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Abstract

It has recently been suggested that, in order to provide the richness of behavior
which is seen empirically, the brain must operate in a critical regime between a phase
of order and disorder [1]. In particular, such critical behavior is exhibited in what is
termed neuronal avalanches. These cascades of synaptic activity have been seen both
in vitro and in vivo [6]. Several models have been put forth to explain this appar-
ently critical phenomena, ranging from simple dynamical models of neural networks
to full fluctuation field theories, though the specific mechanism remains unclear. De-
spite the reproducibility of this behavior, its connection to high-order processes is yet
unknown, though some have linked neuronal avalanches to large scale brain features
such as information storage [2, 4], synaptic stability [3], even epileptic shock [1]. In
hopes of providing a larger context for this pervasive neural behavior, we examine the
aforementioned experimental findings and compare various theoretical models which
predict them.
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The brain is often seen as a complex, non-linear system in which large-scale dynam-
ics emerge from small-scale interactions. Local functional groups of neurons are often
easier to characterize through physiological studies, explaining relatively isolated brain
functions. However, any whole brain process, e.g. memory and learning [5], requires
spatially distant groups to work in concert. This functional interplay between cortical
segregation and integration is not well understood [1]. Over the past 25 years, the
brain’s inherent ability to perform within this dichotomy of scale has increasingly been
seen as operation on the brink of criticality, i.e. at a point where interactions show
no characteristic scale, and fluctuations exhibit power-law behavior [1]. In a critical
system, isolated perturbations by either external or internal stimuli can quickly cas-
cade throughout the system, resulting in complex responses both locally and globally.
Through this critical avalanching, the brain may be afforded the speed and flexibility
required to react to novel input [2], while at the same time allowing for long-lasting,
long-range interactions [3, 4]. In the proceeding, we attempt to characterize this critical
behavior, citing specific experimental evidence and models which predict it.

In the brain criticality is seemingly spontaneous, in contrast with typical second
order phase transitions where an external parameter must be tuned near a critical
value in order to achieve scale-invariance. Such self-organized criticality (SOC) was
first explained by Per Bak [3] in a seminal paper describing the ubiquitous power-law
dependence of power spectra on frequency, P (f) ∼ f−β, in dynamical systems. Such
behavior exists in systems ranging from earthquakes [13] to forest fires [14]. In these
systems, individual units are perturbed past some threshold whereupon they relax,
dissipating energy back to the system. This dissipation can in turn cause neighboring
(or distal) units to exceed their threshold, thus causing a cascade of excitation and
dissipation. What is truly remarkable about this cascade is that it lacks a characteristic
size, which leads directly to a lack of characteristic lifetime. Instead, these observables
follow a power law. For example, under perturbation, a distribution of cascade size
s could be given by D(s) ∼ s−τ . If the perturbation grows within the cascade with
exponent γ, then the cascade’s lifetime goes as, tγ ∼ s

t . This in turn gives a distribution
lifetimes D(t) = s

tD(s(t))dsdt ∼ t−(γ+1)τ+2τ ≡ t−a. Such a distribution leads to a
frequency spectrum

S(ω) =
∫
dt

tD(t)
1 + (wt)2

∼ ω−2+a (1)

hence the term ”1/fβ” noise [3].
Representing this activity through cellular automata, Bak demonstrates that with-

out external tuning, the system drives towards a critical state. At this point pertur-
bative events cause the spacial and temporal distributions of minimally stable states
(domains) to exhibit a scale-invariant power-law dependence on the size and lifetime
of such states, respectively. Because of this lack of characteristic scale, the correlation
length between sites diverges and the number of degrees of freedom is drastically re-
duced. More simplistically, a self-organized critical system may be seen as “a driven,
dissipative system consisting of a (1) a medium which has (2) disturbances propagating
through it, causing (3) modification of the medium such that eventually (4) the medium
is in a critical state, and (5) the medium is modified no more” [15]. From the above
description, one can see directly how the brain may be thought of as a SOC system.
Analogous to a single site in the cellular automata lattice, individual neurons integrate
synaptic input from up to 104 synaptic connections [5]. When this input reaches some
threshold voltage, the neuron sends a spike down its axon, redistributing pre-synaptic
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Figure 1: Beggs and Plenz original avalanche size data. (a) Distribution of avalanche sizes
for various bin sizes, ∆t. (b) Power law law exponent α varies with ∆t. Note that tavg gives
alpha ∼ −1.5. (c,d) Data rescaled so that ∆t is the average interelectrode event interval,
thus collapsing on the power law exponent alpha ∼ −1.5. Note that this result in invariant
of both spatial scale and interelectrode distance. (e) Avalanches initiated at a single site
show the same power law behavior with alpha ∼ −1.5. [7]

activity to the rest of the system. Furthermore, the propagating disturbances, termed
neuronal avalanches, have been measured both in vivo and in vitro, most notably in
2003 by Beggs and Plenz [6]. Having seen evidence of self-organized criticality in other
natural systems, they hypothesized that the complex network of cortical neurons could
exhibit similar behavior.

In order to test this hypothesis, Beggs and Plenz studied the propagation of spon-
taneous neuronal activity in mature rat cortex slices and cultures on 60-channel multi-
electrode arrays. During their trials, each electrode was continuously sampled, binning
excitations which surpass a preordained threshold local field potential (LFP) every ∆t.
The size of a neuronal avalanche is then defined as the number of binned events within
this interval, i.e. the number of involved electrodes. The duration of an avalanche was
determined by the length of time between two ∆t intervals during which no activity
was measured.

Defined this way, Beggs and Plenz record neuronal avalanches of a variety of sizes
and lengths. A log-log plot of the distribution of avalanche sizes reveals a simple power
law, P (n) ∼ nα, where n is the size of the avalanche and alpha is the slope of the plot,
Fig. 1. At first glance, alpha is different for each temporal bin size, ∆t. However,
Beggs and Plenz are able to remove avalanche size bias by allowing ∆t to be precisely
the average interval between firing events. After doing so, their data collapses into
a single power law with α = −3/2. The cutoff for this linear log-log relationship is
consistently solely dependent on the number of electrodes present. Similarly a log-log
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plot of the distribution of avalanche lengths reveals a temporal power law relationship
with exponent α = −2 and exponential cutoff. Both these results stood up to different
variations of the experiment, including various threshold potentials and system sizes
[6].

What Beggs and Plenz found was a wholly new mode of neural activity. Up until
this point, activity in the cortex was seen as limited to oscillations, waves and synchrony
[16]. The neuronal avalanches measured by Beggs and Plenz showed little spatial
confinement, making them distinct from waves which propagate across neighboring
synapses. Additionally, the avalanches lacked regular temporal structure, an inherent
property of oscillations.

Phase synchronization among cortical oscillations have been shown to link neurons
together into functional groups which can then respond collectively to stimuli [16].
These neuronal assemblies composed of spatially distant elements are then locked to-
gether by a common phase signal, thus allowing for long-range communication across
the cortex. However, this oscillatory activity alone has failed to completely describe the
particular long-range correlations needed for mammalian consciousness [16]. Neuronal
avalanches may be able to complete this picture. As a direct result of residing in the
critical regime, correlation lengths diverge. Thus, the only limiting factor in avalanche
size is the size of the system. This implies that neuronal avalanches originating at
one site in the cortex may access information stored at any other site. In fact, the
avalanches measured by Beggs and Plenz often exceeded the width of a single corti-
cal column, ∼ 1.6mm, allowing for the possibility of avalanche mediated cross-cortical
communication [6].

As mentioned earlier, critical and power law behaviors are naturally ubiquitous.
As such, there exists a large body of theoretical work which attempts to explain these
phenomena. We will now briefly discuss three such models that apply directly to
criticality and avalanches.

Probably the simplest account of power law behavior in avalanches is given by the
critical branching process. In these models, a single active site relaxes with probability
p, dissipating energy to two other sites and making them active. These newly activated
sites then relax with probability p or stop the chain with probability 1 − p [7]. This
process continues until each chain has been terminated, Fig. 2. In order to map this
process to a SOC system, Zapperi et. al. created a model which allows for energy
dissipation through open boundary conditions [8]. In this way, the system will attempt
to balance energy exiting by dissipation with the energy entering by perturbation.
Following their proof, suppose only a finite number n of generations are allowed, and
let γn be the number of remaining active sites in the nth generation and N be the total
number of affected sites. Then,

p(1 + t) = p(t) +
1− γn
N

(2)

so that if γn > 0, p decreases (since more energy is leaving than entering) and if γn = 0,
p increases (since more energy is entering than leaving). Using this recursion relation
in a computer model, they find a critical value for p, pc = 1/2, about which the system
oscillates. Note that in branching processes, another measure of p is the branching
parameter, σ, which is the ratio of ancestral states to the number of descendant states.
Thus, p = 1/2 corresponds to σ = 1. At this value, they find the avalanche size
distribution to obey a power law, D(s) ∼ s−τ with τ = 3/2.
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Figure 2: Neuronal avalanches as branching processes. (a) A simple branching process where
at each ti, the active site has probability p of continued propagation. (b) Beggs and Plenz
critical branching process model shows good convergence to a power law relationship with
alpha = −1.5. These results persist for several system sizes. (c) Calculation of the branching
parameter σ as the ratio of descendant events to ancestral within each avalanche. (d) Beggs
and Plenz experimental measurement of the branching parameter is approximately 1. [7]

Using a mean field for γn, 〈γn〉 = (2p)n they are able to analytically derive the
distribution of avalanches sizes,

Pn(s, p) =

√
2(1− p)/πp
s3/2

exp (−s/sc(p)) (3)

where sc(p) = −2/ln(4p(1 − p)) is the cutoff size. It is clear then that as p → 1/2,
sc(p) → ∞, implying that pc = 1/2 and τ = 3/2 as was decided numerically. Finally,
a similar process may be used to compute the lifetime distribution, D(t) ∼ t−α, giving
α = 2.

Clearly these exponents match the power law behavior seen by Beggs and Plenz.
Noting that one group neuronal activation giving rise to another may be seen as a
branching process, Beggs and Plenz measured the branching ratio throughout their
experiment. To do so, they approximated σ as the ratio of firing events in one time
bin to the next, giving them σ = 0.90± 0.19 for all avalanches and σ = 1.04± 0.19 for
avalanches initiated by a single ancestor, Fig. 2.

Though these results make it seem reasonable to assume neuronal avalanches are
critical branching processes, there exist a few caveats that seem to limit this model’s
tractability. First, if the brain really is self-organized critical, the tuning of an external
parameter such as p or σ would be unnecessary. Though it should be noted that other
experiments have seen this τ = 3/2 power law to depend on dopamine concentrations
or inhibition/excitation levels, implying that specific parameters may need to be appro-
priately tuned for criticality [9]. Second, branching processes assume that descendants
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Figure 3: Distribution of avalanche sizes plotted for several coupling strengths, α. The
critical range (shown in red) is for 1.3 < α < 1.6. Below this range no events span the
system, while above this range a substantial fraction do, implying a mechanism for epileptic
shock. [11]

have no knowledge of their ancestors, thus making each generation independent of the
previous one. This seems unlikely in the cortex where synaptic connections not only
have inherent latency, but also varying plasticity. Thus connections between neurons
have at least some sort of memory [7]. Furthermore, this variance of synaptic strength
seen in the cortex argues against the possibility of uniform branching probabilities. Fi-
nally, Zapperi et. al. were only able to produce analytic results in the thermodynamic
limit, i.e. N →∞, but the cortex, though consisting of many neurons, is by no means
infinite in extent.

Some time after this, Eurich, Hermann, and Ernst put forth a model based on the
Olami-Feder-Christensen stick-slip model which accounted for the finite size behavior
of avalanches, but still required the tuning of an external parameter to achieve power
law behavior [10]. In an effort to account for this additional caveat, Levina, Hermann,
and Geisel create a model which achieves criticality by assuming more physiological
synapses [11]. In particular, synapses in their model are activity-dependent, thus cou-
pling strengths between neurons weakens with increased activation. This is in line with
many findings [9] which point to depressive synapses. The following is a direct account
of this model. Consider N integrate and fire neurons, each with membrane potential
hi(t) and threshold potential θ. At time t, these neurons receive external input Iext at
site ξτ (t) = i at a rate τ . If at any point hi(t) > θ, the neuron waits a time τd and
dissipates (spikes), sending input to all postsynaptic neurons with coupling strength
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Jij . This leads to the following relation for the membrane potential,

˙hi(t) = δi,ξτ (t)I
ext +

1
N

N∑
j=1

uJijδ(t− tjsp − τd) (4)

where tjsp is the time at which neuron j last spiked. To enforce depressive synapses,
Jij obeys the following dynamics,

˙Jij =
1
τJ

(
α

u
− Jij)− uJijδ(t− tjsp) (5)

Thus for each spike that arrives at a synapse, the strength of that synaptic connection
is diminished by a fraction u, physiologically implying a depletion of neurotransmitter.
During periods of no activity, the coupling constant recovers at a rate τJ = τνN to its
maximum value α/u, where 1 < ν � N .

In order to inspect the behavior of this system, the mean value 〈Jij〉 with respect to
the interspike interval ∆isi is found giving a uniform synaptic strength α0 = u〈Jij〉. It
is important to note that this averaging does not skew the dynamical result since the
coupling constant does not exhibit power-law behavior at criticality, Fig. 3. Intuitively,
for short interspike intervals, the synapses are more frequently depressed leading to a
smaller average coupling strength. On the other hand, for large synaptic strengths,
avalanches occur more readily causing shorter interspike intervals. Analytically, this
interplay can be seen in self-consistency equations.

〈Jij〉 = 〈Jij〉(〈∆isi〉) and 〈∆isi〉 = 〈∆isi〉(〈Jij〉) (6)

whose mean field solution gives the behavior of the system. This information is then
sufficient to determine the distribution of avalanche sizes, and thus if applicable, extract
power-law exponents.

Levina et. al. found that for a range of synaptic strengths α, the interdependence
of network activity and coupling results in a self-organized drifting toward critical
avalanching dynamics, Fig. 3. Specifically, in the thermodynamic limit (N → ∞),
the network becomes critical, exhibiting power-law behavior for α ≥ 1. This range
of synaptic strengths give a range of power-law exponents which includes the Beggs
and Plenz value of 3/2. Levina et. al. were able to numerically extend these results
to include networks with that were not fully connected and included biologically re-
alistic leak currents. However, analytic confirmation of these extensions was deemed
intractable [11].

The above models provide analytic calculations solely for a uniformly all-to-all
connected network. Further, other measurable quantities, e.g. correlation functions,
are not given explicity analytic form. This makes testing these results difficult. In a
effort to extend beyond this restriction, Buice and Cowan, use the methods of stochastic
field theory applied to non-equilibrium statistical mechanics in order to generate a field-
theoretic “effective spike” model [5]. In it a continuous spike field φ(x, t) is used in
place individual spike records. Such statistical mechanical continuation is seemingly
admissible simply due to the immense number of synaptic connections made in the
cortex.

In their model, a site configuration is given by the number of effective spikes ni
emitted by neuron i. Neurons fire according to a rate function f(s), which depends
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on input s. This input is (as in Levina et. al. [11]) the sum of external input Iext

and recurrent input from other neurons
∑

j wijnj , where wij is the relative synaptic
strength between neuron i and j. Finally, a single spike’s effectiveness decays as 1/α,
which may be translated as the contribution of inhibition. In this way, ni describes
the total number of spikes initiated at neuron i which are still affecting the system’s
dynamics. Thus, ni → ni−1 represents a spike from neuron i losing effectiveness.
Likewise, ni → ni−1 represents neuron i spiking.

With the assumption that this is a Markov process, one arrives upon a dynamical
master equation

dP (~n, t)
dt

=
∑
i

α(ni + 1)P ( ~ni+, t)− α(ni)P (~n, t) + f(
∑
j

wijnj + Iext)[P ( ~ni−, t)− P (~n, t)]

(7)
where P (~n, t) is the probability of the system having spike configuration ~n at time
t. Note also, the use of the notation ~ni± denoting the configuration ~n where the ith
component is ni ± 1.

We now briefly overview Buice and Cowans’ analytic solution of their model [5]. In
order to create the corresponding field-theoretic model, they build up states | ~n〉 using
defined creation and annihilation operators. Next, these states are transformed into
field variables, φ(x, t) and φ̃(x, t) using a coherent state representation. Here, φ(x, t)
describes ~n while φ̃(x, t) describes the systems response to perturbations. These new
fields are related back to the original configuration as follows

〈
∏
i

n(xi, ti)〉 = 〈
∏
i

[φ̃(xi, ti)φ(xi, ti) + φ(xi, ti)]〉 (8)

It is often more convenient to characterize a dynamical system by a partition sum Z,
where the sum is over all realizations of the field weighted by an appropriate action.
Thus they produce a generating functional Z[J, J̃ ] as a path integral over field variables.

Z[J, J̃ ] =
∫
DφDφ̃ exp (−S[φ, φ̃] + J · φ̃+ J̃ · φ) (9)

where they have introduced external currents

J̃ · φ =
∫
ddxdtJ̃(x, t)φ(x, t) (10)

The weighting action is given by

S[φ, φ̃] =
∫ ∞
−∞

ddx(
∫ t

0
dtφ̃∂tφ+ αφ̃φ− φ̃f(w ? [φ̃φ+ φ] + I))−

∫ ∞
−∞

ddxn(x)φ̃(x, 0)

(11)
where ? denotes a convolution and n(x) is an initial state operator. In this partic-
ular model, n(x) corresponds to a configuration where each neuron has an Poisson
distribution of spikes.

The generating functional contains all statistical mechanical information about the
system, as a partition function does in non-field theories. Thus, in order to gain insight
into the dynamics of the system, one must only calculate Z[J, J̃ ]. Clearly, this is not
always a straight-forward task. The usual way of proceeding is a simple perturbative
expansion of the action with Feynman diagrams. However, Buice and Cowan decide
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to exploit the convenience of a loop expansion via mean field theory and the method
of steepest descents.

In order to determine when this expansion is valid, a limiting condition is developed
analogous to the Ginsberg criterion of equilibrium statistical mechanics with correlation
length replaced by diffusion length. Denoting wn as the nth moment of the distribution
w(x), the criterion is explicitly,

(
w2

w0
)2 � |f

′′|w0A[f ′, w4, ...]
f ′

l4−dd

where

l2d =
f ′w2

2(α− f ′w0

(12)

is the diffusion length, i.e. the length which single spike effects will propagate before
decaying [5]. As this length approaches the physical size of the system, the loop
correction begins to fail since small spike fluctuations may then have a non-negligible
effect. Additionally one can see mean field approximations are valid only for d >
4. Clearly in most finite physical systems, d = 2 or 3. However, if one considers
the multiplicity and range of cortical interactions, d can be taken to be much larger.
Nevertheless, mean field theory is traditionally only consistent far away from the critical
point. In order to determine dynamics within the critical regime, Buice and Cowan
turn to renormalization group.

By making the following transformation of fields

φ̃(x, t)→

√
2f ′

w0|f ′′|
φ̃(x, t)

φ(x, t)→ (

√
2f ′

w0|f ′′|
)−1φ(x, t)

(13)

where w0 is the zeroth moment of the synaptic weight distribution, the action may be
written

S[φ, φ̃] =
∫
dtddx[φ̃∂tφ−Dφ̃52 φ+ µφ̃φ+ g(φ2φ̃− φ̃2φ) (14)

where D, µ, and g are defined renormalized parameters representing diffusion, decay,
and coupling constants, respectively. Note that all terms whose coefficients scale to 0
at large system sizes have been dropped.

This is precisely the action seen in Reggeon field theory, and hence in the same
universality class as directed percolation (18). Percolation can generally be seen as
fluid flowing through a semi-permeable membrane. A directed percolation system goes
through a phase transition from a non-percolating (impermeable) state to a percolating
(permeable) state. In the same way, Buice and Cowan predict the cortex to undergo
a phase transition from a quiescent state to an active fluctuating state through µ = 0.
In this system, µ0 = α−f ′w0 implying that the transition occurs precisely at the point
wherein the propensity of a neuron to fire matches its spike decay rate. This may
also be interpreted as the point at which inhibition, α, balances excitation. A directed
percolation is characterized by the critical exponents β, β′, ν, and z. These give the
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power law behavior of
〈φ(x, t)〉 ∼ µβ

ξs ∼ µν

ξt ∼ µνz

P∞ ∼ µβ
′

(15)

which are the spike field expectation value, spatial correlation length, temporal cor-
relation length, and probability that a site will belong to a time-spanning cluster,
respectively. It is known that for d ≤ 4, these values are not analytically solvable [12].
However, for d > 4, we may use their mean field values, β = 1, ν = 1/2, and z = 2. Un-
der directed percolation, the distribution of avalanche sizes scales as D(s) = s1−τg(µsσ)
with

τ = 2 +
β

(d+ z)ν − β
=

5
2

σ =
1

(d+ z)ν − β
=

1
2

(16)

where the mean field values have been inserted and d = dc = 4. Thus the Beggs and
Plenz result is recovered, D(s) ∼ s−3/2 [5].

Buice and Cowan arrived upon their results with few qualifying assumptions, how-
ever, it is important to understand what they were. First and foremost, they assume
cortical activity is a Markov process. This implies that each successive generation of
spike configurations has no knowledge of the past. As noted earlier for critical branch-
ing processes, this assertion is not necessarily physiological well-founded. Second, even
though they relax the condition of all-to-all synaptic connections, they reimpose the
condition of uniform synaptic strength. Again, as noted earlier, this discounts the
possibility of recurrent synaptic chains. Furthermore, the critical state requires tuning
the magnitude of intercortical interactions, and thus is not by definition self-organized.
Though, as they rightly point out, self-organized criticality has been speculated to be
tuned directed percolation where the tuning parameter is just difficult to uncover [5].
Or it may be possible that a process as in Levina et. al. tunes this parameter auto-
matically. (It is interesting to note that it is no coincidence that these assumptions are
shared with our first model. In fact, for d > 4, directed percolation displays precisely
the dynamical behavior of a critical branching process [5].)

Despite these possible points of contention, what is most intriguing is the ability
to place this problem in a universality class. In doing so, Buice and Cowan have
shown how it is possible that a host of disparate models may describe the same critical
phenomena. They intuitively point out that a model’s biological resemblance says
“more about the evolutionary path by which that system was realized than about the
actual function” [5]. Thus in uncovering purpose, finding a physiologically accurate
model becomes secondary to finding the appropriate universality class.

Because of this, it is worth understanding how different physical parameters change
a model’s universality. For example, the introduction of a post-spike refractory state
moves their model from directed percolation to dynamic isotropic percolation. Fur-
thermore, it has been shown that spatial and temporal disorder separately can alter
universality, though spatiotemporally quenched disorder (as found in the cortex) does
not [5].

Each of the above models produces the experimentally discovered power-law in
neuronal avalanches. However, deciding which one is more biologically accurate seems
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almost a matter of taste rather than physicality. Certain qualifying assumptions most
likely place each into a universality class. It is thus now back on the experimentalist to
idenitify the precise nonequilibrium behavior and universality. With this information,
the theorist can know which class of models describe neural dynamics. In this way, we
hope to better understand not only the underlying mechanism, but also the function
of criticality in the brain.
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