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Abstract

Cancer  is  a  disease  that  has  affected  almost  everyone  directly  or  indirectly,  yet  we  still  have  no 
effective means of predicting or controlling it. In this paper we discuss the application of two methods 
of physics to the problem of tumor growth. The first is a local interaction model that through many 
iterations generates macroscopic tumors that mimic real life tumors. This model works solely based off 
the interaction between neighboring cells as well as the level of nutrients available to each cell and is 
thus very flexible. The second model of tumor growth that we consider is that of a universal scaling 
law that is shown to be applicable to a wide range of organisms. 



I. Introduction  

In the last hundred years science has made remarkable progress on the eradication of many diseases. So 
much so that today many people are not aware of diseases that previously were fatal; diseases such as 
polio, small pox, measles, ... etc. Despite this, there exist today many illnesses that still elude a cure. 
One of the most deadly of these is cancer. After decades of research, today we have many effective 
treatment options that, when the cancer is caught in an early enough stage, many lead to a regression of 
the cancer and a relatively normal life for the patient. However we still cannot deterministically stop 
the progression of cancer. A proper understanding of the growth and spreading mechanisms of tumors 
may one day lead to more effective treatment options.
The term cancer refers to a wide class of diseases all with different properties, effecting different parts 
of the body; nevertheless they all show a similar pattern of explosive growth. As the applications of 
mathematical models become more prevalent in biology, a natural area for the application of these 
techniques is  to understanding the growth of  malignant  tumors.  To this  effect  many models,  both 
analytical  and numerical,  have been proposed.  The book by Adam and Bellomo1 provides a good 
survey of the analytical techniques that have been applied to the problem. But these models, while 
useful  for  describing  the  initial  stages  of  tumor  growth,  or  growth  in  uniform  and/or  controlled 
environments, cannot describe tumor growth in real environments. Recently, some groups have started 
to apply techniques commonly used in the study of complex systems to the problem of tumor growth. 
In this paper we will discuss two of these approaches.
In the first part of this paper we will discuss a numerical model based on local interactions between 
cancer cells and their environment that is able to reproduce the major phases that are observed for 
cancerous tumors; namely, Unlimited growth, spread to other parts of the body (metastasis), latency, 
and  regression.  In  the  second  part,  we  will  describe  analytical  work  showing  power  law scaling 
between scaled tumor mass and scaled tumor growth times. This “universal” law is shown to be valid 
for many kinds of tumors, from those grown in vitro in the laboratory, to in vivo tumor in humans as 
well as in rodents.

II. Investigation of tumor phases using a discrete model  

In  this  section  we  review numerical  work  simulating  the  growth  of  tumors  as  a  function  of  the 
availability of nutrients in a uniform density environment2,3, as well as in the presence on anatomical 
barriers modeled as variations in the density of the environment4. We start with the basic model and the 
motivations behind it and then move on to show how the model predicts various phases for tumors. We 
then discuss an extension of this model to include barriers and compare the results of simulations with 
clinical observations of cancer in the larynx and the jaw.

A. Basic Model

The model  they  consider  is  a  2-dimensional  model  representing a  slab  of  tissue,  discretized  on  a 
rectangular  grid.  At  each  node  of  the  grid  they  define  a  local  population  of  healthy  cells,  h( i ), 
cancerous cells, c( i ), and dead cells d( i ) as well as the local concentration of free nutrients, p( i ) 
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(assuming  that  all  the  relevant  nutrients  can  be  accounted  for  by  a  single  variable  p).  The  cell 
populations are normalized to one so that: h i ci d i =1 . 
An initial cancerous cell is placed at the center of the grid and the system evolves as follows:

1. The nutrients are supplied by blood vessels along the right and left edges of the grid. This is 
modeled by a fixed nutrient concentration po in nodes at the left and right boundaries. Nutrients 
diffuse to neighboring nodes at a constant rate of α.

2. We assume that healthy cells are static (do not move from node to node) and absorb the free 
nutrients at a constant, both in time and space, rate γh. 

3. Cancerous cells absorb free nutrients, p( i ), and transform them into bound nutrients, q( i ) at 
a rate of i =as {1−exp[− pi ]} .  Here γas is the asymptotic absorption rate and Γ is the 
nutrient  affinity  parameter  proportional  to  the  number  of  receptors  each  cell  has  for  the 
nutrient.

4. Cancerous  cells  consume bound  nutrients  at  a  rate   i =as {1−exp[−qi /c i ]} ,  to 
maintain metabolic activity. Βas is the asymptotic conversion rate.

5. When the amount of bound nutrient per cell, q( i ) / c( i ), falls below some threshold value 
QD, a random number, r( i ) < c( i ),  of cancerous cells in node i  die; thereby increasing d( i
) by r( i ).

6. When q( i ) / c( i ) exceeds some threshold value QM  , a random number, r'( i ) < h( i ),  of 
cancerous cells replace healthy cells in node i . In this way cancerous cells reproduce.

7. When q( i ) / c( i )  is below a threshold PD, with QD < PD < QM, then a ratio, χ, of cells migrate 
to  neighboring  nodes  replacing  healthy  cells  there;  if  there  aren't  enough healthy  cells  to 
accommodate this migration, then nothing happens.

8. Finally, we count cancerous cells that migrate to the blood vessels and assume that they will 
contribute to metastasis, the spread of a tumor to previously uninfected parts of the body.

The above rules are be implemented by the following iteration equations:

First we update c( i ) and d( i ) for the current time step:

c i , tc i ,t {1−r i [QD c i −qi ]r ' i [q i −c i QM ]}  
Here  the  2nd term corresponds  to  cell  death  and the  3rd term corresponds  to  reproduction  
(mitosis). Θ is the Heaviside step function.

d i , t  d i ,t c i  r i [QD c i −qi ]

We then advance to the next time step:

c i , t=ci , t [h i ∑
i '

NN

1 i ' c  i ' −1 i c i ∑
i '

NN

h i ' ]

where  1i =[c i  PD−p i ]   and the sum is over the nearest neighbors.

d i , t=d i , t 

h i , t=1−c i , t−d i , t
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p i , t= pi ,t [∑
i '

NN

[ p  i ' − p i ]−h p i hi − i c i ]

The 1st term above corresponds to diffusion of nutrients in and out of the node. The 2nd and 3rd 
terms correspond to nutrient consumption by healthy and cancerous cells respectively.

q i , t=q i , t [i  c i −i c i hi ∑
i '

NN

1 i ' q  i ' −1i q i ∑
i '

NN

h  i ' ]

The γ-term represents free to bound nutrient conversion. The β-term corresponds to the bound 
nutrient  consumption.  The  last  two terms are  related to  the bound nutrient  transported by  
migrating cancer cells.

B. Results

Simulations were done according to the above methods on a 300 x 300 grid point lattice keeping all 
parameters fixed except for  γas and po.  By appropriately varying these two parameters, four types of 
tumors (phases) were observed. Four examples of the observed behavior can be seen in Appendix 1.
In figure 1 we see plotted cancer volume vs time for various values of  γas while keeping po constant at 
0.03.  For very low values of  γas,  the tumor grows to some small  volume, and then regresses.  For 
slightly higher  γas, we observe latency, where the tumor levels off at some fixed volume and neither 
grows nor shrinks. If we now slowly increase γas  we reach a critical value, in this case approximately 
0.075, above which there is explosive growth of the tumor; here we can see a phase transition from the 
latent phase to the malignant phase.
The authors then perform extensive simulations to map out a significant portion of phase space such 
that all 4 phases are clearly visible. The phase diagram is reproduced in figure 2. One thing to note is 
that as the authors themselves admit, the boundary between the metastasis and unlimited growth phases 
is at best representative. They arbitrarily choose a threshold Ξ and label all cases in which more than Ξ 
cells make it into the bloodstream before the tumor reaches a deadly size (again arbitrarily determined), 
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Fig. 1. Tumor growth as a function of time for different values of γas . [Delsanto et al.  
(2000)]



as metastasis. Despite this, it is quite impressive to see such a simple model give rise to such dynamic 
behavior.  As the  authors  point  out,  the phase  diagram suggests  how sensitive tumors  are  to  their 
surroundings. A very small change in po the availability of nutrients in the surroundings can quickly 
lead a tumor out of latency and bring it into a regime of rapid growth or vice versa. This perhaps could 
be the basis of an effective strategy against cancer.

 
C. Extension to Anatomical Constraints

The above work, although very interesting and suggestive, fails to make any predictions and cannot 
easily be compared with experiments or against clinical data. The methods are probably correct but in 
order to advance to the next level a comparison  with clinical data is necessary. Along these lines, 
Sansone et al.4 have applied the model to the specific case of cancers of the larynx and oral cavity. In 
order to do so they needed to extend the model to include non-uniform diffusion of nutrients and cancer 
cells so as to model the presence of different kinds of tissue such as cartilage, muscle, and bone. The 
formalism is identical to the above except that now α and χ depend on the starting and ending node. 
Reference 4 shows some of the modified iteration equations; here we only review the results. 
Figure 3 shows a comparison of two simulations and two clinical CT scans. The top row shows the CT 
scans, the middle row shows the simulation results using the extended methodology, and the bottom 
row show the results of a simulation without anatomical constraints, i.e. in a uniform tissue. The first 
column shows a less aggressive tumor while the second column shows a much more aggressive tumor 
that eventually breaks through the thyroid cartilage as can be seen in the simulation. 
In the CT scans the tumor is outlines by the dotted lines while in the simulations the tumor is indicated 
by the light areas. The cartilage however is white in the CT scan and dark in the simulation. As can be 
seen, the simulation results agree at least qualitatively, both in shape and size, with the CT scans. 
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Fig. 2. Tumor phase diagram in nutrient availability vs. consumption rate space. [Delsanto et al. (2000)]



It is interesting to note the difference between the 
bottom two rows in figure 3. The tumors in the 
bottom row have a much more uniform shape and 
expand  almost  isotropically  from  the  black  dot 
where  the  tumor  seed  was  initially  placed.  The 
tumors in the middle row however, despite having 
started from the same seed as those in the bottom 
row, show a high degree of non-uniformity. This 

is a good sign that the cancer is acting as we expect in the simulation, in that it is expanding much more 
into the soft tissue and only later, and much slower, does it start to penetrate the much harder cartilage. 
In this case the tumor cannot reproduce as much because of the pressure exerted by the barriers and 
must rely much more on diffusion to spread. In the bottom pictures however, there is no such pressure 
and the tumor replicates freely, leading to a much larger tumor. 
To further test their model the authors simulate tumor growth in the jaw and again compare their results 
with a  CT scan of an actual jaw tumor. The results of this simulation can be seen in figure 4. The 
figure shows three  snapshots of  the simulation at  different  times.  As well  as  the  CT scan.  In  the 
simulations, the jaw bone is the dark parabola whereas in the CT scan, it's only slightly darker than the 
rest of the tissue. The bright white spot in the CT scan is a spurious effect due to the presence of teeth. 
Once again the tumor is indicated by bright regions in the simulations; in the CT scan, the tumor is 
indicated by the cross. As before, the final simulation snapshot agrees well qualitatively with the CT 
scan. Interestingly even though the majority of the volume of the tumor is in the soft tissue as expected, 
the tumor is aggressive enough to attack and break into the bone.
This simulation method seems to show promise to accurately predict the shape and size of tumors in 
diverse environments and would be a good basis for further investigations. However, despite the good 
qualitative  agreement  between  the  CT  scans  and  simulations,  there  need  to  be  more  tests  done, 
preferably quantitative ones, to confirm it's validity.
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Fig. 3. From top to bottom, comparison of CT scans of actual  
tumors.  the  results  of  simulations  taking  into  account  
anatomical barriers and the results of simulations done with 
no barriers.[Sansone et al. (2001)]

Fig. 4. Simulation of a tumor near the jaw bone at three 
different times compared with a CT scan of the same.  
[Sansone et al. (2001)]



III. A Universal Scaling Law for Growth

In this section we will review some work5,6,7 suggesting that tumor growth follows a universal scaling 
law relating a scaled mass to scaled time. The basis of this work is a very interesting paper by West et 
al.8 in which a universal growth law is derived and is shown to work for a wide variety of organisms. 
We'll first take a look at West's ideas and then move onto their application to tumors.

A. West's Model for Ontogenetic Growth

West's argument starts with a statement of the conservation of energy, 

 B=∑
c
[N c BcE c

dN c

dt
] . 

B is the resting metabolic rate, or the total incoming energy; Nc is the total number of cells that make 
up the organism; Bc is the metabolic rate of a single cell; Ec is the energy needed to create a new cell; 
and finally the sum runs over all types of cells.  The first term on the right is therefore the energy 
needed to maintain the organism, while the second term is the energy needed for growth. Defining mc 

as the mass of one cell, we have total body mass m = mcNc, and the above equation can be rewritten as:
dm
dt

=
mc

E c
B−

Bc

Ec
m .

Now West et al. assume that B = Bom3/4, where Bo is a constant for a given taxon (there exists some 
debate about the value of the exponent9 with some who claim it is closer to 2/3; we will however 
continue assuming the ¾ value), then

dm
dt

=am3/4−bm   with  a≡Bo

mc

Ec
 and  b≡

Bc

Ec
.

When dm/dt =0, the organism has reached it's maximum mass M = (a/b)4 = (Bomc/Bc).  So we can 
rewrite the previous equation as

dm
dt

=am3/4[1−
m
M


1 /4

] .

Integrating this equation we get


m
M 

1 /4

=1−[1−
mo

M 
1/4

]e
−a t

4M1/4

From  this  equation  we  see  that  if  we  plot  the  dimensionless  mass  ratio  r≡
m
M


1/4

 versus 

dimensionless  time  ≡ at
4M1/4−ln [1−

mo

M


1 /4

]  then  “all  species,  regardless  of  taxon,  cellular 

metabolic rate (Bc), or mature body size (M), should fall on the same parameterless universal curve 
r=1−e − “ 8. Figure 5 is from West et al. and shows their testing of the scaling law on many vastly 
different animals. As can be seen, the scaling law is a very good one.
In this formalism, r can be thought of the ratio of metabolic energy available for the maintenance of the 
organism, in which case we define R = 1- r to be the ratio of metabolic energy available for growth.
West notes that the reason behind this scaling law may be the fundamental imbalance between the 
fractal-like network of capillaries that supply the organism which scale as m3/4 and the number of cells 
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needing  nourishment  which  scales  as  m.  This  imbalance  eventually  leads  to  a  slowing down and 
ultimately a halt in the growth of the organism.

B. Scaling Law for Tumor Growth
We will now discuss an application of West et al.'s scaling law to tumors as undertaken by Guiot et al.5 

In the case on a tumor, m0 and M correspond respectively to the initial and final masses of the tumor. 
For a given dataset(tumor mass versus time) Guiot et al. started by using the smallest and largest values 
of m as mo and M respectively. This gives a first estimate of the parameter a as defined above. They 
then used this estimate for a, and varied mo and M to find a better fit to the data. Using these new 
values of mo and M, they reestimate a and repeat the process until the best fit to the biological data is 
obtained.
In Appendix 2 we reproduce plots of rescaled tumor mass versus rescaled time from Guiot's paper. The 
solid line on each graph represents West's uniform scaling law. Just as with the animal data, the scaling 
law seems to fit the tumor data very well. 
Perhaps the reason the tumor data fits the scaling law so well is that like all other organisms, the basic 
governing rule is that of supply and demand. The same arguments as above apply here, the supply of 
nutrients cannot keep up with the explosive growth of the tumor and so the tumor reaches a maximum 
size. At this point the tumor must diffuse to other regions in order to continue growing.
It  was noted by Guiot that West's model assumes unrestricted dietary conditions, whereas real life 
tumors  are  rarely  in  such  conditions.  In  light  of  this,  slight  disagreements  with  the  model  are 
acceptable, however experimental data for the growth of tumors in an unrestricted dietary environment 
would help significantly by removing a possible source of error. 

7

Fig. 5. Mass ratio vs. dimensionless 
time. When plotted this way West 
et al. predict all data should fall on 
the same curve 1 – e-τ , shown as a 
solid line. [West et al. (2001)]



IV. Conclusion

We have  looked  at  the  application  of  two  general  methods  of  phase  transitions  to  the  study  of 
cancerous tumors. The first method was a local interaction model that simulated the growth of a tumor 
by keeping track on local interactions between cancerous and healthy cells as well as the balance of 
nutrients. Based on the level of nutrients in a given cell, the model gave rise to cell replication, death, 
or migration. The combined effect of these local processes was to generate macroscopic tumors that 
exhibit  many  of  the  properties  seen  in  real  tumors.  These  include  four  major  tumor  phases, 
uncontrolled growth, metastasis, latency, and regression as well as transitions between the phases. In 
it's initial form the model was only capable of simulating uniform soft tissue environments, however 
with a straightforward extension, we saw that the same model is able to describe tumor growth in far 
more complex environments including tumor growth in the presence of bones, cartilage, muscle, and 
more. Using the capabilities of the augmented model we saw simulations of tumor growth both in the 
larynx and near  the  jaw bone.  Both  these  simulations  agreed  qualitatively  very  well  with clinical 
observations of the same cancers, including both shape and size of the tumor. Despite these exciting 
developments, this model and ones similar to it are a far ways off from being everyday tools in the 
battle  against  cancer.  Much  more  quantitative  data  is  needed  to  compare  the  models  against. 
Unfortunately,  because cancer typically takes many years to develop and when developed is  often 
times extremely hard to observe without invasive and very dangerous operations, good quantitative 
data is hard to come by. 
The second method we looked at was the use of a universal scaling law to extract features that are 
common to a very large class of life forms. As was shown by West et al., their scaling law worked for 
many animals from fish to birds to mammals; from animals that have a mass on the order of a tenth of a 
gram to those that have a mass on the order of hundreds of kilograms. This scaling is incredible all in 
it's own but what is even more amazing is that this same kind of scaling applies to cancerous tumors as 
shown by Guiot et al.. This is perhaps due to the fact that the same laws of supply and demand apply 
for a rapidly growing tumor as do for a growing organism.
Understanding and perhaps one day being able to manage or cure cancer is a very challenging goal. 
Progress has been made on many fronts but there is still much more to do. As more and more physicists 
become aware of the potential of physics techniques in the biological sciences, there will surely be 
more attention paid to the type of problems we looked at in this paper. Perhaps one day the research 
tools we use today will be a part of every day clinical procedures in order to diagnose, treat and manage 
cancer.
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Appendix 1
Evolution of tumors for fixed  γas and varying po.  All  figures are from reference 3,  Delsanto et  al. 
(2000).
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po = 0.1. Most likely leads to metastasis.

po = 0.075. Resluts in latency. po = 0.05. Results in regression.

po = 0.2. Results in unrestricted growth.



Appendix 2

Here we show various tumor data rescaled and plotted. The rescaled graphs agree very well with West's 
predictions for a universal growth law. All figures and tables are from reference 5, Guiot et al. (2000).
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