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Abstract

A review on phase transitions in Optimal Channel Networks is presented. We then
see how the theory of OCNs applies to biology by finding scaling relations between the
metabolic rate and mass of living organisms. Finally, a similar scaling law is obtained
for river morphology by drawing an analogy between variables used in the study of living
organisms and varibles used in hydrology. Collapsed data for four different rivers is presented
to support the validity of the scaling relationship found.

1 Introduction

We first go through some definitions used in theory of networks [1]. A network is a set of
nodes that are connected by links as the two examples shown in Figure 1, where the nodes
are represented by black dots and the links by black lines. In general there are different
types of networks which depend on the atributes to both the nodes and links. The nodes
can have different weights and the links can have different weights and preferred directions.
Combinations of different kinds of nodes and links result in different kinds of networks. In
this report we will deal with networks in which all nodes have the same weight and all the
links have the same weight and no preferred directionality.

The conectivity ks of a node s is the number of links connected to a node. For example,
node s for the network in Figure 1(left) has a connectivity ks = 3 since it has 3 links (links
st,su and st) connected to it, whereas node s in the network on the right has a connectivity
ks = 2 since it is connected by 2 links (links st and st). We will now define the clustering
coefficient C' or transitivity. The clustering coefficient is best understood by an example. If
a node s is connected to a node t and the node ¢ is connected to a node wu, then the clustering
coefficient C will be equal to one if node s is connected to node u. However, if s is connected
to t, t is conncected to u and s and u are not connected, then the clustering coefficient C'
would be equal to zero. In general, the clustering coefficient C' for the whole network is given
indistinctly by equations 1 and 3.
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C = (1)

number of connected triples of nodes

We can also define the clustering coefficient for the node s as:

3 x number of triangles connected to node s

C = 2)

The clustering coefficient for a network of size N (N being the number of nodes) is the
given by:

number of connected triples on node s

1

Figure 1: Two networks with the same distribution of nodes but different link topology.
The clustering coefficient for the network on the left is C' = 1 as obtained from equation
1. Network left has four triangles (rst, rut, stu and 7su) and each node has three connected
triples (e.g. the three connected triples in node s are given by vertices rst,rsu and ust),
which gives a clustering coefficient C' = 1. A similar analysis can be performed for the
network on the right which gives C' = 0 since there are no triangles.

The distance between two nodes (node i and node j) is traditionally given by the shortest
path between these two nodes which accounts only for path length. For the optimal channel
networks (OCNs) [2] the distance between two nodes will account not only for path length
but also for traffic which will be represented by the connectivity. The distance between nodes
7 and j is defined as the path W that minimizes the sum of the connectivities k,, of all the
w nodes such that w € W.

dij(0) =ming > kS (4)

w € W: i—g



Including the connectivity k£ indicates the importance given to traffic. The exponent «
reflects how much importance is actually given to traffic. Setting o < 1 means that path
length is more important than traffic whereas o > 1 reflects the opposite. Note that o =0
implies that traffic does not play a role and we recover the traditional definition of distance
between two nodes in a network.

2 Optimal Channel Networks

Let us consider N nodes distributed through a D-dimensional domain that we want to
connect with ¢ links. The variable r = ¢/N represents the ratio of number of links to
number of nodes. The objective is to find the link configuration that minimizes the overall
distance between the nodes while avoiding traffic. The distance and traffic are quantified by
the cost function H(«) [2].

Ho = dy() (5)
i<j

The cost function H, is given by d;;(«) as defined in equation 4. Note that the exponent
a defines whether H, is concave up (a > 1) or concave down (o < 1).

We want to analyze the main features of the optimal topology as different variables are
changed: N, r and a. The protocol to find the optimal configuration is as follows. The
exponent «, the number of links ¢ and the number of nodes N are fixed. The system starts
with a random configuration of the nodes and links. Then distribution of the nodes is fixed
and the configuration of the links changed in order to minimize the H,. This process is
repeated until H, has been minimized, which is the configuration of the OCN.

As a, N and r are changed, the resulting optimal topologies are quantified in two different
ways. The first one is by using the degree distribution P(k) (the fractions of nodes with
connectivity k) for the resulting OCNs. The second is by plotting the mean clustering
coefficient Cl,, for different OCNs as a function of the ratio r. The mean clustering coefficient
of the OCNs is normalized by the mean clustering C.,,q of the random configuration.

When analyzing P(k), we can divide the OCNs in two cases which depend on r being
close to one or greater than one. First, the behavior for r ~ 1 is described. As seen in
Figure 2(left), for @« = 0.7 and r = 1.05, the resulting OCNs for different N seem to be
scale-invariant in P(k). This scale invariance holds well for r ~ 1 and o < 1, yet, as «
increases, r has to be closer and closer to one to be able to obtain this scale invariance. For
a > 1, the scale invariance no longer seems to hold. An example of the behavior of P(k)
for r > 1 is seen in Figure 2(right) for « = 0.7 and 7 equal to 1.05, 1.20 and 2.00. The
scale invariant behavior no longer holds as a peak is formed around the average value of the
connectivity k. The latter means that there are more nodes with the same connectivity.

We now move the mean clustering coefficient C,, as a function of r. There are two
different behaviors specified by a > 1 and for a < 1. In both cases, as seen in Figure 3, we
can see a clear phase transition. For o > 1, as r increases, the clustering coefficient C' goes
from a zero value to a nonzero value. An example is given in Figure 3(left) for « = 2 with



a critical value for r. = 2. Systems with o < 1 display a the opposite behavior as seen in
the example for a = 0.35 in Figure 3(right). In this case, the clustering coefficient C' goes
from a nonzero value to a zero value with r. &~ 1.2. The two very different phase transitions
for « > 1 and a < 1 can be explained by analyzing the exponent « in the definition of
distance in a network (equation 4). When a > 1, the connectivity k contributes more to
the weighted distance d;; than the path length. This means that the optimization process
will rather reduce the connectivity of the nodes (i.e. minimize traffic) than reduce the path
length. The opposite happens when o < 1, which means that the system will try to minimize
path length rather than connectivity (traffic).
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Figure 2: Plots of degree distribution P(k) averaged over two hundred realizations [2]. The
figure on the left shows the results for systems of different size but same exponent o = 0.7
and ratio r = 1.05. The figure on the right is for one system of size N = 70 with a = 0.7
and different values of r.

3 Optimal Channel Networks and Biology

OCNs can be used to study living organisms [3]. Suppose we have a D-dimensional living
organism of mass M and characteristic linear dimension L. This living organism will need
a given quantity of nutrients per unit time delivered to each part of its body. Each part
of the the body that needs nutrients is represented by a node, all of which are uniformly
distributed through the volume L”. The total number of nodes N scales as the volume L”.
The amount of nutrients delivered to all sites per unit time is represented by the metabolic
rate B. Assuming that all sites need a similar amount of nutrients we can infer that B scales
as LP since the nodes are uniformly distributed. These nutrients B need to be transported
by an agent (e.g. blood) which we will label as C'. The total amount of blood is obtained by
adding at any given instant of time the amount of blood on each link (artery) throughout
the whole organism. The question is how C' is determined and also how C' scales with L.
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Figure 3: Phase transitions in optimal channel networks [2]. The figure on the left shows a
phase transition in the mean clustering coefficient C,,; as a function of r for o = 2 while the
figure on the right shows the phase transition in C,, also as a function of r. The different
behavior is a direct consequence of the effect that the exponent o has on the cost function
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Figure 4: Two networks with the same node distribution but different link configurations.
Eventhough the metabolic rate is the same for both of them, the amount of blood needed in

each case is different.
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OCN for living organisms are those in which the amount of blood C' is minimized [3].
In order to answer how C scales with M we use Figure 4, which shows two networks with
the same distribution of nodes but different link configuration. In each of the networks the
node s represents the heart and the nodes r, u and ¢ represent the parts of the body that
need to be fed with nutrients. Let us assume that all the nodes need the same amount of
nutrients per unit time. For example, if we say that the each of the nodes need P grams of
nutrients every minute, then the metabolic rate B is defined as the total amount of nutrients
consumed by the body per unit time. In our example, B = 3 P22 for both cases depicted
in Figure 4. Eventhough the metabolic rate is the same for both networks, the amount of
blood C needed to transport the nutrients is different for both cases. The network on the
left needs, at every instant of time, to be carrying 3 P nutrients in the link 7s to feed node
r with P nutrients and then leave 2 P nutrients to feed nodes u and t. Under this rationale
the amount of blood C' needed by the network on the left (C'= P + P + P = 3 P) is lower
than the amount of blood needed by the network on the right (C =3P +2P+ P =6P).
Therefore, in the examples in Figure 4, the network on the left is more efficient than the
network on the right.

In order to get the scaling for C' we will state that C scales with L” but we need an
extra prefactor. This prefactor comes from the fact that the number hops needed for the
nutrients to arrive to its destiny -as an average- scales at least with L and at most with L.
We can then conclude that C scales at least with LP*! and at most with L?P. The most
efficient network is that one for which we have the least amount of blood C' which implies
that C' ~ LP*!. Since B ~ LP, we arrive to the conclusion that C' ~ B “5* which tells us
that the blood volume C' increases faster than the metabolic rate B when the size of the
system increases. As a final comment, some authors have found [3] that the amount of blood
C scales with the mass M of the organism as C' ~ M. The latter implies that the mass M
scales with the charcteristic linear dimension as M ~ LP*+! which is a pretty different way
to relate mass and volume.

4 From Biology to Hydrology

We will go through some basic theory on river morphology before using OCNs to study
hydrology [4] [5]. Rivers have a basin which can be divided in sub-basins. We can then
describe the basin topology as a 2-D map where each node represents the region where
tributaries are connected. For the case of rivers we define the term area -a- which is related
to flux. The best way to understand the concept of area in river morphology is by imagining
that a fixed amount of water is injected in every source. The flux at every node x is the area
a;. We can see that the area a, of a point x is sum of the areas of all the points y which are
upstream of x and are connected nearest neighbours of x. Adding the effect of rainfall R,
gives the equation for a,.

a, =Y a,+R, (6)

yenn



In an attempt to try to understand the analogy between biology and river morphology,
we will first take a look at an equation that describes the evolution of rivers. Rivers can be
described by studying the evolution of the elevation z(z,t) of the landscape points z at any
time t.

e 1) = 07 (1) [V2 @ 0)| +0V2 (@0) +U (7)

We first note that equation 7 does not depend explicitely on z so that it remains
translationally-invariant. The first term represents erosion due to the flux J(z,t). The
second term and third terms represent diffusion and tectonic uplifting respectively. It seems
reasonable to think that diffusion may not play a major role in the evolution of z. This
assumption leaves us with a simplified equation.

o t) = 07 (@.0)|Vz @] +U (8)

There is a cost function F (s) that when minimized, describes the stationary solution for
the river landscape.

E(s) = Z Ji(s) (9)

Considering that both J and a represent flux, we can then set J o a and obtain and
describe the cost function as a function of the local areas a;.

E~> a (10)

Now that we have the cost function that needs to be mnimized, we proceed to find a
crude analogy between living organisms and river morphology. Every node x in the river
can be compared to a node ¢ in an organism. Each node in the organism needs an amount
of nutrients proportional to the metabolic rate B (divided by the number of nodes) per unit
time, which can be compared to the area a, (flux) of the node x. For living organisms, the
optimization consists on minimizing the amount of blood C' that carries the nutrients to feed
each node 7. Similarly, we can see that the agents in charge of feeding the area a, are all
the upstream nearest neighbors specified by Zyenn a,, which are related to the dissipation
function E that is assumed rivers seek to minimize (see equation 10). We can now draw
the correspondace B — a, and C' — ) a,. We have seen before that C' ~ B7 where
v = %. Since we are working with a 2 — D case, then we expect v = 3/2 which gives a
scaling relationship for rivers.

yenn

> ay,~d] (11)
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We can see in Figure 5 how well the scaling relationship holds for four different rivers.
In this figure, each of the plots has been arbitrarily displaced vertically in order to see the
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Figure 5: The power law relation in equation 11 is plotted for four different rivers. The data
points have been shifted vertically in an arbitrary way to see the goodness of the fit for each
case [5].
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Figure 6: Ensemble average (data collapse) of the data [5] shown in Figure 5.



goodness of the fit. The ensemble average (data collapse) for all four rivers is shown in
Figure 6.

5 Concluding Remarks

The theory of OCNs allows a very unique approach to study phenomena in biology and
hydrology. In biology, there are different frameworks to obtain network topologies. There
is work by West et. al. [6] specifically on plant vascular systems where the optimization
process to obtain the final configuration is different from the one used by Banavar et. al.
[3]. These two theories obtain power laws that relate important variables in living organisms
(e.g. metabolic rate, number of leaves) with accuracy, however, the theory by Banavar et.
al. is broader in the sense that it can be applied to any network irrespective of the entity
studied (e.g. plant root systems, cardiovascular networks, rivers). It is a striking result that
all these networks which are created by very different processes, can be studied with just one
theory. Moreover, it helps connecting apparently disparate phenomena under the umbrella
of criticality [7]. Regarding hydrology, the data collapse portrays a unique ansatz to study
river morphology, which by means of a very simple model can describe phenomena in a very
accurate way. River morphology has also been studied by Maritan et. al. [8] by obtaining
critical exponents and using finite size scaling techniques on data for different sub-basins in
one river.

Finally, the theory proposed by Banavar et. al. is a great achievement in the study of
rivers. There is though a very old problem left in hydrology: river meanders, which occur in
small slopes. There are several theories on why meanders occur and how they evolve [9] but
the problem is not solved yet. It would interesting to see if criticality can help explaining
this conundrum in hydrology.
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