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Abstract: Two kinds of phase transitions arisingi@matic elastomers are discussed. It is also ievgulehow the
two different kinds of physics, one belonging to mim liquid crystals, the other to nonlinear eleisyi
mutually influence each other, resulting in the xpexted smoothening of the isotropiematic transition fror
first to second order, and the appearance of tasdtieity.



Introduction

Squalid stuff such as crystals and polymers can be more fasointtian supine supersymmetry
and morbid M-theory. Certainly almost everything see around us is in some fundamental sense
the consequence of symmetry breaking, and squilftlis governed no less by the same physical
principles of field theory as quarks and leptomswriting my Essay I'm partly motivated by the
wish to induce in the mind of my reader the serfserander that something as banal as nematic
elastomers can exhibit unexpectedly rich propertiest are explainable only in terms of general
symmetry principles and Goldstone's theorem, a rakertheorem in modern field theory.
Furthermore, we shall see that elastic nonlineariplay an essential role in renormalizing the
nature of elasticity. Nematic elastomers are esgnhematic liquid crystals embedded in rubbery
polymer melt. Examples of nematic elastomers ireladificial muscles and contact lenses.

Fig. 1: Nematic, Smectic-C and Tanaka gels witldtrad dispersion

We shall be investigating the kind of phase tramsiencountered in nematic elastomers, but it is
important to realize there are actually two kindgbase transitions happening simutaneously in
nematic elastomers. One is tisdtropic-nematic transition® experienced by the nematogens
embedded in the polymer melt of the elastomer. Aregence of heterogeneities in the distribution
of network crosslinks in the polymer melt probabifiluences the order of the IN transition and
changes it from first to second order. The otheasghtransition occurring at the same time is the
isotropic-uniaxial transition of the elastic medium itself. In ordinary situaisothe isotropic
unstretched state is thermodynamically stable,iaisdonly on account of the existence of nematic
order that the uniaxial, stretched state can becamee thermodynamically stable than the
isotropic state. Much of the interesting physicat tive encounter in nematic elastomexg, soft
elasticity, comes from the interplay between thexatéc and elastic components of the elastomer.

We shall find it highly instructive to compare th¢ transition in nematic liquid crystals with that
in nematic elastomers. We shall first begin by dbsty what nematic liquid crystals are, and how
in the context of Landau theory an order paramsheuld be defined in order to describe the IN
transition. We shall see that the transition istfiorder. Then we shall describe the physical
properties of nematic elastomers, write down thedaa theory for an elastomer and see how the
presence of nematic order manages to stabilizartaxial phase in an elastic solid. And because it

! Henceforth called the “IN transition”.



is now possible for the uniaxial phase to be maalels under a certain temperature, there can be a
phase transition that involves the reduction ofmrsetry group, and Goldstone's theorem tells us
that the reduction results in “massless” Goldstorgles that manifest themselves as certain “soft
directions” where we can achieve very large stratbout energy cost. Finally we look at some
experimental results concerning the order of théréidsition in nematic elastomers, which suggest
that it is either continuous or a smooth cross-ovet unlike that in a liquid-gas system at
sufficiently high pressure. We shall touch on tvasgible explanations for the observed order, and
also sketch the idea behind Petridis and Teremstjexplanation of the “smoothing” of the first
order IN transition into a continuous one.

Nematic Liquid Crystals and the Definition of an Order Parameter

First off, we have to understand wiamatic liquid crystals are before embarking on a discussion
of nematicelastomers. Nematic liquid crystals are essentially strantgadymer floating around in

a solvent, made up of long rod-like moleculessltigquid, meaning that it has no shear modulus.
There are two phases, the isotropic phase and e¢hstic phase. In the isotropic phase, the
molecules can point in any direction they wantre¢his no favoured orientation. In the nematic
phase, locally each molecule is confined to a qmuiating in a certain direction labeled by a unit

vector n; statistically in the large they have orientationeder alongn. Since these molecules
“look the same” whether they point alorfg or —n, we must have that the parameter describing

nematic orientational order be evenrinA vector order parameter is incapable of desugiparity
invariance, so the next best thing would be to ltmka second-rank tensor. We also require any
honest order parameter to be vanishing in the dised, isotropic phase (the analogy being the
magnetizationM of Ising magnets), and we know that a symmetacdkess tensor will vanish
when averaged over all space. Thus a suitableri@hsoder parameter will be

<Qii>:S(ni”J _%dij (1.1)

Close to the IN transition point, the order par&méQ} has to be small, so we can approximate

the Gibbs free energy in the Landau theory by gmmhial expression in powers ¢f), all
indices contracted. It is not hard to see thal hredau free energy is given by (up to quartic order

I
’ =—QSZ—%W383+%W4S“ (1.2)

I
f =2 TrQ" - wTrQ* +w, (TrQ?) -

Here r, is temperature dependemt, =a(T —=T*) , controlling how the order parameter evolves as

T is lowered. The presence of thgbic term in <Q> indicates the IN transition i§rst order in
nematic liquid crystalsu >0 for the energy to be bounded from below. The maiwh f can be

found by requiring% =0, and their relative stability is determined bydimg the values off at

the minima. The global minimum stays &0 as temperature is lowered, but suddenly and



discontinuously jumps to a finite value when a @iertemperature is reached. At that point we
have a first order phase transition and co-exigt@fithe nematic and isotropic phases.

Intermezzo on Nonlinear Elasticity

At this stage we shall introduce some rudimentaaghnio help us understand how a Lagrangian
may be constructed in the theory of elasticity. ypital elastic solid is either undeformed
(isotropic) or deformed; if it is undeformed, itsaid to inhabit the reference space of points;isf
deformed, it is inhabiting the target space. These spaces can be mapped into each other by a
(generally)d x d matrix-valued function called th@auchy deformation tensor, defined by

A =2—R‘~'0’m+/7m (2.1)

Herei labels points in the target space andabels points in the reference spacef\spis a mixed

tensor. They transform differently under rotatiemgach space. We are assuming the case of small
deformations:;7is a small perturbation about undeformed isotr@fy.infinitesimal displacement

on the target space is related to an infinitesigblacement on the reference space by

dR? - dx? = 2u, ,dx, dx, (2.2)
Now we can think of the strain tensor, defined byu :%(/\T/\—d), as being the “metric”. This
transforms as a second-rank tensor in referena@spat as a scalar in target space.
In prenematoelastomer physics a piece of rubbgistsa piece of rubber and a liquid crystal is just

a liquid crystal. There is no shear rigidity iniguid crystal and the piece of rubber is alwayspyap
to stay in its unstretched isotropic state as laagpressure is not being applied to it. In harsher

mathematical terms we say that the rubber is insthieopic state Whe<12> =0 in the free energy,
1 2 2 3 : 2\? ' 2
f(g)—E/i(Trg) +uTru” =CTru”+D'Tr (g ) —E"Trulru (2.3)

with A, 4>0. Here A, 4 are the Lame coefficients from classical elastititeory and there are
cubic and quartic terms to take nonlinear effetts account.



R(x) R'(x)=UR

Fig. 2:R is the reference space ahds the target space, ,is invariant under rotations ih but
transforms as a rank-two tensoRnV denotes a rotation iR; U a rotation inT.

The general idea behind the Landau theory is tleatame always entitled to ignore higher order
terms if the lower order terms are sufficient tabdlize the energy, so if both Lame coefficients ar
positive, the cubic and quartic terms can be négte@nd we get that the energy is minimized for a

configuration without strain €., <g> =0). In fact, for most elastic solids the two Lamefiients

have to be positive, since the case of no stregckirain is usually thermodynamically the most
stable state.

However there can be a stable uniaxial phase iebom we manage to get<0; then we have to

include higher order terms for energy stability.pkoit calculations have been done (seg.
Lubensky and Golubovic, 1989), we shall merelyestiéie important result that in the uniaxial
phase, the free energy of the elastic solid isrglwe

f. :%CluZZZ+C2uZZ(uXX +uw)+%03(um+uw)2+c4(ufx +u5y+2ufy)+C5(uX2Z +uyzz) (2.4)

This is automatically invariant under rotationstamget space, since is a scalar in target space
and f,; is a function ofu. TheC, s are called “moduli of elasticity”.

Nematic Elastomers and the Return of the Goldstone Modes

How are nematic elastomers made? We shall nowydeEcribe a very popular way, the Kuepfer-
Finkelmann method (Kuepfer and Finkelmann, 1991}he first stage the nematic polymer melt is
lightly sprinkled with crosslinks (chemical bondgsulting in a weak gel. This is then stretched



uniaxially, either in the nematic (not elastic)trepic phase aT >T,, or in the nematic phase. Still

keeping the sample stretched, we do a second itkisgl reaction that fixes the enforced uniaxial
alignment. If we impose a sufficiently high strddetween the crosslinking stages, the resulting
elastomer will be a nematic monodomain belgyy.

At first sight it seems that nothing new has beaimeqd, it appears that we have done is merely to
combine two pieces of physics (nonlinear elastiaitg liquid crystals), so the result should be the
sum of both (hence by the look of it we should exmdastomer IN transition to be first-order like
in liquid crystals and elastomers to display thmaatretching behaviour as an ordinary rubber --
an initial Hookean regime followed by a curve tlaedip). But contrary to such naive expectations,
it has been experimentally observed (Kuepfer amétédtmann, 1994; Finkelmaret al, 1997) that

for a certain regime, in certain planes, the etastoundergoes very huge extensions for a small
applied difference in shear stress, way more tlsamronceivable for normal rubber. The IN
transition is also not first-order but continuous.this section we shall understand this enormous
extensibility (or “soft elasticity”) in field theetic terms, and also understand how the presence of
nematic order can stabilize the transition of astt solid from an isotropic to a uniaxial state.

For now we shall restrict ourselves to truly ispimelastomers, and neglect the fact that the

Kuepfer-Finkelmann preparation method actually oetua residual anisotropy in the sanfple.
will actually be easier for our present purposeexpress the free energy density in terms of a

symmetric traceless strain tens;Drdefined by

u

_1 y
o g —:—gdaﬁuyy'*'Uaﬁ (31)

in which case it can be straight-forwardly workedt @hat the free energy density becomes
(retaining the relevant terms)

f=f+f

B E_ -2
fo=—|Tru——Tru 3.2
0 2( i =j (3.2)

- - ~2\2
Q:§n§—0n5+D(ng)

% Truly soft elasticity works only for the case ofraly isotropic sample; the nature of the preparapf
monodomain real samples means that some prefenrsoti@pic direction is bound to be locked &g. by

the Kuepfer-Finkelmann procedure. We get insteati-soft behaviour, where the stress-strain plateau
occurs only at a finite but small value of the @mpblstress. We can think of this as being due & th
introduction of a mechanical aligning field somewhat similar to an applied electric fieldgttendows the

elastic moduluC, with a non-vanishing value. See ¥eal.



withA=24,B=A1+24,E=E+C,D=D-E’ /(2B). Observe that the really important termfis
since it will exhibit symmetry breakingf, will vanish when we do an effective theory in terof
g by integrating out the “massive” mode

In keeping with the spirit of the Landau theorypbiase transitions, we shall now write down a free
energy for a nematic elastomer with all terms aldviby symmetry and retaining only those terms
up to the order necessary for symmetry breakirgctour and the system to be stabilized. The terms

will include one that describes isotropic elasticit,, one that describes nematic ordgr, and one
that couples nematic order to elastic strgin f, , = f, + f, + f..

We have already discussed the form of the elastie €énergy density; the nematic free energy
density is given by the Landau-de Gennes form,

I I
f=2T0Q - wTrQ* +w, (TrQ?)’ =—§sz—%wgs3+%w4s4 (3.3)

There are certain mathematical regulations conegrthe precise form as to how nematic order
tensors couple to elastic strain tensors. Thusvéahave been using one form for the strain tensor,

theright Cauchy-Green tensor g which transforms as a second-rank tensor in neferspace, and
as a scalar in target space. However there isagsther form, called thieft Cauchy-Green tensor

i/ which transforms like a second-rank tensor indaigpace but is a scalar in reference space.
Since the nematic order parame@mlso transforms as a second-rank tensor in tamgte, we
really have to couplei/ (notg) to Q. Thus for the coupling term we choose

f. =—sTruTrQ? - 2tTrvQ
- = = (3.4)
Vij =V, =30V,

The quadratic terms in the full free energy densign read

fquadralic = ,UTVQZ +% rQ(?2 - ZtTr\;Q

= UTTU +11, S~ 41Sy3Tru” (3.5)
:E[S—E«@Trgz] +{ﬂ_ijﬁ gz
3 7 f

Q Q

where we have used the fact that the nematic gralermeteQ can be expressed, in the uniaxial

. 1 - . .
nematic state, b@ ; = S(n n; —55” j wheren denotes the unit vector along the preferred axis.

To realize what effect the inclusion of the nematider has on the elastic properties of the system,
we must integrate out the nematic order such that have an effective theory expressed



exclusively in terms of the elastic strain. “Intatyng out” means that we do a Hubbard-
Stratonovich transformation dhand integrate over the resulting Gaussian ternem( ﬂj av f).

This enforcesS=(2t/r,),/(3/2)Tru* and renormalizes the shear modujus> ' y— 2t Ir,,.
In a theory of elasticity not involving coupling emy other piece of physicg/ must always be
positive (becauseu=0 in thermodynamic equilibrium). Nowr, in the nematic term is
proportional toT —T,,,, whereT, is the IN transition temperature for thquid crystal. Cooling
the temperature causeg to decrease, and this decrease provides a mechamiereby the

effective renormalizeq:' of the effective theory can also decrease, reguih anegative effective
shear modulus! The implications are clear: thergpisntaneous symmetry breaking since now the
global minimum off is no longer ati =0but atu # 0.

Now if we take fluctuations about the equilibriurtate into account, we can derive that the
corresponding change ify,_, takes the form

5, :%B(Tré'g—(4s/38)858)2 + (8%, - € 1uNZTDS)
d 21 2 1 (3.6)
(= 010Q,) +5A(0S) + A Qi)

a=1
O(2) rotational invariance off, in target space means that terms iQ; ~ Q¢,, Q; ~ Q7,are absent

in the nematic state. This is analogous to the cageantum electrodynamics, whdogl) gauge
invariance forbids the photon fields from gainingnass. Integrating out the “massive” modes
0S,Q,,Q, we get that the resulting free energy in term@ef(which is a scalar in reference space

but a rank-two tensor in target space) takes tima fo

1 1
5, =5 B8V, + B0, (G +0V,,) + 2 B (00, + O, )

+B, (02, +Ov2, +20v2, )+ 2u( Ov,, = 1 11)Q, ) + OV, — ¢ 1R, )

(3.7)

Again, O(2) rotational invariance in target space meanstti@termsQ

Xz

Q,, have to be absent,
they must be integrated out. But integrating ovexse variables also causgg,v,, to vanish, so

the free energy takes the same form as that ofiaxiah elastic solid (cf. Eq. (2.5)), but with the
elastic modulusC, missing. These “missing” terms correspond to “Gtdde modes” resulting
from spontaneous reduction of tk¥3) symmetry group tdD(2). In particle physics an example
of Goldstone particles would be the massless pitrde emerge from the breaking of
VU (2)x VU (2)—~ U (2). In elasticity theory, the analogue of mass isashmeodulus. We check

that the counting of Goldstone modes does giveitie number of missing degrees of freedom:
the dimension of the matrix representation of theotatron grouf(N),



dim(O(N))=N(N-1)/2= dimQ (3))- dimQ (2)F 3 E . As in high energy physics where
Goldstone modes point to certain directions (“flalleys”) where a translation would not cost any

energy, so here we have that our Goldstone modesspond to energy-cost free shear directions
in thex-y andx-z planes.

- 2 : : Fig. 3: Stressleformation data ¢
= Kuepfer and Finkelmann (1994) for
= i series of elastomerswith the sami
s " composition and crosslinking density, |
u . varying in preparation historyNote the
= B b o S j flat plateau in the stress-stmaicurve,
: : indicating the presence of soft elasticity.
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The Order of the IN Transition in Nematic Elastomers

We have already seen how the IN transition in nemajuid crystals is first order. Thus if we
naively think that nematic elastomers are mereiypate liquid crystals embedded in rubber, and
nothing more, then we would expect the IN transifior elastomers to be first order too, but this is
not what is observed in experiment. Experimentssamdilations (Lebaet al, 2005; Selinger, Jeon
and Ratna, 2002; Selinger and Ratna, 2004) hawerstiat in the case of elastomers the transition
is either continuous or a rapid nonsingular crogs-drom the nematic to the isotropic phase. Thus
the problem is to explain why we get a smooth itenmsfor elastomers whereas we had a first-
order transition for conventional liquid crystalhere are two possible explanations, to which we
now turn.

The first explanation was due to de Gennes (19&).a stress applied to an elastomer below a
critical value, the nematic order parameter of Estemer has a first-order discontinuity. As we
increase the stress the size of the discontingityehses, until at the critical value itself thisrao
discontinuity and the elastomer evolves smoothiynfithe disordered to the ordered phase. The



stress can arise from both external application iternal stress caused by cross-linking the
elastomer in the nematic phase, which fixes amtatenal order on the distribution of cross-links.
So we are assuming that such stresses have alpaathe elastomer in a “supercritical” state.

On the other hand, we can have quenched disordseptrin the form of chemical heterogeneity of
the elastomer. This means that chemical bonds tsemtoss-link the polymer strands in the

elastomer are randomly distributed, and also, thewtd be impurities and defects arising from the
less-than-perfect way the sample was preparedeTibex theorem due to Imry and Wortis (1979),
that says that weak random-bond disorder wouldaedie first-order discontinuity in a transition

and increasing the disorder would completely getofithe discontinuity. Model simulations done
by Selinger, Jeon and Ratha (2002), Selinger anmhaR&004) have indicated that this is a
plausible mechanism for generating the smooth itians Freezing the orientation of the chemical
crosslinks by linking them to several tethered rhavould constrain their orientational freedom,
forcing the surrounding mesogens to be parallah&long axis of the crosslinks. According to

Fridrikh and Terentjev (1999), every crosslink adas energ ~%gREDD? to the Hamiltonian,
whereg measures the coupling strength between the crésaiid the surrounding mesogens, and

k measures the local orientation of the crosslinke form of the term is determined by the
guadrupolar symmetry of the problem.

Fig. 4 Schematic representation of h
crosslinks provide easy anisotropy a

{E}. The nematic director is forced to
aligned, in the vicinity of the crosslin
with the axesrepresented by the arrov
The orientation of k } and the positions ¢
the crosslinks R} are random. Te
crosslinks are constrainddy the networl
topology, so they contributeguenchel

disorder to the nematic system. ofr
Fridrikh and Terentjev (1999).

Introducing a continuum crosslink densiW(F)=ZX5(F—FX) and writing k =k, where
ndenotes the direction where a crosslink is poinkooglly, we have theandom field contribution
to the nematic free energy
. —\2 .
frandom-fietd Z_I% ng(r)(k Dh) d’r (3.8)
Here both p(F)and nare randomly quenched variables, so if the crdssliare uniformly

distributed in space we have that?) follows a Gaussian distribution,

P[,o(?ﬂ ~ exp(—jdﬁ%} (3.9)



with p, being the average density of impurities, proposldo the density of crosslinks. Since we
are looking for results that do not depend on thectic distribution of,o(F) as it cannot be

experimentally controlled, we have to average tle® fenergy over the random distribution of
p(?). The way to do this is to use the replica trickgioally defined in the context of spin glass

problems. Launching into this calculation (whichsheeen done by Petridis and Terentjev, 2006)
would bring us too far afield; however, we note tasult that when replicas are taken into account,
the Landau-de Gennes free energy gets (for s®dll~ Q ) and weak disorder) singularly
renormalized to

4 3ok, T

1 2 i
=21 S -SwWStH—w,St+——28 g 3.10
3°7 9% 9" gPkpa’y (3.10)

wherea is a small distance cut-off which is of the ordéaaononomer length ang ~ k;T /ais the
Frank elastic constant deep inside the nematicephle see that as the strength of the disayder

increases, the singular contribution $i* increases, and the discontinuitySrat the IN transition
decreases and vanishes above a certain criticakyvahus giving rise to a continuous phase
transition. Figs. 5 and 6 offer us an easy wayisaalize the progressive change in the transitgn a
gis increased.

Q Fig. 5: The equilibrium order paramei
04 F = Q=2S/3 as a function ofreducec

i B temperaturet =T /T* for a range o
P S different disorder strengtly. (a) is the
0.3+ . .o .

; \ first order transition for a systewith no

L % disorder(b) is a subcritical system (c)
02! | a critical system (d) is a supercritic
1 system. As the disorder strength
1 increases the discontinuity gets smaller
0.1 ¢ c : and eventually disappears.

i 1.02 1,04 1,06
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T Fig. 6 Free energy against orc
F 4 parameter plots for a subcritical syst
T, for a range of temperatures,
T, <T,<T,<T,. The dotted lint
LT, represents the Landau energy and
F . .
dashed line represents the disol
energy forT =T,. We can see that the

0.05 0. 0.16~_ 0.2 0.25 0.3 high-Q (high-S) minimum is due
Q exclusively to the Bndau energ)

while the lowQ (low-S) minimum

T, arises from competition betweete

S? term and the disorder term.

Conclusion

We round off our essay with a summary of what weehdiscussed. We have seen how nematic
order and the elastic medium influence each otbeiprocally. On the one hand, the presence of
nematic order renormalizes the Lame constanin the nematic-averaged effective strain-elastic

free energy, causing it to become temperature dependent amcehafering a possibility where the
uniaxial state of the elastic medium could be $it@dd. Since the symmetry is reduced,
Goldstone’s theorem tells us that there are certaiassless” degrees of freedom manifesting
themselves as directions of soft elasticity. Ondtteer hand, the presence of quenched disorder in
the random distribution of network crosslinks antpurities gives rise to a singular renormalized
contribution to thedisorder-averaged effective nematic free energy, which is proportional to the
strength of disorder, and increasing that disostegngth results in a continuous IN transition.
Along the way, we have seen how symmetry playsuaiak role in determining the form of free
energies and cause certain terms to be absent.awée dxploited analogies with particle physics
whenever possible, to aid clarity.

These considerations can also be extended to aihsses of liquid crystal elastomeesg.
smectics and columnar phases.
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Appendix

Let us consider whether the form (2.3) for our mwadr free energy is reasonable, since this is a
mathematically subtle point. There are no termedinn u because the reference state relative to
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which u is defined is always assumed to be in mechangpailierium, so imposing the condition

f ((u) =0 eliminates the linear term. There are no termirin’, Tru* ,(Trg)ZTrgz,TrgTrg3 as they
2

are of higher order tha(1Trl=f) . To see this, assume the system is incompressieteribed by

the tensorA, g:%(/\T/\—d) =diag(/12—1,/1‘1—1,/1‘1—]) ., A here being the eigenvalues of the

deformation tenson\ describing compression for the principal axis wihi@asA <1 and extension
for the principal axis that had >1. Imagine that we are doing a small deformaticertyybing

A=1+0+0° for dsmall. Sou= diag(25+3é'2 ,—5,—5), and if we plug this in tc(Trgz)zwe see

it is quartic order ind, but €.g.) TrgTrgS' is of quintic order and so we ignore it. One other
guestion could be: why are there apparently noSérrfrrg“’? There is a result from linear algebra
(seeeg. Ogden, 1984), in three dimensions ofiiyu ,Trg2 ,Trgsare linearly independent, and all

otherTr g” for N > 3 can be expressed in terms of these three lokder invariants.
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