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Abstract

In class, we approached critical phenomena from the view point of correlation func-
tions and discussed renormalization group methods for obtaining values of critical ex-
ponents. Here I discuss a parallel idea that studies critical phenomena from properties
of random curves which form the domain walls of the critical system. It will be shown
that such random curves obey a stochastic differential equation which can be regarded
as a conformal mapping. By studying the behavior of these conformal maps, such as
the likelihood that a random walk connects two points or encompasses a certain point,
one can make connections with quantities in conformal field theory. In addition, it
will be shown that the critical exponent can be regarded as the diffusion constant for
such random walks. This is a new field which has recently attracted the attention of
theoretical physicists and many questions still remain. A general overview is presented
here.
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1 Introduction

Deep mathematics and physics have had a long love-hate relationship with intermitent re-
naissances of collaboration. In the area of field theory and string theory, Atiyah and Witten
have forged deep relationships between geometry and physics and some of this has been man-
ifested in the study of the fractional quantum Hall effect [1,12]. But despite such interactions,
for better or worse, the study of critical phenomena have seen relatively little interaction
with exact mathematics. In recent years, however, there has been a developing relationship
between the study of Schramm (stochastic) Loewner evolution (SLE) and critical phenom-
ena. Born out of probability theory and the measure theory for random curves in the plane,
theoretical physicists have been finding that the mathematicians have devised a framework
that not only gives another interpretation of critical phenomena and their associated critical
exponents but also a more geometrical picture for the deep ideas of conformal field theory
that links it with the study of self avoiding random walks [3,7]. On the one hand, SLE’s ask
more basic questions: What is the probability that a domain wall in a domain wall forms
and encloses an area A? Is there a difference between a random walk at Tc and a random
walk at .5Tc? What’s the probability of having a critical cluster span the system size? These
are still open questions and instead in this paper, I simply give an overview of what an SLE
is, how it relates the study of critical phenomena and predicts critical exponents and some
of the insights it gives into conformal field theory. To frame these developments properly,
its useful to review historically some of the discoveries in critical phenomena.

1.1 Historical Development of Critical Phenomena

The study of critical phenomena has long captured the attention of physicists and has been
a breeding ground of many new ideas in theoretical physicists as they attempted to devise
more elaborate tools for characterizing different critical phenomena.

Following Onsager’s exact solution for the free energy of the square lattice Ising model,
steady progress was made to find exact solutions to many physically relevant integrable
models. While many of these solutions gave exact results for critical exponents and critical
temperatures, they shed very little light on the general nature of critical systems.

The key insight to critical phenomena came in the 1960’s by Wilson, Kadanoff and Widom
work the renormalization group. It was realized that in the scaling limit where both the
correlation length and all macroscopic length scales are much larger than the length scale
associated with microscopic interactions, critical classical systems are equivalent to renor-
malizable field theories with the same symmetries. Near criticality, correlation functions of
the microscopic theory became equivalent to correlation functions of the relevant operators
in these quantum field theories [6].

There was then a push to classify all possible renormalizable quantum field theories and to
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systematically label which classical models went to which suitable renormalizable quantum
field theories in two dimensions and to determine all the relevant operators in the quantum
field theory. Essentially this was carried to its logical conclusion (in many cases) through
conformal field theory which classified renormalizable field theories through something called
the central charge c and the scaling dimension of the operator h.

By knowing (c, h) one is able to tabulate all the possible relevant operators in a particular
theory [5]. In recent works connections between the central charge and SLE’s have been
developed [2, 8, 9]. Conformal field theory also revealed a deeper algebraic structure that is
present in critical systems. It was shown that correlation functions involving certain opera-
tors in this algebra must satisfy a specific differential equation. In conformal field theory, one
regards this procedure as inserting an operator (as a pole in the complex plane, representing
the continuum critical system) insertion. Once again, SLEs have revealed a more physical
interpretation of this procedure: they regard this operator insertion as a boundary condition
requiring a random walk to end on it. There also is a notion of the renormalization group
where operator insertions can be reduced to the relevant (primary) operators of the theory.
Though powerful, the picture is perhaps not as physical and imprecise mathematically. Ex-
actly what are these operators that are being inserted? How should one interpret an operator
insertion physically?

Perhaps more alarming is the notion of conformal symmetry. Instead of simple scale (di-
lation), rotation and translational invariance, the idea of conformal symmetry as described
by Polyakov to include all analytic functional transformations of the plane needs physical
interpretation. What does it mean to change the scales as a smooth function over the entire
plane?

1.2 The SLE Point of View

In the stochastic-Loewner evolution picture, the approach is not to invoke mathematically
imprecise notions of operators acting in the complex plane, followed by operator insertions in
correlation functions and expansions using the Ward-Takahasi identity. Nor does the point
of view invoke a renormalization group type of transformation which is mathematically
cumbersome.

Instead, the main advantage of the SLE point of view is its generality. It should apply to
any critical statistical mechanical model in which it is possible to identify non-crossing paths
(i.e. domain walls). This approach focuses on the properties of a single curve, conditioned to
start at the boundary of a domain, in the background of many critical clusters. This leads to
a very specific and physically clear picture of what it means to be conformally invariant [7].

As was shown by Loewner it also turns out that any such curve in the plane which does not
cross itself can be described by a dynamical process called a Loewner evolution, in which
the curve is imagined to grow continuously [10]. In this picture, instead of looking at the
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final result, the domain wall, one considers how the curve grew and the likelihood it grew to
the final condition.

Now, instead of describing this process directly, Loewner considered the evolution of an
analytic function which conformally mapped the region outside the curve into a given domain.
A curve of this type turns out to be given completely by a real, continuous function at.

Schramm then argued that such a curve must be described by a one-dimensional Brown-
ian motion with a single parameter, κ, the diffusion constant left unknown. Indeed, the
Ising model, Potts models, XY model and self-avoiding random walks have been shown to
correspond to particular choices of κ.

With the assumption that SLE describes such a one-dimensional Brownian motion, many
properties like the critical exponents have been calculated rigorously. Though interesting,
the rigorous mathematics behind the SLE will for the most part be avoided. Rather in this
paper, I hope to describe the view of critical systems and conformal field theory as properties
of random walks.

2 Random Curves - The Ising Model

Its easiest to think about the Ising model first. The partition function is the usual,

ZIsing = Tr exp

(
βJ
∑
r,r′

s(r)s(r′)

)
∝ Tr

∏
r,r′

(1 + xs(r)s(r′)) (1)

where x = tanh(βJ) and the sum and product are over nearest neighbor sites. At high
temperature (βJ � 1) one finds a disordered state and at low temperatures (βJ � 1) one
is in an ordered state: if a spin has a fixed value (say fixed to be up at position r) then even
very far away, there is a large probability (not zero) that a spin at a site r′ is also up.

The conventional approach to studying critical phenomena is to focus on the behavior of
correlation functions of spins. In the scaling limit, one says these spins become local operators
in a quantum field theory. The correlation function has the power law behavior 〈s(r1)s(r2)〉 ∼
|r1 − r2|−2x which is characteristic of a massless QFT (i.e. a conformal field theory). Such a
correlation function can be found through field theoretic methods or an exact method like
the transfer matrix [6].

But there is another way to think of the Ising model. One can imagine expanding the
product (1) out into 2N terms where N is the total number of edges [4]. On the lattice, one
can consider each term xs(r)s(r′) appearing in the product as placing a bold link on the
lattice connecting sites r and r′ (see Figure 1). Each surviving graph is then the union of
non-intersecting closed loops. Clearly, for a closed path, one finds xlength number of factors
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of tanh(βJ) and the partition function can be written as

Z =
∑

possible loops

xlength (2)

When x = tanh(βJ) < 1 then the dominating terms come from loops with short lengths
while if x ∼ 1, then long loops dominate. This matches with the notion of a disordered state
(βJ < 1 ⇒ x < 1 and an ordered state (βJ � 1 ⇒ x ∼ 1). Now, in a correlation function,

Figure 1: A partition function can be written as a sum over possible closed loops on the
lattice. [3].

one considers the quantity,

〈s(r1)s(r2)〉 =
Tr
(
s(r1)s(r2)

∏
r,r′(1 + xs(r)s(r′))

)
∏

r,r′(1 + xs(r)s(r′))
(3)

so one sees that instead of considering closed strings as before, one has an open loop at r1

and r2 and one sums over all possible configurations connecting the two points on the lattice
(see Figure 2). (One can think of this entire procedure in terms of Grassmann variables and
path integrals. By putting Grassmann variables on the lattice sites, one knows that in the
path integral vanishes unless each Grassmann variable appears once. Hence the partition
function is over closed loops and the correlation function is over open loops with end points
at r1 and r2 since Grassmann variables at those two point already appear in the trace.)
In this language of open loops, one sees that a correlation function essentially amounts to
the question, what is the liklihood of a random walk connecting points r1 and r2. An SLE
is a continuum version of such a curve. Hence, it is plausible that one might obtain the
same data describing critical phenomena from the more basic construction of random walks.
Many other models, like the Potts models, also can be thought of in terms of the likelihood
of domain walls.
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Figure 2: One can think of the correlation function of the probability of walking randomly
from one point in the lattice to another [3].

3 Conformal Maps and the Loewner Equation

So far, I have only discussed the the fact that one can also analyze a statistical model by
looking at the statistics of a one dimensional random walk on a lattice. The question now
is how to describe such a random walk in a useful manner. The key insight for this begins
with the Riemann mapping theorem.

One knows that in the complex plane, any analytic function can be thought of as a trans-
formation of one region of the plane, D in the z-plane into another region R in the w-plane
through w = g(z). A little more advanced complex analysis tells one that if g(z) is an
analytic and univalent (it takes each point on the boundary of D into a unique point. It
does not glue points together). In this case, the derivative of g(z) does not vanish in D and
takes a the boundary of D into the boundary of R and is said to be conformal. In this way,
the study of complex functions connects with the study of curves and regions in the plane.

The conformal functions also have one additional property. If ga and gb are functions that
map Da and Db into the upper half plane respectively. Then, their composition gab(z) =
gb(ga(z)) maps the part of the region Dab which is contained in Da into the upper half
plane. Hence, the larger region is mapped into a smaller region. Successive iteractions give
successively smaller regions (see Figure 3).

3.1 The Loewner Equation

Loewner then considered the evolution of the tip of a random walk as a conformal map that
successively mapped the plane into smaller and smaller regions (see Figure 4). The motion
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Figure 3: Conformal maps map regions of the complex plane into each other with the map
is onto. Successive maps map larger regions into a smaller region [7].

for the is given by [10]
dgt(z)

dt
=

2

gt(z)− at
(4)

Here at is a real driving function. Here, ”time” parametrizes a point along the curve. At time
zero, gt=0 is the identity map which maps the complex plane, H into itself. The boundary
curve is the real axis and this is mapped into itself as well. At each subsequent time, gt(z)
defines a new mapping region Dt which maps into a region of H. The boundary of this region
is mapped on the real axis [7]. The important properties of gt come from the composition

Figure 4: Loewner considers the stochastic evolution of the tip. Each successive ”time” step
gives a different map of the complex plane into itself. [7]

property. One considers the situation where there are two different driving functions aAt
and aBt which occur in the intervals [0, tA] and [0, tB] respectively and the composite forcing
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function is given by

at =

{ aAt when 0 < t < tA

aBt−tA when tA < t < t+ tB

Hence in the segment for 0 < t < tA one has a conformal map gA given by a differential
equation with a driving force aAt and while in the region tA < t < t + tB one has another
conformal map gB. The composition rule then tells us that

gtA+tB = gB(gA(z))

gives the evolution of the tip given the past data. An important consequence is that the
mapping sets Dt get smaller as t gets larger. Hence if s is greater than t then Dt contains
Ds. In a sense, the problem is transformed to a one dimensional random walk along a line
with varying step size. One can imagine a series of mappings of segments onto the real line
that grow smaller as time goes on.

In the case where at, this should be written in terms of differential forms as

dgt = 2
dt

gt
− dat (5)

3.2 Critical Phenomena

Originally, Loewner evolution was simply used to describe fractal patterns. The application
to critical phenomena came from Schramm who proved that to generated the random walk
characteristic of domain walls of the critical system, the driving function must be a geometric
Brownian motion. Namely,

dat =
√
κdt (6)

4 SLE’s and Critical Exponents

To relate the data about random walks to critical exponents, one needs to map the SLE from
the plane parameterized by z onto the cylinder with coordinates w through the conformal
mapping, z = e−w. The Loewner equation becomes

dgt(z)

dt
= −gt(z)

gt(z) + eiθt

gt(z)− eiθt
(7)

One can argue again that the variable θt for a critical system must be a geometric Brownian
motion. Its not immediately obvious how the cylindrical SLE is related to the planar SLE,
but it has been shown that if a SLE on the plane is conditioned at t = 0 to begin at the origin
and hit the boundary at t = t1, then on the cylinder, the SLE is conditioned to begin at the
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origin at θ0 and end at angle eiθt1 . This implies that the planar SLE and the cylindrical SLE
have the same κ [3].

Now, the winding angle at time t is simply given by θt − θ0. Hence, since θt is given by a
geometric Brownian motion, the winding angle should be normally distributed with variance
κt.

For a critical system, one often asks for the correlation function

〈O(r1)O(r2)〉 ∼ |r1 − r2|−2xO

The operators are thought of as distributed normally with mean 0 (for instance the Ising
model, 〈s(r)〉 = 0). Hence the correlation function, is the variance for an operator O [paper].
By mapping the plane onto the cylinder of length L and circumference `, the correlation
function goes as e−2πxOL/` so that the variance of the winding angles goes as xOL. In the
SLE, one parameterized the length with the variable t so one identifies L ∼ t. One then
finds that κ is directly identifiable with the critical exponent for a critical theory.

However, this is a tentative correspondence. In truth, it has only been shown to be true
for the O(n) models where the relevant operators are eiφ(r). Proofs are still necessary, but
people in the field suspect that the similar proofs exist and that following should be true [3].

1. κ = −2: loop erased random walks (proven)

2. κ = 8/3: self-avoiding random walks (unproven)

3. κ = 3: cluster boundaries of the Ising model (unproven)

4. κ = 4: double dimer models (unproven). Kosterlitz-Thouless (proven), Gaussian ran-
dom field (proven) and harmonic explorer (proven)

5. κ = 6: cluster boundaries of percolation (proven)

6. κ = 8: dense phase of self-avoiding random walks and boundaries of uniform spanning
trees (proven)

5 Schramm’s Formula

By thinking about the nature of the domain walls, SLE gives a frame work to answer ques-
tions not readily answerable by only considering correlation functions. One such question
(which will later turn out to be related to conformal field theories) is the question: given a
curve connecting two points r1 and r2 on the boundary of a domain D [11].
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Let the probability that the curve passes to the left of the point ξ be P (ξ, ξ̄; a0). ξ̄ is
included just as a reminder that the function does not have to be holomorphic. Now the
Loewner equation is a conformal mapping of the plane onto itself. More importantly, the
equation (4) will map the curve onto its image. At the same time it also maps the point ξ
to ξ′ = gt(ξ) = ξ + 2dt/(ξ − a0). It is a simple application of (4) given the intial condition
that g0 is the point ξ. Now, since this is a conformal mapping, Schramm realized that if the
curve lies to the left of ξ, then so its image must lie to the left of ξ′. Hence the probabilities
must be the same:

P (ξ, ξ̄; a0) =
〈
P (ξ + 2dt/(ξ − a0), ξ̄ + 2/dt(ξ̄ − a0); a0 +

√
κdBt)

〉
where the average is over all realizations of the Brownian motion dBt up to time dt. Now, Tay-
lor expanding and remembering that for a mean zero distribution 〈dBt〉 = 0 and 〈(dBt)

2〉 = dt
and setting the coefficient of dt = 0 since the average is not a random variable, one finds(

2

ξ − a0

∂

∂ξ
+

2

ξ̄ − a0

∂

∂ξ̄
+
κ

2

∂2

∂a2
0

)
P (ξ, ξ̄; a0) = 0 (8)

This constitutes Schramm’s equation and is a typical differential equation that conditional
probabilities satisfy in stochastic differential equations. It turns out that such a differential
equation also applies to correlation functions in conformal field theory when one considers
primary operator insertions. Physically, this gives the picture that, by inserting the primary
operators, one is providing some boundary condition on the domain wall (i.e. if I fix a spin
up, then the curve must form a domain wall around a spin up cluster in the critical system).

6 SLE’s and Conformal Field Theory

Another object one can consider is the effect of inserting boundary operators into the critical
system. In these types of problems in conformal field theory, one thinks of inserting an
operator at the boundary. This operator is known to create a domain wall in the lattice that
connects it to infinity. For instance, one can imagine fixing one spin in the Ising model at
the boundary to be up and watching how the domain wall forms from this point.

Such a question is easily considered in SLE’s. The existence of such a curve fixes a set of
field configurations ψ. I can write the state of the curve then as a path integral

|γt〉 =

∫
[dψ′Γ]

∫
ψΓ=ψ′Γ;γ

[dψ]e−S[ψ] |ψ′Γ〉

All this says is that I integrate over field configurations consistent with the domain wall/random
walk, γ. Integrating over all possible realizations of the curve γ defines a state of the system

|h〉 = |ht〉 =

∫
dµ(γt) |γt〉
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Now the measure on the curve is dependent on at in the Loewner evolution through a
sequence of iterated maps dgt = 2dt/gt − dat. For a geometric Brownian motion, Cardy
shows that this relations between the measure relates the value of the highest weight and
the central charge to the diffusion constant

h =
6− κ

2κ

c =
(3κ− 8)(6− κ)

2κ
(9)

Hence, one finds that different boundary operators in conformal field theory will generate
domain walls that have differing diffusion constants [2, 3]

7 Conclusion

Some of the most exciting ideas in theoretical physics are those linking algebraic expressions
with geometrical interpretations. The geometric meaning of the equations of general relativ-
ity, ideas of parallel transport on ”surfaces” in Yang-Mill’s description of gauge fields and a
knot theory description of fractional statistics are just some examples of these. SLE’s though
a relatively new field, offers a geometric picture for the quantities in conformal field theory.
It seeks to describe the patterns of paths of Brownian motion, the forms of percolating clus-
ters, the shapes of snowflakes and phase boundaries or the growth patterns of dendrites and
only now are people beginning to relate these geometric objects to the algebraic objects in
conformal field theory. Though highly mathematical, it offers an interesting interpretation of
quantities in conformal field. Abstract operator insertions or boundary conformal operators
are reinterpreted in terms of random walks on the plane. However, much is still unknown in
this field, but hopefully a general picture of this field has been presented.
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