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Abstract

Landau fermi liquid theory is introduced as a successful theory
describing the low energy properties of most fermi systems. Besides
the usual argument based on the calculation of the life time of the
quasiparticles, a renormalization group calculation, of Wilson’s shell
integration in momentum space, is implemented to justify the validity
of fermi liquid theory and shows that BCS phase transition is the only
singularity in a homogeneous fermi system.
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1 Introduction

Fermions and bosons are the building bricks of the matter around us. The
representative of fermions is the electron, whose behavior determines various
respects of most solid state systems. Fermions obey Fermi-Dirac statistics.
Pauli’s exclusive principle says that the ground state of a free fermion system
is simply constructed by stacking all the fermions from bottom up to the fermi
surface, though the similar problem for interacting fermion systems is totally
non-trivial. For example, in ordinary metals, the coulomb interaction energy
between electrons usually dominates the kinetic energy, which even makes
perturbation theory unapplicable.

In 1956 Landau [1] proposed the fermi liquid theory, which turns out to be
a quite successful theory to study the low temperature physics of interacting
fermions. The theory postulates that the thermodynamics of an (even strong)
interacting fermion system at low energy scale can be duplicated by studying
a system of , called quasiparticles, where usual perturbation theory can be
employed to calculate all kinds of relevant observables. The physical picture
is like this: Suppose an extra electron is placed into the metal. It will
immediately get into the interaction with all the other electrons. It is true
that the interaction between these bare electrons can be overwhelming the
kinetic energy. However, under some circumstances, if in some clever way
we can combine the bare electron and partial media surrounding it as a
new entity, which we call quasiparticle, the residue interaction between these
quasiparticles becomes weak, which enables the use of usual techniques. By
the construction, the quasiparticles are still fermions and their density is the
same as the underlying bare fermions.

The fermi liquid theory is always justified in a perturbation way [2] that
when the quasiparticle is arbitrarily close to the fermi surface, its life time be-
comes arbitrarily long. It is due to the limitation of the phase space. Though
capable of explaining a lot of experiments of interacting fermions, however,
the fermi liquid theory can not be applied to a system in the superconductor
phase. It is the purpose of this paper, from the modern point of view of the
renormalization group theory, to see the validity of the fermi liquid theory
and when it is broken down.
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2 Fermi Liquid Theory

Landau postulated that at low energy scale the excitation spectrum of the
bare interacting fermion system is the same as that of a system composed
of weak interacting quasiparticles and the energy of the bare fermion system
E is a functional of the distribution of the quasiparticles nk, where k is the
index designating the single particle states got in a free fermion system (for
simplicity, let us first neglect the degrees of freedom of spin). The energy
spectrum of the quasiparticles are defined by the functional derivative of
E({nq}) with respect to nk as

εk =
δE({nq})

δnk

. (1)

When k is approaching the fermi momentum kF , to lowest order, εk − εkF
=

vF · (k− kF), where vF is the fermi velocity at the fermi surface.
And further the Landau functions introduced to describing the interacting

between quasiparticles are defined by

1

V
f(k,k′) =

∂E({nq})
δnkδnk′

, (2)

where V is the volume of the system. Thus they are symmetric

f(k,k′) = f(k′,k). (3)

The Landau functions f(k,k′) may be calculated from the microscopic model
which is faithful to the bare fermion systems or extracted from experimental
data.

Provided that the changing the distribution of the quasiparticles is small
and orders higher than quadratic are negligible, the change of the energy of
the whole system corresponding is given by

δE =
∑

k

εkδnk +
1

2V

∑

k,k′
f(k,k′)δnkδnk′ . (4)

Since the quasiparticles are fermion, they also obey Fermi-Dirac statistics
and the distribution function at finite temperature is given by the usual form
[3]

nk =
1

eεk−µ + 1
. (5)
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Note that εk is a functional of nk. At zero temperature nk = θ(|k| − kF )
with kF .

In the fermi liquid theory the quasiparticles behave quite like free par-
ticles. This is compatible with the fact that at low temperatures the heat
capacity part contributed by the electrons in a lot metals is linear with respect
to the temperature. However, to make the quasiparticle concept meaningful,
its life time must be long enough. It is usually put in the following diagram-
matic language [2]: The life time of a quasiparticle slightly above the fermi
surface is mainly governed by its interaction with the quasiparticles below
the fermi surface. The perturbation calculation gives

1

τ
=

1

2

∑

abB

|〈αB|v|ab〉|22πδ(εα + εB − εa − εb), (6)

where α designates the state of quasiparticle we study and εα > 0 (all the
energy is defined with respect to the fermi surface). εB(< 0) is the energy
of the initial quasiparticle in the fermi sea and εa(> 0) and εb(> 0) are
the energies of the final quasiparticles after the scattering. |〈αB|v|ab〉| is the
relevant matrix element. τ is the life time of the quasiparticle. When εα close
to the fermi surface, the energy conservation condition, εα = |εa|+ |εb|+ |εB|,
puts strong limit on the phase space available to the process. Suppose the
matrix element is upper bounded by the value vmax. A quick estimate gives

1

τ
≤πv2

max

∫ ∞

0

dεa

∫ ∞

0

dεb

∫ −∞

0

dεB ρ(εa)ρ(εb)ρ(εB)δ(εα + εB − εa − εb)

=πv2
max

∫ εα

0

dεa

∫ εα

0

dεb ρ(εa)ρ(εb)ρ(εa + εb − εα)

≤πv2
maxρ

3
maxε

2
α, (7)

where ρmax is the upper bound of the density of the states around the fermi
surface. So τεα goes to zero when εα goes to zero. This justifies the concept
of quasiparticle.

The fermi liquid theory is a phenomenological or effective field theory. Its
power lies in its prediction of various properties of fermion systems with the
input of a few phenomenological parameters. It gives results agreeable with
experiments. Its validity depends on the condition that when the interaction
between the fermions are adiabatically turned on, no bound states are formed
and the low energy physics is only happening around the fermi surface. But
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we know at sufficient low temperatures some metals exhibit transition to
superconductors, which is successfully explained by the BCS theory. It is
instructive to see, from the modern point of view of the renormalization
group theory, why the fermi liquid theory is so successful and how the BCS
transition emerges.

3 Renormalization Group Approach

Wilson’s series work on renormalization group [4] does not only place the
foundation of modern phase transition theory, but also sheds new light on
the understanding of field theory. In physics only (at least relatively) low
energy and long wavelength phenomena are studied, which is obviously gov-
erned by the short distance physics. However, it turns out that without the
every detail of the short distance physics, the low energy and long wavelength
phenomena can be captured in an effective field theory, in which only finite
number of parameters are needed. Of course, these parameters can not be
determined at the given level of the description of the problem. They can be
either calculated from a model at lower levels or matched by experimental
data. Since it is impossible to acquire full knowledge at any short distance,
the first way is not so helpful. From this point of view, any field theory must
be phenomenological. The crucial point to construct an effective field theory
is to note what kind of parameters need to be introduced, and, what is more
important, to identify the relevant degrees of freedom. So the applicability
of any effective field theory to any realistic system is impossible to be justi-
fied priori to any theoretical calculation and its comparison with experiment
results.

The reason why the full detail of the short distance physics is not needed
for low energy and long wavelength phenomena is that starting from a mi-
croscopic model, under the renormalization group transformation to large
length scales, all the irrelevant interactions will not appear in the final coarse-
grained Hamiltonian. There are various ways to construct renormalization
group transformations. In this paper, we implement Wilson’s momentum
shell integration [5]. The idea is that we first take a model with momentum
cutoff Λ; we integrate out the degrees of freedom lying in the region from
bΛ to Λ, where b is slightly smaller than 1; after the integration, the new
cutoff becomes bΛ and finally we rescale the momentum from bΛ back to Λ;
by doing so, all the parameters will be different from the original ones and
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this gives the renormalization group transformation.
Recently the Landau theory of fermi liquid started to be examined within

the framework of the renormalization group theory [6, 7]. Our calculation
will basically follow the treatment in these reviews.

The subject of the Landau theory of fermi liquid is not the bare fermions,
instead, is the fermionic quasiparticles. We consider a fermion system with
spatial rotational symmetry in three dimensional space at zero temperature.
The fermi sea must be a sphere. Since all the interesting low energy physics
happens around the fermi surface we decompose the momentum as q = k+ l,
where k lies on the fermi surface and l is orthogonal to it. The free-field action
of the quasiparticles around the fermi surface with a cutoff Λ is

S0 =

∫ ∞

−∞

dω

2π

∫
dk

(2π)2

∫ Λ

−Λ

dl

2π

{
ψ̄(ω,k, l)(iω − vF l)ψ(ω,k, l)

}
, (8)

where the spectrum ε(k + l) − εF has been approximated as vF l provided
l << kF . Now if we scale the cutoff Λ to bΛ with 0 < b < 1, we have

l → bl, ω → bω. (9)

In order to make the free-field action invariant, ψ is required to scale as
ψ/
√

b.
Next we investigate the response of all kinds of perturbation to the free-

field action which are compatible with the symmetries of the problem to the
scale manipulation, which is equivalent to the tree level calculation of the
renormalization group transformation. Since the quadratic term of ψ simply
defines the fermi energy, the first interesting case is the quartic interaction
of the form

δS4 =
1

2!2!

∫

k,l,ω

ψ̄(4)ψ̄(3)ψ(2)ψ(1)u(4, 3, 2, 1), (10)

where

ψ(i) =ψ(ki, ωi, li), (11)
∫

k,l,ω

=
[ 3∏

i=1

∫ ∞

−∞

dωi

2π

∫
dki

(2π)2

∫ Λ

−Λ

dli
2π

]
θ(Λ− |l4|). (12)

The step function in the integral plays a crucial role. From the conservation
of the momentum, we get

l4 = |(kF + l1)Ω1 + (kF + l2)Ω2 + (kF + l3)Ω3| − kF , (13)
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here Ωi is a unit vector in the direction of qi and ki = kFΩi. If now we carry
out the scale scheme directly, we find

θ(Λ− |l4(l1, l2, l3, kF )|) → θ(Λ− |l′4(l′1, l′2, l′3, kF /b)|), (14)

the fermi momentum changes. However in our theory we want the fermi
momentum to be invariant since it is determined by the density of the un-
derlying bare fermions. This technique difficulty could be overcome by using
a smooth cutoff for l4,

θ(Λ− |l4|) → e−|l4|/Λ. (15)

Now we define ∆ = Ω1 + Ω2 −Ω3 and write

l4 = |kF∆ + l1Ω1 + l2Ω2 − l3Ω3| − kF . (16)

We will only keep the ∆ term in l4 and neglect O(l) since for |l4| < Λ, the
latter part is always much smaller than the former. Then the scale scheme
transforms the quartic term as

3∏
i=1

∫ ∞

−∞

dωi

2π

∫
dki

(2π)2

∫ Λ

−Λ

dli
2π

e−(kF /Λ)||∆|−1|u(k, l, ω)ψ̄ψ̄ψψ

→
3∏

i=1

∫ ∞

−∞

dω′i
2π

∫
dki

(2π)2

∫ Λ

−Λ

dl′i
2π

e−(kF /(bΛ))||∆|−1|u(k, bl′, bω′)ψ̄ψ̄ψψ. (17)

We rewrite

e−(kF /(bΛ))||∆|−1| = e−(kF /Λ)||∆|−1|e−((1/b−1)kF /Λ)||∆|−1|, (18)

so that the measures before and after have the same factor e−(kF /Λ)||∆|−1|. By
comparing the coefficient, we can read off

u′(k, l′, ω′) = e−((1/b−1)kF /Λ)||∆|−1|u(k, bl′, bω′). (19)

So we can conclude that at present (tree) level calculation, the only cou-
plings which survive the renormalization group transformation must fulfill
the condition

|∆| = |Ω1 + Ω2 −Ω3| = 1. (20)

In three dimensions it is equivalent to say Ω1 ·Ω2 = Ω3 ·Ω4.

7



4 Discussion

As shown above the quartic couplings with the condition Ω1 ·Ω2 = Ω3 ·Ω4 are
marginal and the others are irrelevant at tree level. The condition Ω1 ·Ω2 =
Ω3 ·Ω4 is the direct result of the factor θ(Λ− |l4|) in Eq. (12), whose effect
can be understood in a geometric way [7]. When Λ/kF goes to zero and the
shell of the momentum space of interest becomes thinner and thinner, while
the initial momenta q1 and q2 of the two quasiparticles taking part in the
scattering process lie in the momentum shell, the momenta of the resultant
quasiparticles q3 and q4, when required to be within the momentum shell
as well, must have the same mutual angle between them as q1 and q2 do.
This is essentially the same as the argument of the limit on the phase space
put in the diagrammatic language. The couplings with Ω1 · Ω2 = Ω3 · Ω4

but Ω1 6= Ω2, denoted by uf , are responsible for the forward scattering,
and proportional to the Landau functions f(k,k′). The special case is the
coupling, denoted by uz, with Ω1 = Ω2 and Ω3 = Ω4. The conclusion that
both uf and uz are marginal is only true at the tree level. Further, one loop
calculation [7] gives uf still marginal, but uz marginal relevant for uz < 0
and marginal irrelevant for uz > 0. So at zero temperature, the fix point
of the general model of fermionic quasiparticles is determined by uf and uz.
When both uf > 0 and uz > 0, the Landau fermi liquid theory is valid. If
uz < 0, another BCS fix point will appear, which means BCS state should
be true ground state if any attractive interaction exists. However, at finite
temperatures, the BCS phase may be broken due to thermal fluctuation.

To summarize, we have introduced the Landau theory of fermi liquid and
assessed its validity within the frame work of renormalization group theory up
to one loop calculation. It is shown that all the forward scattering couplings
are marginal, which justifies the fermi liquid theory. And moreover, if the
interaction is attractive, BCS state becomes the true ground state.
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