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Abstract

In this paper, we will consider various theoretical models of and
experimental results for the so-called Brazil nut effect (BNE). This
phenomenon occurs when large grains rise to the top of materials
composed of grains of different sizes subjected to shaking [1]. The op-
posite phenomenon (large grains sinking) is called the reverse Brazil
nut effect (RBNE), and its existence is by no means universally ac-
knowledged [2] and is even absent in some theories of the BNE [1, 3].
One of the models of the BNE is statistical mechanical in nature, and
we will explore a phase transition that occurs in this model.
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Introduction

The study of the mechanism behind the Brazil nut effect may be somewhat
esoteric, but the applications of the effect are well-known: if you have a can
of mixed nuts and have eaten all of the visible Brazil nuts, a sure way to get
more is to simply shake the can. This will cause the larger nuts, a group in
which the Brazil nuts are certainly included, to rise to the top. In addition
to this modest domestic application, the Brazil nut effect is of importance to
industries in which homogeneity of a mixture is necessary for good product
quality [4]. Theoretical and experimental studies of this effect do not employ
mixed nuts, of course, using instead beads and other (inedible) materials gen-
erally referred to as granular mixtures (in general, the constituent particles
in a Brazil nut experiment or theoretical model are called grains). That such
a simple effect could have caused as much disagreement as it has is almost
unthinkable, but the Brazil nut effect continues to be a problem not amenable
to a simple solution. There are many competing theories as to which mecha-
nism is the dominant force behind the effect [5], as well as varying opinions of
the relative importance of interstitial air pressure, vibration amplitude and
frequency, and friction in causing the effect. There is also some debate about
the so-called reverse Brazil nut effect (RBNE), in which larger grains fall to
the bottom of a mixture subjected to shaking. Many models predict that
this effect should take place under certain circumstances, but there are some
that doubt this prediction, citing the lack of experimental evidence [2].

In this paper, we will explore the various mechanisms that have been
put forth as explanations for the BNE, and we will see how the results of
important experiments reinforce or contradict each of these models. We will
pay close attention to the predictions made regarding the transition from the
BNE to the RBNE for each model. After this, we will show how a statistical
mechanics approach to the problem can be formulated and used to explore
the BNE/RBNE transition.

Possible Mechanisms behind the BNE

One of the first papers to try to explain the Brazil nut effect hypothesized
that the tendency of smaller grains to fill in voids underneath the larger
grains during the “free fall” portion of the shake (when the container is
accelerating downwards at a rate greater than g) is the dominant physical
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Figure 1: Convection process in a granular mixture. In (b), one can already
see the fountain-like movement of the grains up the middle and down the
sides; (c) shows the grains on the bottom moving towards the center and up
the middle. Taken from [3].

mechanism behind the effect [1]. A Monte Carlo simulation was performed
to test this hypothesis, with each “shake” being simulated as a random (but
local) rearrangement of grains. Because voids left under large grains could
only be filled by small grains, and because the only way a large grain could
move back down would be if many smaller grains moved out, the larger grains
moved inexorably upward. In this way, the simulated system found a local
potential energy minimum, but not the global minimum attained by having
the larger grains on the bottom.

Another possible dominant mechanism is convection. An experiment con-
ducted in 1993 with one large grain in a cylindrical tube filled with smaller
grains found that intermittent shaking (referred to as “taps”) caused convec-
tion currents that brought the large grain to the top [3]. The currents ran up
through the center of the cylinder and then down the sides in narrow chan-
nels. The side channels were too narrow to admit the large grain, so it stayed
on the top surface. An illustration of this mechanism is shown in figure 1.
The experiment also seemed to indicate that, for a given rms acceleration,
the curve of height versus tap number for the larger grain is independent
of the size ratio of the grains. Moreover, the experimenters found a scaling
function that collapsed all the data for different rms accelerations onto a sin-
gle curve by redefining the depth of the large grain below the surface. This
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function is given by [3]:

∆̃ =
a0∆

arms − a0

(1)

In the above, ∆ is the depth of the large grain below the surface and a0

is the minimum tap (shaking) acceleration needed to produce convection.
The scaling form indicates that the effective depth of a large grain goes to
infinity as the acceleration approaches the minimum convection acceleration,
meaning that convection is the mechanism driving the grain to the top of
the mixture [3]. It is important to note that this mechanism could not lead
to a RBNE (at least with a cylindrical container: it was found that the
convection currents in a martini glass-shaped container brought large grains
near the bottom), and that the effect observed depended heavily on friction
between the container and grains.

It would seem that the convection mechanism, being an experimental
observation, might be a final explanation for the BNE, but there are some
valid criticisms. For one thing , it is not clear that it can describe a situation
in which small and large grains appear in a more even mixture. Perhaps
more importantly, it can be shown that convection currents are confined to
the edges of containers with a small height/width ratio [6], and thus cannot
have as great an effect as they do in the 1993 experimental setup. With
these criticisms in mind, let us look at yet another mechanism for producing
the BNE: condensation. This mechanism, which is the first we’ve looked at
that predicts the RBNE, was first examined via molecular dynamics (MD)
simulations [6]. The idea is basically this: a system of grains under the
influence of gravity will, below a certain “temperature” Tc (the molecular
dynamics equivalent of shaking amplitude and frequency; higher temperature
corresponds to more violent shaking), condense into a solid packed state with
individual grains confined to certain positions. In a binary mixture, the
critical temperatures for the two species of grains are different, and obey the
relation [6]:

Tc (A)

Tc (B)
=

mAdA

mBdB

(2)

Here mA and mB are the masses of the species and dA and dB are the di-
ameters. If the system is quenched at a temperature between these critical
temperatures, then the larger grains will condense, while the smaller grains
are still fluidized [6]. In the MD simulations under consideration, the con-
densed state comprised of the larger grains fell to the bottom of the simulation
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container, and then, depending on the mass and diameter ratios of the two
types of grains, either stayed there or was pushed up by a buildup of the
smaller grains percolating through holes in between the larger grains. In this
way, the simulation resulted in either a BNE or RBNE depending on the
mass and size ratios of the grains. The crossover condition between the two
effects is [6]: (

dA

dB

)d−1

= C
mA

mB

(3)

Here d is the spatial dimension and C is a constant of order unity. If the LHS
of the above equation is greater than the RHS, then percolation dominates
and the BNE occurs. If the LHS is greater than the RHS, condensation
dominates and the RBNE occurs. It should be said that there are many valid
criticisms of the condensation mechanism. One focuses on the assumption
that each species can be considered as interacting only with itself; that is,
that the condensation of one species is not affected very much by the presence
of the other species [2]. This assumption ignores the drag exerted on the
condensed state by the fluidized state, an effect observed in experiments [2].
Another more subtle criticism is that, even with a temperature above both
species’ critical temperatures, it is possible for the BNE and RBNE to occur
due to competition between entropy and energy considerations [7]. This line
of thermodynamic thinking will eventually let us analyze the details of the
crossover from the BNE to the RBNE, but for now let us just say that it is
a way of understanding the results of the MD simulations without resorting
to an idea as suspect as non-interacting grain condensates [7].

As a final mechanism, we consider inertia. The idea behind this mech-
anism is that, during the period in the shaking cycle when the container is
being accelerated down at a rate greater than g but is still moving up, the
inertia of the larger grains will allow them to break through a thin layer of
smaller grains [5], which are moving more slowly due to their participation
in stress chains and possibly the effects of air pressure [5]. When they come
back down, small grains will have filled in their previous positions [8]. Over
the course of each cycle, the large grains will thus move up a certain distance
δ(h), which can be related to their starting energy (that is, their kinetic en-
ergy when the acceleration of the container is at −g) in the following way
[5]:

KEi =
m

2
v2

0 = δ(h)β(h) (4)
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Figure 2: On the left (a) there is a plot of height vs. cycle number for
six different runs with different vibration amplitudes. The runs with larger
amplitudes are on the left side of the graph. On the right is a plot of δ(h)/A2

vs. h (note that δ(h) is just the derivative of h with respect to cycles) for
three different runs. As advertised, they collapse onto the same curve. The
dotted curve represents β(h), which can be obtained from δ(h) by simply
taking the inverse. Taken from [5].

Here β(h) is a height-dependent average frictional force which captures the
interaction of the large grains and the small grains, and v0 is, for a container
shaken in a sinusoidal manner with frequency ω and amplitude A, given by
[5]:

v2
0 = A2ω2 − g2

ω2
(5)

Note that the change in potential energy of the large grain has been ignored.
If the parameters of the shaking are such that the second term in the above
equation can be ignored, then the ratio of δ (h) to A2 should be independent
of A. Indeed, this was found experimentally to be true [5]. Figure 2 shows
the results of this experiment, in which the full path of a large grain to the
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top was measured and not just its rise time.
There are evidently many different theories for the mechanism behind the

Brazil nut effect, each with its apparent strengths and weaknesses. The con-
vection mechanism is obviously a real phenomenon, but it is not clear under
which conditions (container geometries, grain sizes and geometries, etc.) it
is true. Indeed, in the experiment which motivated the inertial mechanism
explained previously, convection was observed, but was not strong enough
or widespread enough to cause the BNE [5]. The condensation/percolation
mechanism seems suspect, and may be conceptually flawed and convoluted.
The original explanation in terms of void-filling may very well be true, and is
even compatible with the inertial mechanism, but, at least in the form pre-
sented here, it is a bit light on predictive power. Moreover, it seems somehow
not general enough, almost akin to saying that the sun is hotter than a lamp
because it emits more photons. The inertial mechanism is appealing and can
even explain the RBNE [8], though not for a set of parameter ranges that
would appeal to those committed to the condensation or thermodynamic
mechanisms (the large grains have to be less dense than the small grains,
for one thing). It is likely that all of these mechanisms are important to
the BNE, but that, for certain parameter regimes, one or more mechanisms
dominate.

Statistical Mechanics Approach

One of the criticisms of the condensation argument was that it was really
nothing more than a thermodynamics argument put in different terms [7]. It
is possible to formulate the problem in terms of a binary liquid and obtain
results in agreement with MD simulations [7], but there is also another way
to attack the problem: head on, by computing a partition function for a
lattice model and using that partition function to calculate, for instance, the
average height of one species [9]. It is this approach that shall occupy us for
the remainder of this paper.

Before writing down and then computing a partition function for the
Brazil nut problem, we need to show that such an approach is even justified.
Consider a system of grains of the type we’ve been looking at. For a given
energy, there are many possible configurations of grains. The basic notion
of the statistical mechanics approach is that all of these states are equally
likely when the system is subjected to shaking (taps), and that the macrostate
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associated with this energy has an entropy given in the usual way by S = ln Ω,
where Ω is the number of microstates (configurations) in the macrostate. A
“configurational temperature” can thus be defined as β = 1/T = ∂S

∂E
. It can

be shown that a proper probability distribution for the microstates in the
system with average energy E is given by the Boltzmann distribution [10]:

Pi =
e−βEi

Z
(6)

Here Z is the usual sum over states. The situation is actually more compli-
cated in the case of a binary mixture of the type present in the Brazil nut
problem. Here we must define two temperatures, and the probability is given
by [10]:

Pi,j =
e−β1E1i−β2E2j

Z
(7)

Though it may seem farfetched that a system with almost no movement
could explore its entire possible phase space (or even a significant portion of
it), this form of the probability function correctly predicts the macroscopic
properties of a granular mixture under taps, giving the same results as a
time-average of the system. We can use this idea to explore the BNE in a
model system.

Phase Transition in the Brazil Nut Problem

We start with a lattice model of a binary granular mixture. The model
works as follows: we only consider mechanically stable microstates–that is,
microstates in which grains are supported by other grains underneath them
[9]–and we don’t allow lattice sites adjacent to sites occupied by large grains
to be filled. Besides those requirements, the rest is straightforward. The en-
ergy of each microstate is simply the gravitational potential energy, and any
macroscopic observables of interest can be computed as ensemble averages.
Written out in all its glory, the full Hamiltonian is [9]:

H = Hhc +
∑
z,i

m1gz δnzi,1 +
∑
z,i

m2gz δnzi,2 (8)

The labels z and i denote the layer and position in each layer of each site,
respectively. The nzi are the occupancy variables of each site (z, i), equal to
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either 0 (no grain present), 1 (small grain present), or 2 (large grain present)
[9]. The exclusion rule is captured inHhc, which has an explicit and tractable
expression [9]. The partition function is then the trace of e−Hhc−β1E1−β2E2

over all mechanically stable states.
The partition function of this model, and thus all the quantities of interest

to the Brazil nut problem, can be approximated using mean field theory. The
method used is related to Bethe’s solution of the Ising model, though it is
quite a bit more complicated [9]. We shall not go through all the detail here,
but simply state the results of the calculation. Specifically, we will look at
how the parameter ∆h/h varies with the parameter δ. These two parameters
are defined by:

∆h

h
=

h1 − h2

h1 + h2

(9)

δ =
2m1 −m2

2m1 + m2

(10)

Here h1 and h2 are the thermal averages of the mean heights of the two grain
species, and ∆h/h is clearly a measure of whether we are dealing with the
BNE or the RBNE. The main results are shown in figure 3. There are many
important things to note. The first is that the model is able to reproduce
both the BNE and RBNE depending on the mass ratio of the two grain
types. The competition is clearly between entropy and gravity, much like in
the condensation problem [7]. This model has no dependence on microscopic
(that is, on the scale of the grains) details (save for hard-core repulsion),
and so seems to indicate that the BNE and RBNE are driven by global
“thermodynamic” mechanisms [9]. The second thing to note is that there
is a phase transition occurring in this system, though not the transition one
would näıvely expect. As the number of small grains per unit surface N1

is increased, the rate at which ∆h/h changes with δ gets bigger and bigger,
until, at a critical value N1c, the transition becomes infinitely steep. In other
words, we go from a situation in which there is a smooth crossover from
the BNE to the RBNE as δ is varied to a situation in which any deviation
of δ from some value δc results in either a large BNE or RBNE [9]. The
situation is roughly analogous to the Ising model, where for T > Tc we have
paramagnetic (smooth crossover from M < 0 to M > 0 as H is varied)
behavior, while for T < Tc we have a sharp transition from all the spins
pointing up to all the spins pointing down as H is varied [9]. With this in
mind, we can identify ∆h/h as our order parameter (analogous to M), δ
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Figure 3: The main part of the figure shows ∆h/h as a function of δ for
various values of N1. The inset shows the susceptibility as a function of δ for
various values of N1. Note the divergence as N → N1c. Taken from [9].

as our ordering field (analogous to H), and N1 as our inverse temperature
[9]. The analogy is not exact since the value of δ which causes ∆h/h to be
zero depends on N1, but it is close. Indeed, the equivalent of the magnetic
susceptibility, which is given by [9]

χ(δ,N1) = Ntot

(〈
∆h2

〉
− 〈∆h〉2

)
(11)

has a power law divergence χ ∝ (N−1
1 −N−1

1c )−γ near the critical point (see
figure 3), with γ found to be close to 1 [9]. This is the same behavior found
in the Ising model. Similarly, ∆h/h varies as (N−1

1c −N−1
1 )β near the critical

point, with β numerically found to be close to the Ising value of 1/2 [9].
What exactly is happening physically as N1c is approached? The expla-

nation that has been put forth concerns something called the depletion force
[9], which is an effective force between large grains due to the presence or
absence of small grains. When this force is greater than some critical value,
the larger grains undergo a sort of condensation and a phase separation oc-
curs, dragging the heavier phase to the bottom [9]. Since this force becomes
greater as N1 is increased, and since it is this parameter that drives the phase
transition, this explanation is entirely plausible.

10



Conclusions

The underlying physical mechanism behind the BNE is still not well un-
derstood. There are a number of competing theories as to what the domi-
nant mechanism is, including reorganization of grains, convection, condensa-
tion/percolation, and entropy/gravity. The last of these is intriguing because
it comes from a statistical mechanics argument and can be used to determine
the nature of the crossover from the BNE to the RBNE without having to
worry about the microscopic details of the interaction. It can be shown
that a statistical mechanical model of a binary granular mixture undergoes
a phase transition from a “paramagnetic” phase in which varying the mass
ratio of the grains smoothly alters the average difference in height of the
large and small grains to a “ferromagnetic” phase in which this difference
in height jumps sharply as a function of mass ratio. The critical exponents
of this transition in mean field theory are identical to those found for the
Ising model. Experimental studies of the BNE are still somewhat inconclu-
sive regarding the existence of the RBNE in the parameter regimes predicted
by theory, although the effect has been observed [8]. Since one of the main
features that separates some theoretical mechanisms from others is their pre-
diction regarding the RBNE, testing this effect in a laboratory setting is of
the utmost importance to unravelling the Brazil nut problem.
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