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Abstract:

Complex networks are ubiquitous both in biology and sociology, and also widely
constructed and exploited in science and technology. Common topological features
are shared among various complex networks across disciplines. Renormalization of
complex networks, yielding scaling laws and critical exponents, offers a new
approach to category distinctive networks into universality classes, revealing
similarities hard to capture in usually ways, whose analysis will help the
understanding and facilitate improvement in different fields.



Introduction

Network structure, either in a concrete or abstract sense, is ubiquitous across
various disciplines. Complex networks are widely observed and constructed in nature
and sociology for better description and revealment of the underlying organization
principles, and also broadly designed and exploited in science and technology for
efficiency and economy in construction, maintenance and further spread into other
districts.

In nature, food chain and web is a good example of complex networks, which
may incorporate millions of species in different domains of life across wide areas in
the biosphere. Linked by the predator-prey relationship, a wide range of species
weaves into a complex network with directions. Chemicals in a cell linked by
chemical reactions, protein-protein interaction network, and metabolic system of E.
colil! are other examples with great study interest nowadays.

In sociology, every individual is linked with his or her acquaintances, which
expands an undirected network. It is interesting to note here an amazing empirical
study”! by psychologist Stanley Milgram that every two people in the United States
has an average acquaintanceship of six, i.e. on average any two are indirectly known
through five other people (Fig. 1), which is later termed as “six degrees of
separation”. Although the acquaintance length may not be accurate, its smallness is
later verified” and generally accepted'®. Similar results are also obtained through
collaboration relationship for actors!”? whether two have acted in a movie together,
and for scientists™ whether two have written a paper together.

Fig. 1! Illustration of six degrees of separation: each small circle
represents an individual. A pair is linked if they are acquaintances.
“A” and “B” are indirectly connected through 1-5.

In the field of technology, the Internet is a physical network, where numerous
routers and computers are linked through cables or wireless signals, and the World



Wide Web is a virtual network, where enormous web pages are directionally
connected through hyperlinks.

We can sip the complexity of the networks from the examples listed above. The
study of network structure falls into the field of graph theory, where various networks
are simplified into nodes connected by edges. Mathematicians Paul Erdés and Alfréd
Rényi proposed a random graph model™, which serves as the mean field theory in
physics. In the Erdés-Rényi model, each pair of nodes is randomly connected with
some probability p. Thus in a random graph of N nodes, there are pN (N -1)/2
edges. It can be speculated that the real networks have underlying organization
principles coded into their topological structures, which forecasts intrinsic deviations
from the Erdés-Rényi model.

Not embedded in Euclidean space, complex networks are delineated in concepts
from graph theory, among which there are three paramount intrinsic properties''*':
small-world, clustering and scale-free, which are described by average path length,
clustering coefficient and degree distribution, respectively. First, the path length
between any two nodes is the smallest number of edges connecting the pair. The “six
degrees of separation” is the folklore version of the small-world feature, which
emphasizes the smallness of the average path length. Erdés-Rényi model is
small-world, too, where the average path length [ increases only logarithmically with
the number of the nodes N,

l = InN.

Second, the clustering coefficient of the whole graph is the average of the
clustering coefficient of every node, which is the ratio of the real and maximal edges
of the subgraph involving the selected node and its directly connected neighbors. The
clustering coefficient of real networks is usually much larger, i.e. clustering, than that
of Erdds-Rényi model (Table 1).

Network Size {k} £ £ and C Crand Reference
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level — 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras ef al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 5.9 4.79 0.43  18x10™* Newman, 2001a, 2001b, 2001¢c
MEDLINE co-authorship 1520251 18.1 4.6 401 0.066 1.1x107° Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56627 173 4.0 212 0.726 0.003 Newman, 2001a, 2001b, 2001¢
NCSTRL co-authorship 11994 3.59 9.7 7.34 0496  3x10™* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 0.5 82 059  5.4x1073 Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 076 55x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 29 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 283 2.62 1.08 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solée, 2000
Silwood Park food web 154 475 3.40 3.23 0.15 0.03 Montoya and Solé, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001  Ferrer i Cancho and Solé, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook ef al., 2001b
Power grid 4941 2.67 18.7 124 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998

Table 1" Comparison between real networks and random graphs:
Size denotes the number of nodes, <k> for the average degree, [ for the
average path length, and C for clustering coefficient.



Finally, the degree distribution P(k) is the probability for a randomly chosen
node with exactly k£ edges. While Erdés-Rényi model displays a Poisson distribution,
real networks usually have a power-law tail, which is referred to as scale-free,

P(k)= k™.

Although clustering coefficient and degree distribution manifest the non-random
character for real networks, we still can not see clearly the difference in organization
principles for distinctive real networks. Recently, C. Song, S. Havlin and H. A.
Hakse!'"! reported self-similarity of some complex networks under renormalization
procedures. When the network is tiled by box-counting method with different box size
I, the degree distribution for World Wide Web is invariant (Fig. 2). Scaling laws and
critical exponents are thus discovered!'?! in sequence and may be used to category
various networks into universality classes, where common organization principles
underlie.
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Fig. 2" Invariance of degree distribution for World Wide Web
with different box size Is. The inset shows the scaling of degree k.

Renormalization of Complex Networks

(1) Renormalization Procedure

Let us now consider a complex network G with Ny nodes connected by E, edges
under a renormalization transformation R;; which coarse-grains the network. The
coarse-graining procedure is performed in real space by the box-covering
method!!)(Fig. 3). We will tile the whole graph with boxes of box size I, i.e. the
length between every pair of nodes inside the box is smaller than [5. Two boxes are
linked if there is at least one edge connecting the nodes in the two boxes. Then every
box is replaced with a new node, which yields a new graph. The edges in the
renormalized graph are the links between the previous boxes. After t successive
renormalization transformations, we will have a renormalized graph

G =Ry’ (Go),



with N; nodes and E; edges.
a

by=2

Fig. 3!"") Renormalization procedure by box-counting method.
a. Tile the network with different box size Iy
b. Tile World Wide Web with [5=3.

Since degree distribution characterizes networks, the flow of the relative

. 12
maximum degree!'>

Ktth/(Nt- 1),
where K; is the maximum degree in graph Gy, and the average degree 2n, where
Ne=E/ (Ne- 1),

will be tracked with the relative size of the renormalized network
Xt = Nt / N().



(2) Scaling Laws and Critical Exponents
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Fig. 4" Scaling behavior for the Erds-Rényi model.
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Fig. 5" Scaling behavior for the Barabasi-Albert model.

Fig. 41! shows the flow of the relative maximum degree «, and average degree
21, with the relative size of the renormalized network x, for different initial graph
sizes Ny in the Erdés-Rényi model with an average degree of 2. The point all the
curves pass, which is the finite size effect, corresponds to the fixed point for initial
graph with infinite size. Plotted as a function of (x; — x*) Nol/U in the inset, the data



have a remarkable collapse with the exponent v = 2. It is interesting to note that the
critical exponent for k; and 1, are the same. Similar results are shown in Fig. 5 121 for
the Barabasi-Albert model!'®), which is not self-similar, either, with the same scaling
laws and critical exponents as the Erdés-Rényi model. It is suggested in [12] that
generally non-self-similar graphs have scaling laws i ~ (x; — x*) No"* and 1~ (x — x*)
No"* with v = 2.

]
10
— M, =26
10” W i
a— NI-=E'251
e — M= 31267
_2 — k‘ _:‘:t{.ﬂﬂ
10
-3
10

Fig. 6" Scaling behavior for a fractal model.

Fig. 6" displays the scaling behavior of «; for a fractal model, which is
self-similar, put forward by C. Song et al''*! with hub-hub attraction probability e =
0.5. The critical exponent is v = 1 here and dependent on the box-covering scheme
used. Generally, v # 2 for self-similar graphs.

Thus, we have obtained two fixed points, self-similarity and non-self-similarity,
in our renormalization of the complex networks. Which fixed point is more stable?
When additional links are added to the fractal model in Fig. 6 with a small probability
p = 0.05, the critical exponent changes from v = 1 in Fig. 6 to v =2 in Fig. 7!'%,
which indicates that there is a flow from self-similarity to non-self-similarity.
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Fig. 7" Scaling behavior for a fractal model with small perturbations.

(3) Origin of Self-similarity
The renormalization of the complex networks performed above offers critical
exponents which mark obviously whether a network is self-similar or not, and thus
classifies each into a universality class. A natural question that follows is the origin of
self-similarity.



Naive hints can be obtained by the study of the correlation profile R(k;, k2)
which describes the excessive probability, compared to random distribution, for the
connection of two nodes with edges kand k; respectively. Compared to the profile
for Internet, which is non-self-similar, in Fig. 8 (b), Fig. 8 (a) for E. coli indicates
anticorrelation, i.e. a greater tendency for the connection between larger degree nodes,
i.e. hubs, with smaller degree ones for self-similar networks.
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Fig. 8" Correlation profile for E. coli in (a) and for internet in (b),
both with a background profile for World Wide Web.

Thus, C. Song!" proposed a growth mechanism, inverse to the renormalization
procedure, which will yield fractal models. While a box is replaced with a new node
in renormalization, every node will be expanded into a box with box size lp in the
growth of the network (Fig. 9). Mode I has a strong hub-hub attraction, where hubs
will be connected directly to link the boxes, while Mode II has a strong hub-hub
repulsion, where boxes are connected through non-hubs. A network will grow with a



hub-hub attraction probability e for Mode I and (1 - e) for Mode II. When e = 1, Mode
I is small-world but not self-similar. On the contrary, when e = 0, Mode II is
self-similar but not small-world. In the intermediate region 0 <e < 1, a network
constructed is both small-world and self-similar (Fig. 10).

To further validate the hub-repulsion origin for self-similarity, the hub

connectivity ratio & is plotted against box size I, where & scales as
E(Ly) ~ L%
B E ,

with d. describing the anticorrelation strength. In Fig. 111", the hub connectivity &
for World Wide Web, which is self-similar, scales with a strong anticorrelation d. =
1.5, while &1is nearly constant for the non-self-similar Internet, i.e. d. = 0. Similar

behavior is observed in Fig. 121", where the fractal model with e = 0.8 has d.= 0.66.
Thus the resemblance between Fig. 11 and Fig. 12 supports the hub-repulsion
mechanism for self-similarity in complex networks.
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Fig. 9" Growth mechanism of a network. (a) Hub-hub attraction probability e.
(b) Mode I e=1.(c) Mode Il e =0.
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Fig. 11" Scaling of & for World Wide Web and Internet.

(4) Conclusion and Application

Renormalization of complex networks with the box-covering algorithm yields
scaling laws and critical exponents distinctive for self-similar and non-self-similar
graphs, which may be a good criterion to category universality classes. The
self-similar character may be attributed to the hub-hub repulsion in organization. Thus,
when some hubs are damaged or removed from the graph, the whole network is better
protected and more robust compared to non-self-similar ones!'* . This will account
for the widely observed self-similarity in biological networks, which is consistent
with the modularity feature in phenotype and genotype, and in functions and
morphologies as well. Technological construction, such as a power grid or
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information resource, may also be designed into a self-similar fashion to give more
stable and robust performance.
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Fig. 12" Scaling of & for Mode I (e = 1.0) and fractal model (e = 0.8).
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