


NATURE PHYSICS | VOL 12 | MARCH 2016 | www.nature.com/naturephysics 197

editorial

The connection between turbulence and 
predation was made as early as 1922, when 
Lewis Fry Richardson wrangled it into 
rhyming verse1 with the lines:

 

Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

The poem, later granted wider 
circulation by James Gleick2, was a play on 
Augustus de Morgan’s famous paraphrasing3 
of Jonathan Swift:

 
Great fleas have little fleas
Upon their backs to bite ‘em,
And little fleas have lesser fleas
And so ad infinitum.

 
But the significance of the link lay dormant 

for some time, surfacing only late last year 
when Hong-Yan Shih and colleagues came up 
with a predator–prey model for turbulence, 
giving the analogy new meaning — and 

providing evidence in support of some 
long-held claims about Richardson’s whorls.

The paper, which appears on page 245 as 
part of this month’s Focus on Turbulence (see 
also the News & Views on page 204), reports 
numerical results that establish a clear link 
between the transition to turbulence and 
the universality class describing directed 
percolation. This idea dates back some thirty 
years to a conjecture made by Yves Pomeau 
that the transition to turbulence in shear 
flows might be understood in terms of an 
absorbing phase transition. Pomeau provides 
some historical perspective on this front with 
a Commentary on page 198.

On the heels of the contribution from 
Shih et al. came a pair of remarkable 
experimental findings from Masaki Sano 
and Keiichi Tamai (page 249) and, 
independently, from Grégoire Lemoult and 
co-workers (page 254). Although a number 
of theoretical and experimental studies have 
lent support to Pomeau’s conjecture over 
the years, no published experimental work 
had yet confirmed the directed percolation 

picture. These groups have succeeded in 
doing so simultaneously, albeit in two vastly 
different experiments.

Both teams looked at the onset of the 
transition to turbulence in the shear flow 
of Newtonian incompressible fluids and 
found evidence for critical exponents 
consistent with directed percolation. But 
whereas Lemoult et al. studied flows driven 
by differential wall motion in a quasi-1D 
Couette flow geometry, both numerically and 
experimentally, Sano and Tamai took on 2D 
channel flow created by a pressure gradient.

Establishing that the transition to 
turbulence falls into a well-known 
universality class promises great things 
for our understanding of this puzzling 
behaviour. The parallels with other fields 
are perhaps just as exciting, as our Focus on 
Turbulence seeks to convey. ❐
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An excursion into ecology and two sets of experiments lay the foundation for our Focus on Turbulence.

Big whorls, little whorls

On 14 September 2015, the upgraded 
Laser Interferometer Gravitational-Wave 
Observatory (advanced LIGO) made history: 
the two sites — one in Livingston, Louisiana 
and the other in Hanford, Washington — 
detected gravitational waves for the first time 
since they were predicted 100 years ago by 
Albert Einstein. The disturbance came from 
the merger of two black holes of roughly 
36 and 29 solar masses, some 1.3 billion 
light-years away, spiralling inwards, creating 
a single black hole of 62 solar masses. Keen 
mathematicians will note that 3 solar masses 
are missing. That was the energy going into 
the gravitational waves (equivalent to the 
total energy from the light of all the stars in 
the Universe, for 0.02 seconds). As the signal 
was a brief ‘chirp’ in the audible frequency 
range, we can now hear the Universe, whereas 
previously we could only see it.

Of course, the announcement, made 
on 11 February 2016, immediately hit the 
headlines. “We did it”, stated David H. Reitze, 
executive director of LIGO. The excitement 

was palpable. Some of us cried. But the 
public’s response was largely summed up by 
the satirical news source, The Daily Mash, 
with their headline: “Scientists completely fail 
to explain ‘gravitational waves’”.

And it isn’t difficult to explain. Every 
mass has a gravitational field, and whenever 
that mass accelerates, the gravitational field 
changes accordingly. Isaac Newton believed 
that the fields changed instantaneously on a 
global scale, but Einstein put a speed limit on 
the Universe. As information can only travel at 
the speed of light, information must propagate 
as a wave — a gravitational wave. These waves 
convey information on the motion of masses 
and are complementary to electromagnetic 
waves that convey information on the motion 
of charges.

Unfortunately, gravitational waves are 
weak. Advanced LIGO was able to measure 
a strain on the order of 10−21. This was only 
possible due to its recent US$200 million 
upgrade (involving additional input from the 
UK, Germany and Australia). But this first 

detection already tells us so much. Not only 
do we have a confirmation that black holes 
of masses greater than 25 solar masses exist, 
they can do so in a binary system and merge 
within the lifetime of the Universe. And let’s 
not forget that it is a major, if unsurprising, 
confirmation of Einstein’s general relativity. 
But what is truly mind-blowing is that not one 
of the telescopes operating at electromagnetic 
wavelengths has detected a counterpart event. 
A black hole merger emits no light, so only a 
gravitational wave detector was able to sense it.

And with the Virgo interferometer (in 
Cascina, Italy) coming online, and several 
other gravitational observatories at other 
wavelengths in the works, not to mention the 
Evolved Laser Interferometer Space Antenna 
(eLISA) (see Nature Phys. 11, 613–615; 2015), 
we may be able to ‘hear’ what happened just 
after the Big Bang, when the Universe was 
transparent to gravitational waves but not to 
electromagnetic ones. In the meantime, we 
should learn to explain the physics of these 
spectacular events to non-physicists. ❐

Physicists have finally detected gravitational waves, in a triumph of ingenuity and perseverance. And 
now we need to explain them to the general public.

Grave new world
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Ecological collapse and the emergence of
travelling waves at the onset of shear turbulence
Hong-Yan Shih, Tsung-Lin Hsieh and Nigel Goldenfeld*
The mechanisms and universality class underlying the
remarkable phenomena at the transition to turbulence remain
a puzzle 130 years after their discovery1. Near the onset to
turbulence in pipes1, plane Poiseuille flow2 and Taylor–Couette
flow3, transient turbulent regions decay either directly4 or
through splitting5–8, with characteristic timescales that exhibit
a super-exponential dependence on Reynolds number9,10.
The statistical behaviour is thought to be related to directed
percolation (DP; refs 6,11–13). Attempts to understand
transitional turbulence dynamically invoke periodic orbits and
streamwise vortices14–19, the dynamics of long-lived chaotic
transients20, and model equations based on analogies to
excitable media21. Here we report direct numerical simulations
of transitional pipe flow, showing that a zonal flow emerges at
large scales, activated by anisotropic turbulent fluctuations;
in turn, the zonal flow suppresses the small-scale turbulence
leading to stochastic predator–prey dynamics. We show that
this ecological model of transitional turbulence, which is
asymptotically equivalent to DP at the transition22, reproduces
the lifetime statistics and phenomenology of pipe flow
experiments. Our work demonstrates that a fluid on the edge
of turbulence exhibits the same transitional scaling behaviour
as a predator–prey ecosystem on the edge of extinction, and
establishes a precise connectionwith theDPuniversality class.

Turbulent fluids are ubiquitous in nature, arising for sufficiently
large characteristic speeds U , depending on the kinematic viscosity
ν and a characteristic system scale, such as the diameter of a pipe
D. Turbulent flows are complex, stochastic, and unpredictable in
detail, but transition at lower velocities to a laminar flow, which is
simple, deterministic and predictable. This transition is controlled
by the dimensionless parameter known as the Reynolds number,
which in the pipe geometry of interest here is given by Re≡UD/ν,
and occurs in the range 1,700.Re. 2,300. The laminar-turbulence
transition has presented a challenge to experiment and theory since
Osborne Reynolds’ original observation of intermittent ‘flashes’
of turbulence1.

To explore this transitional regime, we have performed direct
numerical simulations of the Navier–Stokes equations in a pipe of
length L= 10D, using the open-source code ‘Open Pipe Flow’23,
as described in Supplementary Methods. The Reynolds number at
which transitional turbulence occurs is higher for short pipes23,
and the simulations reported here for L= 10D were performed at
a nominal value Re= 2,600, which we estimate to be equivalent
to Re. 2,200 in long pipe data7 based on estimates of when puff
decay transitions to puff splitting.We confirmed that our results did
not qualitatively change for a longer pipe with L=20D. We denote
the time-dependent velocity deviation from the Hagen–Poiseuille
flow by u= (uz ,uθ ,ur). Because we were interested in transitional
behaviour, we looked for a decomposition2,6,24,25 of large-scalemodes

that would indicate some form of collective behaviour, as well
as small-scale modes that would be representative of turbulent
dynamics. In particular, we report here the behaviour of the velocity
field (uz ,uθ ,ur), where the bar denotes average over z and θ , and
ur=0. We refer to this as the zonal flow. In Fourier space, the zonal
flow is given by ũ(k=0,m=0, r), where k is the axial wavenumber
and m is the azimuthal wavenumber, r is the real space radial
coordinate and the tilde denotes Fourier transform in the θ and
z directions only. Turbulence was represented by short-wavelength
modes, whose energy is ET(t)≡(1/2)

∑
|k|≥1,|m|≥1

∫
|ũ(k,m, r)|2 dV .

Shown in Fig. 1a is a time series for the energy
EZF(t)≡(1/2)

∫
|ũ(0,0, r)|2 dV of the zonal flow, compared with the

energy ET(t) of the turbulent energy. The curves show clear persis-
tent oscillatory behaviour, modulated by long-wavelength stochas-
ticity, as shown in the phase portrait of Fig. 1b. In Fig. 1c, we have
calculated the phase shift between the turbulence and zonal flows,
with the result that the turbulent energy leads the zonal flow energy
by∼π/2. This suggests that these oscillations can be interpreted as
a time-series resulting from activator–inhibitor dynamics, such as
occurs in a predator–prey ecosystem. Predator–prey ecosystems are
characterized by the following behaviour: the ‘prey’ mode activates
the ‘predator’ mode, which then grows in abundance. At the same
time, the growing predator mode begins to inhibit the prey mode.
The inhibition of the prey mode starves the predator mode, and it
too becomes inhibited. The inhibition of the predator mode allows
the prey mode to re-activate, and the population cycle begins again.

The flow configuration for the predatormode is shown in Fig. 1d,
and consists of a series of azimuthally symmetric modes with
direction reversals as a function of radius r . Such banded shear
flows are known as zonal flows and are of special significance in
plasma physics, astrophysical and geophysical flows, owing to their
role in regulating turbulence26. The purely azimuthal component of
the zonal flow, denoted by uθ (r), is spatially uniform in z , and the
lack of a radial component means that it is not driven by pressure
gradients. Thus, it can exist only as a result of nonlinear interactions
with turbulent modes. In this sense, it is a collective mode, one with
special significance for transitional turbulence.

The simplest way for such an azimuthal shear flow to couple to
turbulent fluctuations is through the Reynolds stress τ : however,
a uniform Reynolds stress cannot drive a shear flow, so the first
symmetry-allowed possibility is the radial gradient of the Reynolds
stress26, as expressed in the Reynolds momentum equation. Thus,
to probe the dynamics that govern the emergence of the zonal
flow, we have calculated the time-averaged radial gradient of the
instantaneous Reynolds stress, τ ≡ u′

θ
u′r , where u′(z ,θ , r)≡u−u,

and show in Fig. 1f the 4.5-time-unit-running-mean time series
of −∂tuθ and the radial gradient ∂rτ . Both quantities have been
averaged over 0 ≤ z ≤ L, 0 ≤ θ ≤ 2π and R0 ≤ r < R, where
R=D/2, R0 = 0.641R, and the resulting time series are clearly
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Figure 1 | Predator–prey oscillations in transitional turbulent pipe flow at
nominal Re=2,600, for a pipe of radius R=D/2. a, Energy versus time for
the zonal flow (orange) and turbulent modes (green). b, Phase portrait of
the zonal flow and turbulent modes as a function of time, with colour
indicating the earliest time in dark blue progressing to the latest time in
light green. c, Phase shift between the turbulent and zonal flow modes as a
function of frequency, showing that the turbulence leads the zonal flow by
π/2, consistent with predator–prey dynamics. The phase shift
θ(ω)= tan−1 (Im[C̃(ω)]/Re[C̃(ω)]) and is shifted to be positive, where
C̃(ω) is the Fourier transform of the correlation function between the
turbulence and the zonal flow in a. The red line corresponds to the
dominant frequency in the power spectrum. The phase shift near small ω is
scatter due to the finite time duration of the time series. d, Velocity field
configuration of the zonal flow mode u. The colour bar indicates the value
of uz. e, Snapshot of the Reynolds stress gradient and zonal flow time
derivative as functions of r. f, Reynolds stress gradient and zonal flow time
derivative as functions of time. The agreement shows that zonal flow
dynamics is driven by the radial gradient of the Reynolds stress.

highly correlated. In general, it is the case that zonal flows are
driven by statistical anisotropy in turbulence, but are themselves
an isotropizing influence on the turbulence through their coupling
to the Reynolds stress27–29. The fact that turbulence anisotropy
activates the zonal flow, and that zonal flow inhibits the turbulence,
is responsible for the predator–prey oscillations observed in the
numerical simulations.

These numerical results suggest that the large-scale zonal flow
and the small-scale turbulence are necessary, and perhaps even
sufficient components of an effective coarse-grained description of
transitional turbulence in the spirit of Landau theory. Following the
usual logic of themodern theory of phase transitions30, we construct
the effective theory from symmetry principles alone, as there are no
small parameters with which to perform a systematic derivation. If
correct, this effective predator–prey theory should undergo spatio-
temporal fluctuations whose functional form matches the observa-
tions for the lifetime and splitting time of turbulent puffs in a pipe.

The simplest system that corresponds to our direct numerical
simulations of the Navier–Stokes equations has three trophic levels:
nutrient (E), Prey (B) and Predator (A), which correspond in the
fluid system to laminar flow, turbulence and zonal flow respectively.
The interactions between individual representatives of these levels
are given by the following reactions:

Ai
dA
−→Ei, Bi

dB
−→Ei, Ai+Bj

p
−→
〈ij〉

Ai+Aj, Bi+Ej
b
−→
〈ij〉

Bi+Bj,

Bi
m
−→Ai, Ai+Ej

DA
−→
〈ij〉

Ei+Aj, Bi+Ej
DB
−→
〈ij〉

Ei+Bj (1)

where dA and dB are the death rates of A and B, p is the predation
rate, b is the prey birth rate due to consumption of nutrient,
〈ij〉 denotes hopping to nearest neighbour sites, and DA and DB
are the nearest-neighbour hopping rate for predator and prey
respectively, assumed for simplicity here to be the same value DAB
for predator and prey. The ‘mutation’ term (B→A) is symmetry-
allowed and has the interesting consequence that the diagram of the
predator–prey model matches that of pipe transitional turbulence
(Supplementary Methods).

We simulated this predator–prey model, using methods de-
scribed in Supplementary Methods, in a thin two-dimensional strip
on a 401×11 lattice. The control parameter is the prey birth rate b.
When b is small enough, the population is metastable, and cannot
sustain itself, decaying with a finite lifetime τ d(b). As b increases,
the lifetime of the population increases rapidly: in particular the
prey lifetime increases rapidly with b. At large enough values of b,
the decay of the initial population is not observed, but instead the
initially localized population splits after a time τ s(b), spreading out-
wards and spontaneously splitting into multiple clusters, as shown
in the space–time plot of clusters of prey of Fig. 2a.

To quantify these observations, we have measured both the
lifetime of population clusters in the metastable region and
their splitting time using a procedure directly following that of
the turbulence experiments and simulations7, and described in
Supplementary Methods. We comment that both timescales involve
implicitly measurements of quantities that exceed a given threshold,
and thus it is natural that the results are found to conform to extreme
value statistics12,31.

In Fig. 2a we show the phenomenology of the dynamics of initial
clusters of prey, corresponding to the predator–prey analogue for the
experiments in pipe flow which followed the dynamics of an initial
puff of turbulence injected into the flow4. Depending on the prey
birth rate, the cluster decays either homogeneously or by splitting,
precisely mimicking the behaviour of turbulent puffs as a function
of Reynolds number. The extraction from data of decay times is
described in Supplementary Methods. In Fig. 2b is shown the semi-
log plot of lifetime for both decay and splitting as a function of prey
birth rate, the upward curvature indicative of super-exponential
behaviour. The inset to Fig. 2b shows a double exponential plot of
puff lifetime and splitting time versus prey birth rate, the straight
line being the fit to the functional form indicated in the caption.
These figures indicate a remarkable similarity to the corresponding
plots obtained for transitional pipe turbulence in both experiments4
and direct numerical simulations7, and demonstrate conclusively
that experimental observations are well captured by an effective
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Figure 2 | Stochastic predator–prey model reproduces the
phenomenology of transitional pipe turbulence. Lifetime and splitting time
of clusters of prey are memoryless processes and obey super-exponential
statistics as a function of prey birth rate. To compare with the
experiments4, predator–prey dynamics are performed in a two-dimensional
pipe geometry as described in the text. a, World line of clusters of prey
splitting to form predator–prey travelling waves. The colour measures the
local density of prey, corresponding to the intensity of turbulence in pipe
flow. In the simulation, the dimensionless parameters are
DAB=0.1,b=0.1,p=0.2,dA=0.01,dB=0.01 and m=0.001. In the model
simulated, di�usion is isotropic, not biased as would be the case
corresponding to a mean flow, where the clusters will accumulate at large
times with a well-defined separation set by the depletion zone of nutrient
behind each predator–prey travelling wave. b, Log lifetime of prey cluster
and splitting time as a function of prey birth rate. The upward curvature
signifies super-exponential behaviour. The parameters are
DAB=0.01,p=0.1,dA=0.015,dB=0.025 and m=0.001. Inset: Double log
lifetime versus prey birth rate, showing the fit to the following functional
forms: the dashed curve is given by τ d/τ0=exp(exp(46.539b−0.731)),
and the solid curve is given by τ s/τ0=exp(exp(−31.148b−3.141)).

two-fluid model of pipe flow turbulence with predator–prey inter-
actions between the zonal flow and the small scale turbulence.

Our simulations show that the predator–prey model expressed
by equation (1) exhibits a rich phase diagram that captures the
main features observed in transitional turbulence in pipes. We can
understand the qualitative features of the phase diagram from linear
stability analysis of the mean field solution of the predator–prey
equations22. Near the transition, the solutions are linearly stable, all
eigenvalues are real and there are no spatial-temporal oscillations.
But for higher values of b, the eigenvalues develop an imaginary part,
a necessary condition for the breakdown of spatially homogeneous
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Figure 3 | Schematic phase diagram for transitional pipe turbulence as a
function of Reynolds number compared with the phase diagram for
predator–prey dynamics as a function of prey birth rate. For each phase is
shown a typical flow or predator–prey configuration, indicating the
similarity between the turbulent pipe and ecosystem dynamics.

prey domains into periodic travelling wave states32. The phase
diagram is sketched in Fig. 3, along with the corresponding
phase diagram for transitional pipe turbulence as determined
by experiment. The phenomenology of the predator–prey system
mirrors that of turbulent pipe flow.

To determine the universality class of the non-equilibrium phase
transition from laminar to turbulent flow, we use the two-fluid
predator–prey mode in equation (1). Near the transition to prey
extinction, the prey population is very small and no predator can
survive, and thus equation (1) simplifies to

Bi
dB
−→Ei, Bi+Ej

b
−→
〈ij〉

Bi+Bj, Bi+Ej
DAB
−→
〈ij〉

Ei+Bj (2)

These equations are exactly those of the reaction-diffusionmodel for
directed percolation33. The argument here is heuristic but the result
is correct and can be obtained systematically from statistical field
theory techniques, as described in Supplementary Methods.

The observation of the emergence of a zonal flow, excited by
the developing turbulent degrees of freedom and the demonstration
of its role in determining the phenomenology of transitional pipe
turbulence has an interesting consequence: the zonal flow can be
assisted by rotating the pipe, and this should catalyse the transition
to turbulence, causing it to occur at lower Re. Indeed experiments
on axially-rotating pipes34 are consistent with this prediction.

Our work underscores not only the potential importance of zonal
flows in other transitional turbulence situations9,10, but also shows
the utility of coarse-grained effective models for non-equilibrium
phase transitions, even to states as perplexing as fluid turbulence.

Received 15 May 2015; accepted 7 October 2015;
published online 16 November 2015
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Supplementary Methods

Direct numerical simulations of the Navier-Stokes equations.

We performed direct numerical simulations (DNS) of the Navier-Stokes equations in a pipe, using

the open-source code “Open Pipe Flow”1. The equations were solved using a pseudo-spectral

method in cylindrical coordinates1, having 60 grid points in the radial (r) direction, 32 Fourier

modes in the azimuthal (θ) direction and 128 modes in the axial (z) direction. Such a model is of

course a reduced description of reality, but the main features can be well captured, with a slight

renormalization of the Re needed to compare with experiment1. For the accuracy required in our

study, we used 32 modes in the azimuthal direction1. The spatial resolutions were chosen such

that the resolvable power spectra span over six orders of magnitude. The pipe length L is 10 times

its diameter D, with periodic boundary conditions in the z direction1. With this resolution, the

transition to turbulence occurs in a range of Re numbers between 2200 and 3000, and moves to

smaller Re at still higher resolution. To try and relate the nominal Reynolds number in our finite

length pipe simulations to the values reported in experiments or simulations with longer pipes, we

found that we could observe puff decay up to about Renominal ∼ 2400, whereas the experimental
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threshold for puff decay is about 2000. Thus, we can estimate that the nominal Reynolds number,

Renominal = Reexperiment + ∆Re, with ∆Re ∼ 400 for L = 10D. We report here measurements at

Re = 2600, slightly above the transition2. The mass flux and Re = 2600 were held constant in

time1. The laminar flow is the Hagen–Poiseuille flow, which was independent of time as the mass

flux was held constant1. Therefore the data we show in Fig. 1 with Re = 2600 for L = 10D are

consistent with the puff-splitting regime in the pipe flow experiments, and well below the regime

where the pipe is completely filled with turbulence.

Stochastic simulations of predator-prey dynamics.

The specific system has three trophic levels: nutrient (E), Prey (B) and Predator (A), which corre-

spond in the fluid system to laminar flow, turbulence and zonal flow respectively. Such a system

can be naively modeled by the Lotka-Volterra ordinary differential equations3–5, which in the case

of ecosystems with finite resources do not permit long-time persistent oscillatory solutions, unless

additional biological details such as functional response are included. In fact, it is necessary to in-

clude the dynamics of individual birth-death events, and when this is done correctly, it is found that

the number fluctuations drive the population oscillations6 through resonant amplification. Thus, we

use a stochastic model at the outset.

The interactions between individual representatives of these levels are given by the following

rate equations

Ai
dA−→ Ei, Bi

dB−→ Ei, Ai + Bj
p−−→

〈ij〉
Ai + Aj, Bi + Ej

b−−→
〈ij〉

Bi + Bj,

Bi
m−→ Ai, Ai + Ej

DA−−→
〈ij〉

Ei + Aj, Bi + Ej
DB−−→
〈ij〉

Ei + Bj. (S1)

where dA and dB are the death rates of A and B, p is the predation rate, b is the prey birth rate

due to consumption of nutrient, 〈ij〉 denotes hopping to nearest neighbor sites, DA and DB are

the nearest-neighbor hopping rate for predator and prey respectively, assumed for simplicity here

2

to be the same value DAB for predator and prey. We found that our results are not sensitive to

this assumption, presumably because the predator number is small in the transitional regime. In

addition to the familiar term that describes how the prey act as a source (activate) for the predators

(AB → AA), we have introduced another low order in population number, symmetry-allowed term

(B → A) with rate m; both of these terms model the induction of the zonal flow from the turbulence

degrees of freedom, but the latter one is conventionally omitted in ecosystem contexts, because

it would represent a phenotypic switch such as the mutation of the prey into predator (in rapid

evolution contexts such terms can be relevant7). We include it here, not only because there is no

special reason to exclude it, but because its presence ensures that the phase diagram of the predator-

prey ecosystem shows a transition from extinction (laminar) to coexistence of predator (zonal flow)

and prey (turbulence). Without this term, the predator-prey equations have an intermediate phase

where the prey survive off the nutrient but the predators are dead. We have not observed such

a phase (puffs of turbulence without zonal flow) in our DNS, and so conclude that the induction

of zonal flow by turbulence does indeed occur through this low order mechanism too. We are

primarily interested in long-wavelength properties of the system, at least in the vicinity of the

turbulence transition, where we expect the transverse correlation length to be larger than the pipe

diameter, implying that the behavior is in fact quasi-one-dimensional. The crossover phenomena

associated with this have been discussed previously8, and thus our two-dimensional strip model

should be appropriate and quantitatively correct near the transition.

We simulated these equations on a 401 × 11 lattice (strip) in two dimensions, intended to

emulate the pipe geometry. Lattice sites were only allowed to be occupied by one of E, A or B.

The predator (A) and prey (B) are additionally allowed to diffuse via random walk on the lattice

with diffusion coefficient DAB = 0.1 in units of the square of the lattice spacing divided by the time

step (set equal to unity). The initial conditions for the simulations were a random population of

prey and predator, occupying with probability 4/5 and 1/5 respectively on the lattice sites between

3
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threshold for puff decay is about 2000. Thus, we can estimate that the nominal Reynolds number,

Renominal = Reexperiment + ∆Re, with ∆Re ∼ 400 for L = 10D. We report here measurements at

Re = 2600, slightly above the transition2. The mass flux and Re = 2600 were held constant in

time1. The laminar flow is the Hagen–Poiseuille flow, which was independent of time as the mass

flux was held constant1. Therefore the data we show in Fig. 1 with Re = 2600 for L = 10D are

consistent with the puff-splitting regime in the pipe flow experiments, and well below the regime

where the pipe is completely filled with turbulence.

Stochastic simulations of predator-prey dynamics.

The specific system has three trophic levels: nutrient (E), Prey (B) and Predator (A), which corre-

spond in the fluid system to laminar flow, turbulence and zonal flow respectively. Such a system

can be naively modeled by the Lotka-Volterra ordinary differential equations3–5, which in the case

of ecosystems with finite resources do not permit long-time persistent oscillatory solutions, unless

additional biological details such as functional response are included. In fact, it is necessary to in-

clude the dynamics of individual birth-death events, and when this is done correctly, it is found that

the number fluctuations drive the population oscillations6 through resonant amplification. Thus, we

use a stochastic model at the outset.

The interactions between individual representatives of these levels are given by the following

rate equations

Ai
dA−→ Ei, Bi

dB−→ Ei, Ai + Bj
p−−→

〈ij〉
Ai + Aj, Bi + Ej

b−−→
〈ij〉

Bi + Bj,

Bi
m−→ Ai, Ai + Ej

DA−−→
〈ij〉

Ei + Aj, Bi + Ej
DB−−→
〈ij〉

Ei + Bj. (S1)

where dA and dB are the death rates of A and B, p is the predation rate, b is the prey birth rate

due to consumption of nutrient, 〈ij〉 denotes hopping to nearest neighbor sites, DA and DB are

the nearest-neighbor hopping rate for predator and prey respectively, assumed for simplicity here

2

to be the same value DAB for predator and prey. We found that our results are not sensitive to

this assumption, presumably because the predator number is small in the transitional regime. In

addition to the familiar term that describes how the prey act as a source (activate) for the predators

(AB → AA), we have introduced another low order in population number, symmetry-allowed term

(B → A) with rate m; both of these terms model the induction of the zonal flow from the turbulence

degrees of freedom, but the latter one is conventionally omitted in ecosystem contexts, because

it would represent a phenotypic switch such as the mutation of the prey into predator (in rapid

evolution contexts such terms can be relevant7). We include it here, not only because there is no

special reason to exclude it, but because its presence ensures that the phase diagram of the predator-

prey ecosystem shows a transition from extinction (laminar) to coexistence of predator (zonal flow)

and prey (turbulence). Without this term, the predator-prey equations have an intermediate phase

where the prey survive off the nutrient but the predators are dead. We have not observed such

a phase (puffs of turbulence without zonal flow) in our DNS, and so conclude that the induction

of zonal flow by turbulence does indeed occur through this low order mechanism too. We are

primarily interested in long-wavelength properties of the system, at least in the vicinity of the

turbulence transition, where we expect the transverse correlation length to be larger than the pipe

diameter, implying that the behavior is in fact quasi-one-dimensional. The crossover phenomena

associated with this have been discussed previously8, and thus our two-dimensional strip model

should be appropriate and quantitatively correct near the transition.

We simulated these equations on a 401 × 11 lattice (strip) in two dimensions, intended to

emulate the pipe geometry. Lattice sites were only allowed to be occupied by one of E, A or B.

The predator (A) and prey (B) are additionally allowed to diffuse via random walk on the lattice

with diffusion coefficient DAB = 0.1 in units of the square of the lattice spacing divided by the time

step (set equal to unity). The initial conditions for the simulations were a random population of

prey and predator, occupying with probability 4/5 and 1/5 respectively on the lattice sites between
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x ∈ [−15, 15] and y ∈ [−5, 5] where x labels the direction along the axis of the ecosystem (pipe)

and y labels the transverse direction. The predator-prey dynamics in Eq. S1 was implemented by

the following algorithm: at each time step, a site i is randomly chosen, a random number s, is

generated from the uniform distribution between zero and one. The behavior on the site is decided

by the random number: (1) if s < 1/6 and the site i is occupied by any individual, and if a

randomly chosen neighbor site is empty, then that individual diffuses to the random neighboring

site with rate µ = 0.01 (i.e. this reaction happens if another uniformly distributed random number

is less than 1 − expµ); (2) if 1/6 ≤ s < 1/3 and the site i is occupied by a prey individual, and

if a randomly chosen neighbor site, j, is empty, then one prey individual is born on the site j with

rate b; (3) if 1/3 ≤ s < 1/2 and the site i is occupied by a predator individual, and if a randomly

chosen neighbor site, j, is occupied by a prey individual, then the prey individual is replaced by

a new-born predator individual with rate p; (4) if 1/2 ≤ s < 2/3 and the site i is occupied by a

predator individual, that predator individual dies with rate dA; (5) if 2/3 ≤ s < 5/6 and the site i

is occupied by a prey individual, that prey individual dies with rate dB; (6) if 5/6 ≤ s < 1 and the

site i is occupied by a prey individual, then the prey individual is replaced by a predator individual

with rate m. Then within the same time step, the above processes are repeated 401 × 11 times so

that on average one reaction takes place at each lattice site in the system.

Measurement of decay and splitting lifetimes.

We measured both the lifetime of population clusters in the metastable region and their splitting

time using a procedure directly following that of the turbulence experiments and simulations2. To

this end, we monitor the coarse-grained prey population density ñB(i) =
∑j=J

j=−J

∑l=H/2
l=−H/2 nB(i+

j, l)/(H + 1)/(2J + 1) − 0.25, where H is the height of the system (11 lattice units) and J = 3.

The lifetime of prey clusters is defined as the time it takes for the last prey individual to die. The

cluster splitting time is defined as the first time that the distance between the edges of two coarse-

4

grained prey clusters exceed 25 unit sites. We comment that both timescales involve implicitly

measurements of quantities that exceed a given threshold, and thus it is natural that the results are

found to conform to extreme value statistics8, 9.

In Figure S1 we show the phenomenology of the dynamics of initial clusters of prey, cor-

responding to the predator-prey analogue for the experiments in pipe flow which followed the

dynamics of an initial puff of turbulence injected into the flow10. Depending upon the prey birth

rate, the cluster decays either homogeneously or by splitting, precisely mimicking the behavior of

turbulent puffs as a function of Reynolds number. Figure S1 (a) and (b) show that the decay is

exponential in time, indicating that it is a memoryless process with a single time constant. Figure

S1 (c) and (d) show that the survival probability is a sigmoidal curve, whose inverse lifetime as

a function of prey birth rate is plotted in a log-linear scale in Figures S1 (e) and (f). If the life-

time were an exponential function, this curve would be a straight line with negative slope. The

downward curvature is a manifestation of super-exponential behavior. These figures indicate a

remarkable similarity to the corresponding plots obtained for transitional pipe turbulence in both

experiments10 and direct numerical simulations2, and demonstrate conclusively that experimen-

tal observations are well captured by an effective two-fluid model of pipe flow turbulence with

predator-prey interactions between the zonal flow and the small scale turbulence.

Derivation of directed percolation from predator-prey model

In order to determine the universality class of the non-equilibrium phase transition from laminar to

turbulent flow, we use the two-fluid predator-prey mode in Equations (S1). Near the transition to

prey extinction, the prey population is very small and no predator can survive, and thus Equations

(S1) can be simplified to

Bi
dB−→ Ei, Bi + Ej

b−−→
〈ij〉

Bi + Bj, Bi + Ej
DAB−−→
〈ij〉

Ei + Bj. (S2)
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and y labels the transverse direction. The predator-prey dynamics in Eq. S1 was implemented by

the following algorithm: at each time step, a site i is randomly chosen, a random number s, is

generated from the uniform distribution between zero and one. The behavior on the site is decided

by the random number: (1) if s < 1/6 and the site i is occupied by any individual, and if a

randomly chosen neighbor site is empty, then that individual diffuses to the random neighboring

site with rate µ = 0.01 (i.e. this reaction happens if another uniformly distributed random number

is less than 1 − expµ); (2) if 1/6 ≤ s < 1/3 and the site i is occupied by a prey individual, and

if a randomly chosen neighbor site, j, is empty, then one prey individual is born on the site j with

rate b; (3) if 1/3 ≤ s < 1/2 and the site i is occupied by a predator individual, and if a randomly
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site i is occupied by a prey individual, then the prey individual is replaced by a predator individual

with rate m. Then within the same time step, the above processes are repeated 401 × 11 times so

that on average one reaction takes place at each lattice site in the system.

Measurement of decay and splitting lifetimes.

We measured both the lifetime of population clusters in the metastable region and their splitting

time using a procedure directly following that of the turbulence experiments and simulations2. To

this end, we monitor the coarse-grained prey population density ñB(i) =
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The lifetime of prey clusters is defined as the time it takes for the last prey individual to die. The

cluster splitting time is defined as the first time that the distance between the edges of two coarse-
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grained prey clusters exceed 25 unit sites. We comment that both timescales involve implicitly

measurements of quantities that exceed a given threshold, and thus it is natural that the results are

found to conform to extreme value statistics8, 9.

In Figure S1 we show the phenomenology of the dynamics of initial clusters of prey, cor-

responding to the predator-prey analogue for the experiments in pipe flow which followed the

dynamics of an initial puff of turbulence injected into the flow10. Depending upon the prey birth

rate, the cluster decays either homogeneously or by splitting, precisely mimicking the behavior of

turbulent puffs as a function of Reynolds number. Figure S1 (a) and (b) show that the decay is

exponential in time, indicating that it is a memoryless process with a single time constant. Figure

S1 (c) and (d) show that the survival probability is a sigmoidal curve, whose inverse lifetime as

a function of prey birth rate is plotted in a log-linear scale in Figures S1 (e) and (f). If the life-

time were an exponential function, this curve would be a straight line with negative slope. The

downward curvature is a manifestation of super-exponential behavior. These figures indicate a

remarkable similarity to the corresponding plots obtained for transitional pipe turbulence in both

experiments10 and direct numerical simulations2, and demonstrate conclusively that experimen-

tal observations are well captured by an effective two-fluid model of pipe flow turbulence with

predator-prey interactions between the zonal flow and the small scale turbulence.

Derivation of directed percolation from predator-prey model

In order to determine the universality class of the non-equilibrium phase transition from laminar to

turbulent flow, we use the two-fluid predator-prey mode in Equations (S1). Near the transition to

prey extinction, the prey population is very small and no predator can survive, and thus Equations
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These equations are exactly those of the reaction-diffusion model for directed percolation11, 12. A

more detailed and systematic way to reach this conclusion is to represent Equations (S1) exactly

in path integral form using the Doi formalism12–17. The resulting action simplifies near the tran-

sition to that of Reggeon field theory18, 19, which has been shown to be in the universality class

of directed percolation20, 21. Numerical simulations of 3 + 1 dimensional directed percolation in

a pipe geometry have reproduced the statistics and behavior of turbulent puffs and slugs in pipe

flow8, 22, and a detailed comparison between theory and numerical simulation in Couette flow has

been reported23. The super-exponential behavior of DP might seem to contradict the expectation
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Figure S1: Stochastic predator-prey model reproduces the phenomenology of transitional pipe
turbulence. Lifetime and splitting time of clusters of prey are memoryless processes and obey
super-exponential statistics as a function of prey birth rate. To compare with the experiments10,
predator-prey dynamics are performed in two-dimensional pipe geometry as described in the text.
The dimensionless parameters in the simulation are DAB = 0.01, p = 0.1, dA = 0.015, dB = 0.025
and m = 0.001. (a) Log survival probability of prey cluster vs. time during homogeneous decay
to extinction. Here the characteristic time scale that is estimated by τ0 ∼ 200. (b) Log survival
probability of prey cluster vs. time during decay to splitting. (c) Survival probability of prey
cluster as a function of prey birth rate during homogeneous decay to extinction. (d) Survival
probability of prey cluster as a function of prey birth rate during decay to splitting. (e) Log inverse
lifetime of prey cluster, as a function of prey birth rate during homogeneous decay to extinction
(left curve, τ d) and during decay to splitting (right curve, τ s). The dashed curve is given by τ0/τ

d =
1/ exp(exp(46.539b − 0.731)), and the solid curve is given by τ0/τ

s = 1/ exp(exp(−31.148b −
3.141)).
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Transition to turbulence
As any physicist knows, fluid in a pipe can 
flow smoothly at sufficiently low speeds, 
as parcels of fluid trace out continuous 
streamlines. At higher speeds, the simple 
flow often becomes turbulent, with fluid 
elements now moving on disorderly, 
chaotic paths. In 1883, the British physicist 
Osborne Reynolds tried to clarify details of 
this transition, along the way introducing 
his Reynolds number, Re, as a key 
dimensionless quantity characterizing flows 
by the relative importance of inertial and 
viscous forces.

Today, physicists still lack a theory, based 
on first principles, explaining the nature of 
this transition. Even so, remarkable progress 
has been made in the past decade, and 
turbulence in pipe flow is finally yielding 
some of its secrets. 

Naively, one might imagine that the 
stable, laminar flow simply becomes unstable 
at sufficient flow speeds — or, equivalently, 
a high enough Reynolds number, Re. Yet, 
according to the Navier-Stokes equations, 
the laminar state is in fact always linearly 
stable. When disturbed vigorously, 
turbulence in pipes begins at Re ~ 2,000, 
whereas in especially quiescent conditions, 
the transition can be delayed to Re ~ 12,000 
or even higher.

This confusing situation motivated 
Reynolds in his 1883 work to define the 
turbulent transition — linked to the critical 
Reynolds number, Rec — as the point 
beyond which turbulence, once started, will 
persist indefinitely. Turbulence can exist, or 
not exist, both below and above the critical 
threshold. For Re < Rec, it always dies out 
eventually, while for Re > Rec, turbulence 
once created persists.

So how does this transition come about? 
In a series of experiments over the past 
decade, physicists have pinned down a 
number of telling empirical details. To 
begin with, at low Re, turbulence always 
settles into a simple form — it exists not as 
a spatially extended pattern, but in localized 
‘puffs’, separated by laminar zones. The 
typical lifetime of a puff seems to increase 
with Re in a faster-than-exponential way. 
Even so, this lifetime — at least within the 
limits of experiment — always remains finite 
(B. Hof et al., Nature 443, 59–62; 2006).

One might have imagined persistent 
turbulence arising from a finite Re 
divergence of this lifetime, but that is not 
the case. Rather, something else seems to 
happen: puffs at higher Re not only last 

longer, but also begin to split apart, making 
turbulence spread. The rate at which puffs 
split apart also increases with Re, again in a 
faster-than-exponential way (K. Avila et al., 
Science 333, 192–196; 2011), and it is the 
combination of these two trends — puffs 
lasting longer and splitting more quickly — 
that lies behind the transition to lasting 
turbulence. Below the critical Re, puffs die 
out more quickly than they split to generate 
new ones. Turbulence dies out. Above the 
critical Re, the splitting happens faster than 
the dying out, and turbulence persists.

Intriguingly, there is a close similarity 
with the dynamics of epidemics. Moving 
Re up through the critical value is like 
increasing the basic reproduction number 
for an infectious agent through the critical 
point so that each new infection ultimately 
creates more than one further infection, and 
the agent becomes endemic.

This picture of turbulence gains further 
support from theoretical approaches. Thirty 
years ago, French physicist Yves Pomeau 
suggested that the coarse-grained features 
of how turbulent and laminar zones mingle 
in regimes of mixed flow might act like 
patterns in so-called directed percolation. 
This is a fundamental stochastic spreading 
process linked to phenomena ranging 
from fluid movement through porous 
media to forest fires. Inspired by this idea, 
mathematician Dwight Barkley of the 
University of Warwick recently proposed a 
model for pipe flow in which turbulent puffs 
behave rather like action potentials in nerve 
axons. The state of linearly stable laminar 
flow would be the medium rest state, with 
turbulence the excited state.

A model based on this picture 
(D. Barkley Phys. Rev. E 84, 016309; 2011) 
shows a continuous transition to sustained 
turbulence at a critical value of Rec. The 
mean puff lifetime grows with Re, as does 
the rate of splitting, and just above Rec, a 
puff is more likely to split than to decay. Just 
above the critical point, Barkley found, the 
fraction of fluid in the turbulent phase grows 
as (Re − Rec)0.28. This is just as expected if 

the transition really is in the class of directed 
percolation, as Pomeau proposed. More 
recently, Barkley and colleagues have taken 
this approach further (D. Barkley et al. 
Nature 526, 550–553; 2015), offering a 
simple dynamical system that accounts for 
even more features of pipe flow, including 
how puffs grow wider with time as they 
flow downstream.

An alternative — and quite different 
theoretical perspective — points to directed 
percolation as well. Nigel Goldenfeld 
and colleagues (Nature Phys. 
http://doi.org/96m; 2015) ran numerical 
simulations of pipe flow and tried to identify 
the most important non-turbulent collective 
modes. These turned out to be so-called ‘zonal 
flows’ representing azimuthal modulations of 
the basic laminar flow pattern. These zonal 
flows represent important coherent ways that 
energy often seems to get organized in these 
pipe flows.

From these observations, the researchers 
noted that these zonal flows compete with 
turbulence following a basic predator–
prey interaction. In this picture, the basic 
laminar flow is akin to a nutrient, which 
turbulence (the prey species) feeds on 
and spreads. In turn, turbulence can be 
fed on by the zonal flows (the predator 
species). Studying the simplest model for 
such interactions, the authors found that it 
leads to distributions of puff lifetimes and 
splitting times that look very much like 
those found for pipe flow. In this case, the 
parameter playing the role of Re is the prey 
(or turbulent puff) birth rate.

Again, as it turns out, this simple 
predator–prey model maps onto a statistical 
model in the directed percolation class. So 
Pomeau’s conjecture seems to be on target, 
and supported from two different points 
of view. It seems that at least one small 
part of the long quest to understanding the 
transition to turbulence may be coming 
nearer to a close. At the same time, much 
less remains known about turbulence 
at very high Re, far away from the 
transition regime.

These results are also satisfying as directed 
percolation is thought to be the general 
universality class for non-equilibrium phase 
transitions with an absorbing state — a state 
that, once entered, is never left. Surprisingly, 
turbulence in pipe flow may be the first good 
experimental example. ❐

MARK BUCHANAN

Turbulence in pipe flow 
is finally yielding some 
of its secrets.

© 2016 Macmillan Publishers Limited. All rights reserved

http://doi.org/96m


204 NATURE PHYSICS | VOL 12 | MARCH 2016 | www.nature.com/naturephysics

news & views

Turbulence can be quite a nuisance, 
bothering both travellers on a plane 
and physicists in the kitchen. The flow 

of water from a tap reminds us that despite 
our knowledge about the oscillations of 
neutrinos and cosmic inflation, we know 
very little about the transition to turbulence 
that occurs right in front of us. At first, the 
water flows smoothly, but once the tap is 
opened more, the flow becomes chaotic. 
Experiments probing the transition from 
laminar to turbulent flow began in 1883 with 
Reynolds1,2 and continue to this day3. Now, 
writing in Nature Physics, Hong-Yan Shih 
and colleagues have taken an important step 
towards understanding this transition4, by 
borrowing ideas from ecology.

The researchers identified a nonlinear 
feedback between different energy modes 
as the main driver of the transition. This 
feedback is seen as a hunt: turbulent modes 
are a prey that is hunted by a collective 
predator mode. When the prey is on the edge 
of extinction, the predator–prey ecosystem 
exhibits the same statistical properties as the 
fluid on the edge of turbulence, providing 
a link between transitional turbulence and 
directed percolation.

When a fluid flows through a pipe, its 
phenomenology changes dramatically with 
the flow speed. At a low speed (low Reynolds 
number, Re), the fluid flows smoothly in a 
laminar fashion, whereas at higher speeds 
(high Re), the flow becomes turbulent. In 
the transition from laminar to turbulent 
flow, localized pockets of chaos, so-called 
puffs, form spontaneously in the laminar 
flow. These puffs decay again and fade back 
into the laminar flow after a mean time τd 
that increases super-exponentially with 
Re (τd ∝ exp[exp(Re)]). However, puffs 
can also split spontaneously by nucleating 
an offspring puff further downstream. The 
mean splitting time τs decreases super-
exponentially with Re (τs ∝ exp[exp(–Re)]) 
(ref. 5). Thus, with increasing Re, splitting 
becomes much more probable than 
decaying — and turbulence wins.

The theorist’s basic tool to approach 
the flow of a fluid through a pipe is the 
Navier–Stokes equation, which describes 
the competition between viscous dissipation 

and inertia. Interestingly, the transition from 
laminar to turbulent flow sets in without 
a linear instability of the Navier–Stokes 
equation; small perturbations to the laminar 
flow decay for all Reynolds numbers. This 
is in contrast to other phenomena in fluid 
dynamics, such as the self-organization 
of Rayleigh–Bénard cells, which arise out 
of a linear instability of the Navier–Stokes 
equation. The lack of linear instability makes 
the transition to turbulence hard to grasp 
and interpret conceptually.

Shih et al.4 studied pipe flow by 
numerically solving the Navier–Stokes 
equation and observed some startling new 
patterns that differ from the previously 
observed longitudinal vortices6 or the 
changes in mean profile7. These patterns 

form in the transitional regime between 
laminar and turbulent flow and are the 
signature of a collective energy mode. This 
large-scale pattern of the flow, called zonal 
flow, is activated by anisotropic turbulent 
fluctuations. Curiously, these fluctuations are 
in turn inhibited by the zonal flow, resulting 
in dynamics that resemble an evolutionary 
predator–prey cycle.

The researchers showed that the analogy 
to population dynamics is not only a shallow 
caricature of the true fluid dynamics. In 
fact, the roles of predator and prey can be 
ascribed to the above modes of the flow’s 
Fourier spectrum. Shih et al.4 thereby 
obtained a coarse-grained description of the 
energy transport in the fluid flow in terms of 
a predator–prey model. The zonal flow plays 
the role of the predator hunting the turbulent 
modes as its prey. In turn, the turbulent 
modes feed on the laminar flow as their 
nutrient source. A population of predator 
and prey goes extinct for a low birth rate of 
the prey, whereas long-lived oscillations are 
observed for higher birth rates.

As the researchers demonstrated, both the 
lifetime and the splitting time of prey clusters 
follow the same super-exponential statistics 
as the lifetime and splitting time of turbulent 
puffs. Thus, the predator–prey ecosystem 
on the edge of extinction shows the same 
statistics as a fluid on the edge of turbulence. 
The birth rate of the prey controls the 
transition between extinction and survival, as 
does the Reynolds number for the transition 
between laminar and turbulent flow. Based 
on their population model, Shih et al.4 also 
substantiated a link between transitional 
turbulence and directed percolation, which 
had been conjectured almost 30 years ago8.

It is a common theme in physics that 
interactions on the microscopic scale 
yield effective nonlinear feedbacks on 
the macroscopic scale. Often, population 
dynamics turns out to be a suitable model 
to describe such emerging nonlinear 
behaviour. The self-regulation of shear 
flow turbulence in plasma physics9 and the 
competition between quantum states in 
driven–dissipative condensation of bosons10 
are just two examples for the successful 
application of population dynamics. 

FLUID DYNAMICS

In pursuit of turbulence
In the transition from laminar to turbulent pipe flow, puffs of turbulence form, split and decay. The phenomenology 
and lifetime of these turbulent puffs exhibit population dynamics that also drive predator–prey ecosystems on the 
edge of extinction.

Johannes Knebel, Markus F. Weber and Erwin Frey
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In this lithograph by Arthur Rackham (The Rhine’s 
pure gleaming children told me of their sorrow, 
1910), the sleek, floating hair of the three water 
nymphs, the Rhinemaidens, contrasts the wild, 
blazing hair of Loge (‘fire’ in Old Norse), an 
ally of the gods in Norse mythology. Shih et al.4 
explain how the transition from the sleek, laminar 
flow of a fluid to a wild, turbulent state can be 
understood with the help of population dynamics. 
Image inspired by ref. 11.
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news & views

Hydrodynamics and magnetism meet 
spectacularly in ferrofluids — liquids 
containing magnetic nanoparticles. 
The ferrohydrodynamic magic happens 
when an amount of ferrofluid is put on a 
superhydrophobic surface and exposed 
to a magnetic field. The forces at play, 
notably the liquid’s surface tension and the 
tendency of the magnetic particles to align 
with the field, result in a hedgehog-like 
droplet crystal (pictured). Holger Kadau 
and colleagues have now observed this 
phenomenon, known as the Rosensweig 
instability, for a quantum ferrofluid 
(Nature http://doi.org/bcf4; 2016) — a 
Bose–Einstein condensate (BEC) with 
strong magnetic dipolar interactions.

The authors cooled down a gas of 
164Dy atoms and created a BEC of about 
15,000 atoms at a temperature of 70 nK. 
The atoms were held in a pancake-
shaped trap and subjected to an external 
magnetic field of approximately 0.7 mT, 
which aligned their magnetic moments 
perpendicularly to the ‘pancake’ containing 
the atomic ensemble.

The quantum Rosensweig instability 
resulted from the interplay between the 
trapping, the dipolar interactions and 
the contact interactions in the BEC. The 
latter can be tuned through Feshbach 
resonances, which occur when the kinetic 
energy of a scattering pair of atoms 
coincides with a bound-state energy of 
the atomic interaction potential. In turn, 
Feshbach resonances can be adjusted by 
varying the external magnetic field.

By using a Feshbach resonance to control 
interparticle interactions, Kadau et al. 

Made to order
QUANTUM FERROFLUIDS
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succeeded in triggering the Rosensweig 
instability in their dipolar dysprosium BEC. 
Through in situ imaging of the atomic density, 
they recorded the formation of ordered, 
triangular arrangements of up to ten droplets. 
An analysis of various realizations of such 
ordered structures revealed a linear increase 
in the number of droplets with the number 
of atoms, with an average of 1,750 atoms per 
droplet — showing that the ‘droplet crystal’ 
grew when more atoms were added.

Fourier analysis of a 2D atomic-density 
image provided a measure (a single number 
called the spectral weight) for the periodicity, 
or crystallinity, present in the pattern. 
Repeating the analysis for each image in 
a time sequence allowed the formation 
and decay times of a droplet crystal to be 

deduced. Kadau and colleagues found that 
the droplet patterns were fully developed 
after 7 ms, and then decayed exponentially 
with a mean lifetime of 300 ms. They 
also monitored the spectral weight when 
ramping the magnetic field down, and 
up again, and noticed differing values — 
hysteretic behaviour, indicative of a 
crystallization process.

The BEC is not only a quantum 
ferrofluid, but also a superfluid — at least, 
in the unordered phase. Whether the 
individual droplets display superfluidity — 
and hence whether the ordered system 
represents a supersolid state — remains 
an open question. 

BART VERBERCK

Capturing the transition from laminar to 
turbulent flow on a macroscopic level by 
a predator–prey model now establishes 
another fascinating example of this theme.

Nevertheless, many puzzles about 
turbulence and fluid flow in general still 
remain. Although the Navier–Stokes 
equation provides a fully accepted 
mathematical description for fluid dynamics 
on an enormously broad range of length and 
time scales, the understanding of physical 
principles underlying particular phenomena, 
such as transitional turbulence, requires 
coarse-grained descriptions. It seems that we 
need ‘reduced’ descriptions at some special 
points in the parameter space of the Navier–
Stokes equation to fathom these principles. 

Why is this so? A physicist trained in the age 
of renormalization group theory might reply 
that it is because there are ‘critical points’ at 
which universal models are an appropriate 
way of approaching the problem. But why 
are there those critical points in the first 
place, and are there really critical points in 
fluid turbulence? At present we lack a deeper 
understanding of mathematical models, 
such as the Navier–Stokes equation and its 
cousins for more complex fluids, to answer 
this question. Further research is certainly 
needed to unravel the secrets of turbulence 
and the hidden surprises of tap water. ❐

Johannes Knebel, Markus F. Weber and Erwin Frey 
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commentary

The long and winding road
Yves Pomeau

For a problem as complex as turbulence, combining universal concepts from statistical physics with 
ideas from fluid mechanics has proven indispensable. Three decades since this link was formed, it is still 
providing food for new thought.

The pairing of stability theory with 
fluid mechanics dates as far back 
as Archimedes of Syracuse, who 

explained the stability of floating bodies 
via a geometrical method1. The next step 
came almost two millennia later, when 
William Thomson, later Lord Kelvin, and 
Hermann von Helmholtz determined that 
wind blowing on the sea surface makes 
water waves grow due to a weak instability. 
Shortly after, in 1883, Osborne Reynolds 
began systematic experimental studies 
of the transition to turbulence in parallel 
flows2. And now, writing in Nature Physics, 
three groups have provided the latest steps 
along the road to understanding how a flow 
transits from laminar to turbulent3–5. This 
Commentary fills the gaps on how far we 
have come in the past century — and where 
we go from here.

The early experiments inspired the 
introduction of what we now know 
as the Reynolds number, a 
dimensionless measure of 
the flow speed in a given 
geometry: low-Reynolds-
number flows are stable 
and become turbulent 
beyond a critical 
value that depends 
on geometry. But as 

Reynolds 
seemed to 

understand even then, 
linear stability theory fails 

to account for all of the mysteries 
of fluid mechanics — the transition to 

turbulence in these parallel flows cannot be 
explained by a loss of stability with respect 
to fluctuations of small amplitude. For 
example, planar Couette flow is linearly 
stable at all Reynolds numbers, and is 
nevertheless experimentally turbulent when 
this number exceeds around 400–500.

Another of Reynolds’s observations 
remained unexplained for a long time — a 
phenomenon he called turbulent flashes, 
describing the fact that parallel flows 
initially become turbulent in localized 
domains separated by laminar domains. 

In the 1970s, experiments showed that 
the turbulent patches tend to grow or 
decrease in size proportional to time6,7. This 
set of observations was left unexplained 
because it was difficult to connect it 
to the fundamental equations of 
fluid mechanics.

An original way of 
approaching problems 
in fluid mechanics 
was pioneered by 
Lev Landau in 
19448. His short 
article on the 
transition to 
turbulence 
followed 
an idea of 

Henri Poincaré9, a kind of 
theory describing how the solutions 

of equations behave without solving them 
explicitly. This is reminiscent, however 
remotely, of Archimedes and his geometrical 
methods. The theory was initially restricted 
to perturbations depending on time only, 
but subsequent extensions included the 
spatial dependence of the amplitude10–12. In 
standard formulations of fluid mechanics, 
the fundamental object is the space- and 
time-dependent velocity field, which obeys 
the rather complex Navier–Stokes equations. 
Instead, the basic object in amplitude 
theories is a complex amplitude, describing 
time- and space-dependent fluctuations, 
in the form of nonlinear waves that may 
become unstable.

According to Landau, the instability 
can be of two different kinds: it may be 
supercritical, with an amplitude remaining 
small near the bifurcation; or it may 
be subcritical, with a finite amplitude 
at the onset of existence. This depends 

on the sign of a 
coefficient in the amplitude equation, 
called Landau’s coefficient. In the case 
of instabilities of parallel flows, the 
instability is subcritical, which means that 

the amplitude of the physically observed 
fluctuations is never small. In the Ehrenfest 
classification of thermodynamic transitions, 
the transition to such a finite amplitude 
would be called first order, although the 
supercritical bifurcation is the equivalent of 
a second-order transition. In his PhD thesis, 
Poincaré had also classified transitions of 
dynamical systems, finding the equivalent of 
the subcritical bifurcation, which he dubbed 
the saddle-node bifurcation.

The physical consequences of the 
subcritical nature of the transition in parallel 
flows were not explored for some time. In 
the 1980s, it was shown that, depending on 
the Reynolds number, a localized solution 
surrounded by the unperturbed state grows 
or decays at constant speed by the motion 
of its boundary13. This growth of linearly 
stable amplitude fluctuations occurs by 
contamination for subcritical instabilities, 
in contrast to the supercritical case, where 
fluctuations grow everywhere that they are 
linearly unstable. This explains Reynolds’s 
observation of ‘turbulent’ domains growing 
or decaying in an otherwise linearly 
stable flow. It was verified carefully in 
experiments by the group of Pierre Bergé 
and Monique Dubois14,15, which showed that 
a precise onset of propagation of turbulence 
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can be defined for a Couette flow and that 
the scenario of directed percolation was the 
correct one in this case.

The onset of transition to turbulence 
was discussed in Landau’s spirit without a 
detailed proof, but with an explanation of 
the physics13. The problem is that amplitude 
theory in its original form is a mean-field 
theory, assuming that the inside of turbulent 
spots can be described as an average state. 
But the turbulent fluctuations inside the 
spots — if turbulence is there — cannot 
be ignored, because they can bring the 
flow locally and randomly back to the 
laminar state.

The opposite process is the expansion 
of the turbulent state by contamination. 
At the onset of the transition, the two 
processes balance each other out on average. 
At close proximity in the parameter space, 
contamination may win, meaning that 
the turbulent state wins. It loses in the 
opposite case, usually for lesser values of the 
parameter (typically the Reynolds number). 
Such a process is known in statistical 
physics as directed percolation, because the 
direction of time plays a special role. Time 
obviously plays a role distinct from that of 
space in this physics, because the effect of 
going forward or backward in time leads to a 
completely different result, whence the word 
directed. The link between the transition 
to turbulence and directed percolation 
was introduced in ref. 13. Various models 
showing such a transition in connection 
with parallel flows have followed16,17.

In this issue of Nature Physics, 
Hong-Yan Shih et al.3 have introduced 
a model inspired by ecology, in which 
various flow structures interact like species. 
This model, like those that came before 
it, is consistent with the concept that 
the transition is as universal as critical 
phenomena are in thermodynamics. 

And recent experimental studies, also 
reported in this issue, have produced 
spectacular space–time images of the 
growth of turbulent spots4,5, which look 
very much like the output of the theoretical 
models of directed percolation. Analysis 
of the experiments also confirms that the 
exponents derived from the theory of 
directed percolation are the same, within the 
experimental error.

This may seem like the end of the story — 
but not quite. First, we note that a subcritical 
bifurcation may lead to a non-turbulent 
state inside the spots, which forbids us 
from interpreting the transition in terms of 
directed percolation. So the question is: does 
this transition belong to the universality 
class of directed percolation? My feeling is 
no. This relies on a property that is difficult 
to prove: namely that the bifurcation taking 
place at the transition either moves the 
system towards a turbulent or non-turbulent 
state. Landau-inspired theories are based 
on the assumption that the bifurcated state 
is a traveling wave of finite amplitude. 
However, such traveling waves may have an 
unstable phase — a generic instability18–21. 
So the loop is essentially closed: either the 
bifurcated state is stable and the transition 
is not of the directed-percolation type, or 
it is unstable and the transition is of the 
directed-percolation type. It is my opinion 
that the arrowhead patterns observed in 
early experiments22 are sufficiently regular 
to denote a bifurcation to a turbulence-free 
state of finite-amplitude stable waves.

Turbulence is undoubtedly one of the 
hardest nuts to crack in theoretical physics. 
And so it is perhaps unsurprising that 
its progress owes very little to the exact 
solutions of the fundamental equations. 
This is best interpreted as a lesson: 
intuition and qualitative reasoning are 
often (if not always) more useful to make 

progress than brute force attack. Although 
Landau — true to his style — introduced 
his equation without mention of Navier 
or Stokes, amplitude theory was derived 
later in a rather systematic way from the 
equations of fluid mechanics. But the 
theory was built to stand alone, allowing 
for meaningful discussion without the need 
to derive its coefficients from the basic 
equations. This approach inspired new 
results and ideas without the cumbersome 
technicalities of the derivation of the 
amplitude equations12. ❐
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