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Abstract

The heavy-fermion system has been discovered for more than twenty years. Despite a lot of

efforts in the experimental investigations of these compounds, the origins of many related peculiar

phenomena such as their unconventional superconductivity and magnetism still remain unknown.

These compounds usually contain rare earth elements cerium and uranium whose outer f -shell

electrons form a highly correlated system. They are usually characterized by the heavy mass of

quasi-particles, large specific heat, and significant low-temperature magnetic susceptibility as well.

In this essay, we will introduce the basic ideas and describe some experimental facts. Especially,

we will focus on the differences between the heavy-fermion and traditional BCS superconductors.
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I. INTRODUCTION

The superconductivity of the first heavy-fermion material CeCu2Si2 was first discovered
in 1979 [1]. This material has a significant specific heat γ of about 1100 mJ/mol K2, and a
large effective mass of the quasi-particles (formed by the 4f electrons) m∗ ∼ 100 me. After
the discovery of this heavy-fermion material, many other compounds with a huge effective
mass and specific heat were discovered, e.g., UBe13 (1983)[2] and UPt3 (1984)[3]. Heavy-
fermion compounds usually contain the rare earth elements cerium (Ce) and uranium (U).
The element Ce has 4f electrons while the element U has 5f electrons. When forming
compounds with other elements, these electrons lead to a narrow resonance with a high
density of states within a narrow energy range due to the strong correlation between the
conduction electronic states and the localized f moments. The origin of the large effective
mass can be naively understood from this high density of states. Take degenerate electron
gases in a typical metal for example. The usual dispersion relation (Energy versus wave
vector) of a simple metal can be approximated by a parabola

Ek =
h̄2k2

2m∗
, (1)

where k is the magnitude of the wave vector. Due to Pauli exclusion principle and assuming
a weak-interacting or noninteracting case, the electrons (or fermionic quasi-particle) will
occupy different states, and the corresponding distribution is characterized by the Fermi
energy EF and temperature T . For a give temperature T , if the fermi energy is much larger
than the energy scale kBT (degenerate electron gas), where kB is the Boltzman constant,
only the electrons within the range of kBT below the Fermi energy EF can be excited.
Thus, as the temperature T increases, the internal energy ∆U gained compared with the
zero-temperature electron gas and thus the specific heat capacity Cv can be written as

∆U =
N(kBT )2

EF

∝ D(EF )T 2,

Cv =
∂∆U

∂T
= 2kB

NkBT

EF

∝ D(EF )T, (2)

where N is the number of electrons in the gas and is a function of the Fermi energy EF ;
and D(EF ) (∝ N/EF ) is the density of states at the Fermi energy. The proportionality
to the density of states D(EF ) at the Fermi energy in Eq. (2) is a general statement of
a degenerate electron gas, not restricted to the parabolic dispersion relation in Eq. (1).
However, the parabolic dispersion relation can gives us a heuristic guidance. The density
of states D(EF ) for a parabolic band is a function of the Fermi energy EF and effective
mass m∗

D(EF ) =
1

2π2

(

2m∗

h̄2

)3/2

E
1/2
F . (3)

From Eq. (3), we know a large effective mass leads to a significant density of states at
the Fermi energy, and thus a huge heat capacity. We may turn the other way around– ”a
significant density of states implies a huge effective mass,” even though this is not a precise
statement.
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FIG. 1: The density of states due to the hybridization of the f electrons and conduction electronic

states. (a) The peak in the density of states is f -like. The background density of states is due to

the conduction band electronics states. (b) A calculation taking the strength of hybridization into

consideration. After Ref. [4]

II. MORE ABOUT THE DENSITY OF STATES AND THE RELATION TO MAG-

NETISM

For the heavy fermion compounds, the huge density of states at the Fermi energy at
a low temperature is due to the strong hybridization of the f electronic configuration of
the elements Ce and U with the conduction electronic states from other elements. This
single-particle hybridization results in a narrow f -like peak in the overall density states, see
Fig. 1(a). A heuristic calculation taking the hybridization of the wave functions of the f
electrons and conduction electrons into consideration is shown in Fig. 1(b) [4]. The coupling
between the f -electronic state and conduction state results in a sharp resonance peak. At a
low temperature, if the Fermi energy is located roughly around the center of the resonance
peak, the high density of states at the Fermi energy leads to a very large effective mass and
electronic heat capacity, as shown by Eq. (2). Usually, a narrower resonance peak causes a
much higher density of states. The width of the resonance thus plays an important role in
the physical parameters such as the effective mass and heat capacity.

If the width of the single particle resonance is smaller than the effective exchange energy
of the spin-up and spin-down states, this single-particle resonance peak will be split into
two. One of them corresponds to the spin-up electrons while the other corresponds to the
spin-down electrons (see Fig. 2(a)). The occupation numbers of spin-up and spin-down
electrons are thus not even. The spin-polarized f electrons are usually quasi-bound to the
atoms donating them. This means those atoms may carry net magnetic moment via the
coupling with these spin-polarized electrons. For Ce and U, the two split configurations (4f 0

and 4f 1 for Ce and 5f 2 and 5f 3 for U) are not far apart. Both resonances contribute to the
specific heat and thus heavy mass around the fermi energy.

The above is a single-particle view. When the many-body effect involving the magnetic
interaction comes into play, the situation is further complicated. There are two cases related
to it. The first one is a dilute limit at the low temperature caused by Kondo effect. In this
situation, the local magnetic moments of the atoms are compensated by the anti-parallel
spin polarization of conduction electrons due to anti-ferromagnetic coupling. The ground
state is a nonmagnetic one [5]. This state has a binding energy kBTk, and a resonance caused
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FIG. 2: (a) The density of states split into two resonance peaks due to the effective exchange

interaction. One corresponds to σ (↑ or ↓), and the other corresponds to σ (the opposite of σ). (b)

The Kondo effect makes the spin of the electron compensate the magnetic moment of the atoms.

This state has a sharp resonance with a width of about kGTk at the Fermi energy.

by this many-body interaction, as shown in Fig. 2(b). The resonance has a width of about
kBTk and is located at the Fermi energy. This resonance is caused by the many-body effect,
and as temperature raises, its magnitude reduces and finally disappears due the decrease
in the compensation. This implies that in addition to the typical T dependence in the
heat capacity Cv [see Eq. (3)], the “effective density of states” at the Fermi energy varies
as the temperature changes. This is one of the characteristics about the heavy Fermion
system: the dependence of the heat capacity below the superconducting temperature is far
more complicated than a simple T -proportional dependence, though not necessarily due to
the Kondo mechanism mentioned here or the traditional Bardeen-Cooper-Schrieffer (BCS)
theory [6]. We will show some data on the heat capacity later. For a detail data collection
on the early measurements of the heat capacity of the heavy fermion system and various
strange temperature dependences, see Ref. [7].

The second case arises when the number of atoms with local magnetic moments (Ce or
U) increases beyond the dilute limit. Electrons can no longer be thought of as quasi-bound
to a particular atom though they still bear a significant f characteristic when they are close
to these atoms. The electron will interact with many atoms via a Heisenberg-like spin-
dependent interaction JSe · Satom, where Se is the spin of the electron while Satom is the
spin of the atom. The nature of the f electron hybridization makes the coupling constant J
an anti-ferromagnetic sign.The interaction between the the electrons and these atoms with
magnetic moments bring about the effective coupling among the atoms themselves. These
effective coupling is called the Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling [8]. For
a high concentration of the atoms with a magnetic moment but with a random distribution
in the material, the RKKY interaction freezes these atoms into a spin glass.

The above two cases actually compete with each other. If the atoms with the magnetic
moments are arranged in a periodic structure (Kondo lattice), the two cases will lead to
either an ordered nonmagnetic phase (spin compensation) or a magnetic one (RKKY). Both
phenomena seem to exist in the heavy fermion system. Another possible mechanism for the
magnetically-ordered phase is caused by the spin density wave (SDW) of the conduction
electron with a long-range order. Further, this spin-density wave is incommensurate, which
means that the period of the spatial variation of the magnetic moment is not the same as
that of the lattice, but rather determined by the Fermi surface.
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III. SUPERCONDUCTIVITY IN THE HEAVY FERMION SYSTEM

Some of the heavy-fermion compounds become superconductive at a low temperature.
The presence of superconductivity in this system then has brought about the reinspection
to the BCS theory because in the traditional superconductors–the existence of the magnetic
moment is not in favor of the superconductivity. It is believed that the pairing concept is
still correct, but the pairing mechanism and symmetry may be different from those of the
conventional BCS theory– the s-wave symmetry due to the effective attraction from virtual
phonon exchange. For example, the superconductivity of the compound UPt3 is suggested
to be caused by the spin fluctuation, and the pairing symmetry is the p-wave symmetry, i.e.
a triplet pairing (l = 1, s = 1). This suggestion was first made by fitting its heat capacity
above Tc to the formula derived from the case of spin fluctuation [3]. Another example
which implies the non s-wave pairing is the cubic power-law behavior the superconducting
heat capacity Cs(T ) for UBe13 [9]. The dependence on the cubic of temperature near zero
temperature implied the p-wave pairing. However, for the similar material CeCu2Si2 and
the same measurement, it was also reported the corresponding superconducting heat capac-
ity Cs(T ) implied a gapless superconductivity [10] though it seemed that p-wave pairing
can also fit the data pretty well. Due to the lack of a high-quality single crystal CeCu2Si2,
many properties about this material so far are still not accurate enough for a conclusive
judgement.

Also, there are examples showing that a significant magnetism and superconductivity
can be coexistent, contrary to the concept that the superconductivity can only coexist with
a small magnetic moment in the heavy fermion system. The compounds UPd2Al3 [11]
and UNi2Al3 [12] are such examples which show a significant magnetic moment below the
superconductivity transition temperature, implying an interplay between the magnetic order
parameter and superconductivity order parameter. The ordered magnetic moment µs of the
comppound UPd2Al3 is about 0.85 µB. This value is about two order of magnitude larger
than the small magnetic moment (∼ 0.01µB) which was considered as the limit for the
simultaneous presences of the magnetic and superconductivity ground states.

So far, the mechanisms leading to the superconductivity in the heavy-fermion system are
not clear for each compound. Thus, we cannot develop a theory which can explain every
detail of the experiments from the very beginning. However, we should be able to predict
what phenomenon we can see if the interaction with a certain symmetry is responsible for
the superconductivity. Since we don’t have a correct Hamiltonian to begin with, we have
to include a certain degree of phenomenology into the theory. Landau’s free energy is a
good starting point near the temperature of the superconductivity transition. Many ther-
modynamic quantities such as the specific heat near the transition temperature Tc can be
calculated from this theory as long as the functional form of the Landau’s free energy obeys
the correct symmetry of the compound, i.e., the symmetry of the lattice point group. Also,
by minimizing the Landau’s free energy, we would be able to get a rough picture on what
the phase diagram looks like even though the critical exponents near those critical points
may not be correct. It has been shown that for traditional superconductors, the micro-
scopic BCS theory can be simplified to Landau’s theory near the transition temperature
[13]. With the same idea, Landau’s theories which include the appropriate symmetries for
different materials should be able to reveal some information of the heavy-fermion system. A
detail description using this phenomenal approach but including the lattice symmetry (the
symmetry of the crystal field) can be found in Ref. [14]. Basically, the group-theoretical ap-
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proach is needed in writing down Landau’s free energy near the superconductivity transition
temperature.

Here, we briefly introduce the calculation of the order parameter (gap function) near Tc for
a general point group symmetry. The goal is to at least get an idea what s-wave, p-wave...and
so on actually mean. For more details, please refer to Ref. [14]. As mentioned above, we
have no idea what the effective interaction between the electrons is and can only assume
a phenomenological attractive interaction V whose origin requires further inspections. All
what we know is the symmetry of the potential V . Assume that spin is a good quantum
number for the single-particle part of the Hamiltonian first. The starting Hamiltonian H
can be written as

H =
∑

k,s

ε(k)a†
ksaks +

1

2

∑

k,k′,s1,s2,s3,s4

Vs1,s2,s3,s4
(k,k′)a†

−ks1
a†
ks2

ak′s3
a−k′s4

,

Vs1,s2,s3,s4
(k,k′) ≡ 〈−k, s1;k, s2|V | − k′, s4;k

′, s3〉, (4)

where ε(k) is the energy relative to the chemical potential for a particular band; and a... and
a†

... are the annihilation and creation operators with a corresponding labels.
Due to Pauli’s exclusion principle, the matrix element Vs1,s2,s3,s4

(k,k′) satisfies the
following symmetry: Vs1,s2,s3,s4

(k,k′) = −Vs2,s1,s3,s4
(−k,k′) = −Vs1,s2,s4,s3

(k,−k′) =
Vs4,s3,s2,s1

(k′,k). In the mean-field sense, the matrix elements of the order parameter are

∆̂(±k) =

(

∆↑↑(±k) ∆↑↓(±k)
∆↓↑(±k) ∆↓↓(±k)

)

,

∆ss′(k) = −
∑

k′,s3,s4

Vs′ss3s4
(k′)〈ak′,s3

a−k′s4
〉,

∆ss′(−k) = −
∑

k′,s1,s2

Vs1s2s′s(k
′,k)〈a†

−k
′,s1

a†
−k′s2

〉. (5)

The effective mean-field Hamiltonian H̄ is then written as

H̄ =
∑

k,s

ε(k)a†
ksaks +

1

2

∑

k,s1,s2

[

∆s1s2
(k)a†

ks1
a†
−ks2

− ∆∗
s1s2

(−k)a−ks1
aks2

]

. (6)

When paring the spins of the two electrons, the singlet and triplet spin states are both
possible depending on their symmetries in the k space. The singlet or triplet pairing will
result in different forms of order parameter matrices

∆̂(k) = iσyψ(k) =

(

0 ψ(k)
−ψ(k) 0

)

for singlet,

∆̂(k) = i[d(k) · σ]σy =

(

−dx(k) + idy(k) dz(k)
dz(k) dx(k) + idy(k)

)

for triplet, (7)

where ψ(k) is an even function of the wave vector k; d(k)[= dx(k)x̂ + dy(k)ŷ + dz(k)ẑ]
transforms like a complex vector function. After the Bogoliubov transformation to the quasi-
particle picture, the order-parameter matrix satisfies the matrix form of the self-consistent
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gap equation assuming that the occupation number is a Fermi-Dirac distribution

∆ss′(k) = −
∑

k′,s3,s4

Vs′ss3s4
(k,k′)Fs3,s4

(k′, β = 1/kBT ), (8)

where the matrix element Fs3,s4
(k′, β) in the singlet case is

F̂ (k, β) =
∆̂(k)

2Ek

tanh(βEk), Ek =

√

ε2(k) +
1

2
tr∆(k)∆(k)†, (9)

and for triplet case is

F̂ (k, β) =

{

1

2Ek+

[

d +
q × d

|q|
] tanh(

1

2
βEk+)

]

+
1

2Ek−

[

d −
q × d

|q|
] tanh(

1

2
βEk−)

] }

,

q = i(d × d∗), Ek± =
√

ε2(k) + |d(k)|2 ± |q(k)|. (10)

Just below the first critical temperature Tc, at which the first phase other than the high
temperature phase occurs, the order parameter is small. Thus, we can linearize Eq. (10)
with respect to the order parameter and obtain the following equation:

v∆s1s2
(k) = −

∑

s3,s4

〈Vs2s1s3s4
(k,k′)∆s3s4(k′)〉k′ ,

1

v
= D(EF )

∫ εc

0
dε

tanh(βcεk)

ε(k)
∼ ln(1.14βcεc), (11)

where εc is the upper bound of the interaction, and 〈...〉k means the average over the k

space. Eq. (11) is an eigenvalue problem with eigenvalue v. Thus, once the eigenvalue is
determined, we can then work back to find the critical temperature Tc. From Eq. (11), if
the rotational symmetry is present in the Hamiltonian without the spin-orbital coupling, the
function ψ(k) and the vector function d(k) are characterized by the even and odd angular
momentum quantum numbers, respectively. They are expanded as

ψ(k) =
∑

m

cmYlm(k̂) (l even), d(k) =
∑

m,n̂=x̃,ŷ,ẑ

Ylm(k̂)n̂ (l odd), (12)

where Ylm(k̂) is the spherical harmonic functions. Now, we can already see some hints
of the origin of the terminology for the electron pairing, though it is not the whole story
yet. The even angular momentum quantum numbers correspond to “s-wave” (l = 0), “d-
wave” (l = 2)...etc for the spin singlet while the odd angular momentum quantum numbers
correspond to “p-wave” (l = 1) and so on for the spin triplet.

Let us turn on the spin-orbital coupling and crystal field one by one. If the spin-orbital
coupling (∝ L · S) is turned on, the group operations on the wave vector k and on the
spin space are no longer independent of each other. In this case, instead of the single
angular momentum quantum number l, we should consider the total angular momentum
quantum number j and the corresponding operator J = L + S. For the spin singlet, we
have to consider the subspace j = l, and for the spin triplet, we have to consider the
subspaces j = l − 1, l, l + 1. The calculation of the order parameter matrix cannot be
reduced to the expansion of a single scalar shown in Eq. (12). The Clebsh-Gordon procedure
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is usually carried out to find the basis functions, which are usually the mixture of the spin
and the orbital part. Note that although j maybe a good quantum number, however, the
bases obtained from the Clebsh-Gordon procedure may not be the eigenfunctions of the
total Hamiltonian. For different pairs of quantum numbers (l, s) and (l′, s′), the addition
of the angular momenta from these two pairs may both lead to the same total momentum
angular momentum quantum number j. The interaction V will mix the two sets of bases
obtained from the subspaces characterized by (l, s) and (l′, s′). Thus, the order-parameter
matrix, though can be characterized by the quantum number j, still contains a complicated
expansion of the wave vector.

If the crystal field is turned on, the symmetry of the lattice point group then comes into
play. In this case, since there are only a finite number of irreducible representations of the
lattice point group, the possible basis functions for ψ(k) and d(k) are limited. Suppose for a

given representation Γ, we have m basis functions ∆̂(Γ,m;k). The order-parameter matrix
then can be written as

∆̂(k) =
∑

m

η(Γ,m)∆̂(Γ,m;k), (13)

where η(Γ,m) is the expansion coefficient. The detail of the basis function for some rep-
resentations can be found in Ref. [14]. Up to this stage, we should give a not-so-precise

definition of the l-wave pairing. If a basis function contains terms as follows:

∆̂(Γ,m;k) = ... + kα
xkβ

y kγ
z + ..., l = α + β + γ, (14)

we then call it l-wave pairing. There are exceptions, such as the totaly-symmetric but
nonconstant function, which is called extended s-wave pairing.

It is important to know what the impact of the pairing symmetry on the heat capac-
ity of the heavy-fermion superconductors is. We assume that the concept of the cooper
pair is still valid in these heavy-fermion superconductors. Thus, we can classify the order
parameter–the gap function by the crystal symmetry. One of the virtue of the microsopic
theory of the BCS theory is the prediction of a heat capacity with a temperature depen-
dence T−2 exp (−∆(T )/kBT ) far below Tc. The formation of an isotropic (s-wave) gap on
the Fermi surface is a key element to the proportionality of the temperature-dependent ex-
ponential. On the other hand, if there are nodes or zero lines of the gap function present
on the Fermi surface or even no formation of the gap at all (gapless superconductors), the
behavior of the heat capacity will be completely different from that predicted by the BCS
theory. The power-law dependence of the heat capacity replaces the exponential one. Exper-
imentally, measuring the superconducting heat capacity below Tc is one of the ways to test
the symmetry of the gap function even though it usually does not lead to a firm conclusion.
Here, we briefly mention the temperature dependence of the heat capacity when nodes or
zero lines are present in the gap function.

The temperature-dependent exponential term in the s-wave superconductivity heat ca-
pacity can be naively understood as the Boltzman factor which enters the calculation of the
“partition function” of the quasi-particle states. Since the gap is everywhere on the Fermi
surface, there is no easy way for the quasi particle to be excited. However, if nodes or zero
lines appear on the Fermi surface, quasi-particles may be easily excited near these zeros on
the Fermi surface. The superconductivity heat capacity Cs(T ) is

Cs(T ) =
1

T

∫ ∞

0
dEDq.p.(E)E2[−

df(E)

dE
] (T ¿ Tc), (15)
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where f(E) is the Fermi-Dirac distribution, and Dq.p.(E) is the quasi-particle density of
states. Under different topologies of the Fermi surface, the dependence on the temperature T
can be written as

Cs(T ) ∝











T gapless
T 2 linezeros
T 3 pointzero

. (16)

For example, in the p-wave pairing symmetry, zero node appears on the Fermi surface. Thus,
the cubic behavior of the heat capacitance is considered as the sign of p-wave pairing, as
mentioned previously for the compound UBe13.

IV. EXPERIMENTAL FACTS

In this section, we show some experimental results and briefly discuss the theoretical
possibilities indicated by them. The heat capacity, magnetic susceptibility, and resistivity
measurements will be our concerns. We will focus on the heavy-fermion compounds which
become superconductive at a low temperature though many other heavy-fermion compounds
also exhibit many unusual properties in these measurements.

A. Heat Capacity

The heat capacity in absence of phase transition in a metal far below the Debye temper-
ature but above the Tc is usually written as

Cv(T )

T
= γ + βT 2, (17)

where the parameters γ and β describe the contributions from electrons and the lattice
vibration, respectively. Below the transition temperature, the parts in addition to these
contributions are attributed to certain kind of phase transitions, usually the emergence of
superconducting phase. In this case, the parameter γ is treated as temperature-dependent
below Tc, and many people plot Cv(T )/T versus T 2 to study how significant the deviation
from the straight line described by Eq. (17) is, though this is not always done. Figure 3(a),
(b), (c) shows Cv/T or Cv for CuSi2Cl2 [15], UBe13 [16], and UPt3 [17]. As mentioned
above, the measurements of CuSi2Cl2 are very sample-dependent. Thus, from the heat
capacity, we can only say that there is a certain kind of transition, possibly the emergence
of superconductivity, and its pairing symmetry is not the conventional one, maybe p-wave
or gapless. Comparing with CuSi2Cl2, the result of UBe13 is much more conclusive due to
a less sample uncertainty. A striking fact about UBe13 takes place in its phase diagram
when some of the atom U is replaced by the element thorium (Th). As the concentration of
doping increases, the critical temperature first drops, but later, increases again. In addition
to it, another phase with a lower Tc emerges between x = 0.018 − 0.045 [19, 20], as shown
in Fig. 3(d) [18]. The transition at the lower critical temperature is suggested to be a
second superconducting state due to the coupling to the spin-density wave [18, 21, 22]. The
presence of the SDW generates a second superconducting order parameter, and this second
superconducting state may have an even larger condensation energy. For UPt3, there are
two phases corresponding to different transition temperatures [23]. These two phases may
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(a) (b)

FIG. 12. Specific heat divided by temperature vs temperature.
(c) (d)

FIG. 3: Heat capacities of various heavy-fermion compounds as a function of temperature. (a)

CuSi2Cl2 [15]. (b) UBe13 [16]. (c) UPt3 [17]. (d) The phase diagram of U1−xThxBe13 [18]

be caused by the lifting of a certain degeneracy, as suggested that at a high pressure, the
two transition temperatures merge into one [24]. The early measurement of the hat capacity
could not resolve these two phases [3], but the availability of a high-quality single crystal of
UPt3 made it possible to distinguish the two phases. Also, above the transition temperature,
Cv/T can be fitted by the following equation

Cv(T ) = γT + βT 3 + δT 3 ln T. (18)

This form of heat capacity is a strong indication of the spin fluctuation, implying that the
superconductivity of UPt3 is immediated by the spin fluctuation [3]. Also, UPt3 is one of
the few examples in the heavy-fermion system whose material properties do not deviate
significantly from one measurement to another. For a detailed review on UPt3, see Ref. [25].

B. Magnetic Susceptibility

The inverses of the magnetic susceptibilities χ−1(T ) of the materials CuSi2Cl2 [26],
UBe13 [16], and UPt3 [27] are shown in Fig. (4). At a high temperature, all of the three
susceptibilities can be described by the Curie-Weiss law χ(T ) ∝ (T +Θ)−1, Θ < 0, and they
exhibit quite large magnetic susceptibilities at low temperatures (small χ−1(T ) at a low tem-
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(a) (b) (c)

FIG. 4: The inverses of the magnetic susceptibilities χ(T )−1 of various heavy fermion system as a

function of temperature. (a) CuSi2Cl2 [26]. (b) UBe13 [16]. (c) UPt3 [27].

perature). The effective magnetic moments µeff corresponding to these susceptibilities are
quite large (∼ 2.61 µB for CuSi2Cl2, ∼ 3.08 µB for UBe13, and ∼ 2.9 µB for UPt3). Again,
due to a larger variation of the sample quality, the compound CuSi2Cl2 has a significant vari-
ation in the magnetic susceptibility. To have a rough idea how significant the susceptibilities
of these materials are at a low temperature, we compare them with that of the f -electron
atom plutonium Pu which is closet to bing magnetic. The magnetic susceptibility of Pu
at the zero temperature is 0.5 × 10−3 emu/mol G. The magnetic susceptibility of CuSi2Cl2
at a low temperature, which is among the smallest ones in the heavy-fermion system, is
about 8 × 10−3 emu/mol G. This value is significantly larger than that of Pu. The large
magnetic susceptibility may cause by the Kondo effect which results in the compensation of
the local magnetic moments by the conduction electrons as mentioned earlier, or by another
mechanism which describes the competition between two f -electron ground states [26]. One
of the ground state is magnetic while the other is nonmagnetic. It is interesting to note that
at a low temperature, the deviation of the high-temperature behavior of the susceptibility
of the compound UPt3 is different from those of CuSi2Cl2 and UBe13. A minimum exists in
the inverse of magnetic susceptibility χ−1(T ). This phenomenon suggests that the supercon-
ductivity and magnetic properties of UPt3 are different from the other two. Actually, the
compound UPt3 exhibits many different properties from other heavy-fermion compounds at
a low temperature, not necessarily restricted to the other two compounds mentioned here.
This implies that the pairing mechanism compound UPt3 may also be unique.

C. Resistivity

Figure 5 shows the resistiviteis of CuSi2Cl2 [28], UBe13 [2], and UPt3 [3]. At a very low
temperature, the resistivities all become much smaller than their high-temperature counter-
parts. Note that there are global maxima for both the resistivities of CuSi2Cl2 and UBe13.
These local maxima are caused by the Kondo-lattice scattering which increases as the tem-
perature decreases. After those global maxima, the resistivities soon decrease. There are
also side shoulders on the resistivitis of CuSi2Cl2 and UBe13 at the higher-temperature sides
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(a)

FIG. 5: The resistivities of CuSi2Cl2 [28], UBe13 [2], and UPt3 [3] as a function of temperature.

of the global maxima. They are caused by the crystal-field effect. Note that this local
maximum is absent in the resistivity of UPt3. The resistivity goes to zero monolithicly as
the temperature decreases. This again shows that the material UPt3 is different from the
other materials. The low temperature behavior of the resistivity can be usually described
by a T 2 behavior. This T 2 behavior may be caused by the Fermi-liquid theory. However,
many other mechanisms can also cause this temperature dependence. Other measurements
on different material properties have to be used to make a better judgement.

D. Other Measurements

Some other approaches can be used to test the differences of the heavy fermion materials
below and above various transition temperatures. For example, both nuclear magnetic
resonance (NMR) relaxation rate and muon spin rotation and relaxation (µSR) techniques
have found their positions in the field of the heavy-fermion system. Both of them sense
the change of the local magnetic field in the material corresponding to different phases.
NMR technique utilizes the nuclear magnetic moment while the µSR technique uses the
spin polarizations of positive muon µ+. For a detailed review on the investigation of the
µSR techique on the heavy fermion system, see Ref. [29].

NMR relaxation rate can also be used to test the pairing symmetry at different tempera-
tures. This technique is first developed to test the standard BCS superconductors [30] and
can be extended to others with unconventional pairing mechanisms. The NMR relaxation
time TNMR

1,s (T ) in the superconducting phase contains the information of the order parameter
on the Fermi surface. The corresponding temperature dependence is listed below:

TNMR
1,n (T )

TNMR
1,s (T )

∝











T gapless
T 3 linezeros
T 5 pointzero

, (19)
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where TNMR
1,n (T ) is the NMR relaxation time in the normal state.

Impurity substitution is also a tool to inspect the heavy-fermion materials. However, the
physical properties of the heavy-fermion materials are usually very sensitive to these small
variations of the substitution parameters, which also make the accurate measurements very
hard (recall the case of CeCu2Si2). Thus, they are usually used as an auxiliary tool only.

V. CONCLUSION

The heavy-fermion system is a complicated system but also contains rich physics. The
superconductivity in the heavy-fermion is probably not the s-wave pairing described by
the traditional BCS theory. The power-law behaviors in many measurements are strong
evidence of the non-trivial pairing symmetry though more efforts have to be devoted to
settle down the discrepancies between many measurements. Parts of the confusion come
from the uncertainty of the samples. The others come from the lack of a comprehensive
theory which can be applied to different materials. The interplay of the intrinsic magnetism
and the superconductivity is another part which makes the heavy-fermion superconductivity
fascinating. This phenomenon is absent in the traditional BCS superconductors. There is
still a long way to go for the heavy-fermion system since many questions still remain open,
especially on the microscopic mechanism of the superconductivity and its relation to the
magnetism of the material.
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