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Abstract

The transport properties of a quantum mechanical system coupled to an environ-
ment deviate sharply from those of the isolated system when the coupling exceeds a
critical value. This effect is governed by a quantum phase transition, which takes place
because the environment suppresses quantum fluctuations. This paper explains why
dissipation leads to spontaneous symmetry breaking at T = 0, and how dissipative
couplings stabilize superconductivity in Josephson junction arrays and nanowires.
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1 Introduction

This paper is about the consequences of a simple fact—that a dissipative environment sup-
presses quantum tunneling. A naive explanation is that the system can’t do anything quan-
tum mechanical while the environment is looking at it. In a classic example of dissipative
quantum mechanics, the “system” is a quantum particle in a double well potential, and the
external world consists of (say) air molecules that intermittently bump into it. Since the air
molecules fly off after the collision, and each air molecule possesses information about where
it found the particle, quantum fluctuations must take place faster than τ , the timescale of
interactions with the environment. (The air molecule picture is slightly misleading; the en-
vironmental coupling is not exclusively a thermal effect, and is important even at T = 0.)
Whether the system is still able to tunnel depends on the ratio of τ to t = ~/E, where E is
the barrier height. If τ � t, the particle can sneak across the barrier without being observed;
if τ � t, it cannot.

Individual electrons and atoms can usually be treated as isolated; however, a mesoscopic
or macroscopic quantum system presents a larger face to the world, and the suppression
of quantum mechanics can have quite drastic effects. In superfluid (or superconducting)
systems, the basic effect of the environment is to suppress quantum phase slips and thus
stabilize superflow. (If it seems counterintuitive that dissipation makes a wire more super-
conducting, consider that anyone at rest on a grassy slope is being sustained in an unstable
state by dissipative effects.) More generally, dissipation changes the critical behavior at
quantum phase transitions, and sometimes introduces new phases.

So much for the physical picture: how are we to set up the problem of dissipation in
quantum mechanics, let alone solve it? Section 2 introduces the Caldeira-Leggett model
of quantum dissipation, and describes the simplest of the dissipative transitions—the lo-
calization of a quantum particle by the environment. Section 3 extends this analysis to
finite-temperature behavior. Section 4 is a heuristic treatment of the T = 0 phase diagram
of a Josephson junction array coupled to a bath of resistors. Section 5 reviews the extremely
rich experimental developments in this field, and Section 6 suggests further applications of
this paradigm in condensed matter and atomic physics.

2 Dissipative Localization at T = 0

2.1 The Caldeira-Leggett Model

In general, the world is described by the Hamiltonian H = Hsystem(ψ)+Hbath(χ)+Hint(χ, ψ).
At T = 0, the world is in its ground state: however, this is generally not a state of the form
|ψ〉sys|χ〉bath, because an interacting system is entangled with its bath. As the state of the
bath is immaterial, what we are really interested in is the reduced density matrix of the
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system, ρS = Trbρ, traced over the bath variables. For a realistic model of the bath, this
trace is obviously intractable; however, one could plausibly expect that the details of the
environment are irrelevant, and approximate it by a simple model. The Caldeira-Leggett
model treats the environment as a bath of harmonic oscillators interacting linearly with the
system, so the Lagrangian is:

L = LS +
∑
α

[
p2
α

2mα

− 1

2
mαω

2
αx

2
α − λαq −

1

2

qλα
mαω2

α

]
. (1)

(The last term compensates for the change in oscillator frequency due to the coupling.) This
Lagrangian is quadratic in xα; therefore xα can be path integrated over, leaving an effective
action of the form

Seff =

∫
dtLS(q(t)) +

∫
dtdt′F (q(t), q(t′)).

The new term in the Hamiltonian is called an influence functional, and depends on the bath
parameters. The next step is to coarse-grain the environment. As the bath parameters
appear in F only through the density of oscillators

J(ω) =
∑
α

λ2
α

mαωα
δ(ω − ωα),

the influence functional can always be rewritten in terms of J . The general expression is:

F (q(t), q(t′)) =

∫
dωJ(ω) exp(−ω|t− t′|)q(t)q(t′).

Different choices of J lead to different physics. The most commonly used spectrum, to
which we restrict ourselves, is J(ω) = ηω (Ohmic dissipation); this form can be derived by
equating the phenomenological classical expression for power dissipated (P = 1

2
ηq̇2) with

Fermi’s golden rule.

2.2 The Dissipative Double Well

Caldeira and Leggett [1] first applied their model to show that dissipative effects suppress
tunneling across a double well. In an isolated system, the tunneling probability is given
by the WKB result P ∼ exp(−

∫ √
V − Edx/~); in the presence of Ohmic dissipation, this

becomes

P ∼ exp

[
−1

~

(
A
√
mV a+Bηa2

)]
(2)
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where A and B are dimensionless constants of order unity.
Any effect that suppresses tunneling between degenerate minima should favor sponta-

neous symmetry breaking. The question is whether the effect is actually strong enough to
actually break the symmetry. The original Caldeira-Leggett argument suggests not because
the particle will tunnel through the well given long enough. A more careful analysis [8] of
the infinitesimally biased double well (V = (x2− a2)2 + εx) shows that one does not recover
the symmetric ground state |L〉+ |R〉 in the limit ε→ 0, if the dissipation is strong. Instead,
the particle is localized in either the left or the right well.

The approach of Ref. [8] is to map the dissipative double well onto the inverse-square
Ising model, which undergoes a phase transition in one dimension [10]. The effective action
for Ohmic dissipation is

S(θ) =

∫
S0dt+ η

∫ ∫
dt′

1

(t− t′)2
q(t)q(t′).

What this result shows is that the bath generates an interaction between paths that is not
only nonlocal but long-ranged in time. To proceed further, we should consider which paths
contribute appreciably to the path integral. To zeroth order, these are the paths of stationary
action—the static paths that sit at the bottom of the wells, and the “bounce” paths that
spend most of their time at the bottom of one of the wells, but hop back and forth from
time to time [4]. These paths have a higher energy than the static ones, but there are many
more of them because the hops can take place at any time; this multiplicity of paths is
the equivalent of entropy in the theory of quantum phase transitions. Since the quantum
mechanical partition function is [3]

Z =

∫
Dq(τ) exp

(
−
∫ β~

0

H(q, q̇, τ)dτ

)
,

the zero-temperature limit effectively acts as a thermodynamic limit in the τ direction, and
our system is infinite in the τ dimension, which we shall sloppily refer to as time.

In the absence of dissipation the bounces are essentially noninteracting when they are
far apart, and the ground state is delocalized for the same reason that the 1D Ising model is
disordered—a bounce is energetically suppressed by a finite amount (the barrier height) but
can take place whenever you like; therefore, given long enough the bounces (or spin flips)
always win and the particle is just as likely to be in one minimum as in the other. However,
this argument breaks down if the bounces have long-range interactions: when long-range
interactions are sufficiently strong, the energy cost of bounces might be sufficient to block
tunneling altogether. This mapping can be made precise [8], and implies that the ground
state is indeed localized for η > ηc(V, a), where the critical dissipation is a highly nontrivial
function of the well depth and separation.
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2.3 Quantum Brownian Motion

Let us now consider a periodic potential in one dimension, interacting with an Ohmic bath
as above, so that HS = p2

2M
+U0 cos(2πq/q0). In the absence of dissipation, the ground state

is a delocalized Bloch state. However, as we shall see, the ground state abruptly becomes
localized at a critical value of η. Apart from being a natural extension of our previous result,
this phase transition has important physical consequences in superconducting wires.

It is helpful to do a little preliminary dimensional analysis. Suitable dimensionless
variables are: φ(t) = 2πq(t)/q0, the dimensionless position; α = ηq2

0/2π~; and V0 =
Mq2

0U0/(2π~)2. Note that α and V0 are precisely the dimensionless quantities that appear
in Eq. 2. We also need a high-energy cutoff Λ = 4π2~/Mq2

0, the energy required to trap a
particle in a single well. In terms of these variables, the effective energy (which the ground
state minimizes) is given by

H =
1

2

∫
dω

2π

( α
2π

sign(ω) +
ω

Λ

)
ω|φ(ω)|2 − V0Λ

∫
dτ cosφ(τ) (3)

The term in ω/Λ is a soft high-energy cutoff, which penalizes high-frequency modes. It can
be dropped if we restrict the ω integral to |ω| < Λ. Ref. [2] performs a momentum-shell
renormalization group analysis of this Hamiltonian, and finds the following recursive relation
for V0:

∂V0

∂l
=
α− 1

α
V0(l) + o(V 3

0 ) (4)

For α < 1, V0 renormalizes to zero and is an irrelevant perturbation. For α > 1, V0 grows
exponentially. The RG equations for α are trivial: to second order, α does not change under
the RG. Using a duality relation of Eq. 3, one can also compute the flows for large V0; as
we see from the flow diagram, V0 flows to infinity for α > 1 and to zero for α < 1. V0 =∞
implies that tunneling is completely suppressed; this corresponds to localization.

2.4 Note on the Singularities

Where did the singularities come from? At T = 0, nonanalytic behavior potentially takes
place when the ground state of a system changes non-analytically as a function of some
parameter κ. Except in special cases, such non-analyticities are smoothed out in finite
systems and one has avoided level crossings with a gap ∆, but ∆→ 0 in the infinite system
limit. The localization transition is in fact a quantum phase transition of the system-bath
Hamiltonian, and depends on two limits—the continuous bath limit and the zero-temperature
limit. In terms of the Caldeira-Leggett formalism, the continuous bath generates the long-
range interaction, and the zero-temperature limit is a thermodynamic limit in time.
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Figure 1: Renormalization Group Flows [2]

3 Finite-Temperature Effects

At finite temperatures, the quantum partition function of a single particle is an given by a
path integral [3]:

Z =

∫
Dq(τ) exp

(
−
∫ β~

0

H(q, q̇, τ)dτ

)
.

If we relabeled q(τ) as η(x), this expression would look suspiciously like the coarse-grained
one-dimensional Ising model in Landau theory. This suggests that the finite temperature case
should be treatable by some form of finite size scaling—that the zero-temperature transition
survives, in a rounded form, in the finite temperature system. The physical reason for the
rounding out is simply that thermal hopping gives particles another way than tunneling to
move about—and therefore, for example, the particle in the periodic potential eventually
delocalizes no matter what η is. (This is an example of the fact that the order parameter is
always zero in a finite system.)

One might nevertheless expect to see some sign of localization in the low-temperature
correlation functions, and therefore (by the fluctuation-dissipation theorem) in the mobility
or conductivity. Classically, a particle moving down a steady potential gradient Fx in the
presence of friction reaches a steady velocity such that v = µF—friction exactly balances
the potential gradient. Since v = x(t)/t in a steady state, it follows that µ = x(t)/tF in this
region. Fisher and Zwerger [2] use this fact to define the mobility as follows:

µ = lim
t→∞

〈x(t)〉
tF

The expectation value of x(t) is simply 〈x|ρ(t)|x〉, and ρ(t) can be computed by path integral
techniques described in Ref. [3]. The eventual results for the mobility are plotted in Fig. 2.
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Figure 2: µ(T ) for strong (L) and weak (R) dissipation

Initially localized wavefunctions become more mobile as you increase the temperature,
because all their mobility is due to thermal hopping. On the other hand, initially delocalized
wavefunctions become less mobile as you heat them up, because exchanging heat with the
reservoir measures the system and destroys coherence, until a point T ∗ at which thermal
hopping takes over. Note that, for any finite temperature, µ(T ) is a smooth function of α:
the only way to see a sharp transition is to go to T = 0.

4 Josephson Junctions

4.1 A Single Junction

A Josephson junction consists of two bulk superconductors (or superfluids) connected by a
weak link [11]. Roughly speaking, the electron wavefunction in a superconductor has a well-
defined phase φ, and both bulk wavefunctions seep into the weak link. This causes a phase
difference across the link, which manifests itself in a current (since j ∝ ∇φ). Suppose we
crank up the phase difference across the junction in some continuous way (e.g. by applying
a d.c. current): the phase gradient across the junction increases until at some point it
winds by more than 2π. Since the bulk wavefunctions are only defined up to 2π, and phase
twists cost energy, the junction can relax by shedding 2π of phase twist; however, it is in
a metastable state because the phase can only relax if the wavefunction snaps and reforms
in a less twisted state, a process known as a phase slip. A single Josephson junction with a
large phase winding of Φ � 2π across it is a particle in a tilted washboard potential of the
kind discussed above, because the energy has infinitely many local minima spaced a distance
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Figure 3: Resistively shunted Josephson junction array [5]

2π apart in Φ-space. (Note that Φ here is the total phase twist across the junction, and
therefore is not a periodic variable, unlike φ(x), the local phase of the wavefunction.)

The results of Section 3, translated into supercurrent language, then imply that su-
percurrents are more stable for larger dissipative coupling; and that, for weak dissipation,
supercurrents are more stable as you increase the temperature from T = 0 to some T = T ∗—
the environment suppresses quantum phase slips. As far as a single junction is concerned,
this is the entire (and now fairly old) story.

4.2 Resistively Shunted Arrays

We now proceed to study one-dimensional arrays of superconducting grains connected by
weak links.1 In general, each weak link is permeable both to normal electrons (as a resistor)
and to Cooper pairs (as a Josephson junction); therefore, the array can be represented in
circuit form as in the figure. Apart from being a natural extension of our previous analysis,
this system is interesting because, in the continuum limit, it describes a superconducting
nanowire.

If there were no shunts (RS = ∞), the phase structure would be determined by the
interplay between the Coulomb repulsion between Cooper pairs EC , which tends to localize
them on individual grains, and the energy associated with phase coherence EJ , which tends
to delocalize them across the sample. In this regime, all the conduction is due to Cooper
pairs because the junction does not allow single electrons through. Adding a shunt resistance
changes this because (1) it provides a channel for dissipation, (2) Cooper pairs can now break
up and move through the wires (or, conversely, normal electrons can pair up and tunnel
through the junction, depending on which process is easier). This adds two new variables to
the phase diagram—RS, the shunt resistance, and r, the “conversion” resistance, which is a
phenomenological measure of how hard it is to convert normal electrons into Cooper pairs
and vice versa. r is related to the size of the superconducting grains.

Dissipation must be stronger when more electrons flow through the resistor; therefore
it must be inversely related to RS and to r. The correct dimensionless value is α =
RQ/

√
R2
S + 4rRS. The other important dimensionless variable in this problem is the dimen-

sionless phase stiffness K = EJ/EC , which governs the superconductor-insulator transition

1A one-dimensional array is of course a chain, but the phrase “chains of grains” is impossibly ugly.
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Figure 4: Phase Diagram of the JJ array for three values of grain size (largest L, smallest
R). Note the disappearance of the FSC phase. Diagram reproduced from [5].

at zero dissipation.
The zero-temperature phase diagram of this system is quite rich. In the absence of

dissipation, a zero-temperature quantum mechanical system in d dimensions behaves like a
d+ 1-dimensional classical system, because of the additional integral over τ in the partition
function. (See Section 3 above.) Therefore, a 1D quantum system with a complex order
parameter behaves somewhat like the XY model in two dimensions. The classical XY model
has no long range order but two phases, a low-temperature phase with power-law correlations
and a high-temperature phase with exponentially decaying correlations. Long-range order is
impossible because, for any T > 0, adding a vortex-antivortex pair decreases the free energy.
When kBT ∼ Eb, the binding energy of a vortex-antivortex pair, the pairs dissociate; this
process is called a Kosterlitz-Thouless transition.

For weak dissipation, this is the entire zero-temperature phase diagram—a superconduct-
ing phase with power-law correlations (labeled SC*), a metallic phase with exponentially
decaying correlations (N), and a Kosterlitz-Thouless transition. The vortex pairs in the clas-
sical system map onto phase slip dipoles, which consist of a paired phase slip and anti-phase
slip (i.e. a jump across the double well and back again), localized in spacetime. However, the
dissipative coupling obstructs quantum phase slips and locks the phase differences between
neighboring Josephson junctions. This leads to a new phase with phase differences pinned
in time, the fully superconducting (FSC) phase. Like the SC* phase, it has algebraically
decaying correlations; however, as the phases are locally locked in place, the order parame-
ter locally has a nonzero expectation value. The phase diagram is plotted below for various
values of the conversion resistance r; note that the FSC phase encroaches further into the
normal phase than the SC* phase does, as a result of the dissipative stabilization we saw in
Section 2.

There are now two more phase transitions in the diagram: the localization transition
of a single Josephson junction, as you change the dissipation; and the transition from the
dissipatively locked superconductor to a metal, as you change the superconducting stiffness.
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Figure 5: Resistivity vs. Temperature [5]

Unlike most phase transitions, these are driven by local effects that are emphatically not
long-wavelength fluctuations. The SC*-FSC transition is entirely local in character, and is
adequately described as being N identical junctions going through the washboard transition
of Section 2. On the other hand, the transition from FSC to N has both local and global
characteristics—it involves the depinning and dissociation of phase slip pairs. The behavior
at this transition is still an open question, as there are two rather different limits that may
or may not be separated by a multicritical point. The first is the transition labeled by
ML in the diagram, as you tune the dissipation below criticality—it’s a local transition,
in which the phase variable at each junction delocalizes, followed immediately by a global
Kosterlitz-Thouless transition, as the now unstable phase slip pairs dissociate. The second
is the transition labeled by M, as you decrease the stiffness at constant shunt resistance for
small conversion resistance r; for large r, this transition is forced down to K = 0. At the
M transition, the individual junctions are still localized; however, the phase stiffness is too
weak to maintain a correlation between the phases on neighboring junctions.

4.3 Finite Temperature Effects

As we saw in Section 3, dissipative transitions govern the low-temperature behavior of trans-
port coefficients—in this case, the resistivity ρ. The plots below are theoretical predictions
of ρ(T ) for various values of the phase stiffness. Superficially this graph shows the same
nonmonotonic behavior that we saw previously. There are three important features—(1)
There is a range in which the resistivity is almost flat or drops slightly for a wide range
of temperatures. This behavior is generic in superfluid-insulator transitions, and has been
observed in various experiments, prompting talk of an intermediate “metallic” phase at zero
temperature [16]. According to the RG analysis of Ref. [5], there is no metallic phase at
zero temperature in this system. (2) The critical curves are given by K + 2α = 3 in the
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FSC regime, and K = 4 in the SC* regime. So the crossover is entirely insensitive to α in a
certain parameter range, and strongly sensitive in another. (3) The resistivity initially drops
in a certain parameter range because thermal phase slips are suppressed; it initially rises
for small K because the Cooper pairs localize on individual grains, and thermal hopping
is suppressed. These results should all be straightforward to test experimentally; however,
there appears to be little conclusive data on Josephson junction arrays.2

5 Nanowires

A nanowire is the continuum limit of a Josephson junction array, and one might naively
expect the previous analysis to apply. It turns out that this limit is pathological for various
reasons; however, there is strong experimental evidence [6, 7] for superconductor-insulator
transitions in nanowires as one changes their diameter (which is proportional to phase stiff-
ness: a phase slip is like a bubble, and relaxes when it reaches the edge of the wire, which
is harder when the wire is thick). It has been argued [5] that the FSC phase cannot exist
in nanowires, in which case the effects of dissipation would be fairly boring (see the phase
diagram in Section 4).

The situation is somewhat better for finite (i.e. short) wires. A surprising feature of these
wires is the anti-proximity effect [12]: when two bulk superconducting leads are connected
by a short (2µm) zinc nanowire, the nanowire is resistive at all measured temperatures.
However, if you destroy the superconductivity of the leads by applying a magnetic field,3

the nanowire is superconducting below 0.8 K. Fu et al [13] explained this effect as follows—
a bulk superconductor screens vortex-antivortex interactions and unbinds vortex pairs; a
resistive lead, on the other hand, suppresses vortex mobility near the edge, and stabilizes
supercurrents. In the path integral formalism of Section 2, a finite wire maps onto a strip
in spacetime; the superconducting leads act as mirrors for phase slips, which interact with
their images, and these interactions dissociate dipoles and allow phase slips to dissociate.

The case of resistive leads is harder. For very short wires, [7, 15] there is (somewhat
mixed) experimental evidence for a sharp superconductor-insulator transition at a critical
value of the total resistance of the wire; for longer wires, this appears not to be the case.
Besides, the temperature dependence of the resistivity is much sharper than the predictions
of the theory described in Section 4. The theory breaks down because interactions between
phase slips and the leads change the shunt resistance (dissipation) that other phase slips
feel. Meidan et al [14] account for this effect in the mean-field approximation, which appears
adequate to explain the data.

2For a very thorough bibliography on Josephson junction arrays, see Ref. [5].
3The applied field must be greater than the critical field of the leads, but less than the critical field of

the nanowire.
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Figure 6: Resistance vs. Temperature in Nanowires [14]

6 Conclusions and Outlook

Dissipative transitions are quantum phase transitions that govern the low-temperature trans-
port properties of various systems. We have focused on the stabilization of superfluidity in
low-dimensional systems, but there are other areas—quantum Hall transitions and itinerant
magnetism, for instance—in which dissipative transitions are thought to occur.4 Two rel-
atively direct extensions of our previous analysis are to disordered thin films, in which the
superconducting transition takes place along percolating paths through the system and is
therefore one-dimensional, and atomic Bose-Einstein condensates interacting with a cloud of
excitations (or multiple-species atomic clouds). Cold atom systems are particularly promis-
ing because they are naturally isolated to a much greater extent than condensed matter
systems, and one can therefore “turn on” dissipation much more controllably, and even
potentially engineer the spectrum of the bath in order to stabilize certain states (e.g. if
dissipation localized the site occupation number instead of the phase, it would stabilize a
Mott insulator) [17].

It has also been suggested [17] that dissipative effects in driven systems can help to
stabilize certain quantum states. The idea is that either the friction or the driving knocks
the system out of every state except the so-called dark state; as a result, every state ultimately
decays into the dark state. Apart from potential applications in quantum state engineering,
driven quantum systems can be used to study nonequilibrium quantum phase transitions, and
to investigate fundamental questions about quantum coherence and quantum information.

4See Kapitulnik et al [16] for a detailed list.
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