory. We successfully formulated a model

building up a direct link and showing consistent results between game theory and experimental measurable

quantities.

In order to dig deep into the origin and maintenance of cooperation, in the third project, we put forward a

novel mechanism encouraging cooperation in evolutionary game theory. Explicitly incorporating stochasticity

in the phenotypic decision making process, and the interaction between evolution and ecology in the dynamic

landscape, we demonstrate that for a wide variety of cooperative games of the prisoner’s dilemma type,

cooperation eventually becomes the dominant strategy as long as the rules are permitted to evolve in response

to the changing environment.

Understanding nature brings pleasure, but the power of theory is to predict. During the last 70 years or

so, the degree to which humans can influence the biosphere has become much more extensive, in particular

with the widespread use of antibiotics throughout the world. My last project turns out to be a reverse-

engineering problem: How to fight the emergence of antibiotic resistance? In other words, how to constrain

the population of pathogens so that no matter how they evolve, they are always bounded inside some

regions in the phase diagram safe to human? We design the next generation of antibiotics with presumably

no antibiotic resistance, and suggest practical treatment methods.

1.1 Micro-organismal Wonder World

The term “microorganism” specifies a form of life by its scale in a rather loose fashion. It refers to an

organism with a size typically around half to a few micrometers, but may range down to a hundredth of and
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up to several hundred micrometers. It can be acelluar, unicelluar, multicellluar or a cell cluster, covering

diverse species, including bacteria, archaea, eukarya, and even viruses. Microorganisms were discovered by

Anton van Leeuwenhoek (1632 - 1723) in 1675, and were later studied in the field of microbiology.

In this dissertation, we treat several micro-organismal systems using population dynamics and game

theory. We focus on some model species in eukaryotes, bacteria and their viruses, but the methods and

discussions are not limited to the specified examples, and applicable to other systems.

Microbes and their viruses are the most genetically diverse, abundant and widely distributed organisms

across the planet [33, 34, 35, 36]. Microbes are major contributors to the global biogeochemical cycles and

catalyze the reactions that have over evolutionary time brought the Earth’s surface to its present redox state

[37]. Similarly, viruses, especially in the oceans, manipulate marine communities through predation and

horizontal gene transfer [38, 39], recycle nutrients and thus drive the biological pump which leads inter alia

to the sequestration of carbon in the deep ocean [40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

Horizontal gene transfer (HGT) [50, 51] is a process in which an organism transfers genetic material to

another cell that is not its o↵spring. It is very common in the micro-organismal world, and happens intra-,

and inter-species, and even across domains such as between bacterial and animals [52, 53]. Recently, such

evidence for horizontal transfer of genes and even transposons was found in mammals, fish, and tetrapods

[54, 55, 56]. Through horizontal gene transfer, it is very convenient to shu✏e genes in the micro-organismal

world. In other words, micro-organisms are able to share, absorb and discard genes, especially under stressful

conditions [57]. Horizontal gene transfer, to a great extent, is sometimes thought to disrupt the traditional

perspective of species in the vertical gene transfer world, where genes are generally passed on from ancestors

to o↵springs [51] (Figure 1.1 and 1.2). The ribosomal tree of life tracks the evolutionary history of a lineage

through highly conserved genes, and so this is una↵ected by the presence of HGT. However, the idea of

a species as having a fixed and narrowly-delimited genome appears not to be correct, with accumulating

evidence in favor of the pan-genome concept in which there are wide variations in genome contents as

organisms access pools of genes through the virosphere or from other microbes with which they are in

contact through a shared ecological niche [58]. HGT significantly accelerates the spread of genes, which

propagates antibiotic resistance, as we would like to discuss in more details later.

Furthermore, the special role of viruses in the micro-organismal world complicates gene transfer processes.

The interaction between viruses and their hosts is far more intricate than the physical relation between

classical predators and preys. Viruses act more like self-replicable gene-reservoirs. As an example, we are

now ready to introduce here the specific microbe-virus system that we will discuss in more details in Chapter

3 of this dissertation. This system is composed of a set of viruses (� phage), which can infect a bacterium
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Figure 1.1: Vertical evolution and the “tree of life”. After Ref. [6].

Figure 1.2: Horizontal evolution and the “tree of life”. After Ref. [7].
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Figure 1.3: Two pathways in temperate phage infection: Lysis and lysogeny. In the lytic pathway, the
host cell is killed. A large number of phages will assemble using the host’s genetic material and molecular
machinery, and be released into the environment. Another pathway—lysogeny—incorporates viral genetic
material into the chromosome of the host. The prophage replicates with the host and its o↵springs, and can
be subsequently released, typically triggered by the stress response of the host to environmental changes.
After Ref. [8].
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(Escherichia coli). Upon temperate phage infection, there are two pathways awaiting the host bacterium [8]

as sketched in Figure 1.3. In the first pathway—lysis—the bacteriophage produces a large number of copies

of itself utilizing the bacterium’s genetic material and molecular machinery. As a result, the bacterium

ceases its metabolic function, and ruptures, releasing the newly assembled bacteriophage inside. The other

pathway is lysogeny. In this process, the intruder integrates its own DNA into the genome of the bacterium,

enters a dormant stage and becomes a prophage. The infected bacterium is known as a lysogen—a relatively

stable state [59], immune to superinfection from the same or related strains, and proceeding under normal

replication life-cycles. The DNA of the bacteriophage is duplicated, along with that of the host during cell

replication. The lysogenic state can be terminated by environmental stress such as starvation, pollution or

ultraviolet irradiation, resulting in the process known as prophage induction: the exit of the prophage from

the host genome, and subsequent lysis of the original bacterium and its bacterial descendants. We would

like to emphasize the miracle and duality of prophages here. For viral sake, prophages are sheltered inside

their hosts. They are temporarily dormant but potentially massive in future phage production. For host’s

sake, prophages may economize hosts’ metabolism [60]. Suppressing unnecessary metabolic activities by

expressing repressors and transcriptional regulators, they downshift hosts’ energy cost and help the survival

of both in harsh environments.

Horizontal gene transfer and genetic switch in phage infection are illustrated as glimpses into the micro-

organismal wonder world. The complicated interactions call for both universal and detailed analysis and

modeling.

1.2 Coexistence and Cooperation

There are millions of species on the planet. About 1.3 million eukaryotes are recorded, named and cataloged,

but more are reported each year. A recent taxonomic classification [61] under debate predicts 8.7 million

globally. Even in the human gut, a metagenomic sequencing in 2010 [62] revealed on average at least

160 bacterial species for each individual. How can so many species coexist in a limited range of resources

and spaces? The famous “paradox of the plankton” is a long-standing enigma [63, 64, 65] on the origin,

maintenance and prosperity of biodiversity.

Coexistence of di↵erent species in the same niche may expose them to fierce survival competition for

limited nutrition and space, and antagonism as predators and preys, but may also bring them to cooperation

[66].

Cooperation is the behavior of an individual dedicating its own resource or e↵ort to confer benefit on
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others or the whole community. Cooperative behavior is widely observed at all levels of biology. J.B.S.

Haldane’s famous saying that “I will jump into the river to save two brothers or eight cousins” [67, 68]

descriptively illustrates self-sacrifice in exchange for the benefit of others. Teamwork is another good example

of cooperation, pervasive not only in human society [69], but also in other mammals [70], such as wolves [71]

and bats [72, 73], and social insects, such as bees [74] and ants [75].

Down to the level of micro-organisms, horizontal gene transfer [76, 77, 78, 79] and quorum sensing [80, 81]

are two examples of mechanisms manifesting cooperation. Horizontal gene transfer, contrary to vertical gene

transfer from a parent to its o↵springs, is a gene-sharing mechanism, operative inter- and intra-species, and

even across di↵erent domains of life. Quorum sensing coordinates gene expression according to a local

population density. To this repertoire of cooperation we add lysogen, a coexistent state of an initially

antagonizing host and phage. They cooperate and exploit each other in energy expenditure [60] to survive

through unfavored environments.

Furthermore, multicellular organisms are themselves a question for cooperation: Why and how can the

majority of the cells of an individual take part in metabolism and daily functioning while a few are endowed

with the privilege of passing genes to the next organismal generation [82]? Even on the cellular level, genes

and proteins cooperate in gene expression [83] and other cellular processes [84].

In sum, coexistence of di↵erent species is observed in myriad habitats, and cooperation is a universal

phenomenon at all levels of biology.

1.3 Evolution and Coevolution

Carl Woese once said that his key word is “evolution”. It is the evolution of life over billions of years that

brings us the colorful, beautiful and wonderful planet we stand on today. The special evolvability in life

complicates biology, but also establishes and distinguishes it from physics and chemistry.

Evolution is generally recognized on a long timescale such as phylogeny and tree of life. Richard E. Lenski

tracks the evolution of Escherichia coli over half million generations [85], and observed ever-increasing fitness

[86]. It is also possible to notice evolution on a much shorter timescale as the evidence o↵ered by A.P. Hendry

et al. [87] for reproductive isolation in an introduced sockeye salmon after less than 13 generations.

Evolution is usually reckoned as the process of adaption for species to their environment via mutation

and natural selection. Such a process actually should be bidirectional or reticulated instead of unidirectional

because every individual or species serves as the evolutionary background for other individuals or species in

the process of its own evolution. In predator-prey ecosystems, both types of agents are stressing and being
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stressed by their counterparts, leading to a coevolutionary arms race [88]. Such a Red Queen e↵ect is widely

observed in nature. For example, the spirochete, a pathogen that causes Lyme disease, changes its surface

protein frequently by insertion of new patches of DNA into its genome so that it can evade the searchlight

of the immune system [89] of the host. The cost and payo↵, and evolvability vary for di↵erent organisms.

It is being increasingly realized that the classical view of microbial viruses purely as predators is too

limited. Many microbe-virus interactions are lysogenic. Viruses can transfer genes to and from bacteria,

as well as being predators of them, so that the virosphere should properly be recognized as a massive gene

reservoir [90, 91, 51, 49]. Thus there is a coevolution of both communities in a much deeper sense regarding

gene shu✏ing, the e↵ects of which are complex and far-reaching [92, 93, 94, 42, 91, 95, 51, 49], even including

the manipulation of bacterial mutation rates [96]. This nontrivial interaction between microbes and viruses

has not gone unnoticed, with wide interest among biologists, ecologists and geologists [97, 98, 99, 100, 34,

101, 102, 95, 60, 103, 104].

These findings highlight the importance of considering ecosystem dynamics within an evolutionary con-

text. Conversely, evolution needs to be properly understood as arising from a spatially-resolved ecological

context, as was first recognized by Wallace over 150 years ago [105]. That speciation, and adaptation in gen-

eral, arises at a particular point in time and space has a number of deep consequences that have not yet been

incorporated into current theory. First, it means that evolutionary dynamics proceeds by the propagation of

fronts, resulting in a complex and dynamical pattern of speciation, adaptation and genome divergence that

reflects its intrinsic dynamics and that of the heterogeneous and dynamical environment [106, 107, 108, 109].

Second, as fronts expand, there are only a few pioneer organisms at the leading edge, and so demographic

fluctuations are much larger than in the bulk. Such fluctuations profoundly influence the spatial structure

of the populations, and during the last few years have been recognized to play a major role in population

cycles [110] and even spatial pattern formation [111]. Third, the existence of horizontal gene transfer and

genome rearrangement processes is strongly coupled to spatial distribution. For example, it is known that

the probability of conjugation events is dependent on the local density, being essentially one per generation

in closely-packed biofilms, but an order of magnitude smaller in planktonic culture [112]. Moreover, the

mechanism of horizontal gene transfer is also dependent on the density, with viral-mediated transduction

being the most relevant mechanism at low density. How these patterns of evolutionary dynamics and species

distribution play out is essentially unexplored. However, there have recently been the first reports of obser-

vations of the coupling between evolutionary and ecological timescales. In one such system (a predator-prey

system realized in rotifer-algae interactions), it has been demonstrated that rapid evolutionary dynamics

is responsible for the unusual phase-lag characteristics of the observed population oscillations [113]. Thus,
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rapid evolution is not only a major force for adaptation, but can have marked ecological consequences too.

The complex interplay between evolution and the environment is nowhere more important than in early

life, where the key questions concern how life emerged from abiotic geochemistry. Early life experienced

demanding environments, whose closest modern day correspondence might be deep ocean hydrothermal

vents or hot springs. It is known that there are high occurrence of lysogens in both environments [36, 114],

suggesting that microbe-phage interactions might also be important in the early stages of life, with lysogens

playing an important role as a reservoir of genes and perhaps even aiding in the stabilization of early life

populations through the limit cycle mechanism discussed in this dissertation.

1.4 Arms Race: Human VS Pathogens

Bacteria are a major cause and spread of diseases. The fight of humans against pathogens dates back to

early human history. As a milestone, in 1928, Sir Alexander Fleming (1881 - 1955) discovered penicillin.

In the 1940th, clinical treatment was introduced. Saving millions of lives, the potential for antibiotics to

improve human health cannot be exaggerated.

However, the fast evolution and adaptation of bacteria has shattered our long-term ideal dream to stop

diseases with antibiotics once and for all [115, 116, 117]. Development of new antibiotics and the resulting

development of antibiotic resistance seem to trap us in a never-ending arms race (Figure 1.4). Since the

1960s, discovering new classes of antibiotics has nearly bogged down while increased antibiotic resistance has

been observed [4]. In United States alone, millions of kilograms of antibiotics are consumed by human and

at least an order of magnitude higher in animal industry and agriculture. Antibiotics are more incautiously

used in developing countries. The wide use and abuse of antibiotics worldwide expedite antibiotic resistance.

The situation aggravates with multidrug resistance (MDR), whose frequency also increases significantly with

time [118, 19, 9]. The threat of no e↵ective antibiotics is on the horizon, and is already a reality for a number

of infections, such as gonorrhea [119] and tuberculosis [120]. Actually many scientists have warned human

of the return of the dark ages [121, 4].

In order to slow down the pace of emergence and spread of antibiotic resistance, we propose and analyze

two general schemes. The first is to narrow down the spectrum of antibiotics focusing on pathogens and

bailing out healthy microbiota from conventional antibiotics. In this way, the source of resistant genes

shrinks for pathogens. We demonstrate delayed emergence of resistance in narrow and ultra-narrow spectrum

antibiotics. The second scheme, named Quorum Sensing Spoofing (QSS), is to take advantage of the quorum

sensing mechanism in expressing virulence. The highlight is no antibiotic resistance in QSS. We also design
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Figure 1.4: Timeline of antibiotic deployment and the evolution of antibiotic resistance. After Ref. [9].

dose cycles combining ultra-narrow spectrum antibiotics with Quorum Sensing Spoofing, and show e�ciency

in treatment with extremely low resistance against ultra-narrow spectrum antibiotics in drug alternations.

1.5 Dissertation Outline

This dissertation is structured as follows:

Chapter 2 and Chapter 3 are dedicated to the population dynamics of viruses and their hosts[122]. As

a preliminary exercise, we treat a lysis-only model first in Chapter 2. We apply the same technique to

lysogenic viruses and analyze fixed points and limit cycles of the full lysogeny-lysis model in Chapter 3.

Chapter 4 presents our theory of cooperation in a micro-organismal snowdrift game[123]. It directly links

game theory with experimental measurable quantities.

Chapter 5 also focuses on game theory and cooperation, but from a totally di↵erent point of view. It

introduces a novel mechanism enhancing cooperation in evolutionary game theory.

Chapter 6 presents our first attempt to apply population dynamics to medicine. It is dedicated to the

design of next generation of antibiotics.

Chapter 7 is the conclusion with my thoughts and reflections on physics, biology and interdisciplinary

research.
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Chapter 2

Population Dynamics of Lytic Viruses
and Their Hosts

2.1 Introduction

Numerically, viruses are the most abundant living entities on the planet with an estimated population of at

least 1030 in the ocean alone [34, 41]. By “viruses”, we refer to both bacterial and archaeal viruses. Bacterial

viruses are also commonly known as “phages” or “bacteriophages”.

The taxonomy of viruses is most probably still in its infant stage of “stamp collecting”. (Lord Ernest

Rutherford (1871 - 1937) once quipped that “All science is either physics or stamp collecting” [1].) The

present virus classification is a derivation of D.E. Bradley’s scheme [124] based on nucleic acid type, genome

structure and morphology. In 2005 the International Committee on Taxonomy of Viruses (ICTV) approved

3 orders and 73 families [125]. Figure 2.1 illustrates common virus morphotypes. The majority of viruses

have double-stranded DNA (dsDNA), some with single-stranded DNA (ssDNA), some with single-stranded

RNA (ssRNA), and very rare with double-stranded RNA (dsRNA). Among the various types, some are

virulent (lytic) viruses, which will lyse the host upon infection, and some are temperate (lysogenic) viruses,

which are endowed with binary pathways of lysis and lysogeny as illustrated in Figure 1.3. Table 2.1 lists

common lytic and lysogenic viruses infecting Escherichia coli.

Our goal in this chapter is to lay a theoretical foundation for describing the interplay between ecology

and evolution in the context of microbe-virus systems, as these are arguably amongst the most important

and probably the simplest of the complex systems in biology. The questions that will ultimately interest

us are the evolutionary pressures that tune genetic switches governing the lysis-lysogeny decision, as well

as the factors that shape prophage induction in response to environmental stress [126, 127, 128]. Such a

foundation must begin with a proper account of the population dynamics itself, before coupling in detail

to other levels of description involving genome dynamics, for example. Thus, we have chosen to focus in

the present chapter and Chapter 3 on the dynamics of microbe-virus systems, taking full account of both

of the major viral pathways. In these two chapters, we are not specific about whether we are dealing with

bacterial or archaeal viruses, but because most of the experiments to date are carried out on bacteria, we
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Figure 2.1: Typical virus morphotypes classified according to the nucleic acid type, genome structure and
morphology. After Ref. [10].
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Table 2.1: Common virulent and temperate viruses infecting Escherichia coli. T: Temperate phage; L:
Virulent phage. After Ref. [2].

Name Family Life Cycle

� Siphoviridae T

MS2 Leviviridae L

Mu Myoviridae T

P1 Myoviridae T

P2 Myoviridae T

P4 Myoviridae T

�80 Siphoviridae T

�X174 Myoviridae T

PRD1 Tectiviridae L

T2 Myoviridae L

T3 Podoviridae L

T4 Myoviridae L

T5 Siphoviridae L

T7 Podoviridae L

R17 Leviviridae L
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have tended to identify the microbes as bacteria and the viruses as phages, even though this is not required

by the mathematics.

2.2 Population Dynamics: Ensemble VS Individual Level

We now discuss briefly existing treatments of population dynamics in the context of microbe-virus systems.

In 1977, Levin et al. [129] extended the celebrated Lotka-Volterra equations to model the dynamics between

virulent phages and their victims, where only virulent phages are considered. A number of extensions have

been proposed, extending the level of biological realism to include such features as the time delay arising

between infection and lysis as well as the evolution of kinetic parameters [130, 131, 132, 133, 88]. In 2007,

Weitz and Dusho↵ [11] proposed another way to improve the classic predator-prey model. Their attempt

was mainly based on the experimental observation that the ability of a bacteriophage to lyse hosts degrades

when the bacteria approach their carrying capacity [134, 135, 136]. Adding a new term to account for

the saturation of the infection of the bacteriophages, they obtained an interesting phase diagram in which

the fate of the bacteria-phage community can depend on the initial conditions. However, the new term is

put in by hand, based on intuition which needs detailed mathematical support. Furthermore, they focused

on virulent phages and excluded the temperate ones that elicit lysogeny, now regarded as essential to the

survival of microbial communities through fluctuating environments [99, 60, 103].

These works are based upon an ensemble-level description of the community, as in the classic work on

predator-prey systems [137]. However, as is well-known [137], the simplest of these models fails to capture

the intrinsic cyclical behavior of predator-prey populations despite apparently incorporating fully the basic

interactions that should give rise to cycles. This paradox was resolved by the important work of McKane

and Newman [110], who showed that cyclical e↵ects could only be captured at the level of an individual-level

model, and arose through the amplification of demographic noise. Their work showed how the conventional

ensemble-level equations for predator-prey systems arose as the mean field limit of the appropriate statistical

field theory, with the essential e↵ects of demographic noise entering the analysis as one-loop corrections to

mean field theory, in an inverse population size expansion. These e↵ects can also be treated in a slightly more

convenient formalism using path integrals [138]. The literature also does not have an explicit representation

of lysogeny as it modifies the population dynamics of both host and phage.

The use of an individual-level model is important for a separate reason. By starting from microscopic rate

processes, we can capture specific biological interactions and derive the corresponding mean-field population

dynamics systematically. Such models are not always straightforward to write down phenomenologically, as
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shown by the fact that the equations assumed by Weitz and Dusho↵ [11] are not, as we show below, the

most general form that takes into account the e↵ects of host fitness on lysis.

The purpose of this chapter and Chapter 3 is to provide a detailed theory of the population dynamics for

host-phage communities. In contrast to earlier work, we pose the problem at the microscopic level, working

with an individual-level model of bacteria and phage. From this fundamental description, we are able to

derive the usual community level description analogous to Lotka-Volterra equations from a mean field theory.

Our results encompass both virulent phages, such as those in Weitz and Dusho↵’s work [11], and lysogenic

phages which have not been studied mathematically up to now.

In this chapter, as a preliminary exercise, to present the technique, we treat a lysis-only model applicable

to lytic viruses, in which we derive a set of dynamical equations roughly in the same form as in Weitz and

Dusho↵’s paper [11] except for an additional parameter, which generally results in a relatively unimportant

shift in the phase diagram. We will extend the technique to treat the full lysogeny-lysis model applicable to

lysogenic viruses in Chapter 3.

2.3 Derivation of Population Dynamics from an Individual-level

Model

In this section, we adapt the classic predator-prey model to the host-phage communities from a microscopic

or individual-level model. For simplicity, we first focus on two-component competition, where lysogens

are excluded in spite of their biological importance. Hence, we are considering virulent phages and their

hosts. Following the procedure given by McKane and Newman [110], we derive the population dynamics

for the host-phage system, which Weitz and Dusho↵ [11] had written down phenomenologically. Here we

work at the level of mean field theory, and we do not, in this chapter, include the extension necessary for

representing spatial degrees of freedom. Our individual-level model formalism is still needed, however, to

systematically derive the population dynamics from the microscopic interactions. In our model, the host-

phage dynamics di↵erentiates itself from the classic predator-prey model in two ways: (1) only the host

population is restricted by carrying capacity due to resource limitation and (2) the lysis of one host releases

a particular number of phages (for example, about 100 replicates for lambda phage [8]), instead of only one

predator in the classic predator-prey model. The above two points need to be accounted for carefully in the

set up of the model, especially in the introduction and application of the carrying capacity, which will be

explained explicitly as follows.

In our host-phage community, we have only one species of host and one species of phage which preys upon
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the former. Let us label the hosts by A and phages by B, whose populations are m and n, respectively. The

hosts, either heterotrophic or autotrophic, need to consume environmental resources, which are renewable

in every cycle, for survival and reproduction. All the environmental limitations on the hosts are abstracted

into a maximal host population, which is denoted by the carrying capacity K. The phages, on the other

hand, do not rely on the consumption of natural resources for maintenance once they are released into the

environment. Thus, there is no such hard constraint on the phage population. Although phages are not

restricted by K, we still introduce a virtual carrying capacity W for phages from dimensional considerations.

It can be imagined that W ! 1 so that no true carrying capacity is imposed on the phage population.

The carrying capacities can be better visualized if we conceive space to be equally divided into K units for

hosts and W units for phages. These units will be referred to as the host layer and phage layer, respectively.

In the host layer, each unit is either occupied by one host or unoccupied, i.e. an empty site E. The total

number of empty sites E is K�m. We construct the phage layer in a similar manner and denote the empty

sites there by � although the phage population is not confined actually.

The population dynamics of the system can thus be modeled as arising from the following six microscopic

events (Table 2.2):

Table 2.2: Microscopic events in the lysis-only model.

description symbols

birth of host AE
b! AA

death of host due to longevity A
c! E

death of host due to crowding e↵ect AA
d! AE

host-phage interaction

· under good metabolism AEB
e! EE↵B

· under poor metabolism AAB
f! EA�B

death of phage B
g! �

Here, b, c, d, e, f and g are all constant rates. All the events above are written with constraints, with

a nonlinear relation being incorporated automatically by adding empty sites E to the left of the arrows to

reflect the restriction of carrying capacity K. For example, the birth of the host is density dependent, which

needs an empty site to accommodate the newly-born host. If no empty site is found, such an event can

not happen. Since we consider only the mean field case, no spatial inhomogeneity is introduced. There is
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no concept of locality here, either. As long as an empty site is found, the newly-born host is permitted.

The crowding e↵ect describes the competition in survival for limited natural resources among hosts. No

such crowding e↵ect exists for phages, which is in line with our assumption that there is no true carrying

capacity confining the phage population. The two events in host-phage interaction are carefully chosen to

give a minimal model while encompassing reduced lysis when the host population is approaching its carrying

capacity. On the left hand side of the arrows, we use “AE” and “AA” to label the good and poor metabolic

status of the host, respectively. In this way, the e↵ect of phage infection is entangled with the metabolism of

its host. On the right hand side of the arrows, ↵ and � are the numbers of progeny for phage reproduction

under good and poor metabolism, respectively. There are two primary reasons which may account for the

reduced lysis e↵ect. The first is the decrease in the phage reproduction number [134], i.e.

↵ > � , (2.1)

because phages need bacterial genetic materials, molecular machinery and energy in the synthesis of their

replicates. When the normal function of the host is down-regulated, phage replication is correspondingly

down-shifted. The second reason is reduced e�ciency during phage infection, either in adsorption rates or

viable infection, which leads to a diminishing of the infection cycle [134], i.e.

e > f. (2.2)

It might seem as if the model is discrete in the representation of metabolism, since we put in good and

poor metabolism by hand. However, note that the actual metabolism of the community may be somewhere

between good and poor, i.e. a linear combination, depending on the probability or fraction to enter either

event. Hence, the separation of good and poor metabolism is an essential part of our model, which yields

the reduced lysis e↵ect within the context of a minimal model. Finally, although phages do not age, their

death can be induced by the rupture of capsids, and the corresponding rate is constant with time [2].

The time evolution of the whole community is accessed by random sampling. In each time step, we have

a probability µ to draw units in the host layer and a probability ⌫ to draw units in the phage layer. In

the host layer, we may draw either one unit with probability ! or two units with probability 1 � !. In

the phage layer, only one unit is drawn. If a combination not listed in Table 2.2 is drawn, such as EEB,

nothing happens. Thus all we need to consider are the above events. Using simple combinatorics, it is

straightforward to obtain the probability for the combinations as in Table 2.3), where the factor 2 accounts

the equality in probability for events AE and EA, or AEB and EAB.
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Table 2.3: Probabilities for the combinations in the lysis-only model.

combination probability

A µ (1� ⌫)!
m

K

AA µ (1� ⌫) (1� !)
m (m� 1)

K (K � 1)

AE µ (1� ⌫) (1� !)
2m (K �m)

K (K � 1)

AEB µ⌫ (1� !)
2m (K �m)

K (K � 1)

n

W

AAB µ⌫ (1� !)
m (m� 1)

K (K � 1)

n

W

B (1� µ) ⌫
n

W

Thus we obtain the transition matrices for each kind of variation in the population during each time

step, such as hT (m+ 1, n|m,n)i, and further the evolution for the probability in the population with m

hosts and n phages at time t P (m,n, t). The reader is referred to Appendix A for calculational details.

The average of the population is given by summation

hmi =
X

mn

mP (m,n, t) , (2.3a)

hni =
X

mn

nP (m,n, t) . (2.3b)

Thus, the time evolution for the population size is

d hmi
dt

= hT (m+ 1, n|m,n)i � hT (m� 1, n|m,n)i

� hT (m� 1, n+ ↵� 1|m,n)i

� hT (m� 1, n+ � � 1|m,n)i , (2.4a)

d hni
dt

= (↵� 1) hT (m� 1, n+ ↵� 1|m,n)i

+ (� � 1) hT (m� 1, n+ � � 1|m,n)i

� hT (m,n� 1|m,n)i . (2.4b)
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Here we have taken the mean field theory limit and neglected all the correlations and fluctuations.

Omitting angle-brackets for simplicity, the equations for the evolution in population are

dm

dt
= rm

⇣
1� m

K

⌘
� dmm

� �mn
⇣
1� am

m

K

⌘
, (2.5a)

dn

dt
= ��mn

⇣
1� an

m

K

⌘
� dnn, (2.5b)

where

r =
(2b+ d)µ (1� ⌫) (1� !)

K
, (2.6a)

� =
2eµ⌫ (1� !)

KW
, (2.6b)

� = ↵� 1, (2.6c)

dm =
(c! + d(1� !))µ (1� ⌫)

K
, (2.6d)

dn =
(1� µ) ⌫

W
, (2.6e)

am = 1� f

2e
, (2.6f)

an = 1� �f

2↵e
. (2.6g)

Considering Eq. (2.1), we notice that Eq. (2.6f) (2.6g) yield the following relation

0 < am < an < 1. (2.7)

Generally speaking, am 6= an unless

↵ = �, (2.8)

which implies that the reproduction numbers under good and poor metabolism are the same as in Weitz and

Dusho↵’s model. This concludes the derivation of the equations for population dynamics from the individual

or microscopic level.

2.4 Results

In this section we explore the predictions of the lysis-only model given by Eq. (2.5).
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Let

t0 =
rt

am
, (2.9a)

�0 =
��K

r
, (2.9b)

d0n =
amdn
r

, (2.9c)

d0m =
amdm

r
+ 1� am, (2.9d)

m0 = am
m

K
, (2.9e)

n0 =
amn

�K
, (2.9f)

a0n =
an
am

. (2.9g)

We can non-dimensionalize the evolution equations (2.5). Omitting the primes we obtain

dm

dt
= m (1�m)� �mn (1�m)� dmm, (2.10a)

dn

dt
= �mn (1� anm)� dnn. (2.10b)

Setting

dm

dt
= 0, (2.11a)

dn

dt
= 0, (2.11b)

we obtain three fixed points. The first is a trivial fixed point

m = 0, (2.12a)

n = 0, (2.12b)

which is stable when

dm > 1. (2.13)
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The second corresponds to the phage extinction phase

m = 1� dm, (2.14a)

n = 0, (2.14b)

which is stable when

0 < dm < 1� 1

an
(2.15)

or

1� 1

an
< dm < 1, (2.16)

�

dn
<

1

(1� dm) [1� an (1� dm)]
. (2.17)

The last is the coexistence of hosts and phages

m = ⇢, (2.18a)

n =
1

�

✓
1 +

dm
⇢� 1

◆
, (2.18b)

where ⇢ is a root of

an�⇢
2 � �⇢+ dn = 0. (2.19)

The coexistence phase comes into existence and will be stable when

�

dn
� 4an, (2.20)

dm < 1� ⇢. (2.21)

The stability of the fixed points are governed by the Jacobian

0

B@
(1� 2m) (1� �n)� dm ��m (1�m)

�n (1� 2anm) �m (1� anm)� dn

1

CA (2.22)
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to the equations

m (1�m)� �mn (1�m)� dmm = 0, (2.23a)

�mn (1� anm)� dnn = 0. (2.23b)

Thus we obtain the three-dimensional phase diagram plotted in Figure 2.2. The basin of attraction for

the trivial case is not plotted. Region II is the basin of attraction for coexistence fixed point only while region

III is that for the phage extinction. Region I will either go to coexistence or phage extinction, depending on

the initial conditions.

0
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1
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φ/dn
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a n
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I
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Figure 2.2: Three dimensional phase diagram for the lysis-only model. Region I depends on the initial
conditions to flow to the phage extinction or coexistence fixed point. Region II and III are basins of
attraction for coexistence and phage extinction fixed points, respectively.
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2.5 Discussions and Conclusion

Figure 2.3: Phase diagram in Weitz and Dusho↵’s model. d, m and � are dimensionless death rates for the
host and phage, and their coupling coe�cient, corresponding to dm, dn and � in our model, respectively.
Region I, II, and III have the same meanings as in Figure 2.2. After Ref. [11].

As we can see, the bottom plane in Figure 2.2 corresponds to the phase diagram in Weitz and Dusho↵’s

model as shown in Figure 2.3, where an = 1. When

↵ > � (2.24)

leading to

an > 1, (2.25)

there is a shift in the phase diagram with a rapid shrinkage of the basin of attraction for region II, where

any initial condition flows to the coexistence phase. The boundary between region I and III also moves to

larger
�

dn
, which implies that the more the good and poor metabolisms di↵er from each other in the progeny

number, the easier the phages are driven out of the system. In order to see the e↵ect of the phase shift more

clearly, let us tune an = 1.3 while keeping all the other parameters as those in Figure 2 (I) in Weitz and

Dusho↵’s paper [11] (Figure 2.4). When an = 1, there is a neutral fixed point for coexistence. However,

such a fixed point disappears (Figure 2.5) when an = 1.3. The flow diagrams are generated by 4th order
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Runge-Kutta method.
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Figure 2.4: Flow diagram for an = 1,� = 5, dn = 1, dm = 0.1. “⇥” denotes saddle points and “·” is for stable
fixed points.

In summary, we have obtained Weitz and Dusho↵’s model by detailed derivation from the individual or

microscopic level and found a small shift in the phase diagram. Such a shift, as we see, can be observed

experimentally by the onset of coexistence for the two species.
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Figure 2.5: Flow diagram for an = 1.3,� = 5, dn = 1, dm = 0.1. “⇥” denotes saddle points and “·” is for
stable fixed points.
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Chapter 3

Population Dynamics of Lysogenic
Viruses and Their Hosts

3.1 Introduction

In Chapter 2, we present the technique to systematically derive mean-field population dynamics for lytic

viruses and their hosts using an individual-level model of microscopic rate processes. In this chapter, we

continue to develop the formalism for the community of hosts and phages in the full lysogeny-lysis model.

Interestingly, we find that for certain combination of parameters, the community exhibits a limit cycle for all

the species in the phase space, even at the level of mean field theory. In order to interpret the corresponding

range of parameters in a useful way for experimental observations, we map the parameters to rates in

chemical reactions. In order to explore the robustness of our results, we demonstrate in Section 3.6 that

the corresponding limit cycle arises also in stochastic simulations with the Gillespie algorithm. Finally, in

Section 3.7 we estimate the feasibility of verifying our predictions in laboratory experiments.

3.2 Derivation of Population Dynamics from an Individual-level

Model

In this section, we extend the lysis-only model in Chapter 2 to incorporate lysogeny and investigate the

important role of lysogeny in host-phage dynamics. Now there are three types of organism in the community.

There are “healthy” hosts, which have no integration of phage genes, lysogens, and free phages, which live

outside bacteria membranes. We will label “healthy” hosts, lysogens and free phages by A, D, and B,

respectively, with population sizes m, s and n. For the same reasons as in the lysis-only model, hosts and

phages are thought of as being confined in di↵erent layers characterized by di↵erent carrying capacities.

Hence both “healthy” hosts and lysogens are in the host layer with a total carrying capacity K. The empty

sites in the host layer are denoted by E and their number is K �m� s. In the phage layer, the empty sites

are labelled by � as before.

The incorporation of lysogens brings us more microscopic events. There are two pathways after phage
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infections: lysis and lysogeny. Immediate lysis for temperate phages is the same process as for virulent ones,

which has been characterized by events in the previous section. Lysogeny is an option only for temperate

phages, which will be investigated in detail here. First, there should be an event corresponding to lysogen

formation, i.e. a phage integrates its DNA into the genome of the host and turns itself into a prophage.

Second, lysogens will survive, replicate and die as “healthy” hosts. Last, environments might trigger prophage

induction, which lyses the lysogen and releases the prophages inside. In all, there are eighteen microscopic

events, which are listed in Table 3.1.

Table 3.1: Microscopic events in the lysogeny-lysis model.

description symbols

birth of host AE
b! AA

DE
b! DD

death of host due to longevity A
c! E

D
c! E

death of host due to crowding AA
d! AE

DD
d! DE

AD
1
2d! DE

AD
1
2d! AE

host-phage interactions

· lysis under good metabolism AEB
e! EE↵B

· lysis under poor metabolism AAB
f! EA�B

ADB
f! ED�B

· lysogeny under good metabolism AEB
h! DE

· lysogeny under poor metabolism AAB
k! DA

ADB
k! DD

prophage induction

· under good metabolism DE
p! EE↵B

· under poor metabolism DD
q! DE�B

DA
q! AE�B

death of free phage B
g! �

Here b, c, d, e, f , g, h, k, p and q are constant reaction rates. ↵ and � are phage reproduction numbers
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under good and poor metabolisms, respectively. Although prophage induction enhances the survival ability

for lysogens in several ways, such as suppressing the latter’s metabolism [60] through down-regulation [139],

for simplicity we have assumed the same birth and death rates for “healthy” hosts and lysogens. We have

the condition

↵ > � , (3.1)

as before. Furthermore, there are the following advantages under better metabolism: more successful and

e↵ective infection (Eq. (3.2a)), greater possibility to lyse the host (Eq. (3.2b)), and faster prophage release

(Eq. (3.2c)). Since the mechanism for the lysis-lysogeny decision making of initial infection is di↵erent from

the genetic switch for prophage induction [8, 140] , we do not expect any special relationship between e and

f , and p and q. These advantages can be expressed mathematically by the following inequalities:

e+ h > f + k, (3.2a)

e

h
>

f

k
, (3.2b)

p > q. (3.2c)

We draw events from the two layers the same way as in the lysis-only model and this results in the proba-

bilities shown in Table 3.2.

From these events, we obtain the following evolution equations for all the three species after the calcu-

lations provided in Appendix B:

dm

dt
= rm

✓
1� m+ s

K

◆
� d1m� �1mn

⇢
1� 1

K
[(1� a1)m+ (1� 2a1) s]

�
, (3.3a)

ds

dt
= rs

✓
1� m+ s

K

◆
� d1s+ �2mn

⇢
1� 1

K
[(1� a21)m+ (1� 2a21) s]

�

� d2s

⇢
1� 1

K
[(1� 2a22)m+ (1� a22) s]

�
, (3.3b)

dn

dt
= [(↵� 1)�1 � ↵�2]mn

⇢
1� 1

K
[(1� a31)m+ (1� 2a31) s]

�

+ ↵d2s

⇢
1� 1

K
[(1� 2a32)m+ (1� a32) s]

�
� d3n, (3.3c)

where

r =
(2b+ d)µ (1� ⌫) (1� !)

K
, (3.4a)
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Table 3.2: Probabilities for the combinations in the lysogeny-lysis model.

combination probability

AE µ (1� ⌫) (1� !)
2m (K �m� s)

K (K � 1)

DE µ (1� ⌫) (1� !)
2s (K �m� s)

K (K � 1)

A µ (1� ⌫)!
m

K

D µ (1� ⌫)!
s

K

AA µ (1� ⌫) (1� !)
m (m� 1)

K (K � 1)

DD µ (1� ⌫) (1� !)
s (s� 1)

K (K � 1)

AD µ (1� ⌫) (1� !)
2ms

K (K � 1)

AEB µ⌫ (1� !)
2m (K �m� s)

K (K � 1)

n

W

AAB µ⌫ (1� !)
m (m� 1)

K (K � 1)

n

W

ADB µ⌫ (1� !)
2ms

K (K � 1)

n

W

B (1� µ) ⌫
n

W
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d1 =
(c! + d(1� !))µ (1� ⌫)

K
, (3.4b)

d2 =
2pµ (1� ⌫) (1� !)

K
, (3.4c)

d3 =
(1� µ) ⌫

W
, (3.4d)

�1 =
2(e+ h)µ⌫ (1� !)

KW
, (3.4e)

�2 =
2hµ⌫ (1� !)

KW
, (3.4f)

a1 =
f + k

2(e+ h)
, (3.4g)

a21 =
k

2h
, (3.4h)

a22 =
q

2p
, (3.4i)

a31 =
�f � k

2(↵e� h)
, (3.4j)

a32 =
�q

2↵p
. (3.4k)

We note that

�2 < �1, (3.5)

0 < a1, a21, a22, a31, a32 < 1, (3.6)

a32 < a22. (3.7)

We also notice some kind of symmetry in the correction terms such as “1 � a1” and “1 � 2a1”. a1

originates from the poor metabolism of hosts A, which indirectly downshifts the e�ciency of phage infection

and synthesis. In equation (3.3a), “a1” comes from the event AAB
f! EA�B, while “2a1” is from ADB

f!

ED�B. The factor “2” appears since “AD” is the same as “DA”.

Considering

↵ � 1, (3.8)

for example,

↵ ⇡ 100 (3.9)

for lambda phage [8], we approximate

(↵� 1)�1 � ↵�2 ⇡ ↵ (�1 � �2) . (3.10)
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Hence equation (3.3c) can be simplified as

dn

dt
= ↵ (�1 � �2)mn

⇢
1� 1

K
[(1� a31)m+ (1� 2a31) s]

�

+ ↵d2s

⇢
1� 1

K
[(1� 2a32)m+ (1� a32) s]

�
� d3n. (3.11)

3.3 Results

In this section, we explore the predictions of the lysogeny-lysis model given by equations (3.3a), (3.3b) and

(3.11).

Let

t0 = rt, (3.12a)

�0
1 =

↵�1K

r
, (3.12b)

�0
2 =

↵�2K

r
, (3.12c)

d01 =
d1
r
, (3.12d)

d02 =
d2
r
, (3.12e)

d03 =
d3
r
, (3.12f)

m0 =
m

K
, (3.12g)

s0 =
s

K
, (3.12h)

n0 =
n

↵K
, (3.12i)

and omitting the primes, the equations after non-dimensionalization become

dm

dt
= m (1�m� s)� d1m� �1mn [1� (1� a1)m� (1� 2a1) s] , (3.13a)

ds

dt
= s (1�m� s)� d1s+ �2mn [1� (1� a21)m� (1� 2a21) s]

� d2s [1� (1� 2a22)m� (1� a22) s] , (3.13b)

dn

dt
= (�1 � �2)mn [1� (1� a31)m� (1� 2a31) s]

+ d2s [1� (1� 2a32)m� (1� a32) s]� d3n. (3.13c)
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Formally, the fixed points can be solved by requiring that

dm

dt
= 0, (3.14a)

ds

dt
= 0, (3.14b)

dn

dt
= 0. (3.14c)

However, we can only obtain four fixed points analytically. The first is the trivial case for the extinction of

all the species

m = 0, (3.15a)

s = 0, (3.15b)

n = 0. (3.15c)

The second is the “healthy” host extinction fixed point

m = 0, (3.16a)

s =
1� d1 � d2

1� d2 (1� a22)
, (3.16b)

n =
d2
d3

s [1� (1� a32) s] . (3.16c)

The third is the “healthy” host only fixed point

m = 1� d1, (3.17a)

s = 0, (3.17b)

n = 0. (3.17c)

The last is the lysogen extinction

m =
1

1� a21
, (3.18a)

s = 0, (3.18b)

n =
1�m� d1

�1 [1� (1� a1)m]
, (3.18c)
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whose existence requires that

(�1 � �2) (a31 � a21) = d3 (1� a21)
2
. (3.19)
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Figure 3.1: In the lysogeny-lysis model, a stable fixed point for the coexistence of all the three species. The
parameters are �1 = 1,�2 = 0.8, d1 = 0.5, d2 = 0.49, d3 = 0.1, a1 = a21 = a31 = 0.1, a22 = a32 = 0.5.

The more interesting coexistence of all the three species is hard to solve analytically since the order of

the equations

m (1�m� s)� d1m� �1mn [1� (1� a1)m� (1� 2a1) s] = 0, (3.20a)

s (1�m� s)� d1s+ �2mn [1� (1� a21)m� (1� 2a21) s]

� d2s [1� (1� 2a22)m� (1� a22) s] = 0, (3.20b)

(�1 � �2)mn [1� (1� a31)m� (1� 2a31) s]

+ d2s [1� (1� 2a32)m� (1� a32) s]� d3n = 0, (3.20c)
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is too high. Using a 4th order Runge-Kutta method, we found numerically a stable fixed point, shown in

Figure 3.1.

3.4 Discussion

As shown in Eq. (3.13), there are, in total, ten parameters so that the phase space is di�cult to visualize.

We have studied the general trend of the transition between phases, starting with the dependence on phage

mortality rate d3. In Figure 3.2, it is shown that when the phage mortality rate is low, the systems flows

into a “healthy” host extinction phase. The phage population decreases with increase in the phage mortality

rate, which is very reasonable physically. For intermediate values of d3, there is coexistence for all the three

species, while for large values of d3, the only survival is “healthy” host, where all phages die out quickly out,

leading to the extinction of lysogens.
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Figure 3.2: The population of the community with increasing phage mortality rate d3. “ms” indicates the
sum of m and s.
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Figure 3.3: The population for the community with the increase in the lysis rate d2.

We show the trend of the population with increasing lysis rate d2 in Figure 3.3. The phage prospers

with the increase in the lysis rate, while the lysogen diminishes. The peak in the phage population appears

when there is a balance in the number of lysogens available to lyse and the lysis rate. When the lysis rate

is beyond the threshold at 0.54, lysogen number falls dramatically and there is a proliferation of “healthy”

hosts. The total host population is roughly the same afterwards while the phage population upshifts a little

with the increase in the “healthy” host available to infect but does not change further when the ratio between

“healthy” hosts and lysogens converges.

We have studied the e↵ect of host mortality rate in Figure 3.4. Obviously the total host population

will fall monotonically when the hosts are more likely to die. We draw attention to the interesting peak

in the phage population. When the host mortality rate is low, the phage population is suppressed due to

the overcrowding of the lysogens, which degrades the metabolism and hence the infection and synthesis of

phages. When the host mortality rate is high, on the other hand, the phages have insu�cient hosts to infect

and their population also declines.
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Figure 3.4: The population for the community with the increase in the host mortality rate d1.
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3.5 Existence of a limit cycle
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Figure 3.5: A limit cycle in the flow diagram for di↵erent initial conditions with parameters �1 = 1,�2 =
0.8, d1 = 0.5, d2 = 0.49, d3 = 0.03, a1 = a21 = a31 = 0.1, a22 = a32 = 0.5.

We have noticed that the dynamics exhibits a limit cycle [141, 142] for some combination of parameters

(Figure 3.5). In this section, we describe our numerical evidence for this assertion and present a plausible

physical interpretation of our finding. In order to verify that it is a limit cycle instead of some unexpected

slowing down near a putative stable or neutral fixed point, we have chosen an initial condition located

inside the conjectured limit cycle. If there is, in fact, no real limit cycle, the dynamics will flow inwards no

matter how slow it will be. However, as we can see in Figure 3.6, the trajectory indicated by the red curve

flows out. Hence we have observed in the flow diagram an oscillation in the population for all the three

species. If we inspect neighboring time steps, it appears that the convergence is slow, since the deviation

from step to step is very small. However, on longer time scales, we can see that the convergence is an
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Figure 3.6: A limit cycle in the flow diagram with di↵erent initial conditions for parameters �1 = 1,�2 =
0.8, d1 = 0.5, d2 = 0.49, d3 = 0.03, a1 = a21 = a31 = 0.1, a22 = a32 = 0.5. The limit cycle is in a curved
space. The blue curve initiated outside the cycle flows in while the red one from inside flows out.
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Figure 3.7: A limit cycle in the flow diagram with di↵erent initial conditions for parameters �1 = 1,�2 =
0.8, d1 = 0.5, d2 = 0.49, d3 = 0.03, a1 = a21 = a31 = 0.1, a22 = a32 = 0.5. The limit cycle is in a curved
space.
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Lack of hosts 
to infect, 
decrease in 
virus 
population

Lysogens 
serve as a 
genetic 
reservoir!
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Lysogeny-
lysis switch 
leads to 
virus burst

Figure 3.8: Cartoon explanation for the limit cycle. When the population for host and phages are both small,
the host will enjoy a boom because of good metabolism and little phage infection. Meanwhile prophages
replicate with the fast reproduction of lysogens. Once the lysogeny-lysis switch is triggered, the destruction
of lysogens will yield a huge virus burst. Then “healthy” host will encounter intensive phage infection and
hence be suppressed. When most of the host die out, phage population shrinks quickly due to lack of
infection. In this way, a cycle forms.
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illusion. Moreover, tilting the view angle, we see that the limit cycle is in some curved space instead of

a single plane in Figure 3.7. In order to investigate the emergence of the limit cycle, we have scanned

part of the parameter space. For example, there is a stable coexistence fixed point for d1 > 0.41 while

�1 = 1,�2 = 0.8, d2 = 0.9, d3 = 0.048, a1 = a21 = a31 = 0.1, and a22 = a32 = 0.5. However, the above

fixed point becomes unstable if d1 < 0.41 leading to the limit cycle. As we see it, such an oscillation of the

population in the community is a manifestation of the role of lysogens (Figure 3.8). When the population

for host and phages are both small, the host will enjoy a boom because of good metabolism and little

phage infection. Meanwhile prophages replicate with the fast reproduction of lysogens. Once the lysogeny-

lysis switch is triggered, the destruction of lysogens will yield a huge virus burst. Then “healthy” host

will encounter intensive phage infection and hence be suppressed. When most of the host die out, phage

population shrinks quickly due to lack of infection. In this way, a cycle forms. Integrating its DNA into

the genome of a lysogen, a prophage is sheltered although it is temporarily dormant in the sense of viral

infection. Such a stage assists prophages to survive demanding environmental conditions and provides an

opportunity to resurrect the population when there are abundant “healthy” hosts. Thus lysogens are perfect

genetic reservoirs for phages for potential future burst [51, 60].

3.6 Stochastic simulation

Up to now, all the calculations above were carried out within the scope of mean field theory. As a next

step, it is important to see to what extent such predictions are disturbed by demographic fluctuations, and

especially whether the limit cycle in the lysogeny-lysis model is stable. A second goal of this section is to

link the parameters the parameters in our model to those which could characterize real experiments. In

this section, we perform stochastic simulations using the Gillespie’s algorithm [143, 144], which is a very

e�cient strategy to simulate chemical reactions. The reaction rates (b, c, d,e, f and g in Table 2.2, and

b, c, d, e, f , g, h, k, p and q in Table 3.1) are interpreted as average probability rates for the occurrence

of the corresponding reactions in line with the Gillespie algorithm, where the e↵ect of draw probability is

incorporated automatically.

In the lysis-only model, the map between the two sets of parameters for reactions is

eb = bK, (3.21a)

ec = c, (3.21b)
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ed =
1

2
dK, (3.21c)

ee = eK, (3.21d)

ef =
1

2
fK, (3.21e)

eg = g, (3.21f)

where tilde is used to indicate the probability rates in the Gillespie algorithm. Since there are more degrees

of freedom in choosing microscopic event rates, di↵erent stochastic simulations may map into the same mean

field phase diagram.
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Figure 3.9: A limit cycle in the phase space with parameters in the Gillespie algorithm eb = 0.4,ec = 0.1, ed =
0.2, ee = 1.2⇥ 10�10, ef = 1.2⇥ 10�11, eg = 0.018,eh = 4.8⇥ 10�10,ek = 4.8⇥ 10�11, ep = 0.54, and eq = 0.27.

Our main interest is to explore the mean field limit cycle in the lysogeny-lysis model. We keep employing
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Figure 3.10: The projection of Figure 3.9 onto the m-s plane.
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Figure 3.11: A limit cycle projected onto m-s plane in the mean field theory with parameters �1 = 1,�2 =
0.8, d1 = 0.5, d2 = 0.9, d3 = 0.03, a1 = a21 = a31 = 0.1, and a22 = a32 = 0.5.
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the tilde symbol to label the probability rates in the Gillespie sense and the map is

eb = bK, (3.22a)

ec = c, (3.22b)

ed =
1

2
dK, (3.22c)

ee = eK, (3.22d)

ef =
1

2
fK, (3.22e)

eh = hK, (3.22f)

ek =
1

2
kK, (3.22g)

ep = pK, (3.22h)

eq =
1

2
qK, (3.22i)

eg = g. (3.22j)

In Figure 3.9, we show a limit cycle observed in our stochastic simulations. It is broadly consistent

with the mean field predictions, as can be noted easily by the obvious similarities between Figure 3.10 and

Figure 3.11, and Figure 3.12 and Figure 3.13 (when we project the three-dimensional phase space onto two

dimensions), whose relationship is Eq. (3.12g), (3.12h) and (3.12i). As expected, we notice fluctuations in

the stochastic simulation. For example, if Figure 3.9 were shown in better resolution, we can see that the

curve fluctuates slightly around the limit cycle. Usually the fluctuation is two orders of magnitude smaller

than the mean value. In order to explore the robustness of the limit cycle, we ran extensive tests to try and

estimate their lifetime. For di↵erent parameter values that yield limit cycles in the mean field theory, we

map them each to six sets of typical parameters in the Gillespie algorithm, varying eb,ec, ed, ee, ef, eg,eh,ek, ep and

eq while obeying constraints. We run simulations for 1010 time steps each with five sets of di↵erent initial

conditions. As long as the carrying capacity is large enough, we do not observe any disappearance of the

limit cycle. Furthermore, they all run into the same limit cycle.

Hence we conclude that the limit cycle is inherent to the model and robust to stochastic fluctuations,

which serves to confirm the essential role of lysogens in stabilizing the cycling in the populations.
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Figure 3.12: The projection of Figure 3.9 onto the s-n plane.
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Figure 3.13: A limit cycle projected onto the s-n plane in the mean field theory with parameters �1 = 1,�2 =
0.8, d1 = 0.5, d2 = 0.9, d3 = 0.03, a1 = a21 = a31 = 0.1, and a22 = a32 = 0.5.
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3.7 Parameters in the model

Up to this point, all the parameters above or their values we have explored are di�cult to relate to experiment.

The purpose of this section is to bridge the gap.

The birth rate of the host b is medium-dependent. Usually the expression of Lac proteins is highly

suppressed by Lac repressors in a lacose-free medium to optimize energy investment and metabolism of the

bacteria. In the above two models, we have categorized the death of the hosts to longevity and crowding.

In fact, it is hard to mark a watershed clearly. Instead, what is observed is a population-dependent growth

rate, which is a combined e↵ect of b, c and d. Herein, the rate d for the death of the host due to crowding is

introduced artificially to account for the actual population dependence. Thus, we are justified in assuming

that the death rate of the host due to longevity c, which incorporates other physical and non-density-

dependent factors, is fixed with the variation in host population. The growth rate for E. coli may drop to

0.2 h�1 at 37�C when glycolate serves as the carbon source but usually is in the range from 0.5 h�1 to 2.0

h�1 [145, 97]. The growth rate is species- and strain-specific, which for Pseudoalteromonas sp. strain SKA18

(accessible number AF188330 in GenBank) [134], for example, is an order of magnitude smaller. Similarly,

lysis rate f , lysogeny rate k, prophage induction rate q, and replicate number per capita �, which are all

under poor metabolism, are introduced manually to characterize the population-dependent feature of the

interactions in order to leave their population-independent counterparts e, h, p and ↵ fixed. In the case of

virulent phages, such as one in the family Siphoviridae [146] attacking Pseudoalteromonas sp. strain SKA18

[134], corresponding to the lysis-only model, the reported lysis rate spans from 0.2 to 2.0 h�1 subject to the

growth rate of the bacteria so that we can estimate e to be on the order of 1.0 h�1 and f to be an order of

magnitude smaller than e.

For temperate phages in the lysogeny-lysis model, the spontaneous lysis rate is far smaller, being of the

order of 10�9 to 10�7 per generation per cell [147]. The percentage of lysogens is assayed through prophage

induction by the addition of mitomycin C, UV radiation or other environmental conditions that may inhibit

lambda phage repressors. Under good metabolism the lysogeny rate h for � phage infecting E. coli and

prophage induction rate are on the order of 1 h�1 and 2 h�1, respectively [148]. Their counterparts under

poor metabolism are estimated to be one or two orders of magnitude smaller. For instance, the prophage

induction rate for log-phase marine lysogens [149] is on the order of 0.03 h�1. Replicate number per capita

↵ is about 100 for phage � [8], and may be up to 600 for phage W-14 [150], while � is about 20 or 30 for

both. Although virions do not age [2], their mortality is caused by the destabilization of the capsid, which

is dependent on physical conditions such as temperature, humidity and pH values. C. D. Jepson and J. B.

March [151] reported that phage � is highly stable, whose half life in suspension ranges from 2.3 days at
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4.2�C to 36 days at 20�C. Even if we take the half life be one day, the corresponding death rate g is on

the order of 10�6 per second and can be suppressed by cooling down. Actually, the loss of free phage in

nature, to a great extent, is through di↵usion since bacteria are more immobile due to their large particle size

compared to that of phages. In laboratory, the death rate can be manipulated through continuous dilution

and washing out, and a wide range of death rates can be realized.

When all the parameters are tuned properly, the limit cycle in the lysogeny-lysis model is observable in

experiment. We estimate the period of the limit cycle to be on the order of days. Take Figure 3.10 as an

example. A cycle there is composed of about 10, 000 computational steps, in other words 10, 000 events,

which corresponds to about 120 [time unit] in the simulation. In Figure 3.10 the birth rate is 0.6 [time

unit]�1, while in the real world the life cycle of an E. coli in good laboratory conditions, for example, is

about half an hour, which is 2 hour �1. Hence the cycle is 120 ⇥ 0.6/2 = 36 hours, which is one day and

a half. When we vary parameters in the Gillespie algorithm, as long as they map to the same limit cycle

in the mean field theory, the period stays the same. The period will change only when it corresponds to

di↵erent limit cycles in the mean field sense. When we increase d01 in the mean field theory, the period may

drop to 28 hours at the edge of the disappearance of the limit cycle.

3.8 Conclusion

We have derived the mean field population dynamics for host-phage communities both without (in Chapter

2) and with lysogens (this chapter). In the lysis-only model, we successfully obtained a description similar

to the starting point assumed by Weitz and Dusho↵ [11], and we found that the phase diagram was modified

only slightly to the di↵erence in good and poor metabolism. In the lysogeny-lysis model, we identified the

asymptotic states, which included not only coexistence and extinction fixed points, but population cycling of

all microbes, lysogens and phages. Our findings support the notion that lysogens act as a reservoir and are

in principle amenable to experimental verification. We simulated the stochastic process using the Gillespie

algorithm and verified the robustness of our results to fluctuations, and especially demonstrated the stability

of the limit cycle.

Although complicated, our model inevitably makes some drastic assumptions, among which the most

severe is the omission of spatial structure. Discreteness in the occurrence of speciation and adaptation in time

and space may have a complex interplay with spatial heterogeneity since it propagates with large fluctuations

at fronts [106, 107, 108, 109]. Such demographic noise may also induce robust spatial patterns beyond mean

field predictions [111]. Hence inclusion of spatial structure may yield interesting predictions about the spatial
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structure of microbe-virus communities, with concommitant consequences for the evolutionary dynamics too.

Another simplification is that we treat “healthy” hosts and lysogens in the same way regarding their natural

birth, death and crowding e↵ect. However, experimentally, the expression of prophage genes and the control

of host gene expression by viral genes seem to impart to lysogens econominization in their metabolism [60].

When unnecessary metabolic activities are suppressed, lysogens optimize their energy expenses and therefore

gain some survival advantage compared to “healthy” hosts in unfavorable conditions, which suggests that

the natural birth, death and crowding e↵ects of lysogens are distinct from those of “healthy” hosts. Hence

our model is a reasonable minimal model that can capture the non-trivial role of lysogens in the population

dynamics of microbe-phage communities, in addition to the usual predator-prey interactions, but more

biological realism could be introduced.

This work can be extended in several ways, but perhaps the most interesting are those which relate to

the evolution of the field of genes distributed amongst the microbes, viruses and lysogens. Lysogens are

genome carriers of not only microbes but also prophages, capable of yielding virus bursts when triggered by

environmental stress. In this way, the role of lysogens and viruses as a reservoir of genes is mediated through

phage infection and the lysogeny-lysis switch by the metabolism of the host. The metabolism of the host

is, in turn, to a great extent influenced by environmental conditions. Thus, this model is a starting point

for ecology-mediated evolution. It is also useful to stress that each individual microbe or virus constitutes

a part of another organism’s environment. Thus, the e↵ects which our work begins to treat, represent a

microcosm of the intricate interplay between ecology and evolution in microbe-virus communities.
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Chapter 4

Game Theory and the Social Life of
Micro-organisms

4.1 Cooperation in Classic Game Theory

Cooperative phenomena in biology are di�cult to treat because of the complexity and heterogeneity of the

interactions, but a qualitatively successful approach is cooperative game theory—the e↵ort to encapsulate

the complex interactions into parameters describing the binary outcome of pairwise interactions between

individuals [152, 153, 154, 155, 156, 157, 158]. The central element in game theory is the payo↵ matrix,

which describes the score accruing to each member of an interacting pair depending upon their action in the

game. As an example, we show a typical payo↵ matrix (4.1) for pairwise interactions in the classic prisoner’s

dilemma

0

B@

C D

C R S

D T P

1

CA. (4.1)

Two players can either “cooperate” (C) or “defect” (D). Mutual cooperation yields a reward R, whilst if

both defect, they receive a punishment P . If one defects and the other cooperates, the defector receives

a temptation T while the cooperator receives the sucker’s payo↵ S. If T > R > P > S, then there is a

dilemma: a rational player would defect to receive the highest payo↵ independent of the state of the other

player, so that if both parties play rationally, each will end up with the punishment P . However, if they had

both cooperated, they would have received the reward R.

Two-body interactions are paradoxical in cooperative games, a forceful indicator of how collective e↵ects

can override selfish one-body behavior. If the payo↵ matrix instead obeyed the inequalities T > R > S > P ,

then the rational strategy is to do the opposite of the other player. This condition leads to the so-called

snowdrift game, which gives rise to the coexistence of both strategies

Classic game theory o↵ers an approach to explain the ubiquitous cooperative phenomena in nature:

Measure the payo↵ matrixes in various scenarios and justify that they fall in the regimes for cooperation.
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4.2 Cooperation in Laboratories

4.2.1 An RNA Virus

The approach in game theory is easier said than done because the elements in the payo↵matrixes, interpreted

as fitness or growth rates, are usually very hard to measure in the well-established cooperative animal world

such as monkeys, bats or fish [159]. However, empirical data come at last with technological advances in

microbiology. Such seemingly abstract games have biological realizations in the dynamics of microbes and

viruses.

In a pioneering study, Turner and Chao [160, 159] demonstrated that an RNA virus �6 is engaging in

the prisoner’s dilemma by measuring the payo↵ matrix as shown in Matrix (4.2)

0

B@

�6 �H2

�6 1 0.65

�H2 1.99 0.83

1

CA. (4.2)

In their experiment, �6 is a wild-type complete strain, capable of producing all the necessary intracellular

products for infection, and acts as a cooperator. �H2 is a mutant strain, which evolves a defector strategy

when cultured at high multiplicities-of-infection. During the co-infection of a microbial host by these two

strains, the fitness of the whole community increases initially, but drops eventually. The final drop is

unexpected because in evolution fitness usually increases. The dilemma can be explained using game theory.

By constructing the payo↵ matrix according to the measured mean fitness at di↵erent initial ratios of the

two strains, the authors showed that the virus was e↵ectively trapped in the prisoner’s dilemma, which

engendered the final drop.

To escape the dilemma of the phages, several years later, the same authors [161] cultured another strain

�L1 to compete with �H2. This time the payo↵ matrix (4.3)

0

B@

�L1 �H2

�L1 2.24 1.25

�H2 3.47 0.83

1

CA (4.3)

obeyed the inequalities T > R > S > P and so conformed to the condition for the so-called snowdrift game,

in which coexistence of the two strains were observed.
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4.2.2 Budding Yeast

In the above two experiments, the payo↵ matrices are measured, but not controlled. In a recent experiment,

a game theory payo↵ matrix was manipulated by genetically engineering Saccharomyces cerevisiae (budding

yeast) [13].

Budding yeast’s primary carbon intake is a monosaccharide, such as glucose and fructose. In a monosaccharide-

absent environment, dormant genes are derepressed to digest alternative nutrients, such as disaccharide mal-

tose and sucrose [162]. In the experiment, wild-type cooperator strains have an intact SUC2 gene, which

codes enzyme invertase to hydrolyze sucrose into glucose and fructose (Figure 4.1). However, 99% of the

product is released back into the media, giving rise to the possibility that mutant defectors with the SUC2

gene knocked out could make use of the metabolite without having to pay the price of manufacturing glucose.

In order to tune the cost of cooperation and hence the payo↵ matrix, the authors engineered cooperators to

be histidine auxotrophs, relying on histidine importation from the media. Having an intact histidine gene,

defectors are not a↵ected. Thus limitation of histidine concentration in the media coerces the metabolism of

cooperators, increases the cost of cooperation, and thus a↵ects the payo↵ matrix. By changing the glucose

and histidine concentration provided with a fixed portion of sucrose, the authors empirically obtained a

transition from the dominance of defectors, which corresponds to the prisoner’s dilemma, to the coexistence

of both strains, which is a snowdrift game (Figure 4.2).

Figure 4.1: Enzyme invertase catalyzes sucrose hydrolysis into glucose and fructose. After Ref. [12].

The ability to manipulate collective properties of the microbial world by genetic engineering is impressive,

but what is lacking is a predictive understanding of the direct dependence of cooperator fraction on nutrition

concentrations.
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Figure 4.2: Coexistence of the two strains with variations in glucose and histidine concentration. After Ref.
[13]. (a) Cooperator fraction scaled in the color bar with variations in glucose and histidine concentration at
equilibrium. The black line is the boundary separating regimes for the prisoner’s dilemma (above the line)
and the snowdrift game (below the line). (b) Mean growth rate of the coculture with di↵erent glucose and
histidine concentration at equilibrium. The lines from top to bottom corresponds to histidine concentration
1, 0.2, 0.05, 0.02, 0.01, and 0.005 (⇥ 20 µg ml�1), respectively.
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4.3 Theory of Cooperation in a Micro-organismal Snowdrift

Game

4.3.1 Goal

The purpose of this chapter is to build up a phenomenological model linking game theory and experimental

measurable quantities. We would like to calculate the population structure, i.e. the fraction for coopera-

tors and defectors, at di↵erent glucose and histidine concentrations, and reproduce the phase diagram for

the transition from dominance of a single strain to coexistence of both as shown in Figure 4.2(a). We

use phenomenological game theory because the collective e↵ects here are highly nonlinear due to complex

metabolism. Our model implies a consistent nonlinearity responsible for both yeast growth and glucose

production.

4.3.2 Model

Figure 4.3: Schematic of nutrient flows in the experiment of Ref. [13]. Sucrose is hydrolyzed in the periplas-
matic space (grey) of cooperators. The majority of the glucose produced di↵uses back to the media, from
which both strains import glucose. After Ref. [13].

The interactions between cooperator and defector strains are complicated for the following two reasons.

First, there are two kinds of nutritional molecules: sucrose and glucose as sketched in Figure 4.3. Sucrose is
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easy to handle because it has a single source and single mode of consumption, originating from the media

and being consumed only by cooperators. However, glucose has two sources: the initial amount added

into the media, and the local increment from sucrose decomposition by cooperators. The actual glucose

concentration surrounding yeast cells depends on the cooperators’ metabolism and concentration, whose

relation is unknown. Second, in sucrose hydrolysis, cooperators experience a cost to synthesize invertase,

but at the same time gain in generating glucose for themselves. The balance between the cost and benefit

is subtle and hard to handle. In order to circumvent these two obstacles, we model a simple situation where

the two strains are at the same nutrition level. This should be applicable to the experimental situation

because cooperator strains ultimately live on the monosaccharide glucose no matter if it is absorbed from

the surrounding media or decomposed from sucrose. In this way, our system can be simplified as a coexistence

problem of two strains living on the same nutrition glucose.

Next we use game theory to identify the conditions for coexistence. The key is to construct a payo↵matrix

with experimental data. Here, the two strains are engaging in a cooperative game: if the payo↵ for defectors

exceeds that of cooperators, defectors will dominate; if the payo↵ for cooperators exceeds that of defectors,

cooperators will dominate. Therefore only when the payo↵s for both parties are equal, will coexistence be

achieved. The payo↵ for players is the mean fitness for strains, which is measured as the growth rate. Thus,

our next task is to construct the dependency of growth rates on experimental observable quantities. We do

this below using a mean field theory, modeled after the way in which cooperative interactions leading to

ferromagnetism are described by an e↵ective local field that adds to the externally applied magnetic field

(see, e.g. Ref. [163]).

The first input is the nonlinear dependency of growth rate b (hr�1) on glucose concentration g (%)

according to the experiment (Figure 4.4):

b = �1g
↵, (4.4)

where �1 = 0.44, ↵ = 0.15 and g is 0.001 ⇠ 0.03%. In Eq. (4.4), the growth rate b varies nonlinearly

with glucose concentration g. The nonlinear power ↵ is unusual, and reflects cellular constraints, such as the

nonlinear performance of hexose transporters and catabolic pathway enzymes. We cannot use first principles

system biology to justify the nonlinear ↵, because the basic metabolic networks etc. are not well enough

understood. Instead, we make a very simplified assumption: we interpret the nonlinearity as primarily

reflecting aspects of the e�ciency of hexose transporters across the cell membrane. Hence Eq. (4.4) implies

that translocation flux rate through the membrane is proportional to the concentration raised to a nonlinear

power ↵. Note that in principle, such translocation processes are influenced by the metabolism of the cells,

but for now we regard that as negligible.
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Figure 4.4: Growth rate b (hr�1) varies nonlinearly with glucose concentration g (%) when there are only
defectors. After Ref. [13].

Second, we include the presence of cooperators. Now, there are two sources of glucose. Besides the initial

glucose added into the media, cooperators also produce glucose from sucrose decomposition. At the mean

field level, every cooperator manufactures glucose at about the same rate. We assume that this rate does

not have a significant dependence on the metabolism of cells; because the amount of invertase in each cell

is not influenced by the metabolism, we assume that the performance of invertase is also not significantly

influenced by the metabolism. Since the sucrose concentration is kept the same throughout the experiment,

there is no need for us to explore the detailed form of such a production rate. The total glucose produced

inside all the cooperator cells is thus proportional to the cooperator fraction f . Eq. (4.4) implies that the

glucose imported into the cell scales as g↵ due to the cellular constraints on the molecular translocation

process. The same translocation passage limits the glucose output from cooperators, as evidenced by the

report that the di↵usion coe�cient through the cell wall is anomalously small, estimated to be 1/20 of that

in water [13]. Hence the flux of glucose released is proportional to the glucose produced inside the cells raised

to the power ↵. Since the glucose manufactured inside the cells is proportional to the cooperator fraction f ,

the glucose contribution from cooperators is proportional to f↵ with some coe�cient of proportionality. We

denote the coe�cient as �. As we note in the discussion about Eq. (4.4), the translocation process is a↵ected

by the metabolism of the cells. The coe�cient �, in this way, represents a general discount factor due to

metabolism, which is a combined e↵ect of the artificial discount in histidine limitation and the natural cost

in cooperation. Including the contribution from cooperators as shown in Figure 4.5, we obtain the growth

rate for defectors

bd = �1(g + �f↵)↵, (4.5)
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where � is a general discount factor that varies with histidine concentration, reflecting the artificial discount

in histidine limitation and the natural cost of cooperation.

Figure 4.5: Sketch of sources of glucose for defectors.

We would like to emphasize that we are proposing that the glucose increment is related to the cooperator

fraction instead of the absolute number of cooperators. There is a subtle di↵erence here, because the

defectors and the cooperators are competing for glucose. To see this, suppose that there are twice as many

defectors as cooperators: then, each defector can, in mean field theory, capture 0.5 of the production of

each cooperator. On the other hand, if there are equal numbers of defectors and cooperators, each defector

captures approximately the entire production of a cooperator.

Third, we analyze the situation for cooperators. Compared with defectors, when they import glucose

from the media, the translocation process is influenced by the metabolism as we learn from Eq. (4.4). Such a

discount, representing a combined e↵ect of the artificial discount in histidine limitation and the natural cost

in cooperation, is represented by the same � as in Eq. (2), because the same cellular processes are involved.

Thus we obtain

bc = ��1(g + �f↵)↵, (4.6)

where bc is the growth rate for cooperators. Last, we recall that there is a small amount of glucose that

cooperators reserve for themselves. This amount is determined by the sucrose concentration and the cell’s

metabolism and transport processes, which are mediated by the histidine concentration. Since the sucrose

concentration is always 5% during the experiment, we denote the benefit for a single cooperator cell by ⇣, a

single-variable function of histidine concentration only. Including this benefit for cooperation (Figure 4.6),

we finally obtain

bc = ��1(g + �f↵)↵ + ⇣. (4.7)

Eqs. (4.5) and (4.7) compose the central part of our model, including the contribution of cooperators

to the increase in glucose concentration by the term �f↵. This model balances the cost � for cooperators

with the benefit ⇣, both depending only on histidine concentrations. Note that as the cooperator fraction

f increases, more glucose is trapped in cooperators, but the amount per cooperator does not change. The
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Figure 4.6: Sketch of sources of glucose for cooperators.

positivity of ⇣ is essential for the survival of cooperators, which makes it possible for the two engineered

strains to engage in a snowdrift game.

4.3.3 Assumptions and Tests

In our model of cooperation, we have input three non-trivial arguments: (i) The two ↵’s in Eqs. (4.5) and

(4.7) are the same, representing the same translocation passage limitation on the glucose flux both into and

out of yeast cells; (ii) The two �’s in Eq. (4.7) are the same, implying the same discount in yeasts’ growth

and sucrose decomposition by cost of cooperation mediated by histidine limitation; (iii) ⇣ is a single-variable

function of histidine concentration, representing that cooperators are compensated for production of glucose.

Our arguments above motivated points (i)-(iii) assuming that it is primarily the phenomenology of

transport of glucose through the cell membrane which is the growth-rate determining factor. However, in

principle, other metabolic e↵ects can be present. To test whether or not our assumptions are self-consistent

and represent a good representation of the data, we compare the predictions of our equations with the data.

Ideally, we would like to be able to calculate the cooperator fraction as a function of glucose and histidine

concentrations in Figure 4.2(a) from theory, but this would require a detailed description of the metabolism

and growth dynamics of the organisms to obtain the parameters. As an alternative approach, we input

experimental data to our equations and verify the consistency of our modeling by checking the standard

deviations for di↵erent sets of data. Based on our reasoning from game theory that the growth rates for

cooperators and defectors are the same at equilibrium, the measured growth rates of cocultures as a function

of glucose and histidine concentrations shown in Figure 4.2(b) should be valid for either strain. Interpreting

them as the growth rates for defectors, we can import the data in Figure 4.2 for various glucose and histidine

concentrations into Eq. (4.5) and calculate the discount �. According to our argument (i), we predict that �
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Table 4.1: Cost � for cooperators at various histidine concentrations.

[his]/(20 µg ml�1) 1 0.2 0.05 0.02

� 0.19 0.14 0.061 0.027

standard deviation �� 0.02 0.02 0.006 0.006

should be the same at the same histidine concentration but di↵erent glucose concentrations; this is supported

by the standard deviations shown in Table 4.1. We neglect the data for very small cooperator fractions,

especially for the extinction of cooperators, such as those when histidine concentration is as low as 0.005,

since they will either generate large deviation with very small bias in measurement or cause the cooperation

term �f↵ to vanish. Averaging among di↵erent glucose concentrations, we can see that the discount � gets

smaller when histidine is more dilute. The first two �� are calculated with six data points where glucose

concentration (%) ranges from 0.001 to 0.03. The latter two are smaller than the first two since fewer

data are averaged. The smallness of the standard deviations has not been hard-wired into our model, and

substantiates our assumption (i) because otherwise they might be orders of magnitude larger, as we will

illustrate as follows. We show in Table 4.2 the average of � and its corresponding standard deviation �� if

the increment of glucose concentration varied not with the same power ↵ as we have assumed in our model,

but linearly with cooperator fraction, as we might have initially guessed,

bd = �1(g + �f)↵, (4.8)

or even quadratically

bd = �1(g + �f2)↵. (4.9)

The standard deviations �� in Table 4.2 are at least two orders of magnitude larger than those in Table

4.1, and are even higher for the fit to Eq. (4.9) as shown in Table 4.3. The comparison among these

tables demonstrates that the standard deviation is a good test of our assumption, and hence justifies the

self-consistency of our theory.

Next, we interpret the data in Figure 4.2(b) as growth rates for cooperators and plug in the values of

� shown in Table 4.1 into Eq. (4.7). Our arguments (ii) and (iii) predict that ⇣ depends only on histidine

concentration, which is consistent with the standard deviation for ⇣ in Table 4.4. The benefit for cooperators

diminishes with the limitation in histidine. The latter two �⇣ are bigger than the previous two since we

extend the data for those not incorporated in the calculation of � in Table 4.1. Overall, however, these
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Table 4.2: Large standard deviation �� to fit Eq. (4.8) in violation of assumption (i).

[his]/(20 µg ml�1) 1 0.2 0.05 0.02

� 1.8 12 12 8

standard deviation �� 1.5 9 7 4

Table 4.3: Large standard deviation �� to fit Eq. (4.9) in violation of assumption (i).

[his]/(20 µg ml�1) 1 0.2 0.05 0.02

� 5⇥10 4⇥103 8⇥103 9⇥103

standard deviation �� 6⇥10 7⇥103 8⇥103 6⇥103

consistency checks are successful, a result that we emphasize is not “built-in” to our theory.

Table 4.4: Benefit ⇣ for cooperators at various histidine concentrations.

[his]/(20 µg ml�1) 1 0.2 0.05 0.02

⇣ 0.269 0.260 0.241 0.222

standard deviation �⇣ 0.003 0.004 0.007 0.02

4.3.4 Results

With the cost � and gain ⇣ in hand, we can now predict the cooperator fraction at equilibrium. Setting bd = bc

in Eq. (4.5) and (4.7), we plot the predicted cooperator fraction in Figure 4.7(a). As a comparison, we replot

the corresponding data from experiment [13] in Figure 4.7(b). Considering that the cooperator fraction

varies nearly 4 orders of magnitude, the similarity between the theoretical calculation and experimental

measurement is striking and supports our model.

4.4 Conclusion

In this chapter, we have proposed a phenomenological model for wild-type cooperator and mutant defector

strains in a mixed media of glucose and sucrose. We circumvented the obstacle of modeling sucrose decom-

position, which increases glucose concentration, incurs a cost as invertase syntheses for cooperators, and
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Figure 4.7: (a) Theoretical result for cooperator fraction at various glucose and histidine concentrations. (b)
Corresponding experimental result for cooperator fraction at various glucose and histidine concentrations.
In both panels, the black line is the boundary separating regimes for the prisoner’s dilemma (above the line)
and the snowdrift game (below the line).
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rewards them with a small fraction of the glucose produced, by attributing cost and benefit for cooperation

to growth rates. Then we determined the dependency of growth rates for defectors and cooperators on

experimental quantities such as glucose and histidine concentrations. Despite our approximations, such as

averaging over di↵erent glucose concentrations, the resulting calculation of cooperator fraction at equilibrium

is consistent with experimental observations. So what did we actually predict? By requiring that bd = bc, we

thus found, in a non-circular way, the condition for the phase boundary separating the prisoner’s dilemma

phase from the snowdrift phase of the system. Our mean field arguments also predict the trend, i.e. the sign

of @f/@g for fixed histidine concentration. These methods could be useful in the design of future experiments

to manipulate collective properties of micro-organism communities.
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Chapter 5

Novel Mechanism Enhancing
Cooperation in Evolutionary Game
Theory

5.1 Game Theory

As mentioned in Section 1.2, cooperation is widely observed at all levels of biology from human society to

other animals from organisms to cellular processes. Cooperation in biology is di�cult to treat and often resort

to game theory, which abstracts complicated interactions into gain and loss in decision-making processes.

Interpreting economic concepts of gain and loss as evolutionary fitness after J.M. Smith and G.R. Price [164]

in 1973, evolutionary game theory has widely been used to explain cooperation in biology [165].

To give a brief introduction in game theory, let us start with a typical payo↵ matrix for two players

0

B@

C D

C R S

D T P

1

CA. (5.1)

Each player can choose either to “cooperate” (C) or “defect” (D). The payo↵s correspond to the row player.

If both players cooperate, each receives a reward R. If both defect, each receives a punishment P . If one

cooperates and the other defects, the cooperator will get sucker’s payo↵ S while the defector will get the

temptation for defection T .

Prisoner’s dilemma requires that

T > R > P > S. (5.2)

In this scenario, a rational player would choose to defect if his opponent cooperates since T > R. He would

again choose to defect if his opponent defects since P > S. That being said, a rational player would always

defect irrespective of the strategy of his opponent. Since two rational players will follow the same logic,

the result is mutual defection. Now here is the dilemma: If both parties were to cooperate, both would be

rewarded rather than punished since R > P .

How to achieve cooperation in prisoner’s dilemma? The first mechanism is reciprocal altruism proposed

64



by R.L. Trivers [166] and developed by R. Axelrod and W.D. Hamilton [167]. The basic idea is to play the

prisoner’s dilemma for repeated times, which is called iterated prisoner’s dilemma (IPD) [168]. In IPD, each

player must take into account the potential impact of his current strategy on the strategies of his opponent

in the future. In the computer tournament of IPD in 1984 [168], the best strategy was “Tit-for-Tat”(TFT),

which cooperates in the first round and copies the opponent’s strategy in the previous round afterwards.

TFT has three feature: 1) It will not defect first. 2) It retaliates if the opponent defects. 3) It forgives

if the opponent started to cooperate again. In a world of TFTs, mutual cooperation is always achieved.

Furthermore, TFT tends to train the opponent to cooperate. The success of TFT represents the achievement

of cooperation. However, TFT does not score high facing totally random strategies [168]. What is more, as

R. Boyd and J.P. Lorberbaum showed [169], no deterministic strategy, including TFT, is evolutionary stable

in IPD. Other strategies such as generous TFT [170], which lowers the probability to retaliate, and Pavlov,

the win-stay and lose-shift strategy [171], have been designed, but more or less relies on TFT.

Nowak proposed the following five key rules for cooperation [155]: 1) Kin selection encourages coopera-

tion among relatives. 2) Direct reciprocity extends cooperation to unrelated individuals through expected

repeated interactions, which is also characterized as “I help you, you help me.” 3) Indirect reciprocity builds

up cooperation on the basis of reputation in human society so that “I help you, somebody else helps me.”

4) Network reciprocity provides more frequent interactions among network clusters considering spatial in-

homogeneity. 5) Group selection imposes multi-level selections favoring groups with more cooperators. All

the above five mechanisms can be established in a coherent mathematical framework by the inclusion of

potential benefit for an individual.

In 1992, M.A. Nowak and R.M. May [172] proposed spatial prisoner’s dilemma, which enables cooperators

to cluster and hence persist. The spatial structure promotes cooperation in prisoner’s dilemma [173], but

fails in the snowdrift game [174].

Various other attempts have been made to promote cooperation such as continuous prisoner’s dilemma

[175, 176], players with di↵erent ability to spread their strategies [177, 178], and complex networks [179, 180].

F.C. Santos and J.M. Pacheco [181] shows in scale-free networks that strong correlation between individuals

enhances cooperation. A. Melbinger [182] couples evolution in population structure with growth dynamics.

In all versions of model seeking cooperation in prisoner’s dilemma, the key point is to increase the

frequency of contact among cooperators beyond the population average.
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Figure 5.1: Di↵erence between a fixed landscape and a dynamic landscape. The orange oval indicates the
population. Purple cylinders of di↵erent hights indicate di↵erent fitness on the landscape. a) Evolution
of the population adapting to a fixed landscape. The population moves to the cylinder with the highest
fitness. b) Evolution of the population adapting to a dynamic landscape. The adaptation of the population
changes the landscape. The population moves to the cylinder with the highest fitness, but not necessarily
the previous one.

5.2 Dynamic Landscape

However, such mechanisms either work in a fixed landscape or do not put enough emphasis on the importance

of a dynamic landscape, while in reality, the evolution of organisms is tightly coupled with the evolution

of their environment (Figure 5.1). On one hand, organisms compete with each other for survival and

reproduction. Mutation and selection are two mechanisms that enable and push organisms to adapt to their

environment. These are driving forces for evolution of organisms in a fixed landscape, where a population

moves toward a fitness maximum as shown in Figure 5.1(a).

On the other hand, each individual or species serves as an evolutionary background for other individuals

and species. The simplest scenario here is the coevolution of two organisms such as the arms race between

bacterium Pseudomonas fluorescens SBW25 and its DNA phage SBW25�2 as investigated by A. Buckling et

al. [183]. Figure 5.2 demonstrates the general trend as ascending both in bacterial resistance and phage in-

fectivity in approximately 400 generations during 50 transfers. Viewing bacterium Pseudomonas fluorescens

SBW25 as the target organism and the phage SBW25�2 as its evolutionary background, we can see that

during the improvement of bacterial resistance, phage infectivity, which is the landscape, also evolves with

time, and vice versa. This is an example of coevolution of two, which can be extended to three and much
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Figure 5.2: Coevolution between bacteria Pseudomonas fluorescens SBW2 and its phage SBW2�2. After
Ref. [14]. (a) Increased bacterial resistance with time (transfer number) to sympatric phage populations.
Di↵erent lines indicate di↵erent phage transfers. (b) Increased phage infectivity with time (transfer number)
to sympatric bacteria populations. Di↵erent lines indicate di↵erent bacteria transfers.
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more. Hence, the adaptive procedures of organisms react back onto the environment so that the environment

is shaped by adaptations of organisms. For example, microbiota, which is beneficial to human health [184],

coexist and compete with pathogens in the same niche. Taking antibiotics kills pathogens as well as the

beneficial microbiota. The emergence of certain antibiotic resistance in the beneficial microbiota may seed

the fast spread of resistance genes by horizontal gene transfer, so that it is not long before pathogens in the

same niche acquire that kind of antibiotic resistance. Out of control by antibiotics, the burst in pathogen

population will aggravate the living pressure of the microbiota in their competition for limited resources and

space. Hence evolution should be tackled in a dynamic landscape, in which the fitness maximum in phase

space may change with time as illustrated in Figure 5.1(b).

Figure 5.3: Comparison of fitness between two eventual winner (EW) and two eventual loser (EL) clones
relative to the ancestor of the E. coli EW1 and EW2 take over the population despite their initial lower
fitness compared to EL1 and EL2. After Ref. [15].

In this way, as we see it, evolutionary game theory might shed light on the long-time conundrum of the

maintenance of cooperation because 1) the fitness maximum may change with time and 2) some transient

states rather than the fitness maximum may be favored during evolution. These transient states are not any

state, but some special ones promising to reach some fitness maximum in the long term with the evolution of

the dynamic landscape. In other words, the ability to evolve, i.e. evolvability, is another criterion in evolution

besides fitness. For example, R.J. Woods et al. [15] demonstrated in a population of Escherichia coli that two
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clones with greater potential for future adaptation, despite their lower initial fitness, eventually outcompete

another two after 1000 generations (Figure 5.3). In protein dynamics [185], conformational diversity such

as fluctuations of side chains and exchange of second structures, providing new folds and functions, may be

favored instead of a single but fixed structure. D.J. Earl and M.W. Deem [186] also showed theoretically

that evolvability is a selectable trait during evolution. Therefore selection for fitness and evolvability in a

dynamics landscape may enrich the context of evolutionary game theory.

5.3 Stochastic Decision Making

Furthermore, stochasticity is ubiquitous in nature and has attracted much attention. In most of the previous

models, stochastic characteristics are, generally speaking, introduced through two schemes. The first is

mutation at reproduction, which introduces random drift in o↵springs’ behaviors. The second is stochastic

update rules [187] in contrast to the deterministic substitution by the best performer among all candidate

strategies. Commonly used stochastic update rules include imitation of the better, where a player adopts a

strategy with a probability proportional to the di↵erence between its own score and better performers, and

proportional update, which compares its own score with all candidates so that a downgrade to an inferior

strategy is possible. These stochastic update rules at some level keep the diversity of strategies.

However, we would like to emphasize here another level of stochasticity: stochastic decision making.

Such a decision making process is well-studied in the design of strategies in computer tournaments. A

famous tournament is the iterated prisoner’s dilemma (IPD) [167, 168], where two players will play the

prisoner’s dilemma for repeated times so that each player must take into account the potential impact of

his current strategy on the strategies his opponent might choose in the future. Among various strategies in

the tournament, one design is totally random irrespective of previous rounds. Although the random design

does not win the tournament, the best deterministic strategy “Tit-for-Tat”, where a player cooperates in

the first round and copies the previous strategy of his opponent afterwards, could not score high against it.

Stochastic decision making, favoring the maintenance of diversity in strategies, should be included in the

seek for cooperation in game theory.

In biology, the map from genotype to phenotype is not one-to-one rigidly and rigorously [188]. Instead,

there are high levels of stochasticity in the gene expression processes, such as transcription and translation.

Genomes have neither the unique nor final words. Their expression is influenced by the environment. What

is more, such influence may be so large as to alter the phenotypes [189, 16]. Therefore, we think it is

important to endow both genotype and phenotype to each player in the game, the same way as nature does.
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5.4 Stochastic Decision Making Strategy Evolving in a Dynamic

Landscape

Now in the framework of evolutionary game theory, we propose a novel stochastic decision making mechanism

encouraging cooperation beyond Nowak’s five rules [155].

5.4.1 Dynamic Landscape in Game Theory

As we see in Section 5.1, if the payo↵ matrix satisfies Relation (5.2), it is a prisoner’s dilemma. If the

condition changes to the following one

T > R > S > P, (5.3)

it is called a snowdrift game. This time a rational player would still defect if his opponent cooperates, but

he would switch to cooperate if his opponent defects since S > P . In this case, the optimal strategy is the

opposite of the opponent. Hence the outcome is the coexistence of both strategies. So there is diversity.

As illustrated by prisoner’s dilemma and the snowdrift game, the payo↵ matrix defines the landscape

of organisms because it is the rule for the game. The status of payo↵ matrix in game theory is similar to

that of the Hamiltonian in physics systems, which determines the kinetics. A time-independent Hamiltonian

provides a fixed landscape while a time-dependent one provides a dynamic landscape. If the problem were to

be solved using a Hamiltonian, we would need to figure out how the Hamiltonian would evolve. Similarly, a

constant payo↵ matrix corresponds to a fixed landscape while a varying one provides a dynamics landscape,

which is exactly what we are looking for. So here is our first question: How should the payo↵ matrix vary?

5.4.2 Stochastic Phenotype in Game Theory

The second issue we need to address is the stochastic behaviors of players. The choice of strategies for each

player is not necessarily determined at birth, and subject to environmental conditions and even the stochas-

ticity in the environmental conditions. P.J. Choi et al.’s work in 2008 [16] is a good example illustrating

both scenarios.

In their experiment, Escherichia coli cells are genetically engineered with two phenotypes as shown in

Figure 5.4: 1) Uninduced cells with none or limited number of spotted fluorescence and 2) induced cells with

highly fluorescent membranes. The production of permease, which is labeled with a yellow fluorescent protein

(YFP), controls phenotype switching and lactose metabolism as well [190, 191]. At low inducer concentrations

(Figure 5.5), partial dissociation of the tetrameric lactose repressor is followed by a fast rebinding, generating
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Figure 5.4: Two phenotypes in genetically engineered Escherichia coli cells in the presence of 30µM lactose
analog methyl-b-D-thiogalactoside (TMG) inducer. Uninduced cells: none or limited number of spotted
fluorescence. Induced cells: highly yellow fluorescent membranes. Upper panel dimensions 8µm ⇥13µm.
Lower panel dimensions 31µm ⇥31µm. After Ref. [16].
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Figure 5.5: Dissociation of the lacose repressor at low and high inducer concentrations. Upper panel: At
low inducer concentrations, partial dissociation is followed by a fast rebinding, yielding a small number
of transcription. The lac operon is not induced. Lower panel: At high inducer concentrations, complete
dissociation leads to a burst in transcription. The lac operon is induced. After Ref. [16].

Figure 5.6: A time-lapse sequence demonstrating phenotype switching in Escherichia coli. At an intermediate
concentration of intracellular inducer (50µM TMG), the majority of the cells keep uninduced over the period,
but one cell triggers induction of its lac operon by expressing many permease so that its phenotype changes
from uninduced, which is dark, to highly fluorescence of yellow at time 30 minutes. After Ref. [16].
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Figure 5.7: Dissociation of the lacose repressor at intermediate inducer concentrations. Partial dissociation
is usually followed by a fast rebinding, yielding a small number of transcription, where the lac operon is not
induced. Sometimes stochastic complete dissociation leads to a burst in transcription and the lac operon is
induced. After Ref. [16].

no more than one transcript. The lac operon not induced, these cells are incapable of lactose metabolism. A

small number of permease is synthesized, yielding limited number of spotted fluorescence. On the contrary,

at high inducer concentrations, complete dissociation of the lactose repressor triggers positive feedback in

permease expression. Induction of the lac operon enables lactose metabolism. Large burst of permease results

in highly fluorescent membranes. Hence the all-or-none fluorescence phenotype is more than a toy switch

in the micro-organismal wonderland. It visualizes the intrinsic state of the lac operon and the capability

of the cell to metabolize lactose. The all-or-none fluorescence of the same cell at high and low inducer

concentrations demonstrates environmentally determined phenotypes.

The more intriguing case is at intermediate concentrations. Figure 5.4 shows the coexistence of both

phenotypes in a genetically identical population at 30µM lactose analog methyl-b-D-thiogalactoside (TMG),

which indicates stochasticity in environmental conditions. Furthermore, Figure 5.6 records a time-lapse

sequence of phenotype switching of an Escherichia coli cell at 50µM TMG. As Figure 5.7 illustrates, at

intermediate concentrations, usually partial dissociation of the repressor is followed by a quick rebinding,

but stochastic complete dissociation is able to induce the lac operon and lead to a large burst of permease

production, yielding high fluorescence. Hence phenotype switching of the same cell as time goes on in the

same media suggests stochasticity in environmentally determined phenotypes.

In order to account for the stochastic phenotypes in biology, we need another degree of freedom in our

model of game theory. Whether a player is to cooperate or defect, in our eyes, is a phenotype, similar to the
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all-or-none fluorescence. In order to separate genotype from phenotype, we need another level of description.

So the second question is how to properly incorporate genotype?

5.4.3 Scheme

Figure 5.8 sketches a scheme of our answer to the above two combined questions: Stochastic phenotype in

an evolutionary landscape. The top row emphasizes that evolution and ecology interact with each other.

In the left branch, evolution imprints in the genome. Genotype, to a large extent, determines phenotype,

still subject to external conditions. At the genotype level, each player has a gene pc, which stands for the

probability to cooperate. At the phenotype level, each player chooses its strategy based on the comparison

of its gene pc with a random variable each time drawn independently from an identical uniform distribution.

The player will defect only when the latter exceeds the former; otherwise it will cooperate. In this way, we

have distinguished genotype from phenotype explicitly. As in biology, reproduction passes on genotypes to

descendants. We would like to emphasize the stochasticity embedded in our model here, which is significantly

di↵erent from most of the previous models: Even coded by the same genotype, di↵erent players may have

di↵erent choices of strategies, i.e. di↵erent phenotypes. Up to now, we have obtained a genuine stochastic

model and answered the second question of the proper separation of genotype and phenotype. In the right

branch, ecology is the fitness landscape for organisms. Using the language in game theory, it is the rule for

the game, i.e. the payo↵ matrix. As we mentioned earlier, ecology is shaped by the adaption of organisms.

Such an adaptation should be an emergent phenomenon, or in other words, a collective characteristic of the

phenotypes for the whole community. Since the phenotypes are either to cooperate or defect, as a collective

quantity, the cooperator fraction, in our view, serves as a good candidate to drive the dynamics of the

landscape, i.e. the evolutionary ecology. Hence we require that the payo↵ matrix evolve with the cooperator

fraction, which is our answer to the first question for the variation of the rule.

5.5 Evolving Prisoner’s Dilemma

5.5.1 Model

Next, we would like to present our evolving prisoner’s dilemma with the following payo↵ matrix

0

B@

C D

C fc f⌘ c

D f [(1� ⌘)c+ d] fd

1

CA, (5.4)
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Figure 5.8: Scheme of the stochastic phenotype in evolutionary landscape.

where f is the cooperator fraction, c and d are the contribution from a cooperator and a defector, respectively,

and ⌘ is the portion a cooperator reserves for itself. Without cooperator fraction f , it would be a usual payo↵

matrix where a defector simply grabs (1� ⌘)c from the cooperator and keeps its own d when encountering

a cooperator. When f is multiplied, every element in the payo↵ matrix evolves, which provides a dynamic

landscape. Does such a discount f make sense? According to J. Gore et al.’s experiment [17] (Figure

5.9) , cooperative yeasts grow much faster at high density than at low density in a sucrose culture. Since

sucrose hydrolysis demands a cost from cooperators, the faster growth rate indicates higher contribution

from cooperators at a higher cooperator fraction. It is a positive e↵ect encouraging cooperation. Although

the relation in experiment might not be linear, as a simplification, we multiply the contribution by f , and

extend the multiplication factor to the whole payo↵ matrix to guarantee that the game remains in the regime

of prisoner’s dilemma no matter what cooperator fraction f is.

In our simulation, we choose

c = 11, (5.5a)

d = 2, (5.5b)

⌘ = 0.1. (5.5c)
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Figure 5.9: Wildtype budding yeasts grow much faster at high cell density than at low density in a 5%
sucrose culture. After Ref. [17].

It satisfies the criterion for prisoner’s dilemma (relation (5.2)) irrespective of the specific value of f except

when cooperators extinct f = 0.

We perform simulations on a 513⇥513 lattice. The initial condition is a uniform distribution from 0 to 1

for all the genotypes, which interprets as a uniform range for the probability to cooperate from unconditional

defectors to unconditional cooperators. At each round, a random number is generated to decide every player’s

phenotype, either to cooperate or defect, according to its genotype, which is the probability for cooperation.

With all the phenotypic strategies determined, we update the payo↵ matrix with the current cooperator

fraction. Next every player will play the game according to the current payo↵ matrix with its eight nearest

neighbors on the lattice, and accumulate its score. Our lattice update is a Moran process [192, 193] with a

constant update rate. Moran processes are commonly used in the dynamics of competing individuals while

keeping the total population as a finite constant. As illustrated in Figure 5.10, each player is randomly

chosen to be substituted by an o↵spring according to the update rate, which implies a fixed death rate for

each player. When a player dies, its new-born descendant will compare the progenitor’s accumulated score

with the eight nearest neighbors, and inherit the genotype of the best performer. Then the round restarts.

We would like to emphasize two points here, which is absent in previous models. (i) Even with the same

set of neighbors’ strategies, the same player’s payo↵ is not unique, still depending on its own stochastic

phenotype. (ii) A descendant inherits the genotype of the best performer, but not the best strategy, nor

the best strategy combination, which is a sequence of cooperation and defection, because the phenotypic

behavior is a sequence of stochastic decision making process. In this way, by explicitly separating genotype

from phenotype, we have built up a simple stochastic evolutionary game theory model, where phenotype

is selected by the fitness landscape, i.e. the rules, and at the same time, shapes the landscape through
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Figure 5.10: Sketch of the Moran process for stochastic evolution in a finite population of constant size. At
each time step, an individual is randomly chosen to reproduce with a probability proportional to its score or
fitness. Another individual is chosen to die. The o↵spring of the first replaces the second. Black and white
dots indicate di↵erent species. After Ref. [18].

a collective power of the community, while genotype sits back of the phenotype and passes on through

inheritance. Such a stochastic evolutionary mechanism is a minimal miniature of the nature.

5.5.2 Results

Figure 5.11 shows two snapshots for a simulation on evolving prisoner’s dilemma at di↵erent time steps where

cooperator fraction is 87.3% and 87.4%, respectively. Yellow dots represent cooperators and blue ones are

defectors. Although the cooperator fraction is close to each other, the two snapshots significantly deviate in

the scattering pattern of defectors and cooperators. These two snapshots are taken at approximately 20,000

time steps. It has long past the transition period, which is the first 30 time steps. The cooperator fraction

has approached a semi-fixed point, but still keeps changing slightly. The pattern continuously evolves as the

two snapshots contrast. Hence it displays a highly dynamic and forever-evolving system.

In Figure 5.11, the lattice update rate is 100% and the system reaches a coexistence of cooperators and

defectors. We would like to compare it to Figure 5.12, where we decrease the lattice update rate to 1%

and 50%, respectively, in order to demonstrate the selection advantage. The overwhelming dominance of

cooperators in a prisoner’s dilemma game is out of expectation. In a classic spatial game theory model,
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Figure 5.11: Simulation on evolving prisoner’s dilemma for lattice update rate 100%. Yellow dots are
cooperators and blue ones are defectors. The left and right panels are at di↵erent time steps with cooperator
fraction 87.3% and 87.4%, respectively. The simulation runs on a 513⇥ 513 lattice while the two snapshots
contrast the same top-left corner to demonstrate the forever-evolving feature of the patterns.

Figure 5.12: Simulation on evolving prisoner’s dilemma for lattice update rates 1% (left panel) and 50%
(right panel), respectively. Yellow dots are cooperators and blue ones are defectors. The cooperator fractions
are both 99.9%. The simulation runs on a 513⇥513 lattice while the two snapshots contrast the same top-left
corner to demonstrate the influence of details in evolutionary game theory on patterns.
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little di↵erence is observed in the phase diagram for cooperation fraction between the synchronized and

asynchronized lattice updates [187]. Here the huge di↵erence between Figure 5.11 and Figure 5.12 illustrates

the subtlety in evolutionary game, where details of the game such as the update rate here are important

[194].

5.5.3 Discussion: Timescale

Generally speaking, evolution is recognized on a long timescale. Adaption to the environment, emergence

and fixation of new genotypes, and speciation of di↵erent lineages are achieved through many generations.

This classic scenario corresponds to a slow lattice update rate, where advantageous strains are endowed with

enough opportunities to take over the whole community.

Table 5.1: Genetic di↵erentiation at six microsatellite loci between beach residents, river residents, and
beach immigrants. D: Nei’s unbiased genetic distance. FST : fixation index. GD: genotypic di↵erentiation.
Ssa85: locus that best di↵erentiated river residents from beach residents with FST = 0.054. Huge di↵erence
in genetic di↵erentiation identifies beach residents and river residents as two ecotypes. After Ref. [3].

However, fast selection, where selection is quicker than interactions among individuals, or with their

environment [194], is also reasonable and supported by recent experimental discoveries [195, 196, 197, 198].

For example, A.P. Hendry et al. [87] o↵ered evidence for reproductive isolation in an introduced sockeye

salmon descending from a common ancestry after within only 13 generations. Two distinct ecotypes are

identified in salmon inhabiting Cedar River and a Lake Washington beach with a geographical separation

of 7 km. Table 5.1 compares genetic di↵erentiation at six microsatellite loci between 3 salmon populations

as beach residents, river residents, and beach immigrants. Figure 5.13 compares their male body depth,

which is sexually selected, and female body length, which is important to protect eggs in flooding. The

huge genotypic and phenotypic di↵erence between beach and river residents in Table 5.1 and Figure 5.13,

respectively, establishes their reproductive isolation.

Micro-organisms also exhibit rapid evolution in predator-prey systems. M.A. Du↵y and L. Sivars-Becker
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Figure 5.13: Comparison of (A) standardized male body depth and (B) female body length between beach
residents (BR), beach immigrants (BI), and river residents (RR). Boxes contain 50% of the data and bars for
the remainder. Horizontal lines, arrows and the circle indicate medians, means, and an outlier, respectively.
Huge di↵erence in both male body depth and female body length for BR and RR identifies them as two
ecotypes. After Ref. [3].
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Figure 5.14: Coevolution between bacteria Pseudomonas fluorescens and its phage �2. After Ref. [14]. (a)
Each line represents bacterial resistance to past, contemporary and future sympatric phage populations. The
negative slope shows increased phage infectivity. (b) Each lines represents resistance of past, contemporary
and future bacterial to a given sympatric phage population. The positive slope shows increased bacterial
resistance.
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[3] reported that Daphnia dentifera from lakes with recent epidemics were more resistant to infection by

its parasite Metschnikowia bicuspidata. M.A. Brockhurst et al. [199] systematically investigated coevolution

between bacteria Pseudomonas fluorescens and its lytic phage �2 for 120 generations during 16 transfers.

Figure 5.14 shows coevolution of phage infectivity and bacteria resistance in the predator-prey systems.

The decreased bacterial resistance to past, contemporary and future phage (Figure 5.14 (a)) demonstrates

improved phage infectivity while the increased bacteria resistance of past, contemporary and future transfers

to a given sympatric phage population (Figure 5.14 (b)) manifests improved bacteria resistance. Hence rapid

evolution is visible between di↵erent transfers, each containing 7.5 generations on average.

Besides, in social and cultural evolution, the timescales of selection and interaction are comparable to

each other [194].

Therefore, di↵erent lattice update rates map to di↵erent reasonable scenarios. Our results show that

slow and intermediate (Figure 5.12) selection are more promising to encourage cooperation compared to fast

selection (Figure 5.11). In other words, the keynote in nature encourages cooperation!

5.5.4 Discussion: Origin of Cooperation

According to the classic game theory, defection is both a Nash equilibrium and an evolutionary stable

strategy in the regime of prisoner’s dilemma. Large e↵orts have been devoted to promote cooperation [175,

200, 174, 201]. Unexpectedly, our model presents something more startling. It might yield the dominance

of cooperation subject to the update rate of the lattice. However, defectors in our model will never have a

chance to dominate the whole community. The striking di↵erence between our model and classic prisoner’s

dilemma models raises two questions. First, what is the key mechanism that supports coexistence? Second,

what is the origin of the dominance of cooperators? These two questions, in fact, both root in the origin of

cooperation.

As a comparison, we perform a simulation with the stochastic behaviors of players but without the

feedback of the community onto ecology, which is the fixed landscape. We see that coexistence is still

achieved but the cooperator fraction drops to 20 ⇠ 40%. Therefore, the coexistence of the cooperators

and defectors attributes to the separation of genotype and phenotype as sketched in Figure 5.8, while the

dominance of cooperators results from the evolving rules.

In order to further illustrate the origin of cooperation in more details, we track the evolution for the

distribution of cooperator fractions as shown in Figure 5.15. We can see that initially cooperator fraction

drops as more unconditional or nearly unconditional defectors, with low cooperation probability, mushroom,

which is consistent with the classic selection advantage of defectors. The rapid diminishing of unconditional
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Figure 5.15: Distribution of the probability to cooperate at di↵erent time steps in evolving prisoner’s
dilemma. Time elapses from a) to f). a) Time at 0. b) Time at 1. c) Time at 3. d) Time at 11. e)
Time at 50. f) Time at 28329.
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or nearly unconditional cooperators, with high cooperation probability, leaves fewer players to be exploited

by those more selfish individuals. What is worse for these selfish individuals, they tend to cluster due to

the nearby reproduction. As a result, they are soon superseded by random individuals with cooperator

fraction near 50%. This illustrates the key role of stochasticity in phenotype determination: Although

unconditional or nearly unconditional cooperators are vulnerable to unconditional or nearly unconditional

defectors, random individuals are able to survive (Figure 5.15(b)), which serves as a reservior for cooperative

phenotypes. Cooperators, on the contrary to defectors, benefit from clustering with each other. Furthermore

as payo↵ matrix (5.4) shows, the reward for cooperation increases with cooperator fraction. In other words,

altruism is advantageous to avoid exploitation by defectors. Such a positive feedback favors coopertors, so

the peak of the population moves to higher and higher cooperation probability as shown in Figure 5.15(c)

⇠ (f), and the cooperator fraction continues to rise, too. When will it stop? It depends on the details of the

model for equilibrium such as the update rates shown in Figure 5.11 and 5.12. Therefore, despite the initial

boom of defectors, cooperators at last dominate the whole community.

In short, stochastic phenotype determination maintains the coexistence of cooperation and defection,

while the evolutionary landscape pumps up cooperator fractions.

5.6 Other Evolving Games

Besides the evolving prisoner’s dilemma, we have also designed an evolving snowdrift game
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and another game with frequent transitions between prisoner’s dilemma and snowdrift game

0

B@

C D

C fc ⌘ c

D (1� ⌘)c+ d fd

1

CA, (5.7)

with the same set of parameters (5.5). In both games, not only coexistence but also the same level of

cooperator fraction as in the evolving prisoner’s dilemma, is achieved.

Therefore, in an evolving stochastic game, the payo↵ matrix alone is far from enough to determine the

fate of the whole community. Stochasticity embedded in the phenotype determination process encourages
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cooperation. Since the stochastic phenotype mechanism mimics the universal stochasticity in gene expression,

such as transcription and translation, our models demonstrate that the cooperator fraction alone is not

enough to reveal the competition type, whether it is prisoner’s dilemma or snowdrift game, among individuals.

In other word, stochastic phenotype masks the type of rules in nature.

5.7 Comparison with Previous Models

Last, we would like to compare our model to previous ones. The same in classic game theory, but di↵erent

from iterated games, our players have no memory either of their opponents’ or their own’s previous pheno-

types (or strategies). However, their payo↵ is a↵ected by the community as a whole through the cooperator

fraction f in the evolving matrix. This attributes to the dynamic landscape. Although not correlated in

time, each player’s phenotype is determined by the same genotype through its life span. The stochastic phe-

notype di↵erentiates our plays from classic plays. This attributes to the stochastic phenotype determination

process. Hence our players are somewhere between classic players and iterated ones.

Furthermore, by incorporating cooperator fraction f in the payo↵ matrix, we provide a mean field level

background to every individual, similar to inserting the magnetization in the e↵ective field in the Ising

model. In this way, the cooperative or defective phenotypes of individuals a↵ect the population. In other

words, cooperation benefits the whole community as the elements in the payo↵ matrixes (5.4), (5.6), and

(5.7) increase with higher cooperator fraction. The positive feedback pumps up the cooperator fraction.

5.8 Conclusion

In this chapter, we propose a novel stochastic mechanism encouraging cooperation in evolutionary game

theory. We have successfully achieved high cooperation fractions in the community even when the govern-

ing rule falls in the regime of prisoner’s dilemma, let alone other rules. Such dominance of cooperation,

irrespective of the detailed type of rules, is consistent with the wide observation of cooperation in nature.

Our mechanism significantly stresses stochasticity in the map from genotype to phenotype, and evolutionary

landscape, with which di↵erent rules such as prisoner’s dilemma and snowdrift game yield comparable co-

operator fractions. Therefore, cooperator fraction, as a collective and emergent quantity, is not necessarily

determined by the detailed type of competition, but rather may subject to stochastic phenotype and evolu-

tionary landscape, which are able to mask the underlying type of competition. Such a landscape provides

altruisms an alternative way to escape exploitation by defectors.
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Chapter 6

Evolutionary Robust Strategies for
Delivery of Antibiotics

6.1 Introduction

6.1.1 Challenge, Innovation and Impact

For more than half a century, treatments against bacterial infections have focused primarily on delivering

classes of molecule that are broadly toxic to the bacteria in the human body. However, this approach is not

sustainable because microbial communities can share antibiotic resistance genes through a variety of mecha-

nisms of horizontal gene transfer [58]. Recently it was discovered that horizontal gene transfer rates between

pathogenic and commensal Enterobacteriaceae may be boosted by up to several orders of magnitude in gut

inflammation [202]. Frequent horizontal gene transfer leads to unexpectedly rapid emergence of antibiotic

resistance and even multidrug resistance (MDR) [203, 204]. For example, methicillin-resistant Staphylococcus

aureus (MRSA), which is resistant to a wide range of drugs such as aminoglycosides, macrolides, tetracy-

cline, chloramphenicol, and lincosamides besides the commonly known methicillin [205], was estimated in

2005 [206] with an incidence rate of 31.8 per 100,000 and mortality rate of 6.3 per 100,000, i.e., about 95,000

cases and 19,000 deaths every year in the United States. Vancomycin is empirically most frequently used

to treat MRSA infections [206], but its minimum inhibiting concentration (MIC) has significantly increased

for clinical isolates over the years [207]. Vancomycin-resistant S. aureus (VRSA) [208] ascends as a new

clinical challenge [204]. What is worse, emergence of MDR and extensively-drug-resistant (XDR), which

is resistant to at least 3 out of 6 classes of drugs, Mycobacterium tuberculosis (MDR-TB and XDR-TB) is

rising worldwide [120]. Totally drug-resistant (TDR) tuberculosis was reported and documented in Italy in

2007 [209], Iran in 2009 [210, 211] and India in 2011 [212, 213]. The return of dark ages before the discovery

of antibiotics is looming on the horizon.

The innovations presented here are smart strategies, based upon a quantitative understanding of the evo-

lutionary response of bacterial communities. If successful they could provide a new paradigm and transform

our approach to treating diseases with an evolutionary or collective component, a class that includes not
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just bacterial infections but also cancer and HIV.

6.1.2 Rationale

Our proposed strategies are radically di↵erent from current practice [204]. First, conventional strategies

using broad-spectrum antibiotics do not di↵erentiate between the pathogens and the beneficial microbiota

that are normally resident in our bodies. This population vastly outnumbers the invasive pathogens, at least

at the beginning of an infection, and can help suppress the infection by competing with the pathogens for

limited resources of nutrients, thereby dominating the carrying capacity of the host ecosystem (e.g. the gas-

trointestinal tract). Furthermore, under exposure to antibiotics, this beneficial population becomes enriched

in antibiotic resistance genes, which can be readily transmitted to the pathogens. The widely-recognized

conclusion is that the next generation antibiotics should be selective, either narrow-spectrum which target

pathogens and Gram-positive beneficial bacteria, or ultra-narrow-spectrum, which target pathogens only.

However, this is not su�cient to avoid the eventual emergence of antibiotic resistance, although it will

delay the onset according to our preliminary calculations. Instead, we propose to minimize the possible

influence of antibiotic resistance genes by applying a negligible selective pressure to the pathogens. Our

idea begins with the observation that, in many cases, pathogens use quorum sensing to coordinate their

attack when they are su�ciently numerous [214]. Our working hypothesis is that we can interfere with

quorum sensing channels, but instead of trying to suppress these channels as other works have proposed

[215, 216, 217, 218], we will attempt to amplify these signals. Our rationale is that we can thereby induce the

premature expression of virulence factors! Although counter-intuitive, this will have the e↵ect of imposing

a substantial metabolic load on the pathogens, slowing their growth and further limiting their ability to

occupy a biochemical niche in the host. Our preliminary calculations suggest that all these e↵ects prevent

the proliferation of pathogens, and when combined with the subsequent and timely application of a single

dose of ultra-narrow-spectrum antibiotics can completely suppress the pathogen population before antibiotic

resistance genes have spread and before the virulence has reached clinically problematic levels.

6.1.3 Approach

Our plan to attack the challenge of emerging antibiotic resistance has two independent strategies: 1) Narrow-

ing down the spectrum of antibiotics in order to target pathogens precisely and 2) quorum sensing spoofing

so as to incur the huge cost on pathogens in virulence factor pre-expression. We design theoretical models

to investigate the e↵ectiveness of both strategies and then combine them into an advanced therapy as an

evolutionary robust strategy for the delivery of antibiotics. To our knowledge, this sort of two-step treat-
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ment cycle has never been proposed in this context, and it di↵ers from all existing approaches in that it

will not promote the transmission of antibiotic resistance, and will leave largely intact the hosts beneficial

microbiota. It addresses the problem of horizontal gene transfer and the transmission of antibiotic resistance

genes, and as such would represent a major advance if successful.

Our approach presents a significant innovation, a novel treatment, and an ambitious attack on the

antibiotic resistance problem, significantly departing from current biomedical research undertaken elsewhere.

We focus on collective properties such as the response of bacterial communities to antibiotics by their

transmission of antibiotic resistance genes, which is a systems or population level phenomenon. The outcome

of collective properties is always hard to predict a priori, because of multistability: there are typically a

number of possible outcomes, and which one actually occurs is determined by the phase diagram of the

system, in other words, the interplay between the di↵erent forces active in the system.

In more detail, these forces include the ecological competition between the pathogens and the indigenous

bacteria, the dependence of expression of virulence factor on the concentration of quorum sensing molecules,

the rate of interspecies horizontal gene transfer and so on. As a result, one must calculate the dynamical

behavior of these complex systems and identify, even semi-quantitatively, regions of parameter space where

the outcomes are biomedically desirable. In this regard, our approach di↵ers from existing approaches

wherein candidate pathways are targeted and the level of systems biology that needs to be quantitatively

understood is relatively low: a molecule will either have the desired e↵ect or it won’t — but there is no

“tuning parameter” other than dose which can be varied in the treatment.

In order to explore the parameter space relevant to each of our components, it is essential to perform

individual-level population dynamics simulations of the interactions between the pathogens, the beneficial

microbiota, the quorum sensing molecules, and the antibiotic resistance genes, taking into account their

possible horizontal transfer. Preliminary results from such simulations shaped the innovative approach we

pursue in this chapter and we discuss these simulations below in more detail to motivate our strategy for

overcoming the key obstacles presented by the emergence of antibiotic resistance. Their outcome is, however,

simple to state: we were unable to find a single-step drug treatment that could eliminate pathogens and

not give rise to the emergence of antibiotic resistance at large in the population. A more positive way

of stating our conclusion is that the narrow- and ultra-narrow-spectrum antibiotics do delay the onset of

the emergence of population-wide antibiotic resistance compared with broad-spectrum antibiotics, but the

di↵erence is not qualitative. In a second round of computer simulations, we found that a two-step drug

treatment schedule, involving modulating the concentration of quorum sensing molecules, was able to both

prevent the emergence of antibiotic resistance at the population level and eliminate the pathogens, at least
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as far as is possible given the potential presence of persisters. This innovative strategy, which forms the bulk

of our e↵ort, is described below.

6.2 Narrowing Down the Spectrum of Antibiotics

6.2.1 Mechanisms of Conventional Broad-spectrum Antibiotics and

Corresponding Resistance

In order to fight against the emergence of antibiotic resistance, we first need to familiarize ourselves with

the current status of the battle between pathogens and human race. In other words, we must have a general

understanding of how the conventional antibiotics work and how the corresponding antibiotic resistance

rises.

Figure 6.1: Di↵erent mechanisms of antibiotic resistance. After Ref. [19].
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Although the detailed mechanisms of conventional broad-spectrum antibiotics vary from class to class,

they kill bacteria by inhibition of essential bacterial functions. For example, penicillins inhibit cell wall syn-

thesis; tetracyclines inhibit protein synthesis; fluoroquinolones inhibit DNA synthesis; and rifampin inhibits

RNA synthesis [19]. By targeting essential bacterial functions, conventional antibiotics are able to e↵ectively

reduce bacteria population counts. Ironically, the use of antibiotics to disrupt normal bacterial metabolism

and reproduction imposes a severe selection pressure that causes rapid emergence of resistance genes in the

population. Antibiotic resistance genes code corresponding enzymes (Figure 6.1) functioning at di↵erent

levels [19, 4]. They may target at the antibiotic itself by destruction or inactivation. They may target the

transportation process by continual pumping out drugs. They may also target at the intracellular level by

target protection, target alternation, or bypassing an attacked metabolic step with a new drug-resistant

enzyme [19, 5]. For every class of antibiotics that targets an essential physiological function, a resistance

mechanism is now known (Table 6.1). Multidrug resistance is engendered either by the accumulation of mul-

tiple resistance genes, typically occurring on resistance plasmids, or the acquisition and increased expression

of genes coding some very powerful multidrug e✏ux pumps [205].

Table 6.1: Modes of resistance of commonly used antibiotics. After Ref. [4].

6.2.2 Restricting the Spectrum of Antibiotics

A single bacterium acquires antibiotic resistance genes through two pathways: mutation and horizontal gene

transfer. Generally speaking, mutation is a rare event, which depends on mutation rate and population size.

Horizontal gene transfer spreads antibiotic resistance genes intra- and inter-species and even across domains

[115]. A significant source of resistance genes for pathogens is the beneficial microbial population of the host,

90



by virtue of its overwhelming population size and the relative ease of inter-species horizontal gene transfer.

Thus the rate of acquisition of resistance genes by the pathogen is dependent on the proportion of resistance

genes in the beneficial microbiota. When a broad-spectrum antibiotic is used, the impact on the beneficial

microbiota will be to select for a resistant sub-population, thus increasing the rate of transfer of resistance

genes from the beneficial microbiota to the pathogens. Concomitantly, any method to reduce the proportion

of resistance genes in the beneficial microbiota will significantly reduce the rate of transfer of such genes to

the pathogens. The best way to achieve this is to remove the selection pressure on the beneficial microbiota,

by the use of next-generation antibiotics with specific target species. A side benefit of this strategy is that

the pathogens must compete against a beneficial microbial population, whilst simultaneously being under

strong selection pressure from the antibiotic.

Bailing out beneficial microbiota from the application of conventional antibiotics will bring profound

impact on human health, probably more than what is established and justified currently. For example, it

is recognized [219, 220] that intestinal bacteria, such as Bacillus subtilis and Escherichia coli, synthesize

vitamin K, which is essential for human health. Besides their role as nutrition especially vitamin providers

and invasion protectors against pathogens, certain correlations between compositional shifts in beneficial

microbiota and long-term physiological changes have been suggested [184], such as association between erad-

icating Helicobacter pylori and increased risks of asthma and allergies [221]. Saving and reviving beneficial

microbiota may conduce not only to antibiotic resistance but also other public health problems such as

obesity [184].

Hence, the ideal scenario is to kill the specific pathogenic strains, but with no side e↵ect on the benefi-

cial microbiota. The latter can be either Gram-positive or Gram-negative strains, with the Gram-negatives

possessing an extra cell membrane that often blocks the influx of small molecules. Narrow-spectrum an-

tibiotics do not distinguish between pathogens and non-pathogens but are typically selective for either the

Gram-positive or Gram-negative bacteria. Here we use the term “ultra-narrow-spectrum antibiotics” to refer

to classes of antibiotic that a↵ect only the pathogens, as being developed by our collaborator Douglas A.

Mitchell. We show and compare the victims for di↵erent spectrum of antibiotics in Figure 6.2.
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Figure 6.2: Illustration of antibiotics targeting di↵erent spectrums. Red crosses indicate victims.

6.3 Population Dynamics for Broad-, Narrow-, and

Ultra-Narrow Spectrum Antibiotics

6.3.1 Goal

In order to quantify the e↵ectiveness of restricting the range of antibiotics, we performed preliminary cal-

culations using an individual-level model of the population. In this calculation, the behavior and dynamics

of every organism is simulated, including birth-death processes, horizontal gene transfer, mutation and re-

source allocation within the community. Each bacterium, Gram-positive, Gram-negative or pathogenic, may

acquire the resistance gene by mutation or intra- or inter-species horizontal gene transfer.

We have studied both spatial homogeneity and heterogeneity, yielding qualitatively same results. With

the same initial conditions and biological measurable parameter settings, we would like to compare how

e↵ective it is in applying di↵erent antibiotics, and how rapid it is for the corresponding antibiotic resistance

to emerge, spread and dominate.
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6.3.2 Cost for Antibiotic Resistance

Usually there is a metabolic load associated with carrying antibiotic resistance genes [222, 5]. Such a

metabolic cost is strain- and gene-specific (Table 6.2), and subject to epistasis and environmental conditions,

with caveats that it might be cost-free in some rare cases [5] or shared among the whole bacterial community

[223].

Figure 6.3: Hungary’s penicillin consumption fell in over a decade. After Ref. [20].

The expensive biological cost for most antibiotic resistance strains inspires a ray of hope to revert

pathogens to drug sensitivity with reduced volume of antibiotic use. For example, penicillin-resistant pneu-

mococcus infections in Hungary [20] fell from 50% to 34% in over a decade’s reduced nationwide consumption

(Figure 6.3). Finland [21] decreed policies to regulate macrolide antibiotics consumption (Figure 6.4) and

documented erythromycin resistance from throat-swab and pus samples dropping from 16.5 % to 8.6 % in 5

years (Figure 6.5).

Surveillance and regulation of antibiotic usage seems to be e↵ective [224], but entails a long period

[225] to see a decline in resistance and requires further confirmation [226]. Taiwan, for instance, with

restricted antibiotic usage reported decreased resistance to penicillin, but not to erythromycin Streptococcus

pneumoniae from 1998 to 2003. More depressingly, UK reported [22] persistent sulphonamide resistance in

Escherichia coli, which was 39.7% in 1991 and 46.0% in 1999, despite drastic reduction in prescription of
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Table 6.2: Metabolic cost for antibiotic resistance is strain- and gene-specific. “Yes” indicates elongation in
generation time from several percent up to 400%. “Variable” indicates some mutations su↵er a cost while
some do not. After Ref. [5].
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Figure 6.4: Finland’s macrolide antibiotics consumption by outpatients from 1976 through 1995. Total
consumption decreased from 2.40 daily doses per 1000 inhabitants per day in 1991 to 1.38 in 1992 and
remained low afterwards. After Ref. [21].

Figure 6.5: Finland’s erythromycin resistance from throat-swab and pus samples from 1990 through 1996.
The dashed line indicates unavailability of data in 1991. Erythromycin resistance among group A strepto-
coccal isolates dropped from 16.5 % in 1992 to 8.6 % in 1996. After Ref. [21].
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Figure 6.6: Switch of UK’s prescriptions from co-trimoxazole, which is a combination of sulphamethoxa-
zole and trimethoprim, to trimethoprim alone in the 1990s. Sulphonamide usage slumped from 320,000
prescriptions per year in 1991 to 7,000 in 1999. After Ref. [22].

Figure 6.7: Comparison of growth rates of VRSA-1 relative to susceptible MRSA strain HIP11713 between
non-induced (white) and induced (shaded and dotted) cultures. Fitness cost is nearly 40% for resistance but
dramatically drops to 3% without induction. White: brain heart infusion (BHI) broth without vancomycin.
Shaded: pregrown without vancomycin and subcultured with 1/50 the minimum inhibitory concentration
(MIC) of vancomycin. Dotted: pregrown and subcultured with 1/50 the MIC of vancomycin. After Ref.
[23].
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Table 6.3: Compensatory evolution ameliorates fitness cost of antibiotic resistance. Second site mutations
stabilizing resistance are more common compared with true reversion. After Ref. [5].
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nearly 80% over the 9-year period (Figure 6.6).

Epidemiological statistics are precious but it is hard to rely on them to establish sound correlations.

Genetic investigations leading by D.I. Andersson et al. [222, 227, 226, 228, 229, 5] expects true reversion

to drug sensitivity to be slow if not impossible for two reasons. First, compensatory evolution ameliorating

fitness cost together with cost-free resistance is able to fix antibiotic resistance. Table 6.3 shows that second

site mutations stabilizing resistance are more common compared with true reversion. More specifically, Ref.

[230] demonstrated that among 81 independent lineages of an rpsl gene mutation conferring streptomycin re-

sistance in Salmonella typhimurium, only 4 reverted while 77 lineages acquired compensatory mutations and

retained streptomycin resistance. Higher mutation rates and population bottlenecks together fix compen-

satory mutations instead of reversion [231]. Second, co-selection between resistance mechanisms and other

selected markers prevents potential reversion. Such a genetic linkage explained the persistent sulphonamide

resistance in UK in the 1990s as mentioned above [22].

Besides, the expensive metabolic cost is under regulation. M.L. Foucault et al. [23] demonstrated that the

fitness cost of the VanA-type glycopeptide resistance carried by clinical methicillin-resistant Staphylococcus

aureus (MRSA) isolates is 20% to 38% but shrinks to 0.4% to 3% without induction (Figure 6.7). The huge

reduction of metabolic cost in the absence of induction turns the vision of reduced resistance or reversion to

drug sensitive genotype with discreet and regulated antibiotic consumption more miserable.

We will circumvent all these complications in the metabolic cost and simply model it as a slightly lower

birth rate.

6.3.3 Methods

The real interactions in the micro-organismal world are complicated considering the huge population, myriad

species, and various mechanisms. The microbial population in the human gut, for example, on the order of

1014, outnumbers eukaryotic cells by an order of magnitude [232], covering over 1000 bacterial species with

at least 160 species for each individual [62], and engaging in dynamic interactions with profound implications

[233, 234]. As a minimal model, we regard all Gram-positive as a super strain, all Gram-negatives as another

one, and pathogens as the third. We consider intraspecies competition within Gram-positives and Gram-

negatives separately although competition between them exists in nature because, generally speaking, these

two coexist with each other and Gram-negatives have a larger population size than that of Gram-positives.

That is to say we allow a higher carrying capacity for Gram-negatives than for Gram-positives. We do not

impose a similar carrying capacity on pathogens so that they may burst and induce diseases. The beneficial

microbiota suppress the population of pathogens competing for limited resources and space such as the
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Figure 6.8: Flow chart of simulation steps to compare di↵erent spectrum of antibiotics.
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membrane.

For the purpose of making a caricature of the behavior of pathogens, there are two predetermined popu-

lation thresholds that govern the entire system behavior. The lower threshold marks the onset of the hosts

symptoms, at which point, a dose of antibiotics is taken, which kills a certain percent of pathogens deter-

mined by the killing rate. Whether Gram-positives and Gram-negatives su↵er at the same time depends on

the kind of antibiotics applied. Timely doses keep pathogens under good control unless antibiotic resistance

develops. The higher threshold indicates runaway proliferation of antibiotic resistant pathogens, or in other

words, the death of the host due to antibiotic resistance. Our goal is to investigate and thus compare the

emergence of antibiotic resistance for the new and conventional antibiotics when the higher threshold is

reached. There is a cost to carry the antibiotic resistance genes, which is modeled with a lower birth rate.

Each bacterium, either Gram-positive, Gram-negative or pathogenic, may acquire the resistance gene via

mutation or intra- or inter-species horizontal gene transfer. Generally inter-species horizontal gene transfer

rate is an order of magnitude larger than that of intra-species, while the latter is again an order of magnitude

larger than that of mutation.

Figure 6.8 sketches a flow chart of simulation procedures. Initially both Gram-positives and Gram-

negatives approach their carrying capacity, respectively, indicating balanced beneficial microbiota. The

population of pathogens is at the lower threshold to induce the first dose. When the clock starts to tick, the

following events occur. First a new dose is applied if the pathogenic population exceeds the lower threshold.

The survivors, if vulnerable, may mutate to gain antibiotic resistance. These resistance genes will transfer

horizontally both intra- and inter-species among vulnerable individuals. Every individual in the community

may reproduce and die according to their respective birth and death rate. The growth of the beneficial

microbiota is limited by their carrying capacity, and the birth of pathogens is suppressed by the beneficial

microbiota subject to their density. O↵spring of an antibiotic resistant parent maintain resistant. Then the

clock ticks again and the sequence of events restarts.

Real simulation code is provided in Appendix C.

6.3.4 Results and Discussions

First we would like to present simulation results in well-mixed populations. Figure 6.9 ⇠ Figure 6.11 show

the time evolution of the populations for Gram-positives, Gram-negatives, and pathogens, respectively, for

new and conventional antibiotics with the same initial conditions. The birth rate for the beneficial microbiota

without antibiotic resistance is 20% and drops to 10% for bearing the resistance genes, and the death rate

is 15%. The corresponding rates for pathogens are 60%, 50% and 0, respectively. The beneficial microbiota
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Figure 6.9: Time evolution for the total and resistant population of Gram-positives, Gram-negatives and
pathogens, respectively, using broad spectrum antibiotics.
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Figure 6.10: Time evolution for the total and resistant population of Gram-positives, Gram-negatives and
pathogens, respectively, using narrow spectrum antibiotics.
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Figure 6.11: Time evolution for the total and resistant population of Gram-positives, Gram-negatives and
pathogens, respectively, using ultra-narrow spectrum antibiotics.
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suppress 80% local birth of pathogens. Antibiotics kill 80% vulnerable species. The mutation rate to acquire

antibiotic resistance is 0.2%. Horizontal gene transfer rates for intra- and inter-species are 2% and 20%,

respectively. The lower threshold for the dose is 1000 while the higher for burst is 30000. All the simulations

start at time step 0. We can see that in Figure 6.9 for broad spectrum antibiotics, the first does is applied

at the time step 1, which kills the majority of Gram-positives, Gram-negatives, and pathogens. Later all the

three species recover their population with increased antibiotic resistance. At time step 1329, the second

dose is applied. Since almost all the pathogens are antibiotic resistant at this time, the only e↵ect is to

eradicate the beneficial microbiota, which releases the suppression pressure for pathogens and led to the

eventual burst. In Figure 6.10, the population of Gram-negative fluctuates around its carrying capacity, not

a↵ected by narrow spectrum antibiotics. The burst time almost doubles that in Figure 6.9. Figure 6.11 is the

simulation for ultra-narrow spectrum antibiotics, where pathogens are always suppressed by the beneficial

microbiota. It takes a much longer time of about 4.5 times as that in the broad spectrum case for pathogens

to retrieve their population size and develop antibiotic resistance. By comparison, Figure 6.9 ⇠ Figure 6.11

illustrate the importance of the beneficial microbiota.

We run 3000 simulations of the population dynamics under three di↵erent treatments: broad-spectrum,

narrow-spectrum and ultra-narrow-spectrum but everything else is held constant in the simulations. We

observe a clear trend in the probability distribution of times (vertical axis in Figure 6.12) at which there

is runaway proliferation of resistant pathogens, compared across three classes of antibiotics. Figure 6.12

shows the statistics for the runaway time for broad-, narrow- and ultra-narrow spectrum antibiotics, and the

mean runaway times (in system time steps) are 1374, 2783 and 5917, respectively. Significantly, the time for

runaway proliferation of resistant pathogens is increased by about half an order of magnitude through the

use of ultra-narrow-spectrum antibiotics, compared with current practice.

Including spatial inhomogeneity, Figure 6.13 presents statistics for the runaway time for broad-, narrow-

and ultra-narrow spectrum antibiotics, and the mean runaway times (in system time steps) are 132, 459

and 1259, respectively. Here we run 500 simulations for each case with the same parameter settings as the

non-spatial version. Each individual di↵uses randomly with average di↵usion length 4 during each time

step on a 257 ⇥ 257 lattice with periodic boundary conditions. In the spatial version here the time for

runaway proliferation of resistant pathogens is increased by nearly an order of magnitude through the use

of ultra-narrow-spectrum antibiotics in comparison with the broad-spectrum antibiotics. Comparing Figure

6.12 and Figure 6.13, we can see that spatial and non-spatial models yield qualitatively the same result.

This preliminary result suggests that we can meaningfully expand the window during which the next-

generation antibiotics will be e↵ective through the use of targeted strategies. However, even these strategies
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Figure 6.12: In the spatial homogeneous model, frequency VS onset time for runaway proliferation of resistant
pathogens for di↵erent types of antibiotics. The mean onset times for broad, narrow and ultra-narrow
spectrum antibiotics are 1374, 2783 and 5917, respectively, showing half an order of magnitude improvement.
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Figure 6.13: In the spatial inhomogeneous model, frequency VS onset time for runaway proliferation of
resistant pathogens for di↵erent types of antibiotics. The mean onset times for broad, narrow and ultra-
narrow spectrum antibiotics are 132, 459 and 1259, respectively, showing nearly an order of magnitude
improvement.
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eventually result in the emergence of antibiotic resistance. In order to break the paradigm of antimicrobials

inevitably leading to emergence of resistance, we need to use a strategy that goes beyond the simple direct

conflicts that bacteria use between themselves for antagonistic interactions. What is more, as Lee et al. [223]

pointed out, bacteria may share antibiotic resistant products, which exempts the cost to carry the resistance

genes for every bacterium. The cooperative behavior among bacteria exacerbates human’s condition in the

arms race. It calls for ideal antibiotics with no resistance.

6.4 Quorum Sensing Spoofing

6.4.1 Reducing Selection Pressure by Community E↵ect

In the above plan for the new antibiotics, we successfully extend the time scale for the emergence of antibiotic

resistance. However, we see that the conventional method of disturbing essential bacterial functions, although

e�cient in bacterial elimination, also imposes such an intensive selection pressure that resulted in rapid

resistance. Aiming at the design of next generation of antibiotics with presumably no resistance, we need to

reconcile the conflict between e↵ective decimation and small selection pressure.

Generally speaking, disease is caused not by a single pathogenic bacterium or a small group, but by

the bacterial community as a whole. It is very expensive for a small population of pathogens to express

toxins, as this may trigger a response by beneficial microbiota and the immune system. Thus, in order to

coordinate the expression of virulence, bacteria ubiquitously employ a cell-to-cell communication mechanism

called quorum sensing (whose details di↵er between Gram-positive and Gram-negative bacteria), in which

a signaling molecule known as an autoinducer is produced by the bacteria, and whose concentration is

e↵ectively monitored by the bacteria [235]. When the population is small, autoinducers released by cells

quickly di↵use away and dilute. Thus the cells will receive little feedback from the environment. When

the population is large, enough signaling molecules, either imported into the cells or received by receptors

at the cell membrane, will initiate the transcription of target genes for mid/late stage virulence factors

(often toxins). Su�cient expression of virulence factors causes disease. This suggests that in order to

keep the total expression of virulence factors under control, one does not necessarily need to invoke high

selection pressure on the bacterial community, thus potentially avoiding antibiotic resistance. One promising

approach is to block the reception of cognate autoinducers [215, 216, 217, 218] but mutation against blockage

has recently been reported in experiments [236]. Thus, we propose an even more innovative approach, which

we call Quorum Sensing Spoofing (QSS). Our seemingly counter-intuitive goal is to promote the premature

expression of virulence factors.
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6.4.2 Quorum Sensing Spoofing (QSS)

Quorum sensing is essential in bacterial communication to monitor population density. By coordinating

the expression of virulence factors, bacteria can share the cost of toxin production and can prevail against

competitors for their niche, but this is only an e↵ective strategy for them once their population is su�ciently

large. If their population is small, the host’s defenses are able to defeat the infection. Thus, we propose to

force the pre-expression of virulence factors by adding autoinducers when the bacterial population is still

small. Bacteria are spoofed by their own quorum sensing mechanism when they detect high enough density

of autoinducers. Expressing virulence when the actual population is still small is a huge cost to a cell and

exposes it to attack from the surrounding microbiota and the host immune system. In this way bacteria

su↵er from delayed growth due to the metabolic load of pre-expression of virulence factors.

Let us emphasize three points. First, QSS will work because we spoof bacteria into choosing the wrong

strategy by pre-expressing virulence when the population size is still small. This is something that intrin-

sically they try to avoid and quorum sensing presumably evolved to avoid making this bad choice. Second,

QSS is a safe treatment, because the total bacterial population is small enough that the overall level of

virulence is small. Third, QSS is not expected to induce resistance because, contrary to the conventional

paradigm, it does not add any alien molecules or chemical compounds. What we add are autoinducers

already present in the environment. Thus, bacteria will continue to undergo their normal metabolism, but

their wrong choice of pre-expression leads them to a dead end.

6.4.3 Methods

Here we would like to show our individual-level simulations of how the QSS strategy would work on a model

microbial community. We do not di↵erentiate beneficial microbiota into Gram-positives or Gram-negatives.

We consider intra-species competition and the suppression from local beneficial microbiota toward pathogens

due to limited resources and space. Pathogens expressing virulence factors grow at a much lower birth rate

than usual as a cost for virulence. Each cell will produce and release autoinducers into the environment,

which will di↵use around and hydrolyze after some time. Cells sensing enough autoinducers within a certain

period will express virulence. We manually set up two thresholds for pathogenic population in the simulation.

The lower threshold is the time to take a dose, when extra autoinducers are added for enforced expression of

virulence. The higher threshold is the time the disease develops, which is the actual threshold for pathogens

to express virulence.

Figure 6.14 sketches a flow chart of simulation procedures for QSS. We run the simulation on a two-

dimensional lattice to include spatial inhomogeneity. The initial population of the beneficial microbiota
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Figure 6.14: Flow chart of simulation steps for QSS.
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approaches their carrying capacity and that of the pathogens is a little away from the lower threshold for

dose. When the clock ticks, a sequence of events occurs. The community di↵uses over the lattice. Each

individual may reproduce and die according to their birth and death rates. The birth of the beneficial

microbiota is limited by the carrying capacity while that of pathogens is suppressed by the local density of

the beneficial microbiota. If the population of pathogens exceeds the lower threshold, a dose is applied for

spoofing. All the autoinducers, either manually added or produced by pathogens, di↵use around for a while

before hydrolization. Pathogens detecting enough autoinducers express virulence and then grow at a lower

birth rate. If the population of pathogens expressing virulence surpasses the higher threshold for disease,

the host is killed and the simulation stops. Otherwise, the clock ticks on.

6.4.4 Results and Discussions

We show the simulation results running on a 257⇥ 257 lattice for Quorum Sensing Spoofing in Figure 6.15.

The birth and death rates for the beneficial microbiota are 20% and 15%, respectively. The birth rate for

pathogens not expressing virulence is 50%, which slumps to 5% for expression, and their death rate is 3%.

The beneficial microbiota suppress 30% local birth of pathogens. The lower threshold for dose is 1200 and

the higher for disease is 4500. As a comparison, in the upper panel, when no treatment is given, pathogens

coordinate their expression of virulence at about 19 time steps, thus initiating a disease state in the host.

In the lower panel, with QSS treatment, the majority of the pathogen population is forced to express their

virulence far below the higher threshold of disease. Then the population steadily falls below the lower

threshold and the treatment is stopped. Following the cessation of treatment, the pathogen population

revives, thus initiating another cycle of treatment. Note that the pathogen population remains bounded for

arbitrary long times. Actually we have run the simulation for much longer time steps where the population

of pathogens is always under good control.

Hitherto we have demonstrated Quorum Sensing Spoofing as a safe and e↵ective antibiotic strategy. The

highlight is that it will not cause antibiotic resistance because no alien molecules are introduced and we do

not disturb bacterial metabolism, such as replication, regulation or gene expression processes. The strategy

is robust to details but has two caveats. It should not be used if the pathogen population is already close to

the higher threshold where pathogenesis would naturally occur, in which case, QSS will be a fatal disaster.

It should not be used when the pathogen population is so small that the drug is diluted and time wastes

waiting for the slow drop of pathogenic population in an exponential form as shown in Figure 6.16, where

the lower threshold shrinks to 0.
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Figure 6.15: Time development of pathogen population (vertical axis). Upper panel: wild. As a control,
without QSS disease develops at time step 19. Lower panel: QSS employed. Using QSS, the population of
pathogens is always under control. No disease is detected.
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Figure 6.16: Decrease of pathogenic population follows an exponential form.
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6.5 Drug Combination

6.5.1 Quorum Sensing Spoofing + Ultra-Narrow Spectrum Antibiotics

QSS is a promising strategy but there are two potential problems. The first is: from a clinical standpoint,

when is the best time to take the first dose? When a patient su↵ers from some symptoms, the population

of pathogens might already have reached the higher threshold, when is dangerous to take any extra autoin-

ducers. The second is: how to improve its e�ciency when the pathogen population is small? Naturally, if

treatment is stopped, the pathogens will begin to regrow their population. Thus, there is a danger that the

patient may end up with “QSS addiction”.

To solve these two problems, we propose to combine ultra-narrow spectrum antibiotics with Quorum

Sensing Spoofing. To see if this can be e↵ective, we performed preliminary simulations of this strategy, as

before but now we allow mutation to generate resistance genes against ultra-narrow antibiotics, but of course

no resistance against the quorum sensing signaling molecules. We checked (1) the e↵ect of drug combination

and (2) emergence of antibiotic resistance against ultra-narrow antibiotics.

6.5.2 Methods

This time we will have five thresholds as shown in Figure 6.17. From the highest to the lowest, the first

threshold h4 is the population of pathogens above which the host is killed due to proliferation. The second

threshold h3 is the population at which there is detection of symptoms of the infection, above which the

patient will take a dose of ultra-narrow antibiotics in order to reduce the population of pathogens below

threshold h2. Then the patient will change to QSS till threshold h1, when QSS loses e�ciency. Regime

h1 ⇠ h2 is safe and e�cient for QSS as we discussed earlier. Ideally, we want regime h1 ⇠ h2 as large as

possible. Below h1, we switch back to ultra-narrow spectrum antibiotics to eradicate the pathogen e�ciently.

Threshold h0 is the lower bound for treatment, below which no medicine will be taken.

Figure 6.17: Di↵erent thresholds important for the combination strategy of QSS + ultra-narrow spectrum
antibiotics.
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The simulation procedures are roughly the same as the model for Quorum Sensing Spoofing except the

selection of antibiotics according to the pathogenic population.

6.5.3 Results and Discussions

Figure 6.18: A treatment cycle for drug combination for h0 = 0. The red line indicates total population
while the blue line indicates pathogens expressing virulence factors.

We show a full treatment cycle in Figure 6.18 with the following set of parameters: h0 = 0, h1 = 500,

h2 = 2500, h3 = 3000, h4 = 4500, the killing rate of the ultra-narrow antibiotics is 40% while mutation rate

equals 0.02% and intra-species horizontal gene transfer rate 2%. We can see that drug combination works

e↵ectively and safely. To investigate the emergence of resistance against ultra-narrow spectrum antibiotics,

we tune h0 to a nonzero (100) value keeping else the same, and show the simulation in Figure 6.19. We can

see that not only the total population of pathogens is always small and under good control, but also that

of resistant pathogens is always small and negligible even the time steps increase by an order of magnitude.

Hence we are led to the hypothesis that motivates our in vitro and in vivo proposed research: combining

Quorum Sensing Spoofing with ultra-narrow antibiotics appears to be e↵ective in suppressing the emergence

and spread of resistance genes, and o↵ers a safe and e↵ective treatment strategy.
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Figure 6.19: A treatment cycle for drug combination for h0 = 100. The red line indicates total population
while the blue line indicates pathogens expressing virulence factors.
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6.6 Conclusion

In this chapter, we investigate non-conventional antibiotics and their treatment. Recognizing the huge

importance and visible and hidden benefits of the beneficial microbiota [184], we narrow down the victims in

antibiotic treatment. Compared with conventional antibiotics, where Gram-positives, Gram-negatives and

pathogens all su↵er, narrow and especially ultra-narrow spectrum antibiotics show long delayed emergence

of resistance.

We design a brand new strategy naming Quorum Sensing Spoofing. Adding extra autoinducers, we

successfully spoof bacteria to pre-express their virulence and thus su↵er from the burden of pre-expression.

QSS highlights no antibiotic resistance.

Last we propose a treatment plan combining ultra-narrow spectrum antibiotics and Quorum Sensing

Spoofing. The basic idea is to take full advantage of Quorum Sensing Spoof and extend the treatment

regime and increase the e�ciency by switching to ultra-narrow spectrum antibiotics. We can achieve safety

and e�ciency in treatment. Furthermore, emergence of resistance against ultra-narrow spectrum antibiotics

is highly reduced by alternating drugs.

With the rise in antibiotic resistance and the lack of financial incentive for large pharmaceutical compa-

nies to pursue novel antibiotics, humankind risks losing the fight against bacterial pathogens. Despite their

apparent success, conventional and proposed antibiotics su↵er from a fundamental drawback: all existing

antibiotics target essential life processes of bacteria, such as translation or cell wall biosynthesis, and thus

represent the ultimate selective pressure for an organism. The distinguishing aspect of our research philos-

ophy is this: future antibiotics should not target essential metabolic pathways but instead directly target

key aspects of the pathogenic mechanism. Our research will exhibit no e↵ects on primary metabolism, be-

cause in our proposed strategies it is communication systems and collective properties of a community that

are hijacked and repurposed. By limiting our treatment to those bacteria that are actively causing disease

(i.e. biosynthesizing toxins and actively subverting our immune systems), our approach of quorum sensing

spoofing followed by ultra-narrow spectrum antibiotics significantly limits the number of targeted bacteria.

Thus, the clinical shelf life of the antimicrobial drug is extended. Moreover, this anti-virulence strategy

preserves the symbiotic bacteria that play a vital role in human physiology and compete against pathogens.

Experiments in vitro and in vivo will be performed by my advisor Nigel Goldenfeld’s collaborators.
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Chapter 7

Conclusions

In this dissertation, I presented my discoveries and innovations in the population dynamics of virus-host

systems, social life of micro-organisms, evolutionary game theory, and medicine.

I derived a mean-field theory for the population dynamics of viruses and their hosts. I identified a novel

limit cycle robust to fluctuations in the presence of lysogeny, which manifests and recognizes lysogens’ role

as a genetic reservoir. Such a cycle can be tested in experiments.

In the social life of budding yeast, I proposed a theory of cooperation directly linking game theory

and experimental measurable quantities. The methods can be used in the design of future experiments to

manipulate collective properties of micro-organism communities.

In evolutionary game theory, I invented a novel mechanism with biological interpretations to explain the

ubiquitous cooperation in biology. The dominance of cooperators in the model is independent of the detailed

rules.

Perhaps the most practically useful piece of my thesis work is the application of population dynamics to

medicine. First, I verified the e↵ectiveness to slow down the rapid emergence of antibiotic resistance with

narrow-spectrum and especially ultra-narrow-spectrum antibiotics. Last but not last, I invented a brand new

scheme of Quorum Sensing Spoofing, which may guide the next generation of antibiotics. I also designed

candidate treatment cycles combining Quorum Sensing Spoofing with ultra-narrow spectrum antibiotics.

The schemes will be tested in laboratory.

7.1 Thoughts and Reflections

It is recognized that biology provides physics with the second law of thermodynamics while physics provides

biology with microscopy. In exchange for a law with an instrument, is physics too mean?

Walking through the same forest, physicists may tend to appreciate the similarities between di↵erent

trees while biologists probably would like to study the trees one by one, or even leaf by leaf.

Physics, generally speaking, tackles universal phenomena such as phase transitions. It is the strength
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of physicists to find simple and unifying explanations for complicated phenomena. In biology, there also

exist universal phenomena such as coexistence and cooperation as I mentioned in this dissertation. Hence

methods and approaches in physics might contribute to these universal problems in biology, too.

Biological interactions are usually so complicated that it requires large e↵ort to measure and quantify

the system. Focusing on detailed and specific systems for a long time, sometimes people tend to lose and

forget the big picture. Besides due to experimental restrictions some experimental data are hard to obtain

such as data on evolutionary and ecological timescales. Once in a while it helps to sit back and see the big

picture such as evolution and ecology. It is the job of physics to remind and ask biology the real important

questions, e.g., the origin of life.

Di↵erent disciplines are divided so that time and e↵ort can be focused on the specific branch of problem.

However as long as a problem is solved, it does not matter what branch of knowledge is used. Sometimes

jumping across branches may o↵er panorama of the whole forest. The di↵erences and similarities between

di↵erent branches may become clearer so that one can ask the right and important questions.

Besides, interdisciplinary research may help to bring new ideas. For example, my idea of Quorum Sensing

Spoofing is intrinsically simple. As Nigel commented, it should have been proposed years ago, but was not.

Coming to the field of medicine as an outlier, I am not restricted to the routine methods in search of new

antibiotics. What is more, I am equipped with analytical tools and simulation skills that help to solve the

problem. More importantly, trained as a physicist, the way of thinking, reasoning and tackling problems

will all help to broaden the horizon, which might be the key in interdisciplinary research.

Furthermore, important questions across disciplines may share some kind of similarity such as cooperation

in game theory and in biology. Another example I would like emphasize is irreversibility. Irreversibility breaks

the symmetry of time, which is essentially important in physics. The question in biology is irreversibility

in evolution. Current research on antibiotic resistance suggests that in most cases acquisition of antibiotic

resistance genes is irreversible, which means that strains tend to have second site mutations to mediate the

cost for antibiotic resistance instead of reverting to antibiotic sensitivity in the absent of antibiotics. What is

the criterion for reversibility and irreversibility in biology? Once found, we human may have more confidence

against not only antibiotics but also cancers.

I hope one day we can say that biology rewards physics with the second law of thermodynamics while

physics rewards biology with the origin of life.
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Appendix A

Transition Matrices for the Lysis-only
Model

Here we provide the transition matrices, which are the probabilities for the change in the population in each

time step in the lysis-only model.

T (m+ 1, n|m,n) = bµ (1� ⌫) (1� !)
2m (K �m)

K (K � 1)

= ebm
⇣
1� m

K

⌘
, (A.1)

eb = 2bµ (1� ⌫) (1� !)

K � 1

⇡ 2bµ (1� ⌫) (1� !)

K
. (A.2)

T (m� 1, n|m,n) = cµ (1� ⌫)!
m

K
+ dµ (1� ⌫) (1� !)

m (m� 1)

K (K � 1)

= ecm+ edm
✓
m

K
� 1
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◆

⇡ ecm+ edm
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K
, (A.3)

ec = cµ (1� ⌫)!

K
, (A.4)

ed =
dµ (1� ⌫) (1� !)

K � 1

⇡ dµ (1� ⌫) (1� !)

K
. (A.5)

T (m� 1, n+ ↵� 1|m,n) = eµ⌫ (1� !)
2m (K �m)

K (K � 1)

n

W

= eemn
⇣
1� m
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⌘
, (A.6)
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ee = 2eµ⌫ (1� !)

(K � 1)W

⇡ 2eµ⌫ (1� !)

KW
. (A.7)

T (m� 1, n+ � � 1|m,n) = fµ⌫ (1� !)
m (m� 1)

K (K � 1)

n

W

= ef m
2n

K
, (A.8)

ef =
fµ⌫ (1� !)

(K � 1)W

⇡ fµ⌫ (1� !)

KW
. (A.9)

T (m,n� 1|m,n) = g (1� µ) ⌫
n

W

= egn, (A.10)

eg =
(1� µ) ⌫

W
. (A.11)

All the other transition matrixes are zero. Noting that all the events in Table 2.2 are Markov processes,

we know that the time evolution for the probability with m hosts and n phages at time t will be

d

dt
P (m,n, t) = T (m,n|m� 1, n)P (m� 1, n, t)

+ T (m,n|m+ 1, n)P (m+ 1, n, t)

+ T (m,n|m+ 1, n+ ↵� 1)P (m+ 1, n+ ↵� 1, t)

+ T (m,n|m+ 1, n+ � � 1)P (m+ 1, n+ � � 1, t)

+ T (m,n|m,n+ 1)P (m,n+ 1, t)

� [T (m+ 1, n|m,n) + T (m� 1, n|m,n)

+ T (m� 1, n+ ↵� 1|m,n) + T (m� 1, n+ � � 1|m,n)

+ T (m,n� 1|m,n)]P (m� 1, n, t) . (A.12)
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Applying summations according to Eq. (2.3), we will get

d hmi
dt

= hT (m+ 1, n|m,n)i � hT (m� 1, n|m,n)i

� hT (m� 1, n+ ↵� 1|m,n)i
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⇡
⇣
eb+ ed
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✓
1� hmi

K

◆
�
⇣
ec+ ed

⌘
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� ee hmi hni
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!
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#
, (A.13a)

d hni
dt

= (↵� 1) hT (m� 1, n+ ↵� 1|m,n)i

+ (� � 1) hT (m� 1, n+ � � 1|m,n)i
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(↵� 1) ee

!
hmi
K

#

� eg hni . (A.13b)

Let

r = eb+ ed, (A.14a)

� = ee, (A.14b)

� = ↵� 1, (A.14c)

dm = ec+ ed, (A.14d)

dn = eg, (A.14e)

am = 1�
ef
ee , (A.14f)

an = 1� (� � 1) ef
(↵� 1) ee , (A.14g)

which is Eq. (2.6), we can arrive at Eq. (2.5).
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Appendix B

Transition Matrices for the
Lysogeny-lysis Model

In this appendix, we provide details for the derivations of the lysogeny-lysis model.

According to Table 3.1 and Table 3.2, we can obtain the following non-zero transition matrixes:

T (m+ 1, s, n|m, s, n) = bµ (1� ⌫) (1� !)
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◆
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Ignoring fluctuations and correlations, we derive the populations dynamics at the mean field level. The
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time evolution for population size is

d hmi
dt
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Let

r = eb+ ed, (B.22a)

d1 = ec+ ed, (B.22b)
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d3 = eg, (B.22d)

�1 = ee+ eh, (B.22e)

�2 = eh, (B.22f)

a1 =
ef + ek
ee+ eh

, (B.22g)

125



a21 =
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, (B.22h)
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which is Eq. (3.4), and omit angle-brackets for simplicity, Eq. (B.21) can be written as Eq. (3.3).
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Appendix C

Simulation Code of Population
Dynamics for Broad-, Narrow-, and
Ultra-Narrow Spectrum Antibiotics
Here I provide working code written in C++ for the simulation described in Section 6.3.3.

// : Anti11 . cpp

// output time e vo l u t i on o f popu la t i on o f Gram�p o s i t i v e s ,

// Gram�nega t i v e s , pathegons , and t h e i r r e s i s t a n t correspondence

#include <iostream>

#include <f stream>

#include <ctime>

#include <c s t d l i b>

#include <cmath>

#include ” r e qu i r e . h”

using namespace std ;

// se tup g l o b a l cons tan t s

const bool ki l lGP = 0 ; // k i l l Gram�p o s i t i v e s

const bool kil lGN = 0 ; // k i l l Gram�nega t i v e s

const double mBL = 0 . 1 ; // microbe�b i r t h�low

const double mBH = 0 . 2 ; // microbe�b i r t h�high

const double mD = 0 . 1 5 ; // microbe�death

const double mS = 0 . 8 ; // microbe�suppres s ion

const double pBL = 0 . 5 ; // pathogen�b i r t h�low

const double pBH = 0 . 6 ; // pathogen�b i r t h�high

const double pD = 0 ; // pathogen�death

const double dK = 0 . 8 ; // drug�k i l l
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const double mutation = 0 . 0 0 2 ; // mutation�ra t e

const double HGTintra = 0 . 0 2 ; // HGT�i n t r a s p e c i e s

const double HGTinter = 0 . 2 ; // HGT�i n t e r s p e c i e s

const long tDose = 1000 ; // th re sho l d�dose

const long tBurst = 30000; // th re sho l d�bu r s t

const long kUT = 4e5 ; // un i t carry ing�capac i t y

const long kGP = 6e5 ; // carry ing�capac i t y o f Gram�p o s i t i v e s

const long kGN = 8e5 ; // carry ing�capac i t y o f Gram�nega t i v e s

long hours ; // time s t ep

long popGP, popGN, popP , popRGP, popRGN, popRP ;

void setup ( ){

hours = 0 ;

popGP = kGP;

popGN = kGN;

popP = tDose ;

popRGP = 0 ;

popRGN = 0 ;

popRP = 0 ;

}

long gen ( long n , double r a t e ){

long r = 0 ;

for ( long i = 0 ; i < n ; ++i )

i f ( (double ) rand ( ) / (double )RANDMAX < r a t e ) ++r ;

return r ;

}

void k i l l ( ){

i f (popP >= tDose ){
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popP �= gen (popP � popRP , dK) ;

i f ( k i l lGP ) popGP �= gen (popGP � popRGP, dK) ;

i f ( ki l lGN ) popGN �= gen (popGN � popRGN, dK) ;

}

}

void mutate ( ){

popRP += gen (popP � popRP , mutation ) ;

i f ( k i l lGP ) popRGP += gen (popGP � popRGP, mutation ) ;

i f ( ki l lGN ) popRGN += gen (popGN � popRGN, mutation ) ;

}

void r eproduce he lp ( long& n1 , long& n2 , double rate1 , double ra t e2 ){

long x = gen ( n1 � n2 , ra t e1 ) ;

long y = gen (n2 , ra t e2 ) ;

n2 += y ;

n1 += x + y ;

}

void reproduce ( ){

double s r = pow( (double )1 � mS, (double ) (popGP + popGN) / (double )kUT) ;

double c1 = (double )kGP / (double )popGP ;

double c2 = (double )kGN / (double )popGN;

reproduce he lp (popP , popRP , s r ⇤ pBH, s r ⇤ pBL ) ;

r eproduce he lp (popGP, popRGP, c1 ⇤ mBH, c1 ⇤ mBL) ;

r eproduce he lp (popGN, popRGN, c2 ⇤ mBH, c2 ⇤ mBL) ;

}

void hgt ( ){

long iP = 0 , iGP = 0 , iGN = 0 ;
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iP = gen (popRP , HGTintra ) ;

i f ( k i l lGP ){

iGP = gen (popRGP, HGTintra ) ;

iP += gen (popRGP, HGTinter ) ;

iGP += gen (popRP , HGTinter ) ;

}

i f ( ki l lGN ){

iGN = gen (popRGN, HGTintra ) ;

iP += gen (popRGN, HGTinter ) ;

iGN += gen (popRP , HGTinter ) ;

}

i f ( k i l lGP && kil lGN ){

iGP += gen (popRGN, HGTintra ) ;

iGN += gen (popRGP, HGTintra ) ;

}

// cout << iP << ” ” << iGP << ” ” << iGN << end l ;

popRP += min( iP , popP � popRP ) ;

i f ( k i l lGP ) popRGP += min( iGP , popGP � popRGP) ;

i f ( ki l lGN ) popRGN += min(iGN , popGN � popRGN) ;

}

void s u r v i v e h e l p ( long& n1 , long& n2 , double r a t e ){

long x = gen ( n1 � n2 , r a t e ) ;

long y = gen (n2 , r a t e ) ;

n2 �= y ;

n1 �= x + y ;

}

void su rv iv e ( ){

s u r v i v e h e l p (popP , popRP , pD) ;
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s u r v i v e h e l p (popGP, popRGP, mD) ;

s u r v i v e h e l p (popGN, popRGN, mD) ;

}

int main ( int argc , char⇤ argv [ ] ) {

const char⇤ f i d = argc > 1 ? argv [ 1 ] : ”01” ;

s t r i n g fname ( ”Anti11 . dat” ) ;

fname . i n s e r t (7 , f i d ) ;

o f s t ream out ( fname . c s t r ( ) ) ;

a s su r e ( out , fname . c s t r ( ) ) ;

out << ” ki l lGP ” << ki l lGP << endl ;

out << ”ki l lGN ” << kil lGN << endl ;

out << ”mBL ” << mBL << endl ;

out << ”mBH ” << mBH << endl ;

out << ”mD ” << mD << endl ;

out << ”mS ” << mS << endl ;

out << ”pBL ” << pBL << endl ;

out << ”pBH ” << pBH << endl ;

out << ”pD ” << pD << endl ;

out << ”dK ” << dK << endl ;

out << ”mutation ” << mutation << endl ;

out << ”HGTintra ” << HGTintra << endl ;

out << ”HGTinter ” << HGTinter << endl ;

out << ” tDose ” << tDose << endl ;

out << ” tBurst ” << tBurst << endl ;

out << ”kUT ” << kUT << endl ;

out << ”kGP ” << kGP << endl ;

out << ”kGN ” << kGN << endl ;

srand ( time ( 0 ) ) ;

setup ( ) ;

131



out << ”\nhours\tpopGP\tpopRGP\tpopGN\tpopRGN\tpopP\tpopRP\n” ;

out << ”START\n” ;

out << hours << ”\ t ” << popGP << ”\ t ” << popRGP << ”\ t ”

<< popGN << ”\ t ” << popRGN << ”\ t ” << popP << ”\ t ”

<< popRP << endl ;

while (popP < tBurst ){

hours++;

k i l l ( ) ;

mutate ( ) ;

reproduce ( ) ;

hgt ( ) ;

su rv iv e ( ) ;

out << hours << ”\ t ” << popGP << ”\ t ” << popRGP << ”\ t ”

<< popGN << ”\ t ” << popRGN << ”\ t ” << popP << ”\ t ”

<< popRP << endl ;

}

// out << ”END\n” ;

out . c l o s e ( ) ;

}// /:˜

132



References

[1] J.B. Birks. Rutherford at Manchester. Heywood, 1962.

[2] M. De Paepe and F. Taddei. Viruses’ life history: towards a mechanistic basis of a trade-o↵ between
survival and reproduction among phages. PLoS Biol, 4(7):e193, 2006.

[3] M.A. Du↵y and L. Sivars-Becker. Rapid evolution and ecological host–parasite dynamics. Ecology
Letters, 10(1):44–53, 2007.

[4] J. Davies and D. Davies. Origins and evolution of antibiotic resistance. Microbiology and Molecular
Biology Reviews, 74(3):417–433, 2010.

[5] D.I. Andersson and D. Hughes. Antibiotic resistance and its cost: is it possible to reverse resistance?
Nature Reviews Microbiology, 8(4):260–271, 2010.

[6] Tree of Life. http://tolweb.org/tree/learn/concepts/whatisphylogeny.html.

[7] W.F. Doolittle. Phylogenetic classification and the universal tree. Science, 284(5423):2124–2128, 1999.

[8] M. Ptashne. A Genetic Switch: Phage Lambda Revisited. CSHL Press, 2004.

[9] A.E. Clatworthy, E. Pierson, and D.T. Hung. Targeting virulence: a new paradigm for antimicrobial
therapy. Nature chemical biology, 3(9):541–548, 2007.

[10] H.W. Ackermann. Phage classification and characterization. Methods Mol Biol, 501:127–140, 2009.

[11] J.S. Weitz and J. Dusho↵. Alternative stable states in host–phage dynamics. Theoretical Ecology,
1(1):13–19, 2008.

[12] M. Chaplin. Enzymes and Enzyme Technology. http://www.lsbu.ac.uk/biology/enzyme/

practical1.html.

[13] J. Gore, H. Youk, and A. Van Oudenaarden. Snowdrift game dynamics and facultative cheating in
yeast. Nature, 459(7244):253–256, 2009.

[14] M.A. Brockhurst, A.D. Morgan, A. Fenton, and A. Buckling. Experimental coevolution with bacteria
and phage: The Pseudomonas fluorescens—�2 model system. Infection, Genetics and Evolution,
7(4):547–552, 2007.

[15] R.J. Woods, J.E. Barrick, T.F. Cooper, U. Shrestha, M.R. Kauth, and R.E. Lenski. Second-order
selection for evolvability in a large escherichia coli population. Science, 331(6023):1433–1436, 2011.

[16] P.J. Choi, L. Cai, K. Frieda, and X.S. Xie. A stochastic single-molecule event triggers phenotype
switching of a bacterial cell. Science, 322(5900):442–446, 2008.

[17] J. Gore, H. Youk, and A. Van Oudenaarden. Snowdrift game dynamics and facultative cheating in
yeast. Nature, 459(7244):253–256, 2009.

[18] E. Lieberman, C. Hauert, and M.A. Nowak. Evolutionary dynamics on graphs. Nature, 433(7023):312–
316, 2005.

133



[19] S.B. Levy and B. Marshall. Antibacterial resistance worldwide: causes, challenges and responses.
Nature medicine, 10:S122–S129, 2004.

[20] R. Nowak. Hungary sees an improvement in penicillin resistance. Science (New York, NY),
264(5157):364, 1994.
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