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Abstract: 
Complex networks are ubiquitous both in biology and sociology, and also widely 
constructed and exploited in science and technology. Common topological features 
are shared among various complex networks across disciplines. Renormalization of 
complex networks, yielding scaling laws and critical exponents, offers a new 
approach to category distinctive networks into universality classes, revealing 
similarities hard to capture in usually ways, whose analysis will help the 
understanding and facilitate improvement in different fields. 
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Introduction 
Network structure, either in a concrete or abstract sense, is ubiquitous across 

various disciplines. Complex networks are widely observed and constructed in nature 
and sociology for better description and revealment of the underlying organization 
principles, and also broadly designed and exploited in science and technology for 
efficiency and economy in construction, maintenance and further spread into other 
districts. 

In nature, food chain and web is a good example of complex networks, which 
may incorporate millions of species in different domains of life across wide areas in 
the biosphere. Linked by the predator-prey relationship, a wide range of species 
weaves into a complex network with directions. Chemicals in a cell linked by 
chemical reactions, protein-protein interaction network, and metabolic system of E. 
coli[1] are other examples with great study interest nowadays. 

In sociology, every individual is linked with his or her acquaintances, which 
expands an undirected network. It is interesting to note here an amazing empirical 
study[2] by psychologist Stanley Milgram that every two people in the United States 
has an average acquaintanceship of six, i.e. on average any two are indirectly known 
through five other people (Fig. 1), which is later termed as “six degrees of 
separation”[4]. Although the acquaintance length may not be accurate, its smallness is 
later verified[5] and generally accepted[6]. Similar results are also obtained through 
collaboration relationship for actors[7] whether two have acted in a movie together, 
and for scientists[8] whether two have written a paper together. 

 
Fig. 1[3] Illustration of six degrees of separation: each small circle 

 represents an individual. A pair is linked if they are acquaintances. 
“A” and “B” are indirectly connected through 1-5. 

 
In the field of technology, the Internet is a physical network, where numerous 

routers and computers are linked through cables or wireless signals, and the World 
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Wide Web is a virtual network, where enormous web pages are directionally 
connected through hyperlinks. 

We can sip the complexity of the networks from the examples listed above. The 
study of network structure falls into the field of graph theory, where various networks 
are simplified into nodes connected by edges. Mathematicians Paul Erdős and Alfréd 
Rényi proposed a random graph model[9], which serves as the mean field theory in 
physics. In the Erdős-Rényi model, each pair of nodes is randomly connected with 
some probability p. Thus in a random graph of N nodes, there are pN (N - 1) / 2 
edges. It can be speculated that the real networks have underlying organization 
principles coded into their topological structures, which forecasts intrinsic deviations 
from the Erdős-Rényi model. 

Not embedded in Euclidean space, complex networks are delineated in concepts 
from graph theory, among which there are three paramount intrinsic properties[10]: 
small-world, clustering and scale-free, which are described by average path length, 
clustering coefficient and degree distribution, respectively. First, the path length 
between any two nodes is the smallest number of edges connecting the pair. The “six 
degrees of separation” is the folklore version of the small-world feature, which 
emphasizes the smallness of the average path length. Erdős-Rényi model is 
small-world, too, where the average path length l increases only logarithmically with 
the number of the nodes N, 

l ≈ lnN. 
Second, the clustering coefficient of the whole graph is the average of the 

clustering coefficient of every node, which is the ratio of the real and maximal edges 
of the subgraph involving the selected node and its directly connected neighbors. The 
clustering coefficient of real networks is usually much larger, i.e. clustering, than that 
of Erdős-Rényi model (Table 1). 

 
Table 1[10] Comparison between real networks and random graphs: 

Size denotes the number of nodes, <k> for the average degree, l for the 
average path length, and C for clustering coefficient. 
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Finally, the degree distribution P(k) is the probability for a randomly chosen 
node with exactly k edges. While Erdős-Rényi model displays a Poisson distribution, 
real networks usually have a power-law tail, which is referred to as scale-free,  

P(k) ≈ k-γ. 
Although clustering coefficient and degree distribution manifest the non-random 

character for real networks, we still can not see clearly the difference in organization 
principles for distinctive real networks. Recently, C. Song, S. Havlin and H. A. 
Hakse[11] reported self-similarity of some complex networks under renormalization 
procedures. When the network is tiled by box-counting method with different box size 
lB, the degree distribution for World Wide Web is invariant (Fig. 2). Scaling laws and 
critical exponents are thus discovered[12] in sequence and may be used to category 
various networks into universality classes, where common organization principles 
underlie. 

 
Fig. 2[11] Invariance of degree distribution for World Wide Web 

with different box size lB. The inset shows the scaling of degree k. 
 

Renormalization of Complex Networks 
(1) Renormalization Procedure 

Let us now consider a complex network G0 with N0 nodes connected by E0 edges 
under a renormalization transformation RlB which coarse-grains the network. The 
coarse-graining procedure is performed in real space by the box-covering 
method[11](Fig. 3). We will tile the whole graph with boxes of box size lB, i.e. the 
length between every pair of nodes inside the box is smaller than lB. Two boxes are 
linked if there is at least one edge connecting the nodes in the two boxes. Then every 
box is replaced with a new node, which yields a new graph. The edges in the 
renormalized graph are the links between the previous boxes. After t successive 
renormalization transformations, we will have a renormalized graph 

Gt = RlB
t (G0), 
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with Nt nodes and Et edges. 

 
Fig. 3[11] Renormalization procedure by box-counting method.  

a. Tile the network with different box size lB. 
b. Tile World Wide Web with lB=3. 

 
Since degree distribution characterizes networks, the flow of the relative 

maximum degree[12] 
κt = Kt / (Nt - 1), 

where Kt is the maximum degree in graph Gt, and the average degree 2ηt, where 
ηt = Et / (Nt - 1), 

will be tracked with the relative size of the renormalized network 
xt = Nt / N0. 
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(2) Scaling Laws and Critical Exponents 

 
Fig. 4[12] Scaling behavior for the Erdős-Rényi model. 

 

 
Fig. 5[12] Scaling behavior for the Barabási-Albert model. 

 
Fig. 4[12] shows the flow of the relative maximum degree κt and average degree 

2ηt with the relative size of the renormalized network xt for different initial graph 
sizes N0 in the Erdős-Rényi model with an average degree of 2. The point all the 
curves pass, which is the finite size effect, corresponds to the fixed point for initial 
graph with infinite size. Plotted as a function of (xt – x*) N0

1/υ in the inset, the data 
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have a remarkable collapse with the exponent υ = 2. It is interesting to note that the 
critical exponent for κt and ηt are the same. Similar results are shown in Fig. 5[12] for 
the Barabási-Albert model[13], which is not self-similar, either, with the same scaling 
laws and critical exponents as the Erdős-Rényi model. It is suggested in [12] that 
generally non-self-similar graphs have scaling laws κt ~ (xt – x*) N0

1/υ
 and ηt ~ (xt – x*) 

N0
1/υ with υ = 2. 

 
Fig. 6[12] Scaling behavior for a fractal model. 

 
Fig. 6[12] displays the scaling behavior of κt for a fractal model, which is 

self-similar, put forward by C. Song et al[14] with hub-hub attraction probability e = 
0.5. The critical exponent is υ = 1 here and dependent on the box-covering scheme 
used. Generally, υ ≠ 2 for self-similar graphs. 

Thus, we have obtained two fixed points, self-similarity and non-self-similarity, 
in our renormalization of the complex networks. Which fixed point is more stable? 
When additional links are added to the fractal model in Fig. 6 with a small probability 
p = 0.05, the critical exponent changes from υ = 1 in Fig. 6 to υ = 2 in Fig. 7[12], 
which indicates that there is a flow from self-similarity to non-self-similarity. 

 
Fig. 7[12] Scaling behavior for a fractal model with small perturbations. 

 
(3) Origin of Self-similarity 

The renormalization of the complex networks performed above offers critical 
exponents which mark obviously whether a network is self-similar or not, and thus 
classifies each into a universality class. A natural question that follows is the origin of 
self-similarity. 
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Naïve hints can be obtained by the study of the correlation profile R(k1, k2) 
which describes the excessive probability, compared to random distribution, for the 
connection of two nodes with edges k1 and k2 respectively. Compared to the profile 
for Internet, which is non-self-similar, in Fig. 8 (b), Fig. 8 (a) for E. coli indicates 
anticorrelation, i.e. a greater tendency for the connection between larger degree nodes, 
i.e. hubs, with smaller degree ones for self-similar networks. 

 
Fig. 8[14] Correlation profile for E. coli in (a) and for internet in (b), 

both with a background profile for World Wide Web. 
 

Thus, C. Song[14] proposed a growth mechanism, inverse to the renormalization 
procedure, which will yield fractal models. While a box is replaced with a new node 
in renormalization, every node will be expanded into a box with box size lB in the 
growth of the network (Fig. 9). Mode I has a strong hub-hub attraction, where hubs 
will be connected directly to link the boxes, while Mode II has a strong hub-hub 
repulsion, where boxes are connected through non-hubs. A network will grow with a 
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hub-hub attraction probability e for Mode I and (1 - e) for Mode II. When e = 1, Mode 
I is small-world but not self-similar. On the contrary, when e = 0, Mode II is 
self-similar but not small-world. In the intermediate region 0 < e < 1, a network 
constructed is both small-world and self-similar (Fig. 10). 

To further validate the hub-repulsion origin for self-similarity, the hub 

connectivity ratio , is plotted against box size lB, where , scales as 

, 

with de describing the anticorrelation strength. In Fig. 11[14], the hub connectivity , 

for World Wide Web, which is self-similar, scales with a strong anticorrelation de = 

1.5, while  , is nearly constant for the non-self-similar Internet, i.e. de ≈ 0. Similar 

behavior is observed in Fig. 12[14], where the fractal model with e = 0.8 has de = 0.66. 
Thus the resemblance between Fig. 11 and Fig. 12 supports the hub-repulsion 
mechanism for self-similarity in complex networks. 

 

 
Fig. 9[14] Growth mechanism of a network. (a) Hub-hub attraction probability e. 

(b) Mode I e = 1. (c) Mode II e = 0. 
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Fig. 10[14] Self-similar network for e = 0.8 and non-self-similar for e = 1.0 (Mode I). 

 

 

Fig. 11[14] Scaling of , for World Wide Web and Internet. 

 
(4) Conclusion and Application 

Renormalization of complex networks with the box-covering algorithm yields 
scaling laws and critical exponents distinctive for self-similar and non-self-similar 
graphs, which may be a good criterion to category universality classes. The 
self-similar character may be attributed to the hub-hub repulsion in organization. Thus, 
when some hubs are damaged or removed from the graph, the whole network is better 
protected and more robust compared to non-self-similar ones[14, 15]. This will account 
for the widely observed self-similarity in biological networks, which is consistent 
with the modularity feature in phenotype and genotype, and in functions and 
morphologies as well. Technological construction, such as a power grid or 
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information resource, may also be designed into a self-similar fashion to give more 
stable and robust performance. 

 

 

Fig. 12[14] Scaling of , for Mode I (e = 1.0) and fractal model (e = 0.8). 
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