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Abstract

Barkhausen noise and hysteresis are explained in detail, and requires that must be met to
model it successfully. The random �eld Ising model is constructed using physical ideas. The
dynamics of the model are discussed, as well as qualitative features and the reasoning behind
why a critical point is expected. Theoretical methods, such as the epsilon expansion as well
as scaling techniques are brie�y discussed, as is the computation treatment of the random �eld
Ising model. The results of theory, numerical simulations, and experiments are all compared.
The usage of random �eld Ising model for systems that display power law scaling beyond mere
magnetic materials is brie�y demonstrated with an example from earthquake dynamics. Future
directions for study are suggested at the end.
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1 Introduction

The Ising model is one of the most widely used basic models in statistical mechanics. By appropriate
choices of Hamiltonian and correct interpertation of results, it can model not only magnetic spin
systems but a range of other phenomena such as non-ideal gases. However, when we deal with the
normal Ising model in equilibrium there are two serious theoretical considerations that it has a hard
time coping with. First of all, all of the functions that determine physical quantities in the Ising
model are smooth except at a �nite number of points in phase space (which have the potential to
be phase transitions). While this may seem reasonable at �rst, there is no reason why in principle a
real system cannot respond to stimuli in a series of small jumps, i.e. show discontinuous behaviour
everywhere. Nor is it necessarily true that in the thermodynamic limit this �crackling� noise will
somehow become irrelevant. Second, hysteretical e�ects are almost absent in the standard Ising
model in any meaningful way, occuring only in the special case of zero magnetic �eld and below the
critical temperature. Hysteresis occurs when the state of a system depends not just on its current
con�guration of parameters, but also on its recent con�gurations or �history�. This implies that for
some given con�guration of parameters, there is more than one stable state.

It is worth noting that at some level both these de�ciencies are related to thermal �uctuation. In
the �rst case, crackling noise and non-analyticity in general is reduced by thermal �uctuation, which
causes an element of randomness to appear in the behaviour of spins. The sharp, sudden response
of individual or small groups of spins which would take place in a deterministic setting is eliminated
in favour of the smooth change of the average over all of the spin states in the ensemble. Hence it
is very rare on the whole to see non-analytic behaviour in the Ising model (rare here in the sense of
occupying a very small volume in phase space).

In the second case, the likelihood of hysteresis is undermined by thermal �uctuations allowing the
sampling of system states in a vicinity around the current state. Recall that hysteresis requires multiple
stable states. Without thermal �uctuations, changes only occur if they are immediately favourable
and hence a stable state must merely be locally stable. Thermal �uctuation however implies that any
states that are not separated by a large energy barrier are likely to be sampled, and hence a stable
state in most cases must not only be locally stable but also the globally preferred state. In practical
terms, when the system behaviour is governed by minimizing some function (such as free energy)
this is the di�erence between the system being stable at the global minimum as opposed to any local
minimum. It is quite general to see a function have multiple local minima over a range of parameters,
but quite rare for it to have multiple global minima.

So we can see that the Ising model in its usual form is not ideal for modeling these phenomena.
Before we move on to construct a model, it is useful to examine a physical system that actually displays
both phenomena of interest. Consider our model of the magnetic properties of iron. Magnetism in
iron is typically modelled by domains: that is there are many microscopically small regions and within
each region the magnetic �eld is aligned in some direction. However each domain points in a di�erent
di�erent under ordinary circumstances, hence giving a net magnetization of zero. If however an
external magnetic �eld is applied, then the boundaries of the domain change so that a larger portion
of the material is taking up by domains with some particular magnetic orientation: hence we have a
net internal magnetic �eld generated by the material. When we apply and then remove a magnetic
�eld however, the domain boundaries do not return to exactly what they were in the �rst place.
Hence we have a hysteretical e�ect here, a dependence on the �history� of the external magnetic �eld.
Furthermore, if we make a plot of applied �eld versus magnetization, the curve may look super�cially
smooth however when we zoom in close we will see tiny jumps and bursts. These tiny jumps are
bursts are Barkhausen noise. We can see both hysteretical e�ects and Birkhausen noise in �gure 1 [1].

At this point, we have physical motivation to try and gain insight into how these phenomena can
be understood and modeled. However it also would appear that the standard Ising model is not a good
starting point for such a model. Thus we have some good incentive to try and construct a slightly
di�erent model. As noted before in detail, thermal �uctuations have a signi�cant negative impact
on our ability to model the kinds of phenomena we are discussing. Thermal �uctuations however
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Figure 1: Magnetization versus magnetic �eld [1]. The sub-loops present in the �gure demonstrate

the presence of hysteresis. Notice how zero magnetization can correspond to many di�erent levels of applied

�eld. The zoomed inset shows the roughness of the curve on a small scale, implying that the magnetizing is

changing in discrete jumps.

can of course be eliminated by setting the temperature equal to zero. However, a zero temperature
Ising model is quite boring, because there is no source of randomness whatsoever. The spins will
stay all up or all down, until the external �eld is brought past some threshold and then they will all
�ip simultaneously. If our intent was to functionally model a light switch (applied force analagous
to magnetic �eld, light intensity analagous to magnetization) this might be e�ective, but is not very
interesting behaviour. The physical origin of Barkhausen noise however gives us some insight on how
to proceed. Recall that it is the �ipping of magnetic domains that cause the noise, and that the reason
that some �ip before others is due to impurities, crystal dislocations, etc. In other words this is a
result of random microscopic factors. To create a similar situation here, we would like to change for
each spin site the propensity it has towards pointing one direction or the other [1]. In other words,
we would like to add a local magnetic �eld. So, the Hamiltonian we have is

H = −J
∑
<ij>

SiSj −H
∑
i

Si −
∑
i

hiSi. (1.1)

The interpretation of H and J are as usual. The role of hi is to determine how easily the spin at site
i is to �ip relative to other spin sites. Given this purpose, there is no need for hi to have a zero mode
and hence we can expect that

∑
i hi = 0. We should also expect that since the reference frame in

which we choose indices is arbitrary, the manner in which the hi are chosen should be translationally
invariant. Based on how we are constructing our model, it makes sense that the hi are randomized
at the beginning of the simulation and are not subject to further change (i.e. they are a property
of the material). Hence they would be determined by some selection on the space of multi-variate
distributions.

2 The Model

The goal of this section will be to make the reader familiar with the mechanics of the model and some
of its qualitative features. It is worthly discussing, at least briefy, the mechanics of this model at a
fairly basic level since this is rather unfamiliar to a student of traditional statistical mechanics classes.
There are no �uctuation here, no randomness (after the hi are intialized), no partition function. Each
and every individual spin's orientation is determined wholly deterministically based on the total local
magnetic �eld, which is given by

Hi = H + J
∑
j

Sj + hi, (2.1)

where the sum over j is taken only over the nearest neighbours of i. The spin at i will take the value
given by the sign of Hi at the �rst possible opportunity. Most of the results in the next section are
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(a) (b)

Figure 2: (a) Schematic of an avalanche [1]. This numbered grid represents a 2-D Ising model. The

external magnetic �eld (which changes very slowly) caused the spin at 13 to �ip. At this point, nearest-

neighbour interactions caused a sequence of �ips: �rst the spins located at the green boxes, then light blue,

then red, at which point the sequence of �ips or �avalanche� petered out. (b) Time series of an avalanche

[1]. A typical avalanche time sequence, V is proportional to the number of �ips at time t. The units of t are

such that one increment of t is the time in which nearest-neighbour interactions can cause one �ip. In the

example from a), each colour represent �ips that occured simultaneously. Hence our time series would read

V = {1, 3, 5, 4}.

dependent on three further assumptions. First of all, where dimension is not explicitly stated we take
the dimension to be three. This is the natural choice to actually try and model a magnet. Second,
when we collect data on the system, H will start at some value (typically very negative, so with
certainty all the spins will be down) and sweep upwards very slowly. Very slowly means that at any
point where the increase in H causes a spin to �ip, we will �rst check if the changed nearest neighbour
interaction causes spin �ipping before we continue sweeping H. Thirdly, to proceed with our analysis
we need to assume something about the distribution of the hi. We will make the less realistic but more
tractable assumption of taking the hi to be samples on independent identically distributed Gaussian
distributions of mean zero. Since they are independent, this implies that the correlation function,
< hihj >= 0. This is clearly not very realistic, but the relative simplicity of analysis makes it a good
starting point. The impact of this approximation and the possibility of not using will be discussed in
more detail in the conclusion.

The fundamental reason why this model works well for modeling the Barkahusen noise discussed
earlier is because a small change inH can cause a single spin to �ip, which due to the nearest neighbour
interaction causes many more spin �ips without additional change in H. This event is referred to as an
avalanche. These avalanches contribute substantially to crackling noise (since they have the potential
to a�ect the magnetization much more suddenly than single spin �ips). Figures 2(a) and 2(b) show
how an avalanche develops spatially (in terms of the area around the initial spin �ip) and temporally
(in terms of how many spin �ips occur at each instant after the initial �ip).

Since we are collecting data by sweeping H, there is really only one other parameter in the system:
the standard deviation of the Gaussian distributions, denoted by R. The behaviour with respect to
this variable is critical then, because if a phase transition occurs, it must occur with respect to this
variable. To see is something fundamentally changes with R, we can examine the limiting behaviour
of the system. Suppose that R is zero. Then all the hi are zero. In this case, we know exactly what
will happen: H will rise up steadily from some large negative number, and nothing will happen, and
H will become positive and still nothing will happen. At some point however H will become large
enough to drown out the nearest neighbor tendency, but this will happen simultaneously for all spins.
So we will have a single in�nite avalanche. If on the other hand R becomes extremely large (relative to
J), then this is essentially the same as taking J very small. If there is no nearest neighbor interaction,
then there will be no avalanches at all. The question now is whether there is some clear cut dividing
line between these two behaviors, and the answer is yes. If R is below some value (call it Rc) than at
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Figure 3: Finite and in�nite avalanches [2]. We have Rc ≈ 2.16. Hence we see that for R = 2 < Rc,

we have a sudden discontinuity in the magnetization caused by a very large avalanche. For R = 2.6 > Rc,

the curve is smooth (unless we zoom in very close). Notice also the appearance of critical exponents on this

graph: β relates the size of the discontinuity in M to −(R − Rc), and δ relates (R − Rc) to (H − Hc), Hc
being de�ned as the place where the largest avalanches occur.

some point there will be a single avalanche that has a �nite impact even in the thermodynamic limit
N → ∞. In other words, an in�nite number of spins �ip simultaneously (although not necessarily
every spin). If R is above this value, than all avalanches are �nite. We will now take a look at some
of the analysis performed to quantify this behavior.

3 Analysis

There are two primary methods of analysis here: theoretical, and numerical. The former is done via
the renormalization group, and the latter is done via computer simulations. We do expect power
law scaling near the critical point, as near Rc, the avalanches come in a distribution of all sizes. As
commented by Sethna et al, at the boundary between huge avalanches and small ones, the system
cannot make up its mind and so avalanches come in all sizes [5]. Although a full review of the
mathematical techniques used is beyond the scope of this system, a brief description of the basic
approach will be given.

The usual approach to �nite temperature, equilibrium statistical mechanics is to write the partition
function and so on. The situation here is a bit di�erent. Once we have settled sampled our hi for their
Gaussian distribution, the system proceeds deterministically. In order to understand the behaviour
of the system given a certain distribution however, we do indeed need to proceed by treating the hi
as just that. Hence instead of thinking moving along a deterministic path for some set of numbers
hi, we think of moving along the distribution of paths for some set of distributions hi. Then we can
calculate quantities by averaging over all the possible paths. Now, the paths themselves occur as a
result of changing the external �eld very slowly, as a function of time. Hence we want to introduce
explicit time dependence to our variables and write out equations which will govern how the system
evolves. The �rst step is to represent H as

H(t) = H0 + Ωt, (3.1)

where our goal is to take Ω to zero at the end of the calculation (making the system purely adiabatic).
We also now make the change from a discrete spin system to a continuous one. Once this is done
we can more easily write dynamics for the system. To ensure however that our spins still settle on a
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(a) (b)

Figure 4: (a) Theoretical versus numerical critical exponents [2]. We can see in this diagram the

surprising accuracy of the epsilon expansion for various critical exponents. (b) Scaling laws [1]. Although

perfect power laws only occur at R = Rc, we can see that even for R = 4, we have two decades of power law

scaling, which indicates that the critical region is large. The inset clearly shows data collapse. We can see

from the form of the function that at criticality, r = 0 and thus Dint ∼ S−(τ+σβδ).

value of ±1, we add a potential term to the Hamiltonian:

H = −
∑
ij

Jijsisj −
∑
i

(hisi +Hsi − V (si)), (3.2)

where

V (si) =

{
k/2(si + 1)2, s < 0
k/2(si − 1)2, s > 0

. (3.3)

The Hamiltonian is the same as before, except that now the si are continuous variables that range
from minus in�nity to plus in�nity. However the new potential term ensures that their values are
localized around ±1 as desired [6].

We can now write the equation governing the dynamics of the system as

1
Γ0

∂si(t)
∂t

= − δH
δsi(t)

, (3.4)

where Γ0 is a frictional constant, i.e. it determines how quickly the dynamic variables change in
response to stimuli. This leads to a formalism for the partition function:

Z =
ˆ

[ds]
∏
i

δ(∂tsi/Γ0 + δH/δsi). (3.5)

The idea is to integrate over all possible paths, and to keep only the ones which satisfy the equations
of motion listed above. Eventually, the idea is to expand upon this by than integrating over the
distribution of the hi that appear in 3.5 through H. The math, as discussed is quite long and
di�cult, and includes several techniques including introducing un-physical �elds (or �ghosts� as they
would often be known in �eld theories), transforming the spins to local �elds via the transformation
Jηi =

∑
ij Jijsj , and using mean �eld theory. A key point in this calculation is that in the mean �eld

theory, the upper critical dimension is found to be six. Hence, any calculation of critical exponents
for less than six dimensions occurs via potentially dubious asymptotic expansions in ε (where we are
working in 6− ε dimensions). However, the results show surprisingly good agreement with simulation,
as shown in �gure 4 [6].
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Much simpler in scope, if we take self-similarity at the critical point as a given we can make simple
scaling arguments that allows to derive power law relations between variables. Consider L, the length
scale we are coarse graining, S, the size scale of avalanches, and D(S), the probability of �nding some
particular avalanche at a given size .We can derive the form of the scaling that appears in �gure 4(b).
We begin by assuming power law relations at criticality, then under some small coarsening de�ned by
ε we have

L′ = L/B = L/(1 + ε)
S′ = S/C = S/(1 + cε) (3.6)

D′ = A/D = D/(1 + aε).

Here, c is the fractal dimension, typically denoted by 1/σν. The ratio a/c is equal to τ . We can use
these equations to derive the basic power law behavior as a function of one variable. The likelihood of
the new system having an avalanche of size S is the same (after rescaling D) as the old system having
an avalanche of size CS, hence we know that D′(S) = AD(CS). But, we are also assuming that at
criticality the system looks the same at all length scales. Hence to �rst order in ε we have

D(S) = D′(S)
= (1 + aε)D((1 + cεS))

0 = aεD + cεS · ∂SD
dD

dS
= −a

c

D

S
.

This is satis�ed if D ∼ S−a/c = S−τ . Hence τ is our critical exponent relating avalanche size to
likelihood at criticality. With a little more e�ort, we can also derive the two variable scaling form of
D in terms of S and R, the standard deviation of the Gaussian distribution. If we work through the
algebra we �nd

D(S,R) ∼ S−τ̄FD(Sσ(R−Rc)), (3.7)

where τ̄ is a new critical exponent related to the hysteresis loop and satis�es τ̄ = τ + σβδ, and σ
relates the disorder and the size-cuto� (i.e. the maximum size of avalanche we can expect to see) as
S ∼ (R−Rc)−σ. This data collapse is precisely demonstrated by the inset to �gure 4(b) [1, 2].

At the beginning of the section, the use of numerical methods was brie�y discussed. This will not
be discussed in great detail here as these are generally more to do with computation than with physics.
However it is worth brie�y mentioning the di�erence conceptually between the brute force algorithm
and a slightly more sophisticated one. A brute force algorithm is fairly straightforward: there is an
overall loop which increments H by some small amount, and each time this small increment is done
each spin is checked to see if it is ready to �ip. When a spin is �ipped, the e�ects are propagated,
and when the avalanche peters out the checking continues. This is very bad because the increments
of H must be very small to match our analysis where we assumed the system was adiabatic, and if
the increments are very small than for many of the increments not a single spin will change. Hence
there is a huge amount of wasted e�ort. A much more e�cient strategy is to store the local magnetic
�elds in an ordered list from the very beginning. When this is done, rather than increment H slowly
we simply directly increase H by the smallest amount possible so as to cause one spin to �ip. We
propagate the e�ect of that spin both on other spin �ips as well as in terms of how it a�ects the local
magnetic �elds, i.e. we make sure that at the end of the avalanche we still have a sorted list of local
magnetic �elds. We then simply iterate this process. By doing it this way instead, we raise H more
rapidly, but by exactly the right amount so as to keep the simulation entirely adiabatic [3].

4 Results and Applications

The original motivation for this model came from Barkhausen noise and hysteresis in magnetic ma-
terials, so it makes sense to return to these cases (where there is an ample experimental trail) to see
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Figure 5: Comparison of various models to experiment [2]. This graph compares three models to

experiment. The front propagation is a model whereby domains are established at the beginning and �ips are

only allowed along the existing boundary (i.e. nucleation, the �ip of a spin surrounded by un�ipped spins, is

not permitted). The �mean �eld theory� refers to a dipolar mean �eld theory that has di�ering interaction

terms in its Hamiltonian. The red circles are the model of interest. We can see that all three models produce

quite good results.

what kind of results the random �eld Ising model predicts, and how they compare to reality.
One of the most important results of this model is the power law relation between avalanche size

and frequency. In many natural phenomena it is quite common for �larger� events to be rarer, and in
many cases this is governed precisely by a power law. The fact that this model generates this relation
and self-similarity so naturally and over a broad range make it a potential candidate for modeling such
systems. As a particular example, consider the scaling e�ect in earthquake dynamics. The Gutenberg-
Richter scaling law says that earthquake frequency goes as a power law of earthquake moment. This is
very similar to our result with regards to avalanches. Note only that, but if we regard an earthquake
as an accumulation of smaller faults all �slipping� at the same time, there is very good reason to
believe that the random �eld Ising model is a logical beginning for understanding the origins because
the Gutenberg-Richter scaling law. Recently Fisher et al. have had success modeling earthquake
dynamics with equations of motion given by

η∂tu(r, t) = F + σ(r, t)− fR[u(r, t), r, {u(r, t′ < t)}], (4.1)

with σ given by

σ(r, t) =
ˆ t

−∞
dt′
ˆ
ddr′ J(r− r′, t− t′)[u(r′, t′)− u(r, t)]. (4.2)

Of course, this equations of motion are extremely similar to the ones we used to perform the epsilon
expansion. The right hand side of 4.1 is nothing but the local magnetic �eld, and the right hand side
the corresponding rate of change in the spin variable. σ is easily recognizable as the nearest neighbor
interaction [4].

5 Conclusions and Future Directions

We can see that the random �eld Ising model has provided a powerful model of some important
phenomena. Hopefully the potential of this and related models is only beginning to be untapped.
There are many aspects of the random �eld Ising model that can be varied, such as the microscopic
states available, the interactions, perhaps entering a �nite temperature, and so on. Perhaps by
tuning these it might be possible to �nd new universality classes that better model some of the
particular systems we are interested in. Out of the factors that are readily changeable however, one
that stands out is the choice of distribution for the random part of the local �eld, hi. Recall that
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for simplicity we chose these to be independent samples on Gaussian distributions. However, if we
stand by our claim that these are suppose to represent material defects or imperfections, they would
clearly be spatially correlated. While the theoretical analysis might be substantially complicated
by the addition of correlations in the random local �eld, it would have very little impact on the
computational simulations. All that is required is an additional part to the program to generate the
hi to have the desired correlation. It will be interesting to see what, if any impact this change would
have on the universality class. If the system is truly invariant under coarse-graining at criticality,
then coarse-graining the spins would cause the correlation between the sites to decrease until it would
eventually vanish. However, this sort of argument is specious without concrete theory or simulation
behind it. Hence we can be rest assured there is plenty of interesting work left to be done in the
random �eld Ising model. [2]
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