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Abstract 

Bose Hubbard model is presented and basic natures of Mott insulating phase 

and superfluid phase are studied in this essay. Also how and when this 

quantum phase transition occurs is discussed. Experimental supports from 

ultracold atoms physics are explained, while some miscellaneous topics are 

touched in the end. 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction and background 

For many decades physicists focused on the phenomena of metal-insulator transition 

in Fermi systems, yet “the understanding of it remained fragmented” [1]. Instead 

M.Fisher et.al. [1] studied the possible similar transitions in Bose systems. Analogous 

to currents of charged Fermions they proposed the onset of supercurrent of Bosons at 

zero temperature as a new quantum phase transition. In this original paper, they wrote 

out the Bose Hubbard model and discussed the phase transition between two possible 

states: Mott insulating phase (MI) in which supercurrent is absent and excitation 

energy gap exists, and superfluid phase (SF) which possesses supercurrent and global 

coherence with no energy gap. Ever since then, the studies on such a peculiar phase 

transition in Bose systems have been carried out with great progress mainly due to 

two reasons: 1) Unlike Fermi analog, Bosons can have natural order parameter in 

form of off-diagonal long-ranged order in superfluid phase, which were studied with 

mature techniques to some extent compared with the less well-understood 

metal-insulator transitions; 2) experimentally optical lattice technique was widely 

available in late 90’ last century. Due to the excellent control over nearly all relevant 

parameters in the Hamiltonian, optical lattice is a perfect platform for observing this 

MI-SF phase transition and testing the predictions of theoretical work. Many 

interesting phenomena predicted such as the exotic interference pattern due to 

coherence, non-dissipative flow, particle-hole excitations etc. were observed in recent 

years. More over, the recent progress in experiment on supersolidty [2] is widely 

accepted to be associated with the disorder in Bose systems. The study on Bose 

Hubbard model with disorder analytically and numerically might shed light on the 

explanation of this peculiar yet elusive phenomenon. Therefore the research on 

MI-SF phase transition remains important nowadays. In this essay, I plan to introduce 

the theory in Bose Hubbard model mainly in frame work of mean field theory (MFT) 

and showed the corresponding experimental results. Also some interesting topic for 

Bose Hubbard model would be mentioned. 

 

 

2. Bose Hubbard model 
 

Consider spinless Bosonic particles in a uniform lattice. The system is strongly 

correlated in that there’s a strong repulsive onsite interaction U analogous to that in 

common Hubbard model. Also due to virtual quantum exchange effect the energy of 

the system could be lowered by J, which we call hopping energy (or kinetic energy 

less rigorously, as in some paper). For theoretical convenience we choose to fix 

chemical potential (grand canonical ensemble) instead of total particle number (micro 

canonical ensemble). The latter is preferred in experiment and we shall return to this 

later. Therefore Bose Hubbard model has the following form: 
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The first term corresponds to hopping term and last term is interaction term, where 

particle number operator: 

i i in a a+=        (2.2) 

is assumed. The middle term is chemical potential term with external potential εi, 

which could be for example, the trapping potential in optical lattice.  

 

Now let’s take a closer observation on the Hamiltonian in limiting cases heuristically. 

a) U/J >>1 

Notice that in the limit of U/J >>1, onsite interaction is dominated. Any hopping 

would bring an extra particle on one site and one particle loss on another. Since the 

interaction is quadratic this leads to a net increase in energy and the small negative 

hopping energy cannot compensate it, therefore hopping is energetically disfavored 

and particle number is pinned with certain integer on every site. Due to this lack of 

mobility we identify it as Mott insulating phase.  

 

 

Fig.1. Onsite interaction can raise total energy, so even distribution is preferred [3].   

 

Quantitatively we can determine the on-site particle number by minimizing energy 

when J is exactly zero. We introduce on-site energy E(n): 
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Notice that the system is homogeneous so we abandon the index for each site. By 

differentiating the on-site energy with respect to particle number, we find that for 

fixed chemical potential, the on-site particle number n0 which minimizes energy must 

satisfy: 

0 [ / ]n Uµ=       (2.4) 

where “[ ]” denotes floor function which gives the maximum integer smaller than 

argument. We immediately see that on-site particle number is a step function of 

chemical potential. As hopping energy J increases slightly from zero, but still small, 

as we stated above, energy gain in J can not balance the energy cost in hopping, so we 

expect the ground state still characterizes by this fixed integer. As we can see clearly 

in phase diagram Fig 2. 



 

b) U/J <<1 

In the opposite limit U/J <<1, hopping process can effectively lowered total energy 

which blurs on site particle number and makes phases on different sites coherent 

(notice the conjugation of particle number and phase), which we identify as superfluid 

phase. Hence we assume there would be a quantum phase transition in between these 

two limits due to the quantum fluctuations at zero temperature [4]. 

 

Calculations based on MFT indeed show such a phase transition exists. We start from 

tight binding limit in which we treat hopping terms perturbatively and assume the 

infinite-range hopping [1]. We divided the Hamiltonian in two parts: H1 corresponds 

to hopping terms and H0 corresponds to the rest part. Hence we get partition function 

in the following way: 
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where all Hamiltonians are in the interaction representation and T is the ordering 

operator. Notice that all terms in H1 are quadratic, we need to decouple them via 

introducing complex field ψi on each site. This is the standard Hubbard-Stratonovich 

transformation. In the end we obtained effective action: 
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We seek the lowest energy saddle point solution by assuming the filed is independent 

of time, and use cumulant expansion, we can transform the effective action in Landau 

energy form: 
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Notice that change in sign of coefficient r in quadratic term leads to the phase 

transition in Landau theory. So by setting r=0, we can determine the phase boundary. 

This corresponds to the condition that: 
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Notice that n0 is a step function of chemical potential and U. Therefore we obtained 

phase diagram. From the diagram, we can see those “Mott lobes” in which is MI 

phase and the SF phase is outside. This is reasonable because if we start from very 

small J, as J/U increases, the probability of hopping increases, which makes the 

particle-hole excitation energy gap decrease but still finite, until eventually it reaches 

zero, indicating the onset of SF phase. The energy gap can be directly obtained by 

measuring the distance from the upper Mott lobe boundary to the lower Mott lobe 

boundary for a certain value of J. And since according to eqn.2.5, the top of Mott lobe 

is parabolic, based on scaling we conclude that:  
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The dynamical critical exponent being 1/2 is what we expect in MFT. More rigorous 



calculation based on Pade analysis of series gives a slightly larger value of critical 

exponent around 0.69 [5].  See Fig. 3.  

 

 
Fig.2. Phase diagram for homogeneous Bose lattice [1]. 

 

 

 

Fig. 3. Local shape at near the top of Mott lobe. The left curve corresponds to lowest 

order of Pade approximant(4
th
 order series), and right curves correspond to higher 

order of Pade approximant [5]. Notice that it gives sharper top of Mott lobes than the 

one from MFT. 

 

 

3. Observation the onset of phase transition in optical lattice 

Modern techniques in manipulating ultra-cold atoms in vacuum make the optical 

lattice available. Specifically we let two identical laser beams counter-propagating to 

set up a optical standing wave in direction. If we use six beams in x,y,z directions, 3D 

optical lattice can be realized. By carefully detuning the frequency of laser with 

respect to the resonant frequency of alkali atoms, we can exert attractive force on 

atoms in the direction of more-intense-field region. Therefore it is possible to control 



the effective potential on atoms by modulating the electromagnetic fields in laser 

beams arbitrarily and trap those cold atoms for a considerably long time. This brings a 

great advantage in studying condensed matter system in optical lattice.  

 

Fig 4. Illustration of optical lattice [3] 

 

Detailed calculations on cold atoms show that values of J and U in Bose Hubbard 

Hamiltonian can be determined: 
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Where w(x) is the single particle wannier function localized on one site, V is lattice 

potential and a is the scattering length of cold atoms. Therefore the ratio J/U is 

obtained as following: 

 

Fig 5. Relation between optical well depth V and ratio U/J. The energy is scaled by 

recoil energy Er 

 

Now we can dynamically change the values of J/U in a wide range, which is essential 

in observing the MI-SF phase transition. In 2002, Greiner et.al. [6] observed such a 

phase transition for the first time. They prepared cold atoms in condensate and 

transferred them adiabatically into optical lattice. They changed lattice potential V so 

as to control the values of J/U hence sampled different points in phase diagram. As 

they found, in small U/J region which theory gives superfluid phase, interference 

pattern due to the coherence among particles on all sites shows up. As U/J was tuned 



large enough, such an interference pattern disappears. This marks the onset of MI-SF 

phase transition. 

 

 

Fig 6. Without lattice potential only one central peak in momentum space is 

observable. As U/J is tuned up from a to h, we can see that the interference pattern 

will gradually disappear. Different colors represent different values of visibility [6]. 

 

Also in their experiment, they found such a transition is reversible as long as they 

crossed the phase boundary. They increased U/J to let system transform from SF 

phase to MI phase, kept the system in MI phase for a considerable long time and 

decreased U/J, and they found the interference pattern was recovered almost 

immediately on the time scale of h/J which is the tunneling time between two adjacent 

sites. They concluded the phase coherence over the entire lattice was restored with 

speed which is determined intrinsically by quantum mechanics, since all particles are 

identical and they act collectively. It makes no sense to tell which particle tunneled. 

 

 

4. More on Mott insulating phase 

a) particle-hole excitation 

In M.Greiner et.al.’ paper [6], the excitation spectrum was also tested experimentally. 

They applied perturbations which could either be potential gradient or shaking the 

system by modulating the optical well to excite the system. They noticed that in the 

MI region the system is robust against perturbations because phase coherence could 

be readily reestablished when the lattice depth decreased so that the system came into 

SF phase. This can be well explained by the Mott gap. As perturbations increase to a 

certain value, particle-hole excitation sets in and MI phase is destroyed to some extent. 

This can be seen from the fact that as the system goes back into SF phase the width of 

central peak increases enormously which means a broader distribution of momenta or 

coherence is less well kept. Higher order of particle-hole excitations also show up if 

the perturbations are even larger. See Fig. 7. 

 



 

Fig. 7.  Excitation spectra under external perturbations [6]. These peaks correspond 

to particle-hole excitations in MI phase and the background signal is from SF 

component which will be mentioned later. 

 

b) Ground state of MI phase 

In Guzwiller approximation [7] the many-body wavefuction is the product of single 

particle states. Hence the ground state of MI phase can be expressed as:  

ˆ( ) 0n

MF i

i
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Since it is the eigenstate of local particle number operator, we see immediately there’s 

the order parameter of superfluid (condensate fraction) is zero: 

MF i MFaψ = Ψ Ψ 0i MF i MFaψ = Ψ Ψ =    (4.2) 

As we stated above that in MI region the onsite particle number is fixed while phase 

coherence is destroyed. Hence we shall expect interference vanishes immediately as 

we enter the Mott lobe. However close observation [8] indicates coherence may 

maintain even in MI phase.  

 



Fig. 8.  Detailed detection on visibility of interference pattern shows that phase 

coherence does not vanish abruptly on the phase boundary of MI and SF phases. 

Visibility is one when there’s perfect SF and zero when there’s no SF component [8].  

 

This can be explained beyond Guzwiller’s approximation which is exact only when J= 

0. Instead we have better guess of ground state in J/U expansion in the 1
st
 order: 
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Thus the ground state is not a pure eigenstate of onsite particle number and superfluid 

component is nonzero. Hence we conclude that in the Mott lobe the short ranged 

phasse coherence still persists while global phase coherence is destroyed. We can 

regard the ground state of MI with nonzero J as the mixture of mainly pure “Mott 

state” and additionally small amount of particle-hole excitations due to nonzero 

hopping. More detailed calculations based on this approximation can reproduce the 

visibility of interference which agrees with experiment quite well [9].  

 

5. More on Superfluid phase 

In Guzwiller’s approximation we can write out the ground state easily: 
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In order to have a well defined macroscopic phase the ground state must be coherent 

state: 
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Hence the coefficients of basis in Fork space follows the Poissonian distribution: 
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A simple prediction from this wave function form is that each ket would evolve with 

different speed so initial coherence could be destroyed until after the revival time 

t=h/U when each number state undergoes a phase shift of integer periods. Experiment 

directly proved this [3].  

 
Fig. 9. Quantum dynamics of a coherent state. The macroscopic field collapsed and 



fully revived as time elapses. The x,y coordinates are real and imaginary part of 

complex number β, similar to α in eqn. 5.2 

 

Once the ground state of SF phase is obtained from Guzwiller’s ansatz, we can 

calculate condensate fraction (superfluid order parameter ψ, see eqn.4.2). Detailed 

numerical calculations [10] based on variation method using mean field Hamiltonian 

yielded condensate fraction a long time ago. But only recent the accurate  

experimental plots were obtained from Kettle’s group [11] (Fig. 10.). They studied the 

stability of superfluid currents in a system of ultracold Bosons in a moving optical 

lattice. Unlike the method of observing the onset of interference pattern, the transition 

point were observed quite clearly and sharply in this approach. 

 

 

 

Fig. 10. a) Determination of the critical momentum of superfluid flow at U/UC= 0.61 

for a variable number of cycles of the momentum modulation (blue, purple and red 

lines). b) Critical momentum for a 3D condensate. Notice that theory (solid line) fits 

well with experimental data. 

 

 

6. Even more on optical lattice 

All the previous theoretical discussions were limited in homogeneous system. 

However in real practice this is not always possible. Since optical lattices are formed 

by Gaussian laser beams, the trapping potential is asymptotically simple harmonic 



potential. Hence the translational invariance of lattice is broken and we need to 

introduce the so called local chemical potential: 

( ) ( )x V xµ µ= −�     (6.1) 

Where V(x) is the harmonic potential. Our previous results can work again once we 

replace chemical potential by local counterpart. This is called local density 

approximation. Notice that now local chemical potential is no longer fixed, different 

sites correspond to different place in phase diagram, indicating a coexistence of MI 

and SF phases in the arrangement of wedding cake in real space. This fact gives a 

natural explanation of SF background signal in Fig.7.  

 

 
Fig. 11. a) Phase diagram of Bose Hubbard model in inhomogeneous lattice; b) 

arrangement of SI and MI phases correspondingly. Notice that mean particle number 

decreases from center towards outside with layers, so it looks like a wedding cake [3]. 

 

 

7. Miscellaneous topics 

a) Bose Hubbard model with disorder 

In M.Fisher, et.al.’ original paper, the possibility of Bose glass phase in disordered 

lattice was discussed and phase diagram given based on physical argument. It is 

characterized as no gap, finite compressibility and yet an infinite superfluid 

susceptibility. Since then little progress was achieved in concrete calculations on its 

phase boundary. Recent work [12] using replica treatment and renormalization flow 

gave a possible phase boundary, which is quite different from Fisher’s however. More 

work is needed on Bose Hubbard model with disorder since it might shed light on 

understanding the origin of supersolidity. A very recent work [13] on this topic is 

quite intriguing and worth reading. 

 

b) Lower dimensions 

Unlike MI phse which depends weakly on dimensionality, the physics of SF depends 

greatly on dimentsionality: in 3D it is conventional BEC; in 2D a Kosterlitz-Thouless 

SF; in 1D no true SF. Quantum Monte Carlo methods [14] give the most accurate 

results in these lower dimensions while MFT is worse. Experimentally MI-SF 

transitions have been observed in 3D[6] in 2002, 2D[15] in 2007, 1D[16] in 2005. 



Interested readers may find details in these references. 

 

c) Next nearest site hopping effects 

Though the next nearest site hopping term is two orders of magnitude smaller than 

nearest site hopping term, the effects of the former was studied [17] via Bogoliubov 

method. The conclusion is that BEC termperature is enhanced due to this effect in sc 

lattice but decreases in bcc and fcc lattice.  

 

d) Bose Hubbard model with two different Bosons  

If we set the number of species of Bosons to be two instead one, we may get five 

stable SF and MI ground states with rich nontrivial phase diagram [18]. Interested 

readers may find details in this reference. 

 

8. Conclusion 

In this essay we studied Bose Hubbard Model mainly in MFT. We identified MI phase 

as finite gap, infinite compressibility, exact integer commensurate fillings of particles 

and none global phase coherence, while SF phase as gapless, arbitrary fillings of 

particles with phase coherence. We studied the particle-hole excitation in MI phase 

and condensate fraction, dissipative current in SF phase both theoretically and 

experimentally, pointing out the drawbacks of MFT. We mentioned some interesting 

topics relevant to traditional Bose Hubbard model and commented on the significance 

of some of them. 
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