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Abstract

By following hints derived from similarities between critical phe-
nomena and the theory of qualitatively significant (i.e. singular) per-
turbations to ordinary differential equations, a renormalization group
method of analyzing singular perturbations in differential equations
is developed. This method is applied to the Raleigh Equation to de-
velop the method explicitly. Other recent work is briefly discussed,
and prospects for future work.
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1 Introduction

Quantum theory, and equilibrium statistical mechanics have traditionally
been the areas most influenced by renormalization group theory and phase
transitions. But equilibrium statistical mechanics and quantum theory are
only convenient descriptions for a fairly limited subset of interesting systems
in nature. Equilibrium statistical mechanics, for example, has only narrow
applications to dynamical aspects of systems, and in general fails when sub-
stantial dynamics are present. Many of the systems that are not conveniently
described by quantum theory or equilibrium statistical mechanics find their
most natural expressions as differential equations. Dynamical systems, en-
vironmental competition between species, predator-prey competition are all
examples of diverse systems where differential equations are an extremely
convenient description [9].

However, a careful study of differential equations reveals that there are
many features and problems in their study that closely resemble the features
and problems in statistical mechanics and field theory that renormalization
group methods were designed to overcome. This paper will show how ideas
from the renormalization group have been applied to differential equations
by showing the similarity of divergences in perturbative expansions of certain
types of differential equations to those in perturbative analysis of the Ising
universality class. It will then be shown by carrying out a renormalization
group calculation on a specific example that renormalization group methods
can be used to render the perturbation theory for the differential equation
finite and obtain a meaningful approximation to the solution valid over long
time intervals[1, 4, 7].

In the Landau theory of continuous phase transitions, the partition func-
tion in the d dimensional Ising universality class can be written approxi-
mately as [2]:

Z =
∫

Dφe−
∫

ddr1/2(5φ)2+1/2r0φ2+u0φ4

(1)

Under an appropriate rescaling, this can be rewritten with all of the temper-
ature dependence of the coefficients moved to the fourth order term:

Z =
∫

Dϕe−
∫

ddx1/2(5ϕ)2+1/2r0ϕ2+ū0ϕ4

(2)

where all of the temperature dependence of the coefficients has been moved
by re-scaling to the 4th order term, giving it a temperature dependence of
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ū0 ∼ t(d−4)/2 (see [2] for a careful analysis). This shows that a perturbative
expansion of the functional integral in quartic powers for d < 4 is sure to
diverge near t = 0 regardless of how small the constant u0 is before rescal-
ing. This is an indication of the fact that the inclusion of the higher order
term introduces fundamentally new and qualitatively different physics near
the critical temperature even when that term is very small. Physically, this
means that the thermodynamics of the quadratic model cannot be smoothly
deformed into the thermodynamics of the full model. For example, in the
model above, the quadratic model alone only describes a trivial order param-
eter. When a quartic term is present, the quadratic term can be negative for
some values of t and there can two non trivial values of the order parameter
for t < 0. So perturbation theory would not be a one to one mapping, and
naive perturbation expansions around the quadratic theory are clearly bound
to fail because of multivaluedness, among other factors. In that sense, the
u0 term is (in the language of differential equations) a singular perturbation.
However, use of renormalization group analysis removes the divergences from
the perturbation expansion, and allows critical exponents to be calculated
from this theory (see chapter 12 of [2]).

As suggested above, in the theory of ordinary differential equations, there
exists an analogous situation. Some ordinary differential equations are for-
mulated with perturbations that, like the quartic term in the Landau theory,
introduce qualitatively new features in the solution. In some cases, solutions
fail to even exist for the unperturbed problem [3]. Again, like in the Lan-
dau theory, the unperturbed solutions (if they exist) are not simply related
to the solutions of the actual problem, as assumed by perturbation theory.
Unfortunately, that simple relation between the unperturbed and full solu-
tion is required for naive perturbation expansions to converge. Thus, for
similar reasons as in critical phenomena, these perturbations give rise to di-
vergences in perturbation theory. Perturbations with these characteristics
are called called singular perturbations. While a large array of mathematical
techniques have been developed for obtaining approximate solutions valid
for large ranges of times [3], most of these these techniques are of limited
validity, or are difficult to carry out systematically for many problems, re-
quiring ad hoc assumptions in many cases [1]. This points to a need for a
systematic approach to analyzing singular perturbations. To find a method,
it is reasonable to look to field theory and critical phenomena where sim-
ilar problems have been solved, such as the perturbative expansion of the
Landau theory discussed above. In those fields, the divergences of the per-

2



turbation expansion have been largely tamed by the use of renormalization
group techniques. This suggests that such a scheme may work for developing
a systematic approach to differential equations with singular perturbations.
Such a method was developed by Goldenfeld and collaborators [1, 4, 2]. It
will be developed below through the careful analysis of Raleigh’s equation
after some preliminaries are discussed. While the discussion will seem some-
what involved technically, it is both relatively simple and non-trivial, and
thus provides a comparatively transparent way for exposing both the power
and basic ideas of the renormalization group approach.

2 Perturbation theory for Differential Equa-

tions

Because standard perturbation theory for ordinary differential equations is
not part of universal physics education, I will briefly review the technique
below. It will be developed through an example and will follow Bender and
Orsag [3], section 7.1 closely.

Consider the differential equation

y(x)′′ = εf(x)y(x) (3)

with boundary conditions y(0) = 1, y′(0) = 1. This equation can be solved
perturbatively by expanding y(x) as a series in ε, y(x) =

∑
n=0 εnyn(x), and

solving recursively. For the zeroth order solution

y0(x) = 1 + x (4)

To get the 1st order result we plug the first order expansion into the differ-
ential equation and keep terms of order O(ε)

d2

dx2
(y0(x) + εy1(x)) = ε(y0(x) + εy1(x)) (5)

= ε
d2

dx2
y1(x) = εf(x)y0(x) + O(ε2) (6)

This leaves a differential equation for the first order result

y1(x)′′ = f(x)y0(x) (7)
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Note that the boundary conditions for the first order result are determined
by that fact that the zeroth order result satisfies the boundary conditions for
the full problem. Thus the higher order terms have the boundary conditions
yn(0) = 0 and y′n(0) = 0. This is a general property of such expansions. Eq.
7 is solved by straightforward integration with those boundary conditions to
give the first two terms in the series for y(x) as

y(x) = 1 + x +
∫ x

0
dx′

∫ x′

0
(1 + x′′)f(x′′)dx′′ (8)

The perturbation expansion for this equation is well behaved, and higher
order terms are found easily [3]. This is an example of a regular perturbation,
for which the perturbation series is well behaved (provided the function f(x)
isn’t too pathological). Such straightforward perturbation methods fail for
singular perturbations as mentioned above.

3 Introduction to Raleigh’s Equation and Sin-

gular Perturbations

A prime example of a singular perturbation is Raleigh’s equation. Raleigh’s
equation was introduced by Lord Raleigh to model the vibrations of the reed
in clarinets [5] and is in the form of an oscillator with nonlinear damping

d2y

dt2
+ y = ε

(
dy

dt
− 1

3

dy

dt

3
)

(9)

It is well known that the long time solutions of Raleigh’s equation approach a
bounded limit cycle in phase space that looks like a distorted oscillator limit
cycle, i.e., closed and roughly circular. However, because the perturbation
introduces nonlinear terms, the straightforward method of expansion around
the unperturbed solutions fails, as we will see below [3]. This will not stop us
from using this expansion method, as Renormalization Group methods will
be introduced in order to tame the divergences that will arise, and allow us
to make sense of the perturbation expansion. This already gives a sense of a
major advantage of RG methods for differential equations, that it can be used
to make sense of easily obtained perturbation series that would otherwise be
invalid [1, 4].
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We now proceed with a naive perturbative expansion for Raleigh’s Equa-
tion. Let y(x) =

∑
n=0 εnyn(x) and plug in to find an equation for the zeroth

order term
d2

dx2
y0(x) + y0(x) = 0 (10)

We find the solution to Eq. 10 to be

y0(x) = R0sin(t + Θ0) (11)

We now plug this solution plus the unknown first oder term back into the
differential equation as in the outline of perturbation theory above

ε
d2

dt2
y1(x) + εy1(x) = ε

 d

dt
(y0(x) + εy1(x))− 1

3

(
d

dt
(y0(x) + εy1(x))

)3
 (12)

→ d2

dt2
y1(x) + y1(x) = R0cos(t + Θ0)−

1

3
(R0cos(t + Θ0))

3 + O(ε)(13)

This is now a linear inhomogeneous equation for y1(x). This linearity
of differential equations for the terms of the perturbation series is a general
feature of this type of perturbation theory, as can be seen by noting that
nonlinear terms are always of higher order in ε and are therefore dropped.
This is generally a great improvement. Note, however, that Eq. 13 is equiv-
alent to a driven oscillator equation for y1(x), and that the driving term has
frequency components at the natural frequency of the oscillator equation.
Thus the second order term εy1(x) will grow unbounded with time so that
it is not small relative to the zeroth order term after some time has elapsed
(such terms are called secular terms in the perturbation series), while y0(x)
is periodic and bounded. This causes the perturbation series to diverge after
time ha elapsed. Thus we can see without even solving the equation that
the naive perturbation expansion will only work, if at all, for very short time
scales.

4 Renormalization of Perturbation Theory for

Raleigh’s Equation

The problem of secular terms in the perturbation expansions around the
unperturbed solution makes it appear that such an expansion is hopeless.
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However, the analogous problem of divergence of perturbation expansion
of the partition function around the free field theory in Eq. 1 has been
solved using renormalization group methods [2] including the introduction of
arbitrary length scales. This suggests that a similar analysis of the Raleigh
equation may render the expansion around the free solution convergent and
eliminate the divergent secular terms for all times. Analysis of this type has
been carried out for the Raleigh equation and other examples by Chen, et.
al., in [1, 4]. We will follow these papers very closely in the analysis that
follows. The key idea mathematically is to mimic field theory by introducing
an arbitrary parameter analogous to the ultraviolet cutoff in field theory, that
can cancel the divergence. We then use renormalization group equations to
ensure that the solution does not depend on the parameter, and use its
arbitrariness to carry out the cancellation of the divergence.

The solution for the first order term in the perturbation expansion of the
Raleigh equation for an arbitrary initial time t0 is

y1(x) = −R0

96
cos(t + Θ0) +

R0

2

(
1− R4

0

4

)
(t− t0)sin(t + Θ0)

+
R3

0

96
cos [3(t + Θ0)] + O(ε2) (14)

Note the secular term. Following standard renormalization group methods
(at least in statistical mechanics and field theory, where it corresponds to
an ultraviolet cutoff rendering the theories finite), we introduce an arbitrary
time scale τ and rewrite the secular term coefficient t− t0 as t− τ + τ − t0.
We now introduce renormalization constants (in a process analogous to wave
function renormalization) defined by

Z1 = 1 +
∑
n=1

anε
n, R(t0) = Z1R(τ) (15)

Z2 =
∑
n=0

bnε
n, Θ(t0) = Z2(t0, τ) + Θ(τ) (16)

Note this is a formal step. Nothing has happened except for a definition.
We want to choose the constants a1 and b1 such that the terms with τ − to
are eliminated to order ε. These choices can be viewed as simply constraints
on the form of R(τ) and Θ(τ). We examine the perturbation expansion and
choose a1 = −1

2
(1 − R2

4
)(τ − t0) and b1 = 0. These choices can be easily be

checked by plugging them into the perturbation expansion and seeing that
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to order ε they yield the expression

y(t) =

(
R + ε

R

2

(
1− R2

4

)
(t− τ)

)
sin(t + Θ(τ)− εR3

96
cos(t + Θ(τ))

+
εR3

96
cos[3(t + Θ(τ))] + O(ε2) (17)

However, just as in quantum field theory, the physics cannot depend on the
ultraviolet cutoff, the dynamics of the Raleigh equation must not depend on
the arbitrary parameter τ . So we have the renormalization group equation
∂y
∂τ

= 0 for all t. Carrying out the τ derivative on Eq. 17 we find that this
condition yields two renormalization group equations (an amplitude and a
phase equation)

dR

dτ
=

εR

2

(
1− R2

4

)
+ O(ε2) (18)

dΘ

dτ
= O(ε2) (19)

These expansions, can, of course, be carried out to higher order in ε, and
can be solved as they are relatively easily (note they are first order). The
solutions are

R(τ) =
R(0)

e−ετ + 1/4R(0)2(1− e−εt)1/2
+ O(ε2t) (20)

Θ(τ) = Θ(0) + O(ε2t) (21)

So if we use these functions in our solution, independence on τ is guaran-
teed to O(ε2). But before we insert these equations back into the differential
equations we have one more key step to make. We note that the even with
our new, renormalized R and Θ we still have the secular term t − τ in the
perturbative expansion. This is resolved by noting that we explicitly con-
structed the theory to be totally independent of the choice of τ , so for any
range of time we are interested in, we can choose τ to be close to that time.
Given that freedom, the simple thing to do is to set τ = t [1, 4, 6]. This
eliminates the secular terms and renders the perturbation series convergent
for long time behavior, where the naive expansion diverged. To specify a
solution we need to choose initial conditions. To do so, we continue to follow
[1] to the bitter end by choosing with Chen et. al. y(0) = 0 and y′(0) = 2a
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yielding an approximation to the solution valid over all time scales

y(t) = R(t)sin(t) +
ε

96
R(t)3 [cos(3t)− cos(t)] + O(ε2) (22)

Note that the solution becomes periodic for long times, but with a distortion
to circular motion in the phase plane caused by the cos(3t) term. This is the
expected behavior of the Raleigh equation. Higher order calculations and
mathematical work indicate that no further inconsistencies arise [1, 7] .

Having completed this detailed analysis of Raleigh’s equation, and having
applied renormalization group ideas to render the perturbation series conver-
gent, we are left with a number of technical issues to address. Perhaps the
primary questions involve how generally such methods can be applied, how to
estimate errors, and in what regimes are the solutions valid. These questions
have been considered by several investigators. Kunihiro has formulated the
theory in terms of the geometric concept of an envelope to a family of curves
in an effort to provide a purely mathematical approach to this method, and
has shown that the solutions are correct for a wide class of differential equa-
tions [6]. Additionally, M Ziane has given error estimates and shown that the
solutions are valid within long time intervals, i.e. that the RG method is a
global method [7]. In conclusion, the RG method developed above is robust
over large time intervals, and is a systematic way to make sense of singular
perturbation theory for ordinary differential equations [1, 4, 6, 7].

5 Conclusions and Prospects

While the calculations above seem quite technical, they are unified with
the methods of renormalization in statistical physics, in spite of having no
statistical component. Given the large similarities between the difficulties
encountered in perturbation theory for field theory, critical phenomena, and
singular perturbations terms in differential equations, it is not surprising
that the powerful methods developed to analyze field theories and critical
phenomena have been applied to differential equations.

The question then arises how deep the connections and analogies go. Re-
cent work has shown that anomalous dimensions, key to the solution of the
problem of critical exponents, arise in certain partial differential equations
[2]. One can wonder if given that there are anomalous dimensions in differen-
tial equations (non-equilibrium descriptions) and that the equations can be
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handled using Renormalization Group methods, if perhaps other analogies
exist. Perhaps a concept of phase could be developed to describe qualitatively
different behaviors of solutions to differential equations. Another interesting
possibility is the idea that perhaps renormalization group methods could be
used to handle the divergences that arise in solutions of ill-posed integral
equations. These divergences often rise from extraordinary sensitivity to ini-
tial data [8], which is a different origin than what gives rise to the secular
terms in the differential equation case, but perhaps variances in initial data
could be considered as singular perturbations and a theory could be devel-
oped to tame the divergences of ill posed integral equations using related
Renormalization group methods.

In conclusion, work in recent years have shown that the renormalization
group has far reaching applications. Recent progress in using RG methods
for differential equations points to the possibility of being able to generate
theoretical predictions over wide time scales for physical systems that have
been very difficult to analyze previously. Given the rapid progress that has
characterized the use of RG methods outside of traditional realms of sta-
tistical mechanics and field theory for the last several years, there are good
prospects for further applications to be developed in the future.
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