
Phase Transitions in FoamsNicholas GuttenbergDecember 13, 2005AbstractThe properties of coarsening foams of di�erent types are examined: wet foams with drainage,foams with and without rupture, and foams with di�erent liquid fraction all coarsen in qualitativelydi�erent ways. These foams can be investigated by a number of numerical techniques such aspercolation models, molecular dynamics, and models which use vertex rearrangement to arrive atminimal bubble surfaces. The behavior of foams also provides insight into other systems such asgranular �uids and crystal grain growth.
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Foams consist of a lattice of bubbles of one phase separated by thin layers of a second phase. Theyshow up in many systems in which there is some form of agitation or phase mixing, for instance inthe foam produced by ocean waves breaking on the shore or due to the expansion of inclusions ofthe one phase within the other until the inclusions make contact as in styrofoam or metal foams.The bubble �lms in foams are usually stabilized by the presence of surfactants which collect at thephase boundaries, just as micelles are formed by lipid bilayers in biological systems. They may alsobe stabilized by electrostatic repulsion should the �lm surfaces become charged. Foams show up inchemical processings, where they can impede the progress of reactions, and in the annealing of metals,where they can cause signi�cant changes to the resultant material properties. Metal foams are oftendesireable as they are far lighter than the pure metal, but remain stronger than other materials ofthe same lightness. As a consequence, being able to predict the dynamical properties of foams isimportant for both chemical and material engineering, as it permits one to design ways of encouragingor discouraging the formation of a foam.Foams also relate to other physical systems of interest. The topology of a dry foam is visuallysimilar to the arrangement of magnetic domains or the pattern of crystal grains in a material. Theseother systems may very well share the properties that can be observed in certain foams. The majordi�erence is that grain boundaries are topological defects while bubble �lms can rupture, but manyfoam models study foams in which rupture does not play a signi�cant role. Knowledge gained bystudying the behavior of foams can be applied to these other systems.As there are many types of foams - dry foams, wet foams, cellular foams with polyhedral bubbles,foams with spherical bubbles - it is important to be aware of what makes such foams qualitativelydi�erent and what rules govern each class of foams. There are geometrical constraints on the meetingof bubbles in cellular foams which can help with the classi�cation of dynamical processes in such foams.But those constraints do not apply to foams in which the bubbles are spherical rather than polyhedral.The speci�c properties of each type of foam can be used to build models that are ideally suited forone or other type of foam and which can capture the relevant dynamics with minimal models.Most foams are unstable toward coarsening dynamics - a bubble wall may be ruptured, but newwalls do not form without the repetition of the process which originally created the foam. Gas candi�use between bubbles, causing small bubbles to shrink and large bubbles to grow. However, onequestion is whether the distribution of bubble sizes remains of the same shape even as the averagelength scale changes. Is the coarsening self-similar? It is also meaningful to ask how the dynamicsof coarsening change qualitatively between di�erent kinds of foams. Drainage, rupture mechanisms,and gas di�usion all contribute certain means for the foam to evolve - a foam dominated by rupturewill coarsen di�erently than a foam dominated by gas di�usion or drainage. Di�erent scaling laws areobserved for qualitatively di�erent foams. From these dynamics one can make predictions about howthe properties of the foam, such as the mean bubble diameter, vary with time.One may also look at how the mechanical properties of a speci�c foam change as a function ofparameters such as the surface tension and liquid fraction. It turns out that foams share a certainbehavior with granular materials - as the density of the bubbles in the foam increases, the foam stopsbehaving as a liquid and begins to behave as a solid; this is a jamming transition. This transition alsoturns out to play a role in the equilibrium state of foams which drain into a bulk liquid phase.Types of FoamsFoams can be divided into two classes based on the relative amount of the bubble material and thesolvent material. The extreme limit of a bubble-dense foam is a network of long, thin walls with largebubbles that are all in contact with each other along a wall. These are polyhedral, or cellular foams.The walls may be curved due to pressure di�erences between bubbles, and meet sharply at points.2



Figure 1: On the left is an example of a foam with a large amount of interfacial material. The bubblesare spherical (circular in two dimensions) and are barely in contact. On the left is an example of afoam with a cellular structure, produced when there is a small amount of interfacial material. Themotion of this foam is jammed as the bubbles cannot easily change their relative positions.The resultant structure is qualitatively the same as the pattern of cells in tissue - that is an exampleof such a foam.The limit of a solvent-dense foam is small bubbles that are suspended in the solvent and are not indirect contact. The bubbles in foams of this type are spherical (or circular in two dimensions). Foamsof this sort have mechanical properties akin to granular materials. In such a foam the bubbles cande�ect each other without merging due to interactions through the intervening �uid. As a result, thebulk motion of the foam is governed by the motion of many small mutually-repelling spheres, and sothe same phenomena observed in granular materials (shear hysteresis and jamming for example) arealso observed in such foams [8]. The oil-vinegar emulsion in salad dressing is an example of a foam ofthis type.It is also relevant in the case of a cellular foam whether gas di�usion or wall rupture is the dominantmechanism for foam decay. Rupture results in qualitatively di�erent bubble distributions. Addition-ally, one can separate foams into wet foams and dry foams, the di�erence being that the walls of awet foam will become thinner with time as the �uid that composes them drains out of the foam. Thestability of a wet foam is a balance between gravity and capillary forces. On the other hand, while thebubble walls of a dry foam may still deform and rupture, the volume fraction of bubble wall materialwill not change and there cannot be a �ow of material along the bubble wall.Properties of FoamsFoams have been studied in the form of individual bubbles and bubble walls for quite some time. Thereis a set of two geometrical constraints for a foam in equilibrium known as Plateau's laws (publishedin [15]). They are derived from the condition that a foam in equilibrium minimizes its surface area.Three bubble walls meet to form an edge, and in equilibrium their angles must be 120◦. Four edgesmeet at a point and must have a tetrahedral geometry (all mutual angles the same 109.5◦). Whenmore than three walls meet, or more than four edges meet, the result is unstable [6].This does not necessarily hold for a foam out of equilibrium (and as most of the foams we are3



considering are unstable foams, this brings up the question of whether this applies at all). However,the motion of the bubble surfaces in response to surface tension and pressure is much faster than theprocess of gas di�usion between bubbles, and so these laws are observed. In a foam with a signi�cantamount of rupture, cascades of rupturing can result from stresses induced as the walls, edges, andvertices recon�gure to try to minimize surface area.The walls of bubbles in a foam are usually curved, due to pressure variations between chambers. Ageneral formulation based on bubble gas pressure and surface tension can be made, resulting in rulesfor how the volume and surface area of bubbles in equilibrium change following a rupture of a bubblewall. A consequence of the bubble structure being maintained by surface tension is that the pressureof a bubble above external pressure scales inversely with its radius. This leads to a relation to thechange in surface area with the change in volume for free-�oating clusters of bubbles[6]:
3P∆V + 2σ∆A = 0 (1)Here P is atmospheric pressure, ∆V is the change in bubble volume due to expansion (pressurefrom surface tension is reduced when bubbles merge), σ is the surface tension, and ∆A is the changein net surface area. In a wet foam, an extra term must be added to balance the di�erence between theforce of gravity on the interfacial material and that of the bubbles. This relation allows one to draw aconnection between the shrinking of the surface area of small bubbles and the change in the volume oflarge bubbles, which allows for a prediction of the coarsening dynamics if the rate of bubble mergersis known by considering the rate of gas di�usion across the walls between bubbles [6]. For a con�nedfoam, the external pressure can be arbitrarily large (at least, compared to the pressures the foam isable to exert) to prevent a volume change, and so this relation does not provide useful informationfor the entire foam in that case (P → ∞ and so ∆V = 0 for any �nite ∆A,σ). However, for a smallsubregion of the foam, where the surrounding bubbles exert some known pressure, it can describe howa merger of bubbles in that subregion will change the volume of the subregion.Foam ModelsDi�erent methods must be used to simulate foams with spherical bubbles and cellular foams, as theconstraints which apply to cellular foams do not apply to those with spherical bubbles. As a completemodel of the foam physics would need to resolve down to the molecular scale to treat the surfactants,most if not all numerical work on foams takes advantage of the limit of a very dry or very wet foam.In order to simulate a foam with a large liquid fraction, standard techniques of molecular dynamicsused to study granular materials can be applied. In [7], a foam on the interior of a cylindrical tube wassimulated by taking the bubbles of a foam to be point particles interacting through a Lennard-Jonespotential, which has an equilibrium separation that in a foam can be considered to be the bubblewall thickness. The equilibrium separation between bubbles must be �nite in order to satisfy theconservation of the interfacial phase, and so the interaction cannot simply be repulsive (except inthe case where there is some externally applied pressure). The foam was taken to be composed ofbubbles of equal size, in static equilibrium with the exception of a defect in the regular bubble array.As a hexagonal lattice of bubbles of equal size in two dimensions is in static equilibrium as far asgas di�usion between bubbles, it was not necessary to model the change in radius of the componentparticles. The motion of defects in that array was compared with experiments in this geometry withgood agreement (in terms of the pattern of topological transitions, the same sequence was observed inboth experiment and simulation up to thirteen steps).The dynamics of a cellular foam are usually described in terms of a series of topological transitionswhich preserve Plateau's laws. For simplicity, these will be described for two dimensional bubble4



Figure 2: Di�erent transitions in the local topology of a two-dimensional bubble network. T1 transi-tions preserve the number of bubbles and the number of edges. T2 transitions and rupture do not.networks (so bubble walls are edges, and the meeting of edges is a vertex). In two dimensions, thereare T1 transitions, T2 transitions, and rupture.T1 transitions occur when due to the relative motion of bubbles in a cluster, two vertices at eitherside of a bubble edge merge, forming a vertex with four edges. This is unstable, and so the result isthat the vertex splits into a pair of vertices which then spread apart, but with a di�erent topology (see�gure 2). T1 transitions conserve the number of bubbles but change the topology (one can visualizeit as two bubbles coming together to pinch o� a previous connected pair of bubbles). The result ofa T1 transition is that an edge is transferred between bubbles, so that the total number of edges isconserved but a pair of bubbles with �ve and seven edges may transition to a pair of bubbles thatboth have six edges [13].T2 transitions occur when a bubble shrinks to a point from gas di�usion. A bubble with six sideswill become a vertex with a coordination number of six. This state is unstable, and so the vertices thensplit o� until each vertex has a coordination number of three. If the bubble which disappears has morethan three sides, there are multiple con�gurations which can result from its removal. The di�erentpossible end states are all connected by sets of T1 transitions. The signi�cance of a T2 transition isthat it does not conserve the number of bubbles or the number of edges, and so T2 transitions areessential to the coarsening dynamics of a foam.One model for the evolution of foams involves a combination of evaluating T1 and T2 transitions toreach a local equilibrium based on Plateau's laws, and then computing the changes of bubble volumesbased on gas di�usion across the membranes between bubbles. The di�usion rate is taken to beproportional to the pressure di�erence and the length of the contact region [13]:
∆Vi→j ∝ lij(Pi − Pj) (2)Balancing forces due to surface tension and internal pressure leads to an equation for the pressuredi�erence between two bubbles in terms of the relative geometries.

∆Pij = σκ − λv⊥ (3)Here σ is the surface tension, κ the curvature of the interface, λ the viscous drag and v⊥the velocityof the interface[13]. The rate of change of volume is the integral of the interface velocity around theperimeter of a bubble, and from Plateau's laws, the curvature of the interface is determined by thenumber of sides of the bubble. If a bubble has fewer than six sides, the net curvature must be positiveso that each vertex can have angles of 120◦ between its edges, and if a bubble has more than six sides5



the net curvature must be negative. Integrating around the bubble perimeter, one can determine adi�erential equation for the evolution of bubble area; this is von Neumann's law[14]:
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(n − 6) (4)where n is the number of sides of a bubble and κ
′ is a constant related to the surface tension, viscousdrag, and di�usivity. The consequence of this is that a bubble network is only in static equilibrium ifevery bubble has exactly six sides (except in the case of bubbles at a solid boundary, where there canbe no transfer of gas, no interface velocity, and no surface tension constraint on the segments of thewall). A consequence of von Neumann's law is that the bubble area in two dimensions scales linearlywith time, which implies that the length scale of bubbles scales as r ∝ t1/2[13].In [12], the coarsening of a cellular foam was modelled analytically by applying von Neumann'slaw to a distribution of bubbles. When a bubble undergoes a topological transition (T1 or T2), theresulting number of sides is a function of the number of sides of neighbors. In this model, the neighborswere chosen randomly from the distribution of bubbles with size n and bubbles with size m. A masterequation for the evolution of the distribution function can then be written:
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Tn,mpm(V ; t) (5)The transfer function Tn,m is a function of the current average area, rate of change of the area, andthe particular combination of n and m. The transfer function is itself a function of the probabilityof �nding a bubble with a certain number of sides as a neighbor (this is the contribution of therandom-neighbor model, that random con�gurations obeying the statistics are used rather than thespeci�c topology of the bubble network). The average area and rate of change of area are computedby integrating the distribution function. So consequently, this is a nonlinear partial integro-di�erentialequation. One of the results that follows from this model is that the distribution function of bubblesizes is predicted to be self-similar at long times, so there is a dynamic equilibrium under which thesefoams can be considered as long as the length scale is adjusted with time. This model is essentially amean �eld theory for dry cellular bubble networks without rupture.When rupture is included, spatial correlations in the arrangement of bubbles become especiallyimportant. Cascades occur, in which a single rupture creates an expanding set of ruptures nearby asthe foam is rearranged. In [10], numerical simulations of a two dimension foam with and without wallrupture were performed in order to investigate these cascades and the transition between the di�erentforms of coarsening.The method of simulation was to perform a splitting between two time scales. On short time scales,T1 and T2 rearrangements occur which change the topology of the foam without signi�cantly redis-tributing gas between the bubbles. On long time scales, di�usion adjusts the bubble areas accordingto von Neumann's law. The authors compute the forces due to pressure and surface tension acting oneach vertex in the bubble network and adjust the vertex positions. This uses the fast time step andis iterated until an equilibrium con�guration is obtained. Then, the pressures inside the bubbles areupdated using von Neumann's law with the longer time step, and the process is repeated.Rupture events can be computed simply by merging two bubbles. The di�culty in modellingrupture in this model is determining the probability for a particular bubble wall to break. Chae andTabor reported the results of three di�erent rupture models: one in which the probability is constant,one in which the probability is proportional to the edge length, and one in which the probability isproportional to the square of the edge length. These models are based on observations that the rateof soap bubble bursting is proportional to its surface area. It is also necessary to select a time scale6



on which rupture occurs compared to the di�usion and vertex movement timescales. This timescaledetermines the relative importance of rupture on the bubble dynamics.Qualitative di�erences were observed between the foams that resulted from rupture-less and rupture-dominated evolution. In the absence of rupture, the bubble shape and size distributions were narrow,with roughly symmetrical bubbles. Foams with rupture produced large asymmetrical bubbles withvery many small bubbles neighboring them.Critical DynamicsThere are di�erent predictions for the scaling of foams depending on the properties of the foam inquestion.For foams with spherical bubbles, coarsening is due to di�usion of gas between the isolated bubbleswhich are not in direct contact. This can be modelled in the same way as Ostwald ripening (thecoarsening of domains in binary alloys and formation of crystal grains from solution). In such systems,there is a dissolved material which di�uses between bulk regions of that material. In the case of foamswith spherical bubbles this is dissolved gas di�using between the bubbles[13].The growth law for systems undergoing Ostwald ripening is derived by considering the velocityof a spherical interface which grows due to di�usive �ux. The interface velocity is proportional tothe current of dissolved material across the bubble interface. One can �nd the interface velocity byconsidering the chemical potential at the bubble interface due to surface tension µ = −σ
r
. The interfacegrows with a velocity proportional to the gradient of the chemical potential ∇µ, and so the interfacevelocity is dr

dt
∝ r−2. From this, one can conclude that the bubble radius scales as r ∝ t1/3 [16].For cellular foams in two dimensions without rupture, von Neumann's law predicts that the areaof bubbles will scale proportionally to time. As a result, the length scale of bubbles in the system willscale as the square root of the area, and so for cellular foams the predicted scaling is r ∝ t1/2. Thisexponent has also been observed in three dimensional foams, even though there is no direct analog tovon Neumann's law in three dimensions.The behavior of foams with rupture is less clear, and the dynamical exponent is not independentof the details of the initial conditions and dynamics [9, 10, 11]. Experiments have been performed tomeasure this scaling exponent, hereby labelled z, in di�erent foams.In [1, 2], an experiment was performed in which a transparent glass box was �lled with Giletteshaving cream, which has an 8% liquid fraction. Then, a coherent light source was used to provideplane-parallel illumination of one of the sides of the box, and the intensity at the other sides wasmeasured. By measuring the portion of the light which was de�ected within the foam, they were ableto deduce the mean free path of a photon in the foam, which is proportional to the mean bubble radius(as the light is only scattered at interfaces, the mean free path is the distance between interfaces). Thefoam was allowed to coarsen for a time on the order of hours, and the time dependence of the meanbubble radius was measured.These studies make observations of the dynamical critical exponent z, which they determined tobe 0.47 ± 0.05 in [1] and 0.45 ± 0.05 in[2]. Scaling behavior was observed between times twentyminutes after the foam was generated until the end of the measurements at one thousand minutes.The authors point out that as this is not the idealized limit of a cellular foam, one expects there to besome crossover between the t1/3 behavior predicted of isolated bubble foams and the prediction of t1/2for cellular foams. The predicted scalings for foams without rupture are the equivalent of a mean �eldtheory for foams, and it is not necessarily the case that the scaling exponent will be the same in twoor three dimensions, and yet they are within error of the mean �eld theory prediction for a cellularfoam.One of the results of the study of Chae and Tabor on foams with rupture is that they determined7



that for rupturing foams, the remaining number of bubbles provided a better measure of time thantime-stepping. When analyzing their results from that perspective, they found that the evolutionof bubble radius in a rupturing foam scaled as r ∝ (1/N)β in two dimensions. From dimensionalanalysis, one would expect that β = 1/2. They observed in their simulations of rupturing foam avalue of β = 0.41 when the probability of an edge breaking was constant. When the probability wasproportional to edge length, they observed smaller values of β between 0.325 and 0.394 dependingon the initial bubble structures, and for the l2 model, they observed values between 0.245 and 0.306,which of the three models are closest to experimental observations of breaking dry foams which had βbetween 0.25 and 0.32 [9]. Interestingly, in [9] the evolution of bubble area with respect to time wasnot measured to be exponential, but rather to be a power law in which the exponent depended uponthe rate at which breaking of bubbles walls was induced by applying a changing temperature.The work in [11] follows that of Chae and Tabor by considering a foam with rupture as modelledby percolation theory. They simulated a system on a hexagonal grid with links between the verticesof the hexagons (so each vertex has three possible links). The system was initialized with each of thelinks being a wall, and the breaking probability used by Chae and Tabor (Prupture ∝ l) was used toeliminate entire chains of links, the chain being de�ned as a set of links that are each only connectedto two other wall links plus the terminal links at either end. From this simulation, they observed
β = 0.38, in close agreement with the results of Chae and Tabor's numerical study. So from this,they concluded that the statistics of rupture were su�cient to generate the observed scaling, and thatbubble relaxation did not play a large role in determining the dynamical exponent β. Additionally,they observe a critical time tc which is independent of system size at which a bubble spanning thesystem emerges. Note that time in this case is stepped per rupture by an amount ∆t = 1/ltotal (from
Prupture ∝ l), so that it is not the variable 1/N used for time by Chae and Tabor. The analysis of�uctuation scaling in the simulation results led the authors to the conclusion that the connectednesstransition at tc is a �rst order phase transition.The variation in exponents observed for rupture-based foam coarsening, in addition to the ob-servation by Hasmy, et al. that there is a �rst order transition at a critical time for rupture-basedcoarsening suggests that there is a critical point in foam coarsening at in�nitely slow rupture rate,around which the coarsening dynamics become universal, similar to the zero-�eld limit of an Isingmodel or zero-roughness limit for turbulent �ow through a pipe. A qualitative picture of the phasediagram of the coarsening dynamics is shown in �gure 3.Structural Phase TransitionsThe di�erent scaling between the polyhedral/cellular and spherical-bubble foams already suggests thatthere may be some sort of criticality in foamy systems. The arrangement of bubbles in polyhedralfoams also seems like a ripe place to look for various equilibrium con�gurations that may changequalitatively as a function of some parameter.The parameter which controls whether one has a foam with spherical bubbles or a foam with cellsis the fraction of interfacial material (the liquid fraction in wet foams). For an arrangement of spheresof the same size, the limit of the liquid fraction at which the bubbles can remain spherical is 26% (asthe ideal packing fraction for spheres is 74%) [5]. However, bubbles in a foam are not all of equal sizeand the arrangement of those bubbles is not necessarily in such a way as the obtain the ideal packingfraction.For wet foams, drainage under gravity is an important mechanism toward the coarsening of thefoam. It results in a liquid fraction which varies over the vertical coordinate. For a column of foamwhich is initially all at the same liquid fraction, the liquid and bubble phases will separate out.However, it is possible depending on the initial parameters that there will still be a cellular foam at8



Figure 3: This is a sketch of a possible phase diagram for a coarsening foam with both relaxationaldynamics and rupture. For a system with rupture, the foam will eventually vanish - that is, therewill be a bubble the size of the system at some �nite time. As the rupture time tends toward in�nityhowever, the foam will coarsen with time but the time for a bubble the size of the system to appearwill scale with the system size. A potential third axis to consider in this phase space is the liquidfraction, which a�ects whether the coarsening occurs as t1/3 or t1/2.the top or bottom of the column in equilibrium. This is a consequence of capillary forces in the bubblewalls - there is a balance between the gravitational forces acting on the liquid in the bubble walls andthe capillary forces [5]:
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(6)where σ is the surface tension and rp the radius of the Plateau channel where bubble walls intersect(which is a function of liquid fraction). The consequence of this is that there are four possible outcomesfor a foam in equilibrium - either there are no regions of bulk phase of either the gas or the liquid,there is a bulk region of the liquid in equilibrium with the foam, there is a bulk region of the gas inequilibrium with the foam, or there are bulk regions of both liquid in gas with the foam in between.The phase diagram for this system can be determined by looking at the maximum and minimum liquidfractions. If there exists a liquid fraction greater than 26% in the column, that can be seen as a bulkliquid phase. If the liquid fraction drops beneath the amount necessary to sustain the thinnest possible�lm walls (this depends on material the foam is composed of, and will be called εc) then there is abulk gas phase[5]. The phase diagram for this system is in terms of the initial liquid fraction and adimensionless variable P = σ

KρgR0L0

(K ∝ 1/
√

np, where np is the number of channels per bubble),and is shown in �gure 4. In order to understand the variable P , it may be helpful to think of it asthe ratio of the bubble pressure due to surface tension (which scales as σ/R) and the gravitationalpressure ρgL0.This system seems very similar to binary alloys, in which at certain parameter ranges, a bulk phase9



Figure 4: Phase diagram of a column of foam under gravity. P is a dimensionless number which isinversely proportional to the initial bubble radius and column height.ε0 is the initial liquid fraction.Figure is from [5].of one or the other constituent emerges, and at other parameter ranges there is only the mixed phase.Whereas in binary alloys the entropy of mixing causes the mixture of di�erent atoms to be stable, inthe case of dry foams this comes from capillary forces. There is also an interesting potential applicationin these di�erent equilibria - if you create a foam from a solution that has two di�erent surfactantswhich can stabilize bubble walls, but such that the surfactants have di�erent εc, then the creation of acolumn of foam from that solution will provide a means for separating them analogous to distillation,as the liquid fraction at which the foam vanishes for the two di�erent surfactants will di�er.There is a question as to whether the point where the liquid fraction exceeds the ideal sphericalpacking is actually a phase transition or not. In the situation with a column of foam, there is adiscontinuity of the behavior at this point, as spherical bubbles which form inside that region of
ε > 0.26 will �oat up through the liquid and accrete at the line at which ε = 0.26. So there willnever actually be a region in equilibrium for which 0.26 < ε < 1 in that system. However, in a foamwithout drainage, what is the equivalent point? There needs to be some discontinuous change in themechanical or thermodynamic properties of the foam.There is evidence of a transition in the behavior of foams without drainage or rupture at a gasfraction of 84% in two dimensions (which is close to the packing fraction for a hexagonal array of discs,91%) at which point the mechanical properties change from jammed (cellular foam) to a granular�uid (circular bubble foam). In [3], using a bubble dynamics model, a two-dimensional sheared foamwas simulated. The bubbles were represented by circles which repelled each other with a spring forcewhen in contact and otherwise obeyed over-damped dynamics. At a liquid fraction of 16%, a phasetransition was observed by examination of the static shear modulus G, which became zero as the liquid10



fraction was increased past 16%. The observed scaling was as (0.16 − ε)1/2. The average number ofcontacts between bubbles also became zero at that point, dropping discontinuously from an average offour contacts to zero. This model did not take into account gas di�usion between bubbles in contact.Because of this, the initial distribution of bubble sizes was conserved throughout the simulation, whichwill certainly produce di�erent critical liquid fractions for di�erent distributions. This e�ect was notedin a followup paper [4], in which variations of the critical fraction between 15.5% and 18% were observedfor di�erent widths of bubble size distributions.ConclusionsFoams are a patterned structure whose existence in a system has consequences for its mechanicalproperties. A foam with a high liquid fraction tends to behave as a �uid and does not support shearwaves. As the liquid fraction is reduced, the foam becomes a jammed system as the topological relationsbetween the bubbles in the foam become frozen into place, and the foam behaves as a solid. This occursat a critical liquid fraction which depends on the dimension of the foam and the distribution of bubblesizes, and is closely related to the optimal packing fraction of circular or spherical bubbles.Foams tend to coarsen through gas di�usion and bubble rupture, but do so in a way that preservesthe shape of the bubble size distribution function at long times. As foams are allowed to coarsen,they will not change qualitatively until the bubble size becomes comparable to the system size. Thiscoarsening process can scale di�erently with time depending on the liquid fraction of the foam - bubblesin a foam with a high liquid fraction will scale as t1/3. A foam with a small liquid fraction will havebubble radii which scale as t1/2. Equilibrium without any coarsening is possible only if the bubblesare all the same size and are topologically the same (six-sided bubbles in two dimensions). For afoam in which rupture is a large contribution to the foam evolution, the scaling is not universal -exponents have been observed between 0.25 and 0.4 for di�erent foams. Rupture will also produce adi�erent distribution of bubble sizes and shapes, which can have consequences for the foam's mechanicalproperties.For a draining foam, the liquid fraction is not constant over space in equilibrium. It is possible toconsider the equilibrium distribution of the liquid fraction even if the foam is undergoing coarsening,as coarsening cannot change the liquid fraction on length scales larger than the bubble radii. Theequilibrium state of a draining foam may or may not include regions which are pure liquid or pure gas,depending on the initial conditions of the foam - its initial gas fraction, bubble radius, and height.These results give a set of guidelines that can be used to control the presence of foams in a material.Should foams be desired, the necessary elements are a liquid fraction smaller than 0.26 and minimalrupture of the bubble walls (which depends on the forces stabilizing the bubble wall). If one wishesto eliminate foams, inducing foam rupture is the fastest method as it will eliminate the foam in �nitetime. If the foam is a wet foam and can be drained, this can also be accomplished by placing thefoam somewhere in the phase diagram for a draining foam such that separation of both phases willoccur - by having a very long column of foam, by reducing the surface tension of the foam and thusreducing the capillary forces, or by increasing the density of the bubble wall material or gravitationalacceleration (perhaps by centrifuging the system).The behavior of foam coarsening near the large rupture time point bears further study - one mightexpect to observe universal scaling of the critical time at very small values of the inverse rupturetimescale. Additionally, there remains a question of what is the physical rule for rupture rate. Althoughthere is an argument from the behavior of soap bubbles to expect the rupture rate to be proportionalto the perimeter of a bubble in two dimensions, the results from the numerical study by Chae andTabor obtain the best �t to experimentally observed exponents when they use a perimeter-squaredrule. It may be necessary to study the stability of thin �lms coated with surfactants in order to arrive11
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