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Abstract

This paper reviews the use of graphs as mathematical descriptions of social networks,
and discusses in particular some properties of the commonly used random (Erdős-Rényi),
small-world (Watts-Strogatz) and scale-free (power-law) models, with particular focus on
the small-world model. The applications of such networks to epidemiology are then briefly
outlined with some comments pertaining to the analysis of the 2002-2003 outbreak of severe
acute respiratory syndrome (SARS).

1 Introduction

I read somewhere that everybody on this planet is separated by only six other peo-
ple. Six degrees of separation. Between us and everybody else on this planet. The
president of the United States. A gondolier in Venice. I find that A] tremendously
comforting that we’re so close and B] like Chinese water torture that we’re so close.
Because you have to find the right six people to make the connection. It’s not just big
names. It’s anyone. A native in a rain forest. A Tierra del Fuegan. An Eskimo. I am
bound to everyone on this planet by a trail of six people. It’s a profound thought.
[...] How every person is a new door opening up into other worlds. Six degrees of
separation between me and everyone else on this planet. But to find the right six
people.

Ouisa Kittredge, in John Guare’s Six Degrees of Separation.[13]

In 1967, sociology professor Stanley Milgram conducted a now-famous experiment proving
that the world was indeed a small place.[27] He mailed letters to randomly selected people in
Wichita, Kansas and Omaha, Nebraska, asking them to forward a particular letter to two target
persons in Massachusetts. The catch was that each participant was not allowed to mail the
letter directly to the target person, but instead were supposed to forward it to an acquaintance
or relative whom they thought would be more likely to know the target person. Milgram
discovered the counterintuitive result that that the median number of intermediaries was 5.5.[9,
27] The result was rounded off in the phrase “six degrees of separation”, which immortalized
the phenomenon in the eponymous play by John Guare[13] about a con artist.

Milgram’s experiment brought to the forefront the realization that the nontrivial structure of
the social fabric meant that societies cannot be modeled naïvely as ideal lattices. Generalizing
this result to systems outside sociology, extrapolations from standard results from statistical
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physics, which are almost exclusively from systems distributed on regular lattices, were bound
to give qualitatively incorrect results for systems on networks with nontrivial topologies. For
example, the one-dimensional Ising model was recently solved on a small-world network and
shown to have a non-zero transition temperature, in contrast to the result obtained on the
regular lattice.[43]

Milgram’s experiment also popularized the modeling of societies as networks based on
mathematical objects known as graphs, the study of which has formed the subject of various
popular science works.[9, 45] A graph[13] is a mathematical object associated with two sets;
the first set is a collection of nodes or vertexes isomorphic to points, while the second set is
a collection of edges connecting two vertexes together, each of which is isomorphic to a line
segment. The degree of a vertex is defined as the number of edges containing that vertex.
Graphs form the mathematical framework for describing networks such as that of a society,
whereby each vertex is an individual person or organism and each edge represents a social
contact or interaction of some sort. In general, all sorts of networks following such a formalism
can be used as fruitful models for complex systems.[5]

Oftentimes one is not just interested in the structure of the social fabrics of various commu-
nities, but also on processes that take place in them. The dynamics of such phenomena are then
affected in a non-trivial manner on the complexity of the underlying network.[3]

One of the most important processes sociologically is the occurrence of disease. Epidemiol-
ogy, which is the study of disease spreading, its causes, and implications for public health pol-
icy, is only just beginning to realize the fundamental importance of the underlying structures
of society for the spread of diseases. In particular, the failure of traditional epidemiological
models to describe the severe acute respiratory syndrome (SARS) outbreak of 2003 is arguably
one of the driving factors for the current paradigm shift in the study of epidemics. The World
Health Organization estimates that while SARS caused less than 800 deaths worldwide, the
economic cost is a staggering 30 billion US dollars in health care costs and lost production.[48]
Gaining a more accurate picture of diseases work so as to implement effective countermeasures
is hence a matter that has far more than just academic interest.

This paper outlines the connection between epidemics and phase transitions in statistical
mechanics, emphasising the effects of a non-trivial spatial topology, and briefly describes how
traditional epidemiology fails to describe the outbreak of SARS. In this paper, we will focus on
the structural aspects of complexity.

2 Phase transitions and the onset of epidemics

In most network models of disease propagation, the feature of key interest is the occurrence
of epidemics, which is the phenomenon where infected individuals transmit the disease in a
rapid, widespread manner that grow uncontrollably over time. (The epidemiological literature
draws a distinction between epidemics and outbreaks, which are essentially epidemics which
eventually die out without any need for external intervention.) Outbreaks and epidemics un-
derstandably have great social and economic consequences, as illustrated by various through-
out history and most recently with the SARS outbreak of 2003[38] and the current outbreaks of
the H5N1 (Influenza A) avian flu virus.[47]
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2.1 The epidemic threshold

In equilibrium, the transition describing the onset of an epidemic occurs at the so-called epi-
demic threshold. Below the epidemic threshold, only localized outbreaks occur. These are
described in a graph formalism by the presence of components, which are finite-sized clusters
of connected vertexes.

Above the epidemic threshold, the equilibrium state describes an epidemic: many clusters
cross-link spontaneously to form what is termed a giant component. All nodes in the giant
component are connected to each other with paths that are much shorter than those connect-
ing nodes outside the giant component, if they are at all connected. The critical point also
exhibits universality in that epidemiological specifics of various diseases become irrelevant as
the dynamics in the critical region become dominated by interactions with connected nearest
neighbors[41].

Newman, Watts and Strogatz have developed a generating function formalism which ex-
pedites calculations of topological properties from solely the degree distribution of a graph,
which is defined as the probability pk that a randomly sampled vertex in a graph has exactly
degree k.[32] The epidemic threshold on a graph is then expressed elegantly in an equation
exactly analogous to the critical isotherm:

z1 {K} = z2 {K} (1)

where zw is the expected number of neighbors of a vertex which are connected to it by a path
of exactly w edges and {K} represents formally the relevant set of coupling constants. Note
that z1 is equivalent by definition to the average degree of a vertex. The epidemic phase then
follows intuitively as the region such that z2 > z1.

It is interesting to note that the onset of epidemics is formally identical to percolation prob-
lems, with the epidemic threshold analogous to the formation of a giant percolation cluster.[30]

3 Models for social networks

Random graph models are amenable to analysis using the usual methods of statistical mechan-
ics by considering ensemble averages. Such a random graph exhibits a phase transition in
their topological structure: below the transition, the graph consists of a disjoint collection of
components, which are finite-sized clusters of connected vertexes; above the threshold, these
components spontaneously cross-link to form what is termed a giant component. All nodes in
the giant component are connected to each other with paths that are much shorter than those
connecting nodes outside the giant component, if they are at all connected.[42]

This section of the paper outlines some properties of three commonly used models of net-
works used to describe communities.

3.1 Random networks

First discovered by Erdős and Rényi[11, 16], the random graph is the simplest model of a social
network. There are only two assumptions built into this model:

1. There are a fixed number of vertexes N .
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2. The vertexes are connected randomly with a uniform probability p of having any two
vertexes connected by an edge.

Yet despite their mathematical simplicity, random graphs have surprisingly rich statistical
properties. Random graphs have the property that if each node has on average one link, then
there exists a unique giant cluster of connected vertexes. In other words, a random network
has a phase transition occurring at p = 1

2
and has an average connection length of l ∼ ln n[35].

It also exhibits a Poisson degree distribution in the limit N → ∞, which can be derived as the
limit of a binomial distribution from statistical considerations[34, 35].

While simple to describe, the underlying assumptions for random graphs are simply un-
realistic to describe just about any real-life network. For example, in a social context, some
people are more well-connected (in a very literal sense) than others. These would be people
playing leadership roles, e.g. heads of household in families, teachers in schools, and health-
care workers in hospitals. Also, connections form and break over the course of a day. An
worker commuting to his or her workplace interacts with a large number of groups of people,
with physical contacts between people being constantly in a state of flux. From an epidemio-
logical point of view, the presence of super-spreaders[34] in many diseases is also at odds with
the Poisson degree distribution, which implies that the probability of observing an outlier is
exponentially rare.

Flawed as it might be, the random graph model is still useful as a basis for comparison.
One particularly insightful example is the calculation by Itzkovitz et. al. of the distribution of
subgraphs in random graphs.[21] Deviations can then form the basis for uncovering unusual
structural motifs for further analysis.

Dissatisfaction with the unrealistic description of random graph models formed the moti-
vation for new models, such as the small-world model and the power-law model described
below.

3.2 Small-world networks (Watts and Strogatz)

In 1998 Watts and Strogatz proposed a new model[44] which aimed to address the deficiencies
that have shown up as a result of using the Erdős-Rényi model. The small world model is
made from a regular network, e.g. lattices, that consists entirely of localized links, with edges
connection only vertexes that are in close proximity with each other, up to some range κ, such
that it has coordination number z = 2κ. Nodes are then rewired randomly with probability φ
that any particular vertex was rewired. In contrast to the regular network, where only nodes in
close proximity are connected to each other by edges, the random rewiring process introduces
connections known as “shortcuts”, which disregard the proximity (or otherwise) of nodes.

Newman and Watts proved that this model has a second-order phase transition in the limit
of zero shortcut density, i.e. φ = 0.[29] In the other limit, this model reduces to that of a random
graph. The small-world model can therefore be seen as a way to interpolate between regular
networks and random graphs.

A subtle point which is not always well appreciated is that in order to create a small-world
network, one requires a notion of distance on a graph in order to distinguish between “close
by” and “far apart”. In mathematical terms, this is accomplished formally by introducing a
measure or even a metric[7] on the graph. Random models have a uniform measure whereas
small-world models take on the measures of the original regular lattice from which they were
constructed.

4



3.2.1 Properties

Small-world models exhibit two signature characteristics:[44, 42, 34, 35]

1. Small-world networks have a high degree of clustering, which is the conditional prob-
ability that if a vertex A is connected to another vertex B by an edge, which in turn is
connected to another vertex C by another edge, that A is connected to C by yet another
edge. In lay terms, clustering is the phenomenon whereby your friend’s friend is also
your friend[35].

2. Small-world networks exhibit the so-called “small-world effect”, that the average short-
est path length between vertexes l scales in a logarithmic manner with system size, i.e.
l ∼ O (ln N), or sometimes in a fashion that is similar in that it grows very slowly with
increasing system size. The small-world effect is sometimes referred to colloquially as the
“six degrees of separation” phenomenon.

By explicitly considering systems of finite size N , Newman and Watts discovered[29] that there
exists some intermediate system size ξ = (φκ)−

1
d [30] for fixed κ and φ such that the expected

number of shortcut links is equal to one. This length scale then diverges as ξ at the second-order
phase transition. From this result, they obtain a scaling relation[29] for l and hence conclude
that l has two different scaling limits in various régimes:

l ∼
{

Nd
4

, N � ξ
ξ ln N

ξ
, N � ξ

(2)

Newman et. al. also obtained an mean-field solution[31] for l on a one-dimensional ring (a
periodic lattice with periodic boundary conditions) which goes as

l =
N

κ
f (Nκφ) (3)

f (x) =
1

2
√

x (x + 2)
tanh−1 x√

x (x + 2)
(4)

3.3 Scale-free (power-law) networks

Networks with power-law degree distributions[8] have attracted much attention as accurate
models for other real-world systems such as the World Wide Web, in which growth by addition
of nodes gives rise to important structural features[2, 14]. The degree distribution is (up to a
normalization constant C)[35]

pk =

{
Ck−τe−

k
κ , k ≥ 1

0 , k = 0
(5)

The power-law network thus distinguishes itself from a random network by the so-called
“long tail” of nodes with very high degree. This feature of the World Wide Web has cap-
tured the popular imagination since the idea was popularized in an influential online article[6].
Power-law networks have a two-parameter phase diagram which is shown in Figure 1. Inter-
estingly, there exist two non-trivial intercepts in the phase diagram at (τ, κ) =

(
0, (ln 3)−1 ≈ 0.910

)
5



Figure 1: Phase diagram for the scale-free (power-law) network. Reproduced from Ref. [34].
The axes κ and τ are defined in Eq. 5. Copyright 2002 National Academy of Sciences, U. S. A.
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and (3.479 · · · ,∞). This implies that for τ > 3.479, the fluctuations are so large that it is impos-
sible for a giant component to form, and for κ < 0.910, the system has too small a length scale
to support a giant component.

As with the small-world model, the power-law network also has an average shortest path
length that also exhibits logarithmic growth with system size.[34]

4 Epidemiology and the SARS outbreak

The mathematical formalism of graphs as outlined in the previous section forms the basis of
epidemiological models, which aim to capture the physics of the spread of infectious diseases.
Conventional epidemiological theories make use of both kinetic models and a factor R0 known
as the basic reproductive ratio; both these elements are flawed in the presence of a nontrivial
network topology.[24] This section reviews each of these elements and in turn summarizes
the reasons for the breakdown. In the final section some analyses on the SARS outbreak are
discussed.

4.1 The SIR kinetic model

Conventional epidemiological models employ kinetic models in terms of various classes of
individuals in a population. One popular model is the SIR model, where the population is
divided into susceptible (S), infected (I) and removed (R) classes.[24] In terms of rates of two
elementary processes, namely g for the rate of infection and c for the rate of making contacts,
the model is then governed by the differential equations

Ṡ = −cSI (6)
İ = (cS − g) I (7)
Ṙ = gI (8)

The fact that time is the only dynamical variable of importance is equivalent to making an
assumption of spatial homogeneity, or making a mean-field approximation. The limitations
of this so-called full mixing approximation have already been acknowledged in the theoretical
biology literature[15, 24, 26]. Durrett and Levin showed that fundamental discrepancies be-
tween homogeneous models and particulate models, and homogeneous models and reaction-
diffusion models of predator-prey interactions mean that such mean-field approximations are
unreliable to give even qualitatively correct answers.[15] This approximation also completely
ignores spatial heterogeneity and implicitly assumes a Poissonian degree distribution.[35] Hence,
any meaningful discussion of such models on graphs must be properly generalized.[24, 28, 33,
35]

It is interesting to note that one such generalization of the SIR model with four classes of
individuals has been shown to give rise a model with an upper critical dimension of 5 and
exhibits tricritical percolation behavior with both compact and fractal clusters.[22]

4.2 The basic reproductive ratio R0

Traditional epidemiology focuses on a key parameter R0 called the basic reproductive ratio,
defined as the average number of secondary cases emanating from one primary case in a sus-
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ceptible population.[23] When R0 > 1, the population is vulnerable to a large scale epidemic,
although not guaranteed to experience one. Conversely, when R0 < 1, the population only
experiences small, local outbreaks. Hence R0 serves as an order parameter for the phase tran-
sition.

While R0 is an intuitively appealing order parameter, its utility is derived from the Erdős-
Rényi model[46]. Hence, analysis based on R0 breaks down completely in the presence of
phenomena not captured in the random graph model, such as the effect of super-spreaders[26]
(described below) and the possible mixing of local and global factors in the transmission of
disease[4], such as spatial heterogeneity in population and traffic densities[26], and the possi-
bility of multiple modes of transmission[40].

The reason for the breakdown was shown to be because R0 conflates the influence of both
the transmission probability T intrinsic to the disease (the conditional probability that a vertex
is infected given that a connected nearest neighbor is also infected) as well as the topology of
the underlying network as a function of the moments of the degree distribution[26]:

R0 = T
〈k2〉
〈k〉 − 1

(9)

Analyses that treat both factors separately were then shown to give rise to correct descriptions
of the epidemic threshold[26].

The phase transitions describe in the preceding section can be seen to be analogous to the
epidemic threshold described (albeit incompletely) by R0. Below the epidemic threshold, the
finite nature of the clusters mean that an outbreak of the disease on any one cluster is bound
to die out due to the finite extent of each cluster. Above the epidemic threshold, the presence
of a giant connected structure with short paths between arbitrary nodes means that diseases
can spread in a rapid, widespread fashion - in other words, an epidemic is formed. Thus for an
epidemic model on a graph, graphs, the epidemic threshold should not be taken to be simply
R0 = 1, but instead taken to be the criteria reported in the preceding section, or in general from
Eq. 1.

4.3 Implications for disease control

The interruption of the spread of disease in an epidemic is analogous to the study of network
resilience.[14, 35] Power-law networks such as the World Wide Web[2] have nodes of high con-
nectivity which form network hubs; search algorithms biased to traverse hubs in descending
order of degree have been shown to be superior to random-walk searches.[1] It has also been
shown that removing hubs from such networks hubs dramatically slows down the search effi-
ciency as compared to removing a regular vertex.[1, 12, 14]

In this vein, it is useful to conclude by analogy that the most effective disease control mea-
sures for curbing the extent of an epidemic would be to identify potential super-spreaders
and concentrate prevention efforts upon such individuals. Such considerations have led to the
implementation of control measures such as contact tracing for the express purpose of identify-
ing bottlenecks which can be targeted specifically. This is an example of how epidemiological
studies are relevant to public health policymaking.[35] Interestingly, the notion of looking at
network structure to look for choke points to curb the spread of disease was advanced as early
as 1985 in a seminal example studying the contact network described by the transmission of
acquired immune deficiency syndrome (AIDS)[25].
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4.4 Traditional epidemiology and the 2002-2003 SARS epidemic

Having discussed the mathematical formalism and theory underlying modern epidemiology,
we now turn our attention to real data from the 2003 SARS epidemic. A brief chronology of
events in the SARS epidemic of 2002-2003 can be found in Ref. [38].

The R0 calculated for SARS is 2.2-3.6,[26] which is well above unity. Conventional epidemi-
ology predicts a global pandemic, which did not occur. In contrast, the spread of SARS was
restricted to localized areas.[38] Public health control measures decreased R0 to 1.2 in Hong
Kong and Singapore[26] but this still does not correctly explain the lack of an epidemic.

4.5 The super-spreader effect

A super-spreader is defined (somewhat tautologically) as an infected person who shows an
abnormally high rate of transmission of a disease to other people[49]. Incidents of super-
spreading have been blamed on everything from lack of hygiene to use of aerosol generators
in hospital equipment to as-yet undiscovered modes of transmission.[38] The super-spreader
phenomenon is known not to be due to unusual virulence of certain strains of SARS, since ge-
netic evidence shows that viruses from all documented cases outside Guangdong province are
related to the samples found in the first (index) patient.[20]

Super-spreaders are thought to be responsible for 70% of all cases of infection during the
SARS outbreak[50]; these outliers are of immense epidemiological significance. While it is pos-
sible that super-spreaders represent a qualitatively different kind of interaction, it is also possi-
ble that super-spreaders are merely the result of the “long tail” of a skewed degree distribution
such as that of a power-law network.

5 Summary and Outlook

The preceding sections have presented ample evidence that processes occurring on spaces with
nontrivial topologies can give rise to complex phenomena which are at odds with conventional
experience on regular lattices. In particular, traditional tools used to study the spread of dis-
eases fail completely to describe real epidemics (or the lack thereof) because of the inherent
assumptions used to establish their utility.[15, 24]

Despite intensive research, SARS phenomena are in general still poorly understood.[50]
The origin of the super-spreader effect is still unknown, although the properties of scale-free
networks allow an appealing interpretation as the effect arising from highly connected nodes
on the network.

While the SARS outbreak is over, the suspected animal origins of the SARS coronavirus[19]
means that wild animals may still harbor the virus and may serve as seeds for a future out-
break. [36] This has profound implications for possible resurgence[46] of SARS in the future
from animal populations. Future models for disease propagation would probably want to treat
the effects of having a reservoir of dormant etiological (causative) agents for long-term stud-
ies of SARS, in a manner analogous to the study of dissipative dynamical systems. Doing so
may yield new insights into preventive measures that would reduce the probability of another
epidemic occurring.

Note. This paper was prepared for the Fall 2005 course in Phase Transitions (PHYS 563) by N.
Goldenfeld.
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