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Abstract

In this paper we investigate the properties of a one-dimensional quantum
wire of interacting electrons in the Wigner crystal limit. Recent theoretical work
has explored some of the classical and quantum phase transitions associated
with this system. For example, there exists a critical density above which the
system can lower its energy by forming a quasi-one-dimensional zig-zag chain.
We also discuss the potential relevance of such behavior to the so-called 0.7-
structure.
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1 Quantum Wires

1.1 Properties

A conductor will show ohmic behavior as long as its dimensions are much larger
than (1) the electron de Brogilie wavelength, (2) the mean free path, and (3)
the phase-relaxation length [1]. We will be exclusively interested in the first
possibility. Quantum wires are mesoscopic devices which are good conductors
in one direction but quantization in the transverse direction leads to quantized
values of the conductance.

It follows from very general arguments (see [1]) that the conductance per
transverse mode per electron is equal to e2/h. Hence, the conductance of a
quantum wire is 2e2/h ×M where M is the number of modes in the energy
range µ1 < E < µ2 and µ1 and µ2 are the chemical potentials on either side
of the conductor. The factor of 2 accounts for the two possible spins of the
electron.

1.2 0.7 Structure

While this simple prediction of conductance of a quantum wire is usually quite
accurate at low temperatures, quantum wires generally show a ’shoulder’ at
0.7 × 2e2/h as the temperature increases (see figure 1) [9]. This behavior is
exhibited in a wide variety of quantum wires and there is broad consensus
that the origin of this anomaly is the special nature of electronic interactions
in one dimension. Spin is believed to play an important role in these effect:
the 0.7-structure evolves into the spin-polarized plateau (at a conductance of
0.5×2e2/h) with increasing magnetic field. However, the failure of the Luttinger
liquid model which accurately accounts for the properties of many strongly
interaction 1-d electrons suggests that these electrons are beginning to ’feel’
the transverse direction.

Although a quantitative explanation of the 0.7-structure remains elusive,
recent theoretical work has investigated both the role played by dimensionality
and spin in quantum wires. The model we investigat this this paper pro-
vides compelling evidence for the nature of the interactions responsible for the
anomaly. We find that that the Wigner crystal limit in quantum wires (even
at zero temperatures) possesses very rich behavior.

2 Wigner crystal

The model we investigate consists of charged particles at zero temperature in a
wire confined in the transverse direction by a potential of the form 1

2mΩ2y2. A
Wigner crystal is a solid phase of electrons in which they are (at least classically)
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Figure 1: Conductivity as a function of bias voltage for several temperatures in GaAs
wires from [9]. Note the emergence of the ’0.7 shoulder’ as temperature is increased.
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pinned to a local minimum of the potential. For electrons interacting via a
Coulomb interaction, the kinetic energy ∼ ~n2

e/m goes to zero faster than
the potential energy ∼ e2ne/ε as ne vanishes. Hence the arrangement of the
electrons becomes important becomes important in the dilute limit. In [7], the
classical configurations of a such a system (of spinless electrons) was considered.
In particular, they considered an interaction between electrons of the form

Vint =
e2

2ε

∑
k 6=l

e−κ|rk−rl|

|rk − rl|
, (1)

where ε is the dielectric constant of the material (the addition of which allows
one to consider the effect that the range of the interaction has on crystalline
order). [7] investigated the surprisingly rich phase structure of this system. At
very low density, the confining potential pins all the particles to the bottom of
the well. Above a critical linear density the interaction potential overcomes the
confining potential and the electrons split into two rows (see figure 2). This can
be visualized as a kind of buckling transition. This transition is continuous in
the sense that the distance between the rows vanishes at the transition. As the
density is further increased, more rows appear and form increasingly complex
geometric structures. Interestingly, only the first bifurcation is continuous.
Figure 3 plots the lateral displacement of the rows as a function of density.

Of course, in one dimension quantum fluctuations destroy any such long-
range order. However, it has been argued that the above classical predictions
are robust. Specifically, Schulz ([10]) considers the fate of various correlations of
a one-dimensional gas interacting with long range Coulomb forces when quan-
tum effects are included. For example, he finds the density-density correlation

〈ρ(x)ρ(0)〉 = A1 cos(2kFx) exp(−c2
√

lnx) +A1 cos(4kFx) exp(−4c2
√

lnx)...
(2)

This result is significant in that the correlations decay more slowly than any
power law. For electrons in one dimension at T = 0 we have n = 2kF /π.
Therefore the 4kF oscillation has a period that corresponds to the interparticle
spacing. Indeed, Schulz predicts that this term would produce strong quasi-
Bragg peaks in a scattering experiment. The quasi emphasizes that there is
no long range order, rather quasi-long-range order in the sense that equation 2
makes precise.

3 Spin structure and the Heisenberg model

3.1 Motivation

The evidence that the 0.7-structure may involve novel spin structure has in-
spired an investigation of the spin properties of the quasi-one-dimensional quan-
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Figure 2: Zero temperature phase diagram of a 1-d harmonically confined Wigner
crystal. The various regions in electron density (ne) and dielectric constant (κ) space
indicate the crystal configuration with the minimum energy [7]. Note that the phase
boundaries tilt to the right. This is not surprising considering that for fixed density,
increasing κ decreases the effective range of the potential.

5



Figure 3: Transverse displacement of the most stable configuration of a chain for a
given density at κ = 0. Note that the darker lines indicate the most stable configu-
ration whereas the lighter lines show locally stable configurations that are not global
minima. This plot is presented in [7]. The transition between 1 row and 2 rows occurs

at a density nc = (4/7ζ(3))1/3 ≈ 0.780 ([5]). All other transition must be computed
numerically. Perhaps surprisingly, between the transition between 2 and 3 rows there
is a small interval of electron density for which 4 rows is the most stable configuration
(ne ≈ 2.1).
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tum wire we considered in §2 [8]. For a one-dimensional Wigner crystal, the
quantum mechanical exchange of neighboring electrons gives rise to an inter-
action which is well described by the Heisenberg model

∑
i J1Si · Si+1. Now,

for a sufficiently ’buckled’ Wigner crystal, next-to-nearest neighbor interactions
become important and can be modeled by the Hamiltonian

H =
∑
i

(J1Si · Si+1 + J2Si · Si+2) . (3)

As pointed out in [8], the buckled phase also promotes cyclic exchanges of elec-
trons. The case of 3-ring cyclic processes can be modeled by equation 3 through
a modification of the constants J1 and J2. Such processes introduce complicated
effects (such as frustration) and lead to highly nontrivial behavior. Addition-
ally, whether a cyclic process involves an even or an odd number of electrons
dictates whether it will be antiferromagnetic or ferromagnetic (respectively).

Once the relevant Hamiltonian is determined, how are the exchange con-
stants calculated once the relevant processes are identified? A widely used
method is the so-called instanton method. In [11], Roger presents a WKB-like
approach which can calculate the the exchange constants by calculating the
Euclidean time path integral over the classical exchange trajectories. These ex-
change constants have the form J` ∼ e−ν` , where the exponent ν is a function of
the geometry of the crystal. Estimates of these exchange constants presented in
[8] show that in the zigzag transition regions of positive and negative J1 and J2

become accessible. It’s clear from figure 4 that the behavior of a quasi 1-d wire
can be quite complicated. As the density is changed, the relative importance
of different processes changes.

3.2 Phase diagram of Heisenberg spin chain

We now discuss some of the intricacies of the (J1, J2) phase diagram of the
Heisenberg model. For J2 < 0, the interaction between nearest neighbors simply
reinforces either the ferromagnetism or anti-ferromagnetism that is controlled
by the first term. Hence, for J2 < 0 the model is ferromagnetic or antiferro-
magnetic depending on whether J1 is negative or positive, respectively. The
story becomes more interesting for J2 > 0 since this term will frustrate both
ferromagnetic and antiferromagnetic ordering. Indeed, for J2 > 0.38|J1| the
ground state is dimerized: spin singlets form between nearest neighbors. Since
a given spin can pair with an electron either to its left or right, this ground
state represents a spontaneously broken Z2 symmetry.

Now, Chubukov suggested in [13] that for J1 < 0 there exists the possibility
of another state (known as the chiral-biaxial-nematic phase). Chubukov argued
that perhaps there exists a broken phase that is a spin triplet rather than spin
singlet. Indeed, this is an exact ground state for an anisotropic version of
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Figure 4: Exchange exponents as a function of linear electron density. This gives
a sense of the competition and importance of various processes as zig-zag structure
forms. (from [8]).

equation 3. Because Sz can take three different values, such a phase would
be equivalent to a S = 1 XY spin-nematic phase (hence the fancy sounding
name). Chubukov predicted that such a phase would exist for J1 < 0 and
−0.25 < J2/J1 < −0.38 (this corresponds to the lightly shaded wedge in figure
5). Although a spin triplet dimer does seem a plausible intermediate between
the ferromagnetic and spin singlet phase, the exact nature of this phase remains
controversial.

Of course, for sufficient densities, higher order interactions become relevant.
Significantly, the inclusion of Si ·Si+3 and Si ·Si+4 terms can lead to regions of
phase space with macroscopic spin polarization. These effects have been studied
numerically in a number of papers including [8]. [14] investigated a similar
Hamiltonian and proved the existence of such spin polarized states rigorously.

4 Excitations

A quasi-one-dimensional Wigner crystal at any density will possess a long wave-
length plasmon mode with an acoustic spectrum [5]. For densities above the
first zigzag transition there is also soft mode with displacements δyk = (−1)kϕ.
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These transverse modes are characterized by an action of the form

S ∼
∫
dτ dx

[
(∂τϕ)2 + (∂xϕ)2 − δνϕ2 + ϕ4

]
, (4)

where ±δν are the classical minima in the y-direction in the zigzag phase.
It’s satisfying that the potential associated with the zigzag transition is ex-
actly what is predicted by phenomenological Landau theory [12]. Although the
analysis is somewhat involved, the processes of tunneling and nearest-neighbor
interactions in this potential can be modeled quantum mechanically. It is found
that there is a gap (∆) that depends linearly on the energy mismatch between
these two processes.

[5] points out a very interesting connection between this system and the Ising
model. It turns out there is (very generally) a mapping between d-dimensional
quantum systems and (d+ 1)-dimensional classical models. Indeed, the action
in equation 4 can be mapped to that of the 2-D Ising model. In this particular
case, the gap ∆ corresponds to the inverse correlation length of the Ising model.
For example, the critical behavior rc ∼ |T − Tc|−1 corresponds to the linear
behavior of the gap discussed above.

5 Carbon nanotubes

Carbon nanotubes are honeycomb lattices rolled into a cylinder. They have
attracted a great deal of attention in recent years because of their novel elec-
tronic and mechanical properties [2]. Indeed, low energy electronic excitations
are well modelled by massless Dirac fermions. Transverse states in the nanotube
correspond to quantized angular momentum states around the nanotube’s cir-
cumference. The relative ease with which nearly defect-free nanotubes can
be obtained experimentally has made them a very exciting material and their
transport properties have been well studied. Although the 0.7-structure is tra-
ditionally associated with more conventional quantum wires like GaAs, recent
work presented in [15] on nanotubes has revealed an unmistakable 0.7 signature
in the conductance of carbon nanotubes.

6 Outlook

Whether or not this picture of quasi-one-dimensional Wigner crystals can pro-
vide an explanation of the 0.7-structure, the physics of the model remains
intrinsically interesting. It is the potential tuneability of this system which
makes it so interesting experimentally. Indeed, as pointed out before, the so-
called chiral-biaxial-nematic phases nature remains controversial and very hard
to model (even numerically). There is a great deal of interest in using cold
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Figure 5: The phase diagram of the Heisenberg model with nearest and next-to-
nearest neighbor interactions (from [8]).

atomic gases to map phase diagrams of various Hamiltonians. Recent advances
in the ability to design and manipulate quantum wires could make such mod-
eling a reality in these systems as well.

References

[1] Datta, S. Electronic Transport in Mesoscopic Systems. Cambridge, (1995).

[2] Saito, Dresselhaus, and Dresselhaus. Physical Properties of Carbon Nan-
otubes. Imperial College Press, (1988).

[3] Matveev, K.A. PRL. Vol. 92, #10 106801, (2004).

[4] Matveev, K.A. Phys. Rev. B, 70, 245319, (2004).

[5] Meyer, J.S., Matveev, K.A., Larkin, A.I. PRL 98, 126404, (2007).

[6] Cronenwett, et al. PRL, Vol 88. # 22, (2002).

[7] G. Piacente et al. Phys. Rev. B, 69, 045323, (2004).

[8] A. D. Klironomos, J. S. Meyer, T. Hikihara, and K. A. Matveev, Phys.
Rev. B 76, 075302, (2007).

10



[9] Matveev, K.A. ”‘Conductance of quantum wire at low electron density”’,
slides from lecture. Boulder Summer School, (2005).

[10] Schulz, H.J. PRL, Vol. 71 # 12, (1993).

[11] Roger, M. Phys. Rev. B, 30, # 11. (1984).

[12] Indeed it was in this spirit of universality in which Matveev presented
summarized these results in his APS talk in New Orleans.

[13] Chubukov, A.V. Phys. Rev. B, 44, # 9, (1991).

[14] Muramoto, M. and Takahashi, J. Phys. Soc. Jpn. 68, 2098 (1999).

[15] Marcus, C.M. et al. PRL 94, 026801 (2005).

11


