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Abstract

A continuum description of avalanches in granular systems is presented.
The model is based on hydrodynamic equations coupled with an order pa-
rameter determined by a free-energy-like potential. The model successfully
describes the transition between the static and the fluidized phases. This
formalism is applied to avalanches on an inclined plane configuration. The
theoretical predictions agree with the experimental results.
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1 Introduction

Granular materials are large conglomeration of discrete macroscopic particles with
no cohesive forces between them. In spite of this simplicity, they can exhibit very
rich and surprising phenomena that differ from those seen in solids, liquids or gases
[1]. Example of these behaviors are segregation under vertical vibration [2], localized
excitations [3] and avalanches.

Grains are macroscopic, so thermal energy is negligible compared to the grav-
itational energy of the particles (kBT/mgd ≈ 10−10, where m and d are the mass
and diameter of the particles, and g is the gravitational constant). Consequently, in
most cases ergodicity does not apply. The number of micro states corresponding to
a macro state is irrelevant. Additionally, the interactions between grains are highly
dissipative due to the static friction and the inelastic collisions experienced by the
particles. These two characteristics make the ordinary statistical mechanics fail in
describing granular materials.

One of the most interesting phenomena pertinent to granular systems is avalanches.
During an avalanche, a surface layer of the material experiences a phase transition
from a static state to a granular flow. Figures 1.a and 1.b show avalanche experiments
done on an inclined plane.

The description of avalanches is still a matter of debate. The two more suc-
cessful approaches to describe avalanches are: (a) large-scale molecular dynamics
simulations, and (b) continuum theories. The first continuos models of avalanches
were studied by Bouchaud, Cates, Ravi Prakash and Edwards (BCRE) [4], and sub-
sequently by Boutreux, Raphaël and de Gennes [5]. In their models, the granular
system is spatially separated into two phases, static and flow. However, in many
important cases there is not a clear distinction between those two states.

In this essay, the Aranson-Tsimring [6, 7, 8] model of avalanches will be presented.

2 Model of granular flows

In the Aranson-Tsimring approach, the model is based on the Navier-Stokes equa-
tions

ρ0Dtvi = ∂jσij + ρ0gi, i, j = x, y, z (1)

where v is the velocity of the material, ρ0 is the density (without loss of generality,
ρ0 = 1), σij are the components of the stress tensor, g is the gravitational accel-
eration, and Dt = ∂t + vi∂i is the material derivative. Also, a dense flow will be
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(a) (b)

Figure 1: Avalanches triggered by a needle. Initially, an uniform layer of granu-
lar particles rest on an inclined plane. Depending on the tilt angle, two different
behaviors are seen. (a) Triangular avalanche. (b)Up-hill avalanche. [9]

.

assume, so the relative density fluctuations are small and the fluid will be considered
incompressible, ∇× v = 0.

The main assumption in this theory is that there are two components to the
granular flow. One involving grains experiencing plastic motion, and another term
accounting for grains that maintain static contacts with their neighbors. In this way,
the stress tensor is written as the sum of a hydrodynamic part proportional to the
flow strain rate eij, and a strain-independent part σsij

σij ≡ η eij + σsij (2)

where η is the viscosity coefficient.
It is assumed that the diagonal elements of the stress tensor σsii are equal to the

diagonal components of the static stress tensor σ0
ii for the immobile grain configu-

ration, and the shear stresses are proportional to the stress tensor σ0
ij, where the

constant of proportionality is a function of a position-dependent order parameter ρ.
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For simplicity, σsij ≡ ρ σ0
ij, for i 6= j. In this way,

σij = η (∂jvi + ∂ivj) + σsij (3)

where

σsij =

{
σ0
ii i = j

ρ σ0
ij i 6= j

(4)

The static or solid state is identified as ρ = 1. In this way, the stress tensor σij
takes its static value, σij = σ0

ij ∀i, j. In a fluidized or fluid state, ρ = 0 and the
stress tensor is reduced to the case of an ordinary fluid.

Because of the strong dissipation in a dense granular flow, the equation for the
order parameter ρ is determined by a pure dissipative dynamical equation Dtρ =
−δF/δρ, where F is a free energy density functional, F = 1

2
D|∇ρ|2 + F (ρ). The

constant D is the diffusion coefficient (without loss of generality, D = 1), and F (ρ)
is a potential energy density.

Dtρ = ∇2ρ− ∂ρF (ρ) (5)

To account for the bistability near the solid-fluid transition, F (ρ) is assumed to
have local minima at ρ = 1 and ρ = 0. For simplicity, F (ρ) is taken as a quartic
form

F (ρ) =

∫ ρ

ρ′(ρ′ − 1)(ρ′ − δ)dρ′ (6)

Therefore,

Dtρ = ∇2ρ+ ρ(1− ρ)(ρ− δ) (7)

The position-dependent parameter δ controls the stability of the two phases.
For 0 < δ < 1, Eq. (7) has two stable uniform solutions at ρ = 0 and ρ = 1,
corresponding to liquid and solid states, and one unstable solution at ρ = δ (see
figure 2). For δ < 1/2, the solid phase is more favorable. For δ > 1/2, the liquid
phase is more favorable.

The parameter δ is taken to be a function of the stress tensor σij, which depend
on constitutive relations. One of the simplest functions for δ is δ = (φ−φ0)/(φ1−φ0),
where φ ≡ max

i,j
|σij/σjj|, and φ0, φ1 are critical parameters that account for hysteresis

in the system. If φ < φ0 ⇒ δ < 0 and the liquid state is unstable. If φ > φ1 ⇒ δ > 1
and the solid state is unstable. If φ0 < φ < φ1, both states coexist.
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Figure 2: F (ρ) for three different values of δ [8]

3 Inclined plane configuration

A particular configuration for granular flows consists in an initially uniform flat layer
of thickness h of dry cohesionless grains on a plane tilted at an angle ϕ. A Cartesian
coordinate system is placed as shown in Fig. (3), where the z axis is perpendicular
to the plane and the x axis goes downhill. The bottom of the layer is at z = −h
and the top of it is at z = 0. The surface of the plain will be considered sticky, so a
non-slip condition will be imposed on the grains at the bottom of the granular layer,
i.e., ρ = 1 at z = −h. At the free surface the boundary condition is less obvious. For
simplicity, a non-flux boundary condition for the order parameter will be imposed,
∂zρ = 0.

3.1 Uniform stationary solutions

The uniform stationary solution for the order parameter is simply ρ = 0, 1 (Eq. 7),
where the stability of each phase is determined by the configuration of the system.
The uniform stationary solution for the stress tensor σij follows from Eq. (1),

∂zσzz + ∂xσzx − g cosϕ = 0 (8)

∂zσxz + ∂xσxx + g sinϕ = 0 (9)

5



Figure 3: Inclined plane configuration.

In the absence of lateral stresses, i.e., σ0
yy = σ0

yx = σ0
yz = 0, the solution is

σzz = g cosϕz, σxz = −g sinϕz, σxx,x = 0 (10)

Therefore, there is a simple relation between shear and normal stresses, σxz =
−σzz tanϕ, independent of the flow profile. In the case of static equilibrium, σ0

xz =
−σ0

zz tanϕ. Since by assumption σzz = σ0
zz, then σxz = σ0

xz.
In this configuration, the most unstable direction goes along the inclined plane.

Hence,

φ = max
i,j
|σij/σjj| = |σ0

xz/σ
0
zz| = tanϕ (11)

Consequently, the stability of this solution is totally determined by the tilt angle
of the plane ϕ. Explicitly,

δ =
φ− φ0

φ1 − φ0

(12)

where φi ≡ tanϕi for i = 1, 2, and ϕ0, ϕ1 are critical tilt angles.

3.2 Non-uniform solutions

For the case of non-uniform flows, solutions with small deviations from the uniform
case will be considered, i.e., |∂xh(x, y, z)| � tanϕ. Additionally, a further approxi-
mation will be made. Because of the non-slip condition at the bottom of the granular
layer, for shallow layers the flow velocity is small [7], so the convective flux can be
neglected, i.e., Dt ≈ ∂t,

∂tρ = ∇2ρ+ ρ(1− ρ)(ρ− δ) (13)
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3.2.1 Stationary case

For h greater than a critical thickness hs, there is a non-trivial stationary solution.
The critical thickness hs can be derived in the following way.

Integrating Eq. (6) gives,

F (ρ) =
ρ4

4
− (δ + 1)

3
ρ3 +

δ

2
ρ2 + const. (14)

In a stationary regime, ∂tρ = −δF/δρ = 0. Therefore, F = 1
2
|∇ρ|2 + F (ρ) is

conserved with respect to ρ. Since the boundary condition for ρ at the surface is
∂zρ = 0, and considering solutions with ∂xρ = ∂yρ = 0, then

1

2
(∂zρ)2 + F (ρ) = F (ρ0) (15)

where ρ0 is ρ at the surface.
The height of the granular layer h can be obtained by integration∫ 0

−h
dz =

∫ ρ0

1

dρ√
2 [F (ρ0)− F (ρ)]

(16)

h =

∫ ρ0

1

dρ√
2 [F (ρ0)− F (ρ)]

(17)

The critical thickness hs can be found by minimizing the integral over all values
of ρ0.

hs(δ) ≡ min
ρ0

∫ ρ0

1

dρ√
2 [F (ρ0)− F (ρ)]

(18)

In consequence, if h > hs(δ), an stationary solution exists besides the static
uniform solution.

3.2.2 Non-stationary case

For non-stationary solutions, small deviations from the uniform solid state ρ = 1 will
be studied. For ρ > 1, the solid state is stable at small h, but it loses stability at a
certain critical thickness hc.
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The most unstable modes of Eq. (13) satisfying the boundary conditions are in
the form [6]

ρ = 1− Aeλt cos(πz/2h), A� 1 (19)

Replacing Eq. (19) into Eq. (13) gives

λ(h) = δ − 1− π2/4h2 (20)

If λ < 0 the solid state is stable; if λ > 0, it is unstable. The critical stability
occurs at λ = 0, which defines a critical height hc

hc(δ) ≡
π

2
√
δ − 1

(21)

The two critical heights hc(δ) and hs(δ) divide the h− δ parameter plane in three
regions, Fig. 4. At h < hs(δ), the trivial static equilibrium is the only stationary
solution. At hs(δ) < h < hc(δ), static equilibrium coexists with stationary flow. At
h > hc(δ), only granular flow exits. This picture agrees with experimental results.

4 Experiment

Avalanches on an inclined plane were studied experimentally by Daerr and Douady
[9]. The experiment consists in a plane tilted at an angle ϕ to the horizon and
covered by a flat layer of dry cohesionless glass beads (180 - 300 µm of diameter).
The granular material is spread uniformly over the plane with an initial thickness h.
The surface of the plane is made of velvet cloth, so the friction of the grains with it
is much large than between themselves.

From dimensional analysis, the diffusion coefficient is D = l2/τ , where l is the
characteristic length, which is of the order of the average grain diameter, and τ is
the characteristic time, which is of the order of the collision time, τ ∼

√
l/g. In

order to compare theory with experiments, l is taken as the average grain diameter,
l = 240 µm, and τ =

√
l/g.

The particles are initially at rest, and the experiment was performed by increasing
the inclination angle ϕ slowly until an avalanche was triggered. Fig. (4) shows the
theoretical predictions (lines) against the experimental results (symbols) for hc(δ)
and hs(δ).
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Figure 4: Dashed line corresponds to hc, Eq. (21). Continuous line corresponds
to hs, Eq. (18). Symbols show experimental data [9]. The two asymptotic values
δ = 0.5 and δ = 1 correspond to the experimental angles of ϕ = 25◦ and ϕ1 = 32◦

respectively, from where the critical angle ϕ0 was obtained.

5 Conclusion

A general continuum theory of dense granular flows was derived. In this model, an
order parameter is introduced as a variable that controls the stability of the static and
the fluidized phases. In particular, this theory is applied to the study of avalanches
on an inclined plane configuration. This order-parameter model successfully explains
many important phenomena observed experimentally [7]. For example, the existence
of a bistable regime, where solid and fluid phases coexist.
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