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Abstract

We propose the use of cover as a quick, low-resolution proxy for
the abundance of microbial species, which is free from PCR bias.
We showcase this concept in a computation that uses clone library
information from travertine-forming hot springs in Yellowstone Na-
tional Park to provide estimates of relative covers at different loca-
tions within the spring system. Samples were used from two media:
the water column and the travertine substrate. The cover distribu-
tion is found to approximate a power law for samples within the water
column. Significant commonality of species with the highest cover is
observed in the water column for all locations, but not for species
present in the substrate at different locations or between media at the
same location. (122 words)
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1 Introduction

Until recently, the study of microbial ecology was narrowly constrained by

the difficulty of identifying microbes outside of cultures. Modern molecular

methods, based upon the sequencing of small subunit rRNA genes (Olsen

et al., 1986), (Pace et al., 1986) permit the classification and comparison

of microbes directly from an environmental sample. A key step in many,

but not all, molecular methods is the creation of a clone library contain-

ing representatives of the environmental 16S rRNA. Sequencing samples of

the clone library has enabled estimates of diversity to be obtained in a va-

riety of environments ranging from geothermal hot springs to the oral cav-

ity. Clone libraries are, by now, numerous and relatively straightforward

to assemble. Sequencing, whilst expensive, is becoming cheaper and high-

throughput methods are available that enable huge datasets to be created

from environmental samples.

However, diversity is not an adequate characterization of the dynamics,

metabolism and community structure of an ecosystem. For this purpose,

some measure of abundance is desirable; even though the most abundant or-

ganisms are not necessarily those which dominate the ecosystem dynamics,

any quantitative understanding of geobiochemical cycles requires informa-

tion about abundance. A variety of methods are available to measure abun-

dance: Quantitative PCR, Most Probable Number PCR, competition PCR

and dot-blot hybridization among others (Muyzer et al., 1993), (Ding and
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Cantor, 2004), (Amann et al., 1995), (Head et al., 1998), (Zoetendal et al.,

2004), each of them with their own advantages and disadvantages. These

techniques are valuable probes of the environment, but are extremely local,

providing information on scales that are often very much smaller than those

characteristic of environmental spatio-temporal dynamics. Clone libraries

are generally created from much larger, system wide samples, and so could

provide, in principle, a more global, but still spatially-resolved measure of

abundance. Unfortunately, attempts to estimate abundance using clone li-

braries are hampered by inherent biases in PCR amplification and cloning

(Wintzingerode et al., 1997).

The purpose of this paper is to propose a statistical method for estimating

a coarse grained (or low resolution) measure of abundance based on the

concept of cover, and using clone libraries alone. Our approach is fast, cheap,

capable of high-throughput and only requires the use of a computer. Most

importantly, we will show that our method is not significantly affected by

extraction and PCR bias. Furthermore, being based upon clone libraries,

it gives a large-scale, system-wide estimate of cover. We believe that our

technique can provide a rapid and convenient first assay of an ecosystem,

providing relative cover of the microbial population; such an assay would be

expected to be followed up by local probes, using, for example, one of the

techniques mentioned above.

We illustrate this method with data from a travertine-forming hot spring

in Yellowstone National Park, where earlier studies (Fouke et al., 2003) report

4



the nominal presence of 221 Operational Taxonomical Units (OTUs). Our

technique yields information on which are the most abundant (in terms of

cover) OTUs, and the ones with the greatest potential impact to drive the

ecosystem metabolism. In this way, our analysis focuses attention on the 10

or 15 OTUs with highest cover, distinguishing them from the several hundred

OTUs detected in previous work (Fouke et al., 2003). The putative metabolic

characteristics of these organisms can provide a clue as to their environmental

role, and the likely dominant biogeochemical pathways that are active in the

system.

2 Relative cover estimation

We define the relative abundance ri as the fraction of total individuals in the

system belonging to OTU i : ri = ni/n. Here ni is the number of individuals

belonging to OTU i and n is the total number of individuals. The index i

takes on values from 1 to S, S being the total number of OTUs observed

in the system. Samples are assumed to have been collected at each facies

(see section 5.1 and to have been processed through the standard procedure

of DNA extraction, 16S rRNA gene PCR amplification, cloning and clone

screening to create a clone library as explained in (Fouke et al., 2003).

Ideally, one would count every individual in the system and assign it to

an OTU to calculate ri. This is unfeasible first and most obviously because

of the impossibility of sampling the whole system, and secondly because each
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sample does not give information on relative abundance. The reason for the

latter is that clone library abundances are not representative of abundance

in the real system, because of biases present in PCR amplification. A small

preference in primer binding for a certain OTU type is exponentially am-

plified and will distort abundances greatly. Other biases are introduced by

the DNA extraction, ligation and transformation but they lack the exponen-

tial growth inherent to PCR DNA amplification. We will therefore use only

information on the presence or absence of each OTU in each sample.

Having surrendered the (biased) abundance information for OTUs that is

reflected in the clone library abundance, we need to find an alternative way to

estimate abundance. The idea that we propose here is that if one has collected

many environmental samples from the same location, and generated a clone

library, the samples will show variations in which OTUs are present. These

variations reflect in a non-trivial way the spatial abundance distribution of

the organisms, and our task now is to extract this in the least biased way.

To this end, we use the collected data to obtain estimates of coarse-grained

abundances or covers as explained in figure 2. Cover, sometimes known as

occurrence or range, is a concept from macroscopic ecology, and is strongly

linked to abundance (Kunin, 1998), (He and Gaston, 2000), (Kunin, 2000)

although not equivalent. Referring to figure 2, assume that the square rep-

resents one of the facies in the system, properly divided into smaller subcells

of size l. This length, which we call the correlation length l, is defined to

be small enough so that sampling within the boundaries of a subcell would
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Figure 1: Example of how to calculate the estimates of the cover Ĉi and
relative cover ρ̂i for a given number of samples according to equations 4
and 5. Only information of presence or absence of a given OTU is used.

always yield the same result. One can define the cover of OTU i to be

the fraction of subcells in which OTU i is present over the total number of

subcells:

Ct
i =

X t
i

X
(1)

and the time-averaged cover is:

Ci =
T∑

t=1

Ct
i

T
(2)

The relative cover is defined by simply normalizing the cover:

ρi =
Ci∑
i Ci

(3)

Sampling the whole facies to find the true cover Ci is out of reach. Ran-

dom sampling from each facies yields estimates (denoted by a caret) that

7



should converge quickly as the number of samples increases:

Ĉi =
Ni

N
(4)

ρ̂i =
Ĉi∑
i Ĉi

(5)

where Ni is the number of samples in which OTU i is present and N is

the total number of samples (see fig. 1). This last equation then provides a

quick estimate of relative covers and hints at which OTUs are more likely to

influence the microbial ecosystem.

Our method relies critically on the variability of detected OTUs from

sample to sample. Why does this variation arise? In general, it is due to two

main effects: (i) spatial and temporal variation, and (ii) detection errors.

As explained in section 5, samples were taken in different spatial location

within the same facies and at different times of the year and day. Micro-

bial species show preferred ranges of temperature and pH ranges, and have

been shown to partition fairly tightly to given facies (Fouke et al., 2003). It

is therefore not surprising that spatial and temporal variations of pH, tem-

perature and other facies characteristics within a given facies give rise to

distinctive patterns in the location of OTUs.

Detection errors arise because the processes of extraction, amplification,

ligation, transformation and sequencing have an intrinsic variability in their

success rate, that can be dependent on the skill and expertise of the exper-

imenter. For example, the large scale of the survey described below(more
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Figure 2: Cover, a concept borrowed from macroscopic ecology (Kunin,
1998),(He and Gaston, 2000),(Kunin, 2000), is a coarse-grained or low-
resolution measure of abundance in the sense that each subcell will contribute
if the species is present inside it, independent of its abundance in the subcell.
The cover is the number of subcells in which a given OTU is present divided
by the total number of subcells (equation 1), for each of the possible times t
(t = 1..T ). For example, for t = 1 the cover is C1

i = 23/289, and for t = 2,
C2

i = 29/289. Each of the squares is a diagram representing one of the facies
in the system.

than 14000 clones were screened) implied assignment of these tasks to per-

sons of different levels of expertise (Fouke et al., 2003). With the amount of

available data it is hard to tell apart how much variance is due to spatial and

temporal variation and how much is due to detection errors. High through-

put, standardized “pipelines” for 16S rRNA analysis reduce these detection

errors to a minimum, and allow for the large number of samples necessary

for this method. So, to proceed, we will assume here that detection error has

been minimized by careful and reproducible laboratory practice, and that

there are spatial or temporal trends in the possible causes of detection er-

ror. Thus, we take into account explicitly only the variability arising from

intrinsic spatial and temporal dynamics.
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3 The library resampling method

Equation 5 offers an estimate for the relative cover but not its variance,

critical to ascertaining the variability of ρi across the facies and in time.

In this section, we use a computer-intensive library resampling method to

estimate variability.

The library resampling method is an application of the original bootstrap

method introduced by Efron in 1979 to assess the accuracy of statistical esti-

mates and provide bias corrections (Efron, 1979). A familiar example of the

bootstrap principle is its application in estimating confidence limits on phy-

logenies (Felsenstein, 1985), but the original bootstrap is a data resampling

statistical method of much wider applicability. It is the broader method that

we use here. A basic exposition of the data resampling bootstrap method can

be found in (Shao and Tu, 1995), (Efron and Tibshirani, 1993) and (Cher-

nick, 1999). Here we will limit ourselves to explaining its use for the case at

hand, but in a self-contained way.

How can the data resampling bootstrap method be used to obtain a vari-

ance for the relative cover estimate in 5? Traditionally, one would divide the

N samples in M groups of N/M samples and obtained the estimates of ρ̂s
i

(s = 1..N/M) for each of these groups as per equation 5. The variance would

be obtained as usual: var(ρ̂i) =
∑

s(ρ̂
s
i − ρ̂av

i )2, where ρ̂av
i denotes the aver-

age of ρ̂s
i . For large enough N this would converge to the desired variance.

Nonetheless, this procedure wastes samples for each estimate ρ̂s
i (s = 1..M)
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and leads to a poor estimation. For example, for N = 8 (as for data in

section 5) having 4 groups would lead to a meager 2 samples per group.

The data resampling bootstrap explores the variance by forming groups

of samples, whose content is randomly sampled from the original samples,

but which have the same amount of samples per group as the total initial

number of samples. This is achieved by choosing these groups through sam-

pling with replacement as explained in figure 3: R bootstrap groups are

created and a relative cover estimate ρ̂s
i is calculated for each. The data

resampling bootstrap theorem states that, for large enough R, the behaviour

of the ρ̂s
i around ρ̂i mimics the behaviour of ρ̂i around ρi (see appendix A

in supplementary material and (Chernick, 1999)). One can therefore obtain

an improved estimate and its variance by treating the bootstrap groups as

independent measurements:

ρBS
i =

1

R

R∑

s=1

ρ̂s
i (6)

var(ρ̂BS
i ) =

1

R

R∑

s=1

(ρ̂s
i − ρ̂BS

i )2 (7)

The data resampling bootstrap principle as stated above is not always ap-

plicable (e.g. extremal statistics (Chernick, 1999)) and the convergence to

the right distribution must be proven for each estimator (Shao and Tu, 1995).

Equations 6 and 7 refer to functions of sample means for which the proba-

bility distribution of the bootstrap resampling has been proved to converge

to the probability distribution of the estimates in the limit of large N (see
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Figure 3: The data resampling bootstrap method applied to estimate the
bias and variance of ρ̂i. R groups of four samples are generated by sampling
with replacement from the original samples. This means that the samples in
each group are chosen randomly among the original samples and each time a
sample is selected for the group it is returned to the original set, so it can be
chosen again. Therefore each group is not just a permutation of the initial
samples. For each group, ρ̂s

j is generated using equation 5 and the estimate
of the bias and the variance are given by equations 6 and 7.

appendix A in supplementary material).

4 Model calculation to illustrate the use of

the resampling method

In order to give a worked example of the use of the resampling method, we

present in this section a model calculation on artificial data, and show to what

extent the resampling method is capable of making faithful estimates from

finite data sets. The artificial data has been constructed so that it mimics

some aspects of the field data we will eventually analyze in the following

section. To begin the discussion, we first explain how the artificial data were

constructed from a model distribution, and the extent to which these artificial

data have realistic properties. We would like our artificial data to be semi-
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realistic, so that the success of the resampling algorithm on the artificial data

has some relevance to the application of the resampling algorithm on field

data. We conclude this section by exploring how well resampling converges

with increasing sample size.

The theorem in appendix A (supplementary material) proves the consis-

tency of the data resampling bootstrap estimator in the asymptotic limit,

which is a necessary condition for the validity of the bootstrap method. The

real interest of the bootstrap lies in its fixed sample properties. The variance

must eventually converge to the true variance for N → ∞, but for a finite

N it also provides a measure of the variability of relative covers by omitting

the use of certain samples, therefore yielding an account of its reliability.

There is no general theory for fixed sample properties of the bootstrap.

Its performance is usually examined through empirical simulations (Shao and

Tu, 1995), (Efron and Tibshirani, 1993). In this section we will assess the

performance of the bootstrap by generating a series of samples from a known

model cover distribution ρi and checking how close the bootstrap estimation

using N of these samples is to the original, known distribution.

For this demonstration calculation, we assume that each of the S OTUs

present in the system are present in each sample with probability ρ(i) ∝ i−0.65

(i = 1..S). As we will see, this model distribution actually mimics the

cover distribution of microbes that, in section 5, we will obtain in the water

column of the pond facies of the Yellowstone National Park data. The total

number of OTUs S is chosen here to be S = 200 since the number of OTUs
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in, for example, the water filters of the Pond is 43 and previous results

(Garćıa Mart́ın, 2004) indicate that 20% − 25% of the total diversity has

been sampled.

This model distribution, and the parameters given above, represent the

simplest possible ones that seem to capture certain realistic aspects of the

field data used below. Note that here we are assuming that there are no cor-

relations between samples. In the model distribution, the range of maximum

and minimum number of OTUs found in one sample is close to that of the

field data set used below: 3 to 26 OTUs for the model and 3 to 25 for the

data. Nonetheless, the variances in the number of OTUs found in one sample

are very different (3.28 for the model and 6.79 for the data), and the number

of OTUs detected after a fixed number of samples is appreciably higher in

the model (70.5 ± 6.2 vs 43). Thus, the model used for the demonstration

calculation in this section captures only some of the features of the field data;

the fact that the variance is so different from the field data suggests that the

field data contain correlations not contained within the model distribution.

Now, we present results from the resampling calculation. Figures 4 and 5

show the results of the data resampling bootstrap estimates ρ̂i(N), for sam-

ple numbers N = 10, 100 and R = 10000 as compared to the original relative

cover ρi. The results are satisfactory, with the target cover within the vari-

ance of the estimate. As expected, estimates improve with increasing N .

For low N the estimates overshoot slightly since not all S OTUs have been

detected and therefore the detected OTUs are given a higher relative cover
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Figure 4: Data resampling bootstrap estimate for N = 10 samples. In spite
of this low number of samples it is possible to get a hint of the underlying dis-
tribution. The estimate overshoots because for such low amount of samples
not all OTUs have been detected and therefore the detected OTUs attain a
higher relative cover so the sum of the relative covers adds up to unity.

than the real one.

R is in practice chosen large enough so that further increases don’t change

the estimate appreciably.

5 Analysis of Yellowstone National Park field

data

5.1 Study site

We now turn to an application of the resampling method on field data from

microbial communities at Yellowstone National Park, collected and published

previously (Fouke et al., 2003), (Bonheyo et al., 2005) as part of a large
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Figure 5: The data resampling bootstrap estimate improves for N = 100 as
expected and approximates satisfactorily the target distribution.

biocomplexity study at the University of Illinois at Urbana-Champaign. Our

purpose here is to illustrate how we have analyzed the microbial communities,

and not to present a detailed description of the ecological context or our

conclusions regarding the role of microbes in biomineralization.

For the dataset presented here, up to 50 samples were taken during an

interval of 4 years at Spring AT-1, located on Angel Terrace, in the upper

terrace region of the Mammoth Hot Springs complex at Yellowstone National

Park. AT-1 is typical of the travertine-depositing springs at this site, and

has been fully-characterized by (Fouke et al., 2000): hot waters erupt from

the vent and flow downhill cooling down, quickly degasing CO2, increasing

in pH and precipitating travertine at extremely high rates (∼ 1.5 m per year)

in a characteristic terraced architecture. The fast deposition rates produce

a hostile environment for present microbial life, which must somehow avoid

entrapment in the travertine substrate (Bonheyo et al., 2005).
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Samples were taken from all the five facies: vent, apron and channel,

pond, proximal slope and distal slope. A facies is a subenvironment of sed-

imentary deposition within a system with specific physical, chemical, geo-

logical and biological characteristics. Biological subenvironments correlate

tightly with facies. A broader explanation of the facies model can be found

in (Fouke et al., 2000). The samples were collected from two different media:

filtered water from the flowing water column, and the surface of the deposited

travertine substrate, with depths up to 2 cm. deep (see (Fouke et al., 2003)

for details of facies definitions and more specific information on the site).

Bacteria were identified through 16S rRNA gene identification as ex-

plained in (Fouke et al., 2003). For each sample, clones were screened for

unique sequences through RFLP. Three different sets of OTU definitions were

used, based on sequence differences of 0.5%,1% and 3%, with the intention

of determining to what extent, if any, our conclusions were affected by the

OTU definition (Bonheyo et al., 2005).

5.2 Data resampling bootstrap estimates

The procedure for obtaining the cover ρBS
k is the same as explained above

with a total of R = 10000 bootstrap samples being used. The results are

given in the form of rank abundance plots in figure 7 and figures 6 and 9

in the supplementary material. Rank tables for all facies and mediums are

shown in figure 6 and figures 5 and 8 in the supplementary material, along

with the number of samples for each case. A rank table with phylotype
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Figure 6: OTUs with highest coverage for the 3% difference definition for
different facies and media. V stands for vent, AC for apron channel, P for
pond, PS for proximal slope and DS for distal slope (Fouke et al., 2003).
Figures are relative covers with their variances. Numbers are identification
OTU numbers given in figure 3 in the supplementary material. Black sym-
bols mark OTUs that are present in another medium in the same facies. Blue
symbols mark OTUs that are present in another facies in the same medium.
Colors indicate phylotypes according to the code in figure 2 in the supple-
mentary material. For reasons of space only the OTUs with highest covers
are shown.
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Figure 7: Plots of relative cover versus relative rank for the 3% definition in
normal (above) and log-log axis (below). Relative covers are covers divided
by the lowest cover. An OTU with rank i has the ith highest cover. Relative
rank is rank divided by the total number of OTUs. Only the filter samples
from the pond and proximal slope facies seem to be well-described by a
power law, within the limits imposed by the small amount of samples used
(i.e. steps in the lower right end). Substrate sample plots from both facies
curve upwards.

19



Phylotype Clone abundance Cover estimate
Beta proteobacteria 22% 10± 4%

Cyanobacteria 16% 18± 3%
Aquificales 15% 4± 2%

Alpha proteobacteria 11% 17± 4%
Unknown division 9% 14± 4%

Green sulfur bacteria 9% 5± 2%
BCF group 7% 9± 3%

Delta proteobacteria 3% 3± 1%
Candidate div. OP-11 2% 5± 2%

Green non-sulfur bacteria 2% 5± 3%
Thermus/Deinococcus group 1% 2± 2%

Gamma proteobacteria 1% 1± 1%
Firmicutes negligible 3± 2%

Eukaryota, Chloroplasts negligible 1± 1%

Figure 8: Comparisons of covers and clone relative abundances from figure
6 in Bonheyo et al. (2005) for the proximal slope facies.

relative covers is available in figure 2 in the supplementary material.

Figure 8 presents a comparison of covers obtained through the resampling

method and nominal clone abundances (figure 6 in (Bonheyo et al., 2005))

for the proximal slope facies. The results are not wholly different: nominal

clone library abundances are not completely misleading, although it is evident

that library creation biases seems to have overepresented certain phylogenetic

groups. Aquificales, for example, seem to have been overrepresented by a

factor of more than three and beta-proteobacteria by a factor of two.

As can be seen, only the Pond and Proximal Slope facies have enough

number of samples for the resulting covers to be statistically meaningful.

Therefore only cover distributions for these mediums and facies are presented.
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In the case of the ranked tables, nonetheless, even for 3 or 4 samples the

results offer a qualitative idea of relative covers: the fact that the reported

OTUs, and not others, are present is suggestive of a higher cover, although

it cannot be quantified as would be the case with a larger sample size.

In the case of the Pond and Proximal Slope the covers seem to fit a

power law for the water samples, in contrast with the substrate, where they

do not. In the latter case, the rank-abundance curve is steeper, with the

most dominant organisms having relatively more cover than in the former

case.

It can also be noticed that among the highest ranking OTUs, there is

a certain degree of commonality in the case of the water samples, but not

in the substrate. This is in contrast with the reported biodiversity pattern,

which is different for each facies in both facies and mediums (Fouke et al.,

2003), (Bonheyo et al., 2005). We conclude that difference reflects the fact

that the fluid motion provides a downstream flush of cells that is absent

in the substrate. Remarkably, this is only noticeable for organisms with

highest covers; less abundant organisms are niche dependent. Also, of the

top ranking OTUs in the water very few appear in the top ranks of the

sediment. If encrustment in substrate or adherence to the surface biofilm

were a random process, it would be expected that the bacteria with highest

cover in water would also have the highest cover in the substrate. Since

this is not the case, it can be concluded that encrustment or surface biofilm

adherence is not random: some species are more able to avoid it (or provoke
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it) than others.

Figure 1 in the supplementary material presents the putative metabolic

characteristics of the OTUs with highest cover, deduced from close relatives

(in terms of 16S rRNA similarity). Although crude, lacking any other ge-

nomic information this is the only way to obtain a glimpse of the most abun-

dant metabolisms. In agreement with Spear (Spear et al., 2005), hydrogen

metabolism seems to be a common feature in this spring.

Finally, we comment briefly on the highest cover organism identified by

our analysis. OTU 5 (using the 3% OTU definition) seems to have highest

cover in all facies in the pond and the water samples from the apron and

channel and proximal slope. This OTU is an unknown beta proteobacterium

and corresponds to OTU 8 in the 1% definition, and splits up into several

different OTUs under the 0.5% definition. This seems to indicate that using

too fine a distinction between sequences in the definition of OTUs is not

ecologically useful. Consistent with this, high variances for cover estimations

are noticed in the case of the 0.5% definition, suggesting that this may be

too narrow a distinction for OTU definitions. Another possible explanation

is, of course, that the sample size is too small.

6 Conclusion

We have presented a computational method that uses clone library informa-

tion to provide a large-scale estimate of relative coarse grained abundance or
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cover. Even though the role of an organism in an environment is not neces-

sarily proportional to its abundance, this estimate can be used to generate

hypotheses as to which bacterial OTUs have the potential for significantly

influencing the ecosystem; thus our technique supplies possible candidates

for later quantitative work involving (e.g.) hybridization probes.

The resampling method has been used with data from travertine-forming

hot springs at Yellowstone National Park to provide estimations of relative

covers for different facies and mediums. OTUs with highest cover are prime

candidates to influence the degasing of CO2 which, in turn, produces calcium

carbonate precipitation and ultimately gives rise to the formation of the

travertine terraces. The data for covers seems to fit well a power law for the

water samples.

We report substantial commonality of species with highest cover in the

water medium, but not in the substrate or between media in the same facies.

This fact can be attributed to the water downflush of bacteria. In any case,

commonality would be expected to be limited to bacteria with highest cover,

since there is very little commonality of OTUs between facies (Fouke et al.,

2003). Lack of commonality between water and substrate samples indicates

that substrate encrustment and surface biofilm adherence is not random,

with some OTUs being able to avoid or provoke it.

The use of 3 different sets of OTU definitions permits us to explore the

issue of the proper definition of OTUs/species. We conclude that differ-

entiating OTUs by 0.5% may be excessive and advocate the 1% difference
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definition.
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Supplementary material

Appendix A

This appendix states the result that proves the applicability of the bootstrap

procedure for the estimator ρ̂i.

Let’s define X i
j such that X i

j = 1 if species i is present in sample j and

X i
j = 0 otherwise. In this case, ρ̂i(N) =

∑
j X i

j/
∑

i,j X i
j (as per equation 5).

Then, if X i
j are random with finite second moments, it can be proved that

the distribution of
√

N(ρ̂s
i (N)− ρ̂i(N)) will converge in the asymptotic limit

(N → ∞) to the same distribution as
√

N(ρ̂i(N) − ρi), namely a gaussian

with variance σi (which depends on the average of X i
j). More explicitly

(see (Shao and Tu, 1995), example 3.3):

P{
√

N (ρ̂s
i (N)− ρ̂i(N)) < x ∀i, s} →a.s. Φ(x/σi) (8)

where Φ(x) is the standard normal distribution:

Φ(x) = 1/
√

2π
∫ x

−∞
e−x2/2 (9)

Notation: P{A} denotes probability that clause A is true and →a.s. denotes

almost surely convergence or convergence with probability 1 : P{Xn → X} =

1 ⇒ Xn →a.s. X.



OTU # (3%) Putative Metabolism Closest BLAST match
25 H and S oxidation AJ320224 (88%) (Eder and Huber, 2002)

AJ320219 (88%) Eder and Huber (2002)
7 Fe(III) reduction, AF335183 (88%) (Lonergan et al., 1996)

H oxidation,
S reduction

8 Anoxygenic photosynthesis, AJ290834 (91%) (Alexander et al., 2002)
Fe(II) oxidation Y18253 (92%) (Heising et al., 1999)

36 Heterotrophic AB062105 (98%) (Hiraishi et al., 2002)
183 Heterotrophic AF137381 (91%) (Chelius and Triplett, 2000)
181 ? No close cultivated rep.
64 ? No close cultivated rep.
51 H and S oxidation AJ320224 (88%) (Eder and Huber, 2002)

AJ320219 (88%) (Eder and Huber, 2002)
22 ? No close cultivated rep.
5 H oxidation AB009829 (94%) (Hayashi et al., 1999)

AJ131694 (93%) (Stohr et al., 2001)
23 H and S oxidation AJ320224 (88%) (Eder and Huber, 2002)

AJ320219 (88%) (Lonergan et al., 1996)
1 ? No close cultivated rep.
55 ? No close cultivated rep.

Figure 1: Putative metabolic characteristics of the OTUs with highest cover.
Each OTU was compared with Genbank (Genbank, 1982) data through
BLAST (Altschul et al., 1997) and assumed to have a similar metabolism
to the closest matches. The third column gives the Genbank accesion num-
bers for best matches with known metabolism along with the percentage
similarity in the 16s rRNA gene and references for each accession number.
Although crude, this method gives a rough idea of the possible environmental
role of each OTU.



Figure 2: Phylotype relative covers and variances for each facies and medium.
Each present phylotype is identified by a color throughout the whole paper.
Numbers change for each grouping (phylotipes and 3%,1%,0.5% differences).
The phylotype relative abudances are the sum of relative covers of OTUs
belonging to a given phylotype. The variances are the square root of the
sum of squared variances.



Figure 3: OTU numbers with their corresponding defining sequence and
division for 3% difference definition.



Figure 4: OTU numbers with their corresponding defining sequence and
division for 1% difference definition.



Figure 5: OTU covers for the 1% difference definition. For reasons of space
only the OTUs with highest cover are shown.
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Figure 6: Plots of relative covers versus relative rank for the 1% difference
definition in normal (above) and log-log axis (below).



Figure 7: OTU numbers with their corresponding defining sequence and
division for 0.5% difference definition.



Figure 8: OTU covers for the 0.5% difference definition. For reasons of space
only the OTUs with highest covers are shown.
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Figure 9: Plots of relative covers versus relative rank for the 0.5% difference
definition in normal (above) and log-log axis (below).


