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1. :
This essay addresses the question of self-organization in open systems, i.e. a process in which the
internal organization of a system, increases in complexity without being guided or managed by an
outside source. First some general issues about possibility of self-organization are discussed, then two
examples are considered. The first example, reaction-diffusion model, is related to bio-chemistry, and
the second one - to population dynamics.

2. General Remarks :

The first question that arises thereupon is how the processes of self-organization are consistent with
the second low of thermodynamics, which states that entropy or chaos can only increase with time,
while the order, or information should decrease? The answer is that such processes are only possible in
thermodynamically open systems, i.e. systems that exchange energy and matter with the environment.
The 2-nd law of thermodynamics is only valid for closed systems. If one includes environment into
consideration, the total entropy will still increase with time, as it should. It is obvious, that nothing
interesting can happen in an open system that is in equilibrium with environment (since then the
environment can be removed from consideration without disturbing the system).

Thus, in a search for self-organization, open systems out of equilibrium should be considered. Since
we are looking for organization or ordering without any external reasons for this order, it is reason-
able to consider steady states, i.e. states that can be maintained for a long time under the condition
that external parameters are not changing. The environment then comes into the game as a bound-
ary conditions imposed on the system. The typical problem of this type would be to consider some
spatial region, where different chemical reactions can occur and concentrations of certain products
are kept constant at the boundaries. The steady state where all concentrations are constant in time
can be reached, but it should not be confused with the equilibrium. Detailed balance is lost in this state.

But how close to the equilibrium can we expect to find self-organization? It can be shown that
within the applicability of linear non-equilibrium thermodynamics, the state corresponding to mini-
mum entropy production allowed by boundary conditions is stable. Which means that started close
enough to the equilibrium (so that linear non-equilibrium thermodynamics is valid) the system will
tend to stay as close to equilibrium as possible and no self-organization can occur. This result is not
surprising - it is somehow intuitively clear that for order to arise from nowhere we need non-linearity.

For systems far from equilibrium (linear non-equilibrium thermodynamics is not valid), the state of
minimum possible entropy production (which is closest state to equilibrium which corresponds to zero
entropy production) is not necessarily stable [1].
So, one should look for self-organization in open systems far from equilibrium, which are sometimes
called dissipative system.
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H. Haken proposed the adiabatic technique to deal with complex systems, which suggests to divide
modes of the system into 2 types: slaving modes and order parameters [2]. Slaving modes are those
which damp very fast with comparison to others, which becomes order parameters. If such division
is possible, slaving modes follow the order parameters almost immediately, and self-consistency condi-
tion then can be applied to find the values of order parameters. To clarify this, consider the simplest
example of non-linear system of equations:

dq1

dt
= −γ1q1 − aq1q2

dq2

dt
= −γ2q2 + bq2

1

With γ2 >> γ1.

In this case q2 is a slaving mode. Assuming that it fallows the order parameter q1 immediately,
we may solve the system approximately by putting dq2

dt = 0, which leads

q2(t) = γ−1
2 bq2

1(t)

and
dq1

dt
= −γ1q1 − ab

γ2
q3
1

which have zero steady state solution for γ1 > 0 and non-zero for γ1 < 0.
q1 can now be seen as a ”force” but which obeys equation of motion itself.
The same idea can be repeated for more complex systems. One should separate stable modes with
finite positive damping and assume that they are slaved by remaining order parameters, for which
damping can become very small or even negative when external parameters of the problem change.

This approach obviously has it’s limitations, but gives some kind of intuitive picture.

We now consider some examples of self-organization.

3. Reaction-Diffusion Model :

Probably, the most famous early examples of self-organization phenomena are reaction-diffusion equa-
tions describing autocatalytic chemical reactions. To clarify the mechanism of the appearance of
temporal and spatial order, consider first the simplified case without diffusion. Assume that we are
interested in chemical reaction

A → X

2X + Y → 3X

B + X → Y + D

X → E

Where concentration of initial and final products A, B, D and E are maintained constant (open system)
whereas two intermediate components X and Y may have concentrations that change in time. To
investigate temporal behavior of these concentrations assume that the production rate of the reaction
is proportional to the product of the concentrations of reactants and a reaction rate that is taken to be
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1 for simplicity. Inverse reactions can be ignored since far from equilibrium state is considered. The
kinetic equations then read:

dX

dt
= A + X2Y −BX −X

dY

dt
= BX −X2Y

Which admits the steady state

X0 = A

Y0 =
B

A

Linearizing this system around this point and applying the normal mode analysis, it is easy to see that
for

B > 1 + A2

the steady state solution becomes unstable. More detailed investigations show that the system has
a limit cycle, i.e. for any initial concentrations X and Y the system approaches the same periodic
trajectory. The oscillation frequency depends only on A and B, but not on the staring point in XY
space, thus one can say that temporal self-organization has occurred (in contrary with Lotka-Volterra
equation where frequency of oscillation depends on initial displacement from steady state solution, see
below).
Even more interesting event happen when diffusion is included into consideration. It is done by
considering X and Y as functions of both time and coordinates and including the terms describing
change of concentration at a given point due to diffusion. equations then read:

dX

dt
= A + X2Y −BX −X + DX

∂2X

∂r2

dY

dt
= BX −X2Y + DY

∂2Y

∂r2

This system is called ”Brusselator”. It was proposed by Ilya Prigogine and his collaborators at the Free
University of Brussels. Another famous example of reaction-diffusion model is called ”Oregonator”.
It terns out that these models exhibit quite complicated spatially and temporally self-organized struc-
tures when sufficiently far from equilibrium.
The time evolution of spatial structure obtained by numerical computations as well as in real experi-
ment is shown in Fig.4

3



Fig.4 (from [3])

It should be mentioned that the above approach to reaction-diffusion equations, namely rate equations
approach, is in some sense a mean field theory. One can also introduce probability distributions
PX(N, t) of finding N molecules of type X at time t and establish the master equation for the temporal
change of PX(N, t). One can then write an equation for temporal change of average number of molecules
〈Nx〉. The resulting equation is in complete agreement with ”mean field theory” discussed above only
if P is a Poisson distribution, which is generally not true far from equilibrium.

4. Ecology, Population-Dynamics. :

Non-equilibrium phenomena and self-organization play a central role in population biology. Attempts
to understand distribution and abundance of species by modeling the ecological system as a dissipative
system, started with Lotka-Volterra equations. This is a system of first order non-linear equations
modeling the dynamics of biological system consisting of one predator and one prey species. The
equations read:

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)

Where x is a number of prey and y - number of predator.

Non-zero fixed point of this system has a marginal stability. This means that being disturbed from
steady state by fluctuations, the system performs cycles around this steady state, number of predators
and prey oscillate around their steady state values. Frequency of the oscillations, however, depends
on the initial deviation from these values, which doesn’t allow us to call this periodicity temporal
self-organization.

I now want to focus on recent research done by Szabo and Czaran who studied more sophisticated
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ecological model with predator-prey relations and observed the self-organizing pattern [4].

The authors of the paper consider a system of 9 species of bacteria each of them being ”eaten” by
another 3 species, being able to ”eat” 3 species and being competitively neutral with remaining 2 (and
itself).
The authors start by writing the system of equations for the time evolution of the population

dρi

dt
= ρi

∑

j

Aijρj

Where Aij is an adjacency matrix of the competition network. Aij = 1 if i is superior to j, Aij = −1
if i is inferior to j and zero otherwise.
These equations represent a kind of mean field theory for a given problem, which doesn’t include any
spatial characteristics of the system. Basically, it is the same approach as Lotka-Volterra model with
birth and death rates being equal for each of the species (α = γ = 0).
Because of the symmetry of matrix A (which is a fact specific to the model) one can find few conserved
quantities, for example the product of three densities within each cyclic defensive alliance (the group of
three species with competitive relations 1 → 2 → 3 → 1) remains constant. This fact somehow singles
out these groups of three species which will act as alliance even after including spatial distribution into
consideration.
The spatial model is realized on the square lattice with periodic boundary conditions and solved by
Monte Carlo method. Each site is occupied by a single bacteria. The dynamics of the population is
driven by interactions between neighboring sites - competitive replacements and diffusion events. The
diffusion is realized as non-zero probability X for the two mutually neutral but different bacteria to
switch places if they happened to be at neighboring sites.
It terns out the final state of such system depends drastically on the diffusion probability X. For
X < Xc1 the system started from uncorrelated distribution evolves into domains of the three cyclic
defensive alliances. (See Fig.1) Each alliance consists of tree types of bacteria coexisting in the same
spatial region. These groups of three correspond to those found in the mean field theory approxima-
tion. Note that ignoring all other species (they are spatially separated) the mean field equations for
the members of alliance are satisfied if densities of all members are equal. The domains grow with time
and, since the lattice is finite, of them (with equal chances) will take over eventually.

Fig.1 (from [4])
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When diffusion probability is increased, two subsequent phase transitions occurs. Let me describe
the third phase (large values of X). For the large diffusion probability the system forms again three
domains but this domains consist of mutually neutral species (see Fig.2). It is interesting that these
domains themselves form a cyclic dominant structure. The alliance 1 (for example) dominates alliance
2, alliance 2 dominates the 3-d one, and alliance 3 dominates alliance 1. So we have the same steady
state situation as in the first phase, but now for the alliances of mutually neutral species. The domain
walls will now move in a cyclic manner, leaving the average domain sizes (dependent on X) constant.
One can say that self-organization pattern controlled by diffusion probability X appeared.

Fig.2 (from [4])

The second phase (intermediate values of X) resembles both the first and the third phase (See Fig.3).
The evidence of the two phase transitions though is the discontinuity in the behavior of quantity pn

which is the probability of finding two neutral pairs on two neighboring sites. As pointed out by au-
thors, quantitative analysis of fluctuations also indicate striking differences between these phases.
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Fig.3 (from [4])

It should be pointed out, that essential role in deriving the results above played the symmetry of the
problem - all invasion rates were considered to be equal, which is definitely a reduction of possibilities.
Further development of the same idea but in a less symmetric problem is given in [5], where six-species
predator-prey model with two different invasion rates is studied. Self-organizing spatio-temporal pat-
tern in which the three alliances of neutral pairs dominate cyclically each other is observed in this
model. In addition, the new phase is found where both the domains of cyclic three-species alliances
and the neutral two-species alliances can coexist.
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