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December 13, 2005

Abstract

Polyelectrolytes in solution present a fascinating field of study that has been under in-
tense scrutiny for the last few decades, but because of inherent difficulties in handling long-
range electrostatic interactions has not reached the level of development achieved for ordi-
nary polymer solutions. Stiff charged polyelectrolytes exhibit two novel and interesting phase
transitions: the counterion condensation transition, and the like-charge aggregation transition,
neither of which has been fully understood. I present a brief review of work done towards
understanding these transitions, which are closely related.
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1 Introduction
Polymers in solution exhibit a surprisingly wide range of interesting behavior, including a veritable
zoo of different phases and microstructures. As the experimental conditions are varied, changes
can be observed not only in the global properties of the solution, but also in the properties of the
molecules themselves—changes in the average conformational state, the mechanisms for molec-
ular transport, and so on. As we consider molecules with more complicated internal structures,
even more interesting phase behaviors become available, as is the case, for example, with block
copolymers. In the extreme case we have biological macromolecules, where a single molecule
can exhibit a wide range of structural “phases”, which on their own push the limits of current
understanding—consider the phenomenon of protein folding, or of the helix–coil transition.

Polymer solutions can also exhibit novel behavior as we consider systems were different kinds
of inter-particle interactions are important. For example, if we allow for covalent bonds (or other
strong interactions) between sites on different polymers, we can end up with gels or rubber net-
works. Another example, which we will focus on in this work, is that of polyelectrolyte solutions,
were electrostatic interactions dominate. The key characteristic of electrostatic interactions is that
they are long-ranged, dropping off as 1/r (where r is the inter-particle distance), which makes it
difficult to apply many of the standard treatments of polymer solutions. Despite a few decades of
intense study, polyelectrolyte solutions remain relatively poorly understood.

If we restrict ourselves to solutions of stiff charged polymers, then there are two distinct but
closely related phenomena which are highly interesting from the point of view of phase transitions.
The first is the ”counterion condensation transition”, which separates two regimes of interaction be-
tween a polyelectrolyte and the surrounding free ions, and the second is the so-called “like-charge”
attraction, wherein two or more polyelectrolytes with the same sign of charge will aggregate under
certain conditions. This behavior is at first glance counterintuitive, because the like charges on
the polymers would lead us to always expect repulsion. However, it turns out there are several
possible mechanisms which can induce attraction between such molecules. These attractions can
lead to the formation of ordered, macroscopic bundles of polyelectrolytes, but whether and when
such bundles constitute a separate equilibrium phase of the system remains an open question.

Understanding both of these phenomena is essential to any theory of polyelectrolyte solutions,
and therefore is of fundamental interest. Progress in this area has a wide range of potential applica-
tions, both theoretically (e.g. techniques for dealing with electrostatic interactions), and practically
(e.g. techniques for water treatment). Furthermore, understanding the formation and properties of
polyelectrolyte bundles is relevant to a wide range of biological systems in which such bundles
occur (1).

Most of the theoretical work on solutions of stiff polyelectrolytes has focused on isolated rods
(i.e. dilute solutions), or on the interaction between two rods. Many of the experimental results
on like-charge attraction, on the other hand, are based (understandably) on macroscopic bundles.
Extensive computational work has been done at both ends of the scale, and has played a prominent
role in the last two decades, providing benchmark results for comparison with the two-rod theories,
and illuminating the different contributions to the attractions.
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2 Isolated Rods
Polyelectrolytes become charged via dissociation of certain functional groups, releasing ions into
the surrounding solution. These mobile counterions, which maintain the electrouneutrality of the
system, are usually monovalent. However, multivalent ions can easily be introduced to the system
via the addition of salt to the solution (although this also introduces salt co-ions). Many important
polyelectrolytes, such as the M13 and fd viruses, actin, and double-stranded DNA, are highly stiff,
often having persistence lengths longer than the molecules themselves. The pioneering work on
such charged, stiff rods is largely due to Manning, Onsager, and (independently) by Oosawa ((17),
(21), (22)), and revolves around the idea of counterion condensation. Namely, that for sufficiently
strong electrostatic rod-ion interactions, a fraction of the counterions will be strongly associated
with the rod, or “condensed”. Although condensed ions remain mobile in a region around the rod,
they will not, for example, contribute as much to the osmotic pressure of the system. Thus, the
extent of counterion condensation can strongly affect the equation of state and other properties.

The original counterion condensation theory of polyelectrolyte solutions, proposed by Man-
ning (17) is based on several simplifying assumptions. The solvent is treated implicitly as a
dielectric medium with relative dielectric constant εr (thus ignoring hydration forces and other
solvent-specific interactions). This mean-field-like treatment of the solvent is an assumption that
we will make throughout the rest of this paper—the question of how to treat the solvent more accu-
rately goes beyond the scope of this review. The rods are assumed dilute enough to ignore rod-rod
interactions, and a single rod is treated as an infinitely long uniform line charge with charge den-
sity −e/b, where e is an elementary charge, and therefore b corresponds to the characteristic linear
charge spacing on the rod1. The effect of the condensed counterions is limited to lowering the
effective charge density on the rod. The uncondensed ions are treated in the Debye-Hückel ap-
proximation, which is a mean-field theory for electrostatic interactions2. A central result of the
Debye-Hückel approximation is that the interaction between charges in a solution with free ions
is a screened Coulomb interaction, in which the long-ranged 1/r term is multiplied with an expo-
nential damping term of the form exp−κr . The quantity 1/κ is called the Debye length and dictates
the range of interactions, and is given by

1
κ

=

(

∑

i

ρi qi e2

εrε0kBT

)−1/2

, (1)

where the sum is over ionic species, and ρi and qi give the concentration and valency of species
i , respectively. Thus we see that the Debye length decreases with increasing ionic strength. The
Debye-Hückel approximation considerably simplifies the analysis because we replace long-ranged
interactions with effective short-ranged ones. As with any mean-field approximation for inter-
actions, the predicted exponential form deviates significantly from the true interactions at short
enough interparticle distances.

1Following the majority of experimental systems of interest, I generally assume the polyelectrolytes to be nega-
tively charged

2In fact, the Debye-Hückel theory is a linearized version of the more general Poisson–Boltzmann mean-field theory
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Before going further into the model described above, it is interesting to point out that, at least in
principle, the mean-field Debye-Hückel treatment could be applied to the polyelectrolyte solution
itself, taking the rods to be a highly multivalent species. This approximation only becomes valid
at impracticably low rod concentrations, however (17). The work done by Manning improves
on Debye-Hückel theory by introducing a model (however crude) of the rod structure and of the
interactions between rod and ions (i.e. condensed versus uncondensed), but otherwise retains the
mean-field assumptions. We shall see that this approach of introducing specific corrections to the
basic mean-field theory is quite common in this field. There has been considerable controversy,
however, about how to do so systematically.

2.1 The Manning parameter
The motivation for thinking about ions as either ”condensed” or ”uncondensed” is provided in the
context of the above model by an observation of Onsager’s (17) about the configurational integral
of the system. Consider the contribution to this integral from the region of phase space where the
mobile ion i is sufficiently close to the line charge (say, r ≤ r0, where r is the distance from the
line) to have an unscreened Coulomb interaction with it, and all the other ions are further from
the rod (r j > r0, for j 6= i ). The other ions contribute a finite factor f (r0) to the configurational
integral, and the entire contribution from this region is given by

A(r0) = f (r0)

∫ r0

0
e−βui (r)2πrdr , (2)

where β = 1/kBT , and ui is the rod-ion interaction, which we can obtain by integrating along the
line charge to get

ui(r) =
2qi e2

εrε0b
log r . (3)

Thus, we can write

A(r0) = 2π f (r0)

∫ r0

0
r (1−2qi ξ)dr , p (4)

where the Manning parameter ξ is defined as

ξ ≡
e2

εrε0kBT b
. (5)

This is an important dimensionless parameter. If we recall that the Bjerrum length is given by
`B = e2/εrε0kBT we see that ξ is the ratio of two important length scales in the model3. The
Manning parameter can also be thought of as the ratio of electrostatic energy to thermal energy. Or
it can be seen as playing the role of an inverse scaled temperature.

In Eq. 4 above we see immediately that the configurational integral diverges at the lower limit
if ξ ≤ q−1

i . A system where this condition occurs is therefore unstable, and it is predicted that

3The Bjerrum length is the length scale at which two unscreened monovalent charges have an interaction energy
comparable to kBT , and is therefore a measure of the strength of electrostatic interactions
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Figure 1: Osmotic pressure coefficient of a dilute polyelectrolyte solution. The quantity x is the
ratio of counterion concentration to monovalent salt concentration in the solution. The solid lines
are the Manning result, and points are experimental data (17)

a fraction of the available counterions will ”condense” onto the rod until they reduce the effective
value of ξ below q−1

i . Because of the divergence of the phase integral, this condensation persists
even as we let the volume containing the rod grow to infinity—the divergent logarithmic gain in
entropy of a free ion is offset by the divergent logarithmic rod-ion interaction (Eq. 3). The criti-
cal temperature (or, equivalently, critical charge density) ξc = q−1

i marks the transition between
condensed and uncondensed states.

Although the comments in the previous paragraph are strictly true only for a single mobile ion,
and moreover only in the context of this admittedly crude model, they provide all the essential
clues about the counterion condensation transition4. Treating the two regimes separately Manning
was able to obtain estimates for the excess free energy and osmotic pressure coefficients of dilute
solutions, which compared favorably to experiments, as shown in Fig. 1.

2.2 Improving condensation theory
As mentioned earlier, improvements to the Manning theory can be made by modeling specific as-
pects of the problem more accurately, within the context of the mean-field theory. This is illustrated
nicely by the two-zone model developed by Rubinstein et al ((7), (8)). In this model, the polyelec-
trolyte is modeled as a finite charged cylinder of length L , total charge Q0 (in units of e) and radius

4In the last two months Netz published an interesting paper (19) discussing the criticality of the counterion con-
densation transition, based on a model very similar to Manning’s. An order parameter for the system is proposed and
critical exponents are computed. Unfortunately I became aware of this paper too late to include the results here.
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Figure 2: Illustration of the two-zone model proposed by Rubinstein et al.

r0, and the surrounding bulk solution is split into two zones (as opposed to the single region im-
plicit in the Manning model). The two zones are illustrated in Fig. 2: a cylindrical zone with radius
R (on the order of the size L of the rod) surrounding the polyion, and a spherical shell surrounding
the smaller cylinder, with an outer radius determined by the overall polyelectrolyte concentration.
Counterions can distribute themselves freely, so that the total charge of the cylindrical region, Q R ,
may be nonzero.

Within this setup, the distribution of counterions around the polyelectrolyte (within the cylin-
drical region) can be determined from mean-field theory by solving the Poisson-Boltzmann (PB)
equation, subject to the boundary conditions at the polyion and cylindrical surfaces (this is a sep-
arate refinement over the Manning treatment, which used the simpler Debye-Hückel approxima-
tion). This was done analytically, to yield the counterion concentration

c(r) =
2
π

α2

r2`B

[

(

r
ζ

)α

−

(

r
ζ

)−α
]−2

, (6)

where α and ζ are defined by the relations

ζ 2α = r2α
0

ξ0 − 1 − α

ξ0 − +α
(7)

ζ 2α = R2α ξR − 1 − α

ξR − +α
. (8)

Here ξ0 = −Q0`B/L is the Manning parameter defined previously, and ξR = −Qr `B/L is a
”Manning parameter” for the cylindrical region as a whole. The solution is determined by a par-
ticular choice of the parameters ξ0, ξR , R, and r0. By exploring this parameter space the authors
found the phase diagram depicted in Fig. 3 with three distinct phases corresponding to qualitatively
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Figure 3: Phase diagram obtained from the model proposed by Rubinstein et al. The parameters γ0
and γR correspond to ξ0 and ξR as defined in the text. The different phases are divided by different
regimes of the parameters ζ and α, as shown. Phase I corresponds to weakly condensed rods,
Phase II to saturated condensation, and Phase III to unsaturated condensation.

different c(r)’s. In (8) the authors also computed the osmotic pressure coefficient φ, and found data
collapse for the quantity ξ0φ/ξR . Although the results were found to agree well with simulations
(14), I know of no direct comparison to experiment.

3 Two interacting rods
So far, we have considered only dilute solutions were the rods do not interact, and have focused
on the counterion condensation transition. When considering stiff interacting rods, and a possi-
ble attractive interaction, however, the idea of counterion condensation has played a key role in
the theoretical developments, especially on the work done by Ha and Liu (10), which we will
focus on here. I should point out, though, that dozens of authors have contributed to this field,
with approaches that go far beyond the scope of this paper. A good source of references can be
found in (18). What is common to all these approaches is that they somehow go beyond the PB
mean-field approximation, since it has been shown rigorously((20)) that mean-field approaches can
never predict attraction between like-charged objects. The attractive interactions are thus thought
to originate from correlations between the ions that are neglected by the mean-field approxima-
tion. These correlations may lead to van der Waals-like attractions between polyions, or they may
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Figure 4: Illustration of the model for a single rod used by Ha and Liu in (10). (a) A negatively
charged rod with condensed counterions. (b) The corresponding configuration of fluctuating charge
variables, according to the model.

induce neighboring polyelectrolytes to share their counterions so as to maximize entropy (27). Al-
ternatively, we might think of a low temperature ”ionic crystal” picture in which attractions arise
from the complementary positions of ions on neighboring rods (10). Other mechanisms are also
possible. In what follows, I will discuss an approach based on the van der Waals idea.

3.1 Fluctuating charge variables
Ha and Liu (10) have described a simple model for two rods that yields an attractive regime. This
model is illustrated in Fig. 4. The rods are modeled as stacks of N charged cylindrical monomers
of length a and radius r0 (with total length L ≡ Na). Both rods are enclosed in a larger cylinder of
length L and radius L⊥. Counterions are divided into condensed and uncondensed. The condensed
ions lie on the rod, and as in the Manning theory effectively reduce the charge on the monomer.
Uncondensed counterions move freely in the larger cylindrical region. If we let m denote the
number of condensed counterions on monomer s of rod i , then the effective charge on the monomer
(in units of e) is qi (s) = − f0 + mz, where − f0 is the bare charge on the monomer, and z is the
counterion valency. Having defined this charge variable, we can write the Hamiltonian for rod-rod
electrostatic interactions:

βH =
`B

2

2
∑

i j

N
∑

ss′

qi (s)q j(s′)
|ri (s) − r j (s′)|

(9)
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The partition function (ignoring momentarily the free counterions) is then given by a sum over all
possible realizations of the charge variables

Z =

2
∑

i

N
∑

s

∫

dq j (s)e−βH . (10)

We can apply the Hubbard-Stratonovich transformation to this partition function to replace the two-
body interactions between charge variables with one-body interactions between a charge variable
and an electrostatic field. If we then assume Gaussian fluctuations in qi(s), the partition function
can be expressed in terms of Bessel functions. This is a non-trivial approximation: it neglects
higher-order correlations between condensed counterions along the rods, and is only valid at high
temperatures, and indeed it sparked some debate ((13), (12)). However, the approximation retains
all correlations of the charge variables between the two rods. This is important for two reasons.
First of all, consider the two-monomer unit that is circled in Fig. 4. This is effectively a dipole,
which can interact with similar structures on the neighboring rod. If the charge distributions along
the two rods become correlated, we can see how this would lead to a van der Waals-like attraction
between the two rods. And indeed it is the term describing such correlations which gives rise to
the attraction, in this model. Secondly, all such correlations are considered, which means interac-
tions between dipoles, quadrapoles, and higher-order multipoles are included. This is important
because the authors find that the multipole expansion is divergent when the attractions dominate.
In previous studies ((9)) the multipole expansion had also been truncated.

To construct the rest of the free energy, the authors follow a strategy similar to that of Oosawa
in (21). The condensed ions have an entropic contribution proportional to the volume of a cylin-
der with radius (r0 + rc), the free counterions contribute a similar term, taking the volume of the
larger cylinder, and the electrostatic interaction between the rods and the free ions is obtained via
a Debye-Hückel approximation. Using this free energy the authors compute the effective force
between the rods, which agrees very well with results from simulations (with no adjustable param-
eters), as shown in Fig. 5.

4 Bundled phase
Theoretical treatment of the bundled phase is considerably more difficult than the other topics
described in this paper, and has so far eluded a solid, systematic framework. There are several
complicating factors. For one thing, effective interactions between the rods have been shown to
be non-pairwise additive ((24), (11)). There is also the possibility of the bundle building up a net
charge. Additionally, if we consider the bundle to be a bulk phase, then there are questions of
mechanical and chemical equilibrium between the rod and the surrounding bulk solution, which
may lead, for example, to redistribution of salt between the two phases (much computational work
has been done on salt-free solutions, but this is of limited relevance to experimentally realizable
bundles). Finally, although in the majority of experimental system—and in the rest of this paper—
the polyelectrolyte bundles have a parallel, hexagonally-coordinated, close-packed structure, other
microstructures have also been observed to occur.
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Figure 5: The solid curve is the force between two rods as a function of rod-rod separation, com-
puted using the model described in (10). The dashed curve is the solution to the same model,
truncating the multipole expansion. The dots are values obtained from simulations in (9). The
repulsive regime at short distances R found in simulation is absent in the analytical results because
excluded volume interactions were not included in the model.
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Because of these complications, most of the progress towards understanding these bundled
phases has taken place via simulations, with significant contributions from Lyubartsev and Nor-
denskiöld ((15), (16)), Deserno and Holm ((6), (5)), Bloomfield ((2), (3)), and many others. On the
experimental side there have also been many contributors, such as, Tang and Janmey ((16), (29)),
Wong ((1), (4)), and Parsegian and Rau ((23), (26), (24)).

Relative to the two-rod case there is a wealth of experimental data, based on measurements of
colligative properties, as well as small angle x-ray scattering and light scattering to measure order
properties of the bundles. Several other experimental approaches are also used. Bundles have been
shown to form with filamentous actin, DNA, M13 and fd viruses, and microtubules, thus spanning
a relatively wide range of rod radii and linear charge densities. In all cases multivalent ions are an
essential ingredient to induce aggregation, highlighting the importance of electrostatic interactions
and of going beyond the mean-field theories (which become less accurate with increasing ion
valency). Bundles have also been induced with the help of an externally imposed pressure (via
addition of an osmotically active species to the bulk solution which cannot penetrate the bundle
(25), and with the presence of more complex ”counterions” such as short chain molecules (4) or
highly-charged proteins (28).

A range of salt concentrations, from salt-free to about one molar, have also been explored for
different salt valencies. Often a redissolution of the bundle is observed upon addition of sufficiently
high salt concentration increasing ionic strength, this is further evidence of the driving role of
electrostatics in bundle formation. However, at lower concentrations the addition of salt can also
have a stabilizing effect on the system, since the salt surrounding the bundled phase exerts an
osmotic pressure on the bundle, and the concentration of salt inside the bundle might be lower than
in the bulk solution ((15), (28)).

Simulations generally reproduce, qualitatively and sometimes quantitatively, the key experi-
mental features. This includes the shape of osmotic pressure curves, the trends with changing the
polymer charge density, rod radius, and Although the simulation methods vary widely, it is often
the case that the simulated bundle phase has infinite extent via periodic boundary conditions. There
is strong (simulational) evidence to indicate that such an infinite phase is stable at equilibrium, or
at the very least resides in a free energy minimum that is tens of kBT deep per rod. However,
experiments usually show a finite bundle size. It has been hypothesized that the finite size is due
to net charge buildup in the bundle, or simply to kinetic effects (11).

The only fundamental theoretical treatment I found of the full bundle was an extension by Ha
and Liu of their two-rod work, based on essentially the same model of fluctuating charge variables
in the Gaussian approximation, with free mean-field counterions. A key result of this work is
shown in Fig. 6, which shows how the free energy varies with bundle size. Their treatment clearly
predicts an infinite bundle size.

5 Conclusions
In conclusion, I have discussed several aspects of two interesting transitions in solutions of charged,
stiff, polymers. Much work needs to be done before the bundling transition is properly understood,
but there are powerful experimental, computational, and theoretical tools that have become avail-
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Figure 6: The electrostatic rod free energy (per monomer) for bundles with N rods, obtained via
the model described in (11). The bold curves are based on the two-rod results of (10), assuming
pairwise additivity of rod-rod interactions. The thin curves are the results of the full N -rod analysis.
The solid and dashed curves correspond to different values of the Debye length.

able over the years for this work. The counterion condensation transition has been explored much
more fully, but there still remain questions of how to systematically improve the PB mean-field
theory, and indeed it was not until recently that this transition was addressed as a phase transition
per se with the toolkit that we have been learning throughout this semester. Despite many years of
intense activity, this remains an interesting field full of possibilities.
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